]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/vt6656/card.c
Merge remote-tracking branch 'asoc/fix/fsl-ssi' into asoc-linus
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / vt6656 / card.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: card.c
20 * Purpose: Provide functions to setup NIC operation mode
21 * Functions:
22 * vnt_set_rspinf - Set RSPINF
23 * vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
24 * vnt_update_top_rates - Update BasicTopRate
25 * vnt_add_basic_rate - Add to BasicRateSet
26 * vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
27 * vnt_get_tsf_offset - Calculate TSFOffset
28 * vnt_get_current_tsf - Read Current NIC TSF counter
29 * vnt_get_next_tbtt - Calculate Next Beacon TSF counter
30 * vnt_reset_next_tbtt - Set NIC Beacon time
31 * vnt_update_next_tbtt - Sync. NIC Beacon time
32 * vnt_radio_power_off - Turn Off NIC Radio Power
33 * vnt_radio_power_on - Turn On NIC Radio Power
34 *
35 * Revision History:
36 * 06-10-2003 Bryan YC Fan: Re-write codes to support VT3253 spec.
37 * 08-26-2003 Kyle Hsu: Modify the definition type of dwIoBase.
38 * 09-01-2003 Bryan YC Fan: Add vnt_update_ifs().
39 *
40 */
41
42 #include "device.h"
43 #include "card.h"
44 #include "baseband.h"
45 #include "mac.h"
46 #include "desc.h"
47 #include "rf.h"
48 #include "power.h"
49 #include "key.h"
50 #include "usbpipe.h"
51
52 /* const u16 cwRXBCNTSFOff[MAX_RATE] =
53 {17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3}; */
54
55 static const u16 cwRXBCNTSFOff[MAX_RATE] = {
56 192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3
57 };
58
59 /*
60 * Description: Set NIC media channel
61 *
62 * Parameters:
63 * In:
64 * pDevice - The adapter to be set
65 * connection_channel - Channel to be set
66 * Out:
67 * none
68 */
69 void vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
70 {
71
72 if (connection_channel > CB_MAX_CHANNEL || !connection_channel)
73 return;
74
75 /* clear NAV */
76 vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
77
78 /* Set Channel[7] = 0 to tell H/W channel is changing now. */
79 vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL, 0xb0);
80
81 vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNEL,
82 connection_channel, 0, 0, NULL);
83
84 vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
85 (u8)(connection_channel|0x80));
86 }
87
88 /*
89 * Description: Get CCK mode basic rate
90 *
91 * Parameters:
92 * In:
93 * priv - The adapter to be set
94 * rate_idx - Receiving data rate
95 * Out:
96 * none
97 *
98 * Return Value: response Control frame rate
99 *
100 */
101 static u16 vnt_get_cck_rate(struct vnt_private *priv, u16 rate_idx)
102 {
103 u16 ui = rate_idx;
104
105 while (ui > RATE_1M) {
106 if (priv->basic_rates & (1 << ui))
107 return ui;
108 ui--;
109 }
110
111 return RATE_1M;
112 }
113
114 /*
115 * Description: Get OFDM mode basic rate
116 *
117 * Parameters:
118 * In:
119 * priv - The adapter to be set
120 * rate_idx - Receiving data rate
121 * Out:
122 * none
123 *
124 * Return Value: response Control frame rate
125 *
126 */
127 static u16 vnt_get_ofdm_rate(struct vnt_private *priv, u16 rate_idx)
128 {
129 u16 ui = rate_idx;
130
131 dev_dbg(&priv->usb->dev, "%s basic rate: %d\n",
132 __func__, priv->basic_rates);
133
134 if (!vnt_ofdm_min_rate(priv)) {
135 dev_dbg(&priv->usb->dev, "%s (NO OFDM) %d\n",
136 __func__, rate_idx);
137 if (rate_idx > RATE_24M)
138 rate_idx = RATE_24M;
139 return rate_idx;
140 }
141
142 while (ui > RATE_11M) {
143 if (priv->basic_rates & (1 << ui)) {
144 dev_dbg(&priv->usb->dev, "%s rate: %d\n",
145 __func__, ui);
146 return ui;
147 }
148 ui--;
149 }
150
151 dev_dbg(&priv->usb->dev, "%s basic rate: 24M\n", __func__);
152
153 return RATE_24M;
154 }
155
156 /*
157 * Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
158 *
159 * Parameters:
160 * In:
161 * rate - Tx Rate
162 * bb_type - Tx Packet type
163 * Out:
164 * tx_rate - pointer to RSPINF TxRate field
165 * rsv_time- pointer to RSPINF RsvTime field
166 *
167 * Return Value: none
168 *
169 */
170 static void vnt_calculate_ofdm_rate(u16 rate, u8 bb_type,
171 u8 *tx_rate, u8 *rsv_time)
172 {
173
174 switch (rate) {
175 case RATE_6M:
176 if (bb_type == BB_TYPE_11A) {
177 *tx_rate = 0x9b;
178 *rsv_time = 24;
179 } else {
180 *tx_rate = 0x8b;
181 *rsv_time = 30;
182 }
183 break;
184 case RATE_9M:
185 if (bb_type == BB_TYPE_11A) {
186 *tx_rate = 0x9f;
187 *rsv_time = 16;
188 } else {
189 *tx_rate = 0x8f;
190 *rsv_time = 22;
191 }
192 break;
193 case RATE_12M:
194 if (bb_type == BB_TYPE_11A) {
195 *tx_rate = 0x9a;
196 *rsv_time = 12;
197 } else {
198 *tx_rate = 0x8a;
199 *rsv_time = 18;
200 }
201 break;
202 case RATE_18M:
203 if (bb_type == BB_TYPE_11A) {
204 *tx_rate = 0x9e;
205 *rsv_time = 8;
206 } else {
207 *tx_rate = 0x8e;
208 *rsv_time = 14;
209 }
210 break;
211 case RATE_36M:
212 if (bb_type == BB_TYPE_11A) {
213 *tx_rate = 0x9d;
214 *rsv_time = 4;
215 } else {
216 *tx_rate = 0x8d;
217 *rsv_time = 10;
218 }
219 break;
220 case RATE_48M:
221 if (bb_type == BB_TYPE_11A) {
222 *tx_rate = 0x98;
223 *rsv_time = 4;
224 } else {
225 *tx_rate = 0x88;
226 *rsv_time = 10;
227 }
228 break;
229 case RATE_54M:
230 if (bb_type == BB_TYPE_11A) {
231 *tx_rate = 0x9c;
232 *rsv_time = 4;
233 } else {
234 *tx_rate = 0x8c;
235 *rsv_time = 10;
236 }
237 break;
238 case RATE_24M:
239 default:
240 if (bb_type == BB_TYPE_11A) {
241 *tx_rate = 0x99;
242 *rsv_time = 8;
243 } else {
244 *tx_rate = 0x89;
245 *rsv_time = 14;
246 }
247 break;
248 }
249 }
250
251 /*
252 * Description: Set RSPINF
253 *
254 * Parameters:
255 * In:
256 * pDevice - The adapter to be set
257 * Out:
258 * none
259 *
260 * Return Value: None.
261 *
262 */
263
264 void vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
265 {
266 struct vnt_phy_field phy[4];
267 u8 tx_rate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
268 u8 rsv_time[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
269 u8 data[34];
270 int i;
271
272 /*RSPINF_b_1*/
273 vnt_get_phy_field(priv, 14,
274 vnt_get_cck_rate(priv, RATE_1M), PK_TYPE_11B, &phy[0]);
275
276 /*RSPINF_b_2*/
277 vnt_get_phy_field(priv, 14,
278 vnt_get_cck_rate(priv, RATE_2M), PK_TYPE_11B, &phy[1]);
279
280 /*RSPINF_b_5*/
281 vnt_get_phy_field(priv, 14,
282 vnt_get_cck_rate(priv, RATE_5M), PK_TYPE_11B, &phy[2]);
283
284 /*RSPINF_b_11*/
285 vnt_get_phy_field(priv, 14,
286 vnt_get_cck_rate(priv, RATE_11M), PK_TYPE_11B, &phy[3]);
287
288
289 /*RSPINF_a_6*/
290 vnt_calculate_ofdm_rate(RATE_6M, bb_type, &tx_rate[0], &rsv_time[0]);
291
292 /*RSPINF_a_9*/
293 vnt_calculate_ofdm_rate(RATE_9M, bb_type, &tx_rate[1], &rsv_time[1]);
294
295 /*RSPINF_a_12*/
296 vnt_calculate_ofdm_rate(RATE_12M, bb_type, &tx_rate[2], &rsv_time[2]);
297
298 /*RSPINF_a_18*/
299 vnt_calculate_ofdm_rate(RATE_18M, bb_type, &tx_rate[3], &rsv_time[3]);
300
301 /*RSPINF_a_24*/
302 vnt_calculate_ofdm_rate(RATE_24M, bb_type, &tx_rate[4], &rsv_time[4]);
303
304 /*RSPINF_a_36*/
305 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_36M),
306 bb_type, &tx_rate[5], &rsv_time[5]);
307
308 /*RSPINF_a_48*/
309 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_48M),
310 bb_type, &tx_rate[6], &rsv_time[6]);
311
312 /*RSPINF_a_54*/
313 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
314 bb_type, &tx_rate[7], &rsv_time[7]);
315
316 /*RSPINF_a_72*/
317 vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
318 bb_type, &tx_rate[8], &rsv_time[8]);
319
320 put_unaligned(phy[0].len, (u16 *)&data[0]);
321 data[2] = phy[0].signal;
322 data[3] = phy[0].service;
323
324 put_unaligned(phy[1].len, (u16 *)&data[4]);
325 data[6] = phy[1].signal;
326 data[7] = phy[1].service;
327
328 put_unaligned(phy[2].len, (u16 *)&data[8]);
329 data[10] = phy[2].signal;
330 data[11] = phy[2].service;
331
332 put_unaligned(phy[3].len, (u16 *)&data[12]);
333 data[14] = phy[3].signal;
334 data[15] = phy[3].service;
335
336 for (i = 0; i < 9; i++) {
337 data[16 + i * 2] = tx_rate[i];
338 data[16 + i * 2 + 1] = rsv_time[i];
339 }
340
341 vnt_control_out(priv, MESSAGE_TYPE_WRITE,
342 MAC_REG_RSPINF_B_1, MESSAGE_REQUEST_MACREG, 34, &data[0]);
343 }
344
345 /*
346 * Description: Update IFS
347 *
348 * Parameters:
349 * In:
350 * priv - The adapter to be set
351 * Out:
352 * none
353 *
354 * Return Value: None.
355 *
356 */
357 void vnt_update_ifs(struct vnt_private *priv)
358 {
359 u8 max_min = 0;
360 u8 data[4];
361
362 if (priv->packet_type == PK_TYPE_11A) {
363 priv->slot = C_SLOT_SHORT;
364 priv->sifs = C_SIFS_A;
365 priv->difs = C_SIFS_A + 2 * C_SLOT_SHORT;
366 max_min = 4;
367 } else if (priv->packet_type == PK_TYPE_11B) {
368 priv->slot = C_SLOT_LONG;
369 priv->sifs = C_SIFS_BG;
370 priv->difs = C_SIFS_BG + 2 * C_SLOT_LONG;
371 max_min = 5;
372 } else {/* PK_TYPE_11GA & PK_TYPE_11GB */
373 bool ofdm_rate = false;
374 unsigned int ii = 0;
375
376 priv->sifs = C_SIFS_BG;
377
378 if (priv->short_slot_time)
379 priv->slot = C_SLOT_SHORT;
380 else
381 priv->slot = C_SLOT_LONG;
382
383 priv->difs = C_SIFS_BG + 2 * priv->slot;
384
385 for (ii = RATE_54M; ii >= RATE_6M; ii--) {
386 if (priv->basic_rates & ((u32)(0x1 << ii))) {
387 ofdm_rate = true;
388 break;
389 }
390 }
391
392 if (ofdm_rate == true)
393 max_min = 4;
394 else
395 max_min = 5;
396 }
397
398 priv->eifs = C_EIFS;
399
400 switch (priv->rf_type) {
401 case RF_VT3226D0:
402 if (priv->bb_type != BB_TYPE_11B) {
403 priv->sifs -= 1;
404 priv->difs -= 1;
405 break;
406 }
407 case RF_AIROHA7230:
408 case RF_AL2230:
409 case RF_AL2230S:
410 if (priv->bb_type != BB_TYPE_11B)
411 break;
412 case RF_RFMD2959:
413 case RF_VT3226:
414 case RF_VT3342A0:
415 priv->sifs -= 3;
416 priv->difs -= 3;
417 break;
418 case RF_MAXIM2829:
419 if (priv->bb_type == BB_TYPE_11A) {
420 priv->sifs -= 5;
421 priv->difs -= 5;
422 } else {
423 priv->sifs -= 2;
424 priv->difs -= 2;
425 }
426
427 break;
428 }
429
430 data[0] = (u8)priv->sifs;
431 data[1] = (u8)priv->difs;
432 data[2] = (u8)priv->eifs;
433 data[3] = (u8)priv->slot;
434
435 vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
436 MESSAGE_REQUEST_MACREG, 4, &data[0]);
437
438 max_min |= 0xa0;
439
440 vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
441 MESSAGE_REQUEST_MACREG, 1, &max_min);
442 }
443
444 void vnt_update_top_rates(struct vnt_private *priv)
445 {
446 u8 top_ofdm = RATE_24M, top_cck = RATE_1M;
447 u8 i;
448
449 /*Determines the highest basic rate.*/
450 for (i = RATE_54M; i >= RATE_6M; i--) {
451 if (priv->basic_rates & (u16)(1 << i)) {
452 top_ofdm = i;
453 break;
454 }
455 }
456
457 priv->top_ofdm_basic_rate = top_ofdm;
458
459 for (i = RATE_11M;; i--) {
460 if (priv->basic_rates & (u16)(1 << i)) {
461 top_cck = i;
462 break;
463 }
464 if (i == RATE_1M)
465 break;
466 }
467
468 priv->top_cck_basic_rate = top_cck;
469 }
470
471 int vnt_ofdm_min_rate(struct vnt_private *priv)
472 {
473 int ii;
474
475 for (ii = RATE_54M; ii >= RATE_6M; ii--) {
476 if ((priv->basic_rates) & ((u16)(1 << ii)))
477 return true;
478 }
479
480 return false;
481 }
482
483 u8 vnt_get_pkt_type(struct vnt_private *priv)
484 {
485
486 if (priv->bb_type == BB_TYPE_11A || priv->bb_type == BB_TYPE_11B)
487 return (u8)priv->bb_type;
488 else if (vnt_ofdm_min_rate(priv))
489 return PK_TYPE_11GA;
490 return PK_TYPE_11GB;
491 }
492
493 /*
494 * Description: Calculate TSF offset of two TSF input
495 * Get TSF Offset from RxBCN's TSF and local TSF
496 *
497 * Parameters:
498 * In:
499 * rx_rate - rx rate.
500 * tsf1 - Rx BCN's TSF
501 * tsf2 - Local TSF
502 * Out:
503 * none
504 *
505 * Return Value: TSF Offset value
506 *
507 */
508 u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
509 {
510 u64 tsf_offset = 0;
511 u16 rx_bcn_offset = 0;
512
513 rx_bcn_offset = cwRXBCNTSFOff[rx_rate % MAX_RATE];
514
515 tsf2 += (u64)rx_bcn_offset;
516
517 tsf_offset = tsf1 - tsf2;
518
519 return tsf_offset;
520 }
521
522 /*
523 * Description: Sync. TSF counter to BSS
524 * Get TSF offset and write to HW
525 *
526 * Parameters:
527 * In:
528 * priv - The adapter to be sync.
529 * time_stamp - Rx BCN's TSF
530 * local_tsf - Local TSF
531 * Out:
532 * none
533 *
534 * Return Value: none
535 *
536 */
537 void vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
538 u64 time_stamp, u64 local_tsf)
539 {
540 u64 tsf_offset = 0;
541 u8 data[8];
542
543 tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
544
545 data[0] = (u8)tsf_offset;
546 data[1] = (u8)(tsf_offset >> 8);
547 data[2] = (u8)(tsf_offset >> 16);
548 data[3] = (u8)(tsf_offset >> 24);
549 data[4] = (u8)(tsf_offset >> 32);
550 data[5] = (u8)(tsf_offset >> 40);
551 data[6] = (u8)(tsf_offset >> 48);
552 data[7] = (u8)(tsf_offset >> 56);
553
554 vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
555 MESSAGE_REQUEST_TSF, 0, 8, data);
556 }
557 /*
558 * Description: Read NIC TSF counter
559 * Get local TSF counter
560 *
561 * Parameters:
562 * In:
563 * priv - The adapter to be read
564 * Out:
565 * current_tsf - Current TSF counter
566 *
567 * Return Value: true if success; otherwise false
568 *
569 */
570 bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
571 {
572
573 *current_tsf = priv->current_tsf;
574
575 return true;
576 }
577
578 /*
579 * Description: Clear NIC TSF counter
580 * Clear local TSF counter
581 *
582 * Parameters:
583 * In:
584 * priv - The adapter to be read
585 *
586 * Return Value: true if success; otherwise false
587 *
588 */
589 bool vnt_clear_current_tsf(struct vnt_private *priv)
590 {
591
592 vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
593
594 priv->current_tsf = 0;
595
596 return true;
597 }
598
599 /*
600 * Description: Read NIC TSF counter
601 * Get NEXTTBTT from adjusted TSF and Beacon Interval
602 *
603 * Parameters:
604 * In:
605 * tsf - Current TSF counter
606 * beacon_interval - Beacon Interval
607 * Out:
608 * tsf - Current TSF counter
609 *
610 * Return Value: TSF value of next Beacon
611 *
612 */
613 u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
614 {
615 u32 beacon_int;
616
617 beacon_int = beacon_interval * 1024;
618
619 /* Next TBTT =
620 * ((local_current_TSF / beacon_interval) + 1) * beacon_interval
621 */
622 if (beacon_int) {
623 do_div(tsf, beacon_int);
624 tsf += 1;
625 tsf *= beacon_int;
626 }
627
628 return tsf;
629 }
630
631 /*
632 * Description: Set NIC TSF counter for first Beacon time
633 * Get NEXTTBTT from adjusted TSF and Beacon Interval
634 *
635 * Parameters:
636 * In:
637 * dwIoBase - IO Base
638 * beacon_interval - Beacon Interval
639 * Out:
640 * none
641 *
642 * Return Value: none
643 *
644 */
645 void vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
646 {
647 u64 next_tbtt = 0;
648 u8 data[8];
649
650 vnt_clear_current_tsf(priv);
651
652 next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
653
654 data[0] = (u8)next_tbtt;
655 data[1] = (u8)(next_tbtt >> 8);
656 data[2] = (u8)(next_tbtt >> 16);
657 data[3] = (u8)(next_tbtt >> 24);
658 data[4] = (u8)(next_tbtt >> 32);
659 data[5] = (u8)(next_tbtt >> 40);
660 data[6] = (u8)(next_tbtt >> 48);
661 data[7] = (u8)(next_tbtt >> 56);
662
663 vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
664 MESSAGE_REQUEST_TBTT, 0, 8, data);
665 }
666
667 /*
668 * Description: Sync NIC TSF counter for Beacon time
669 * Get NEXTTBTT and write to HW
670 *
671 * Parameters:
672 * In:
673 * priv - The adapter to be set
674 * tsf - Current TSF counter
675 * beacon_interval - Beacon Interval
676 * Out:
677 * none
678 *
679 * Return Value: none
680 *
681 */
682 void vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
683 u16 beacon_interval)
684 {
685 u8 data[8];
686
687 tsf = vnt_get_next_tbtt(tsf, beacon_interval);
688
689 data[0] = (u8)tsf;
690 data[1] = (u8)(tsf >> 8);
691 data[2] = (u8)(tsf >> 16);
692 data[3] = (u8)(tsf >> 24);
693 data[4] = (u8)(tsf >> 32);
694 data[5] = (u8)(tsf >> 40);
695 data[6] = (u8)(tsf >> 48);
696 data[7] = (u8)(tsf >> 56);
697
698 vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
699 MESSAGE_REQUEST_TBTT, 0, 8, data);
700
701 dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
702 }
703
704 /*
705 * Description: Turn off Radio power
706 *
707 * Parameters:
708 * In:
709 * priv - The adapter to be turned off
710 * Out:
711 * none
712 *
713 * Return Value: true if success; otherwise false
714 *
715 */
716 int vnt_radio_power_off(struct vnt_private *priv)
717 {
718 int ret = true;
719
720 switch (priv->rf_type) {
721 case RF_AL2230:
722 case RF_AL2230S:
723 case RF_AIROHA7230:
724 case RF_VT3226:
725 case RF_VT3226D0:
726 case RF_VT3342A0:
727 vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
728 (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
729 break;
730 }
731
732 vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
733
734 vnt_set_deep_sleep(priv);
735
736 vnt_mac_reg_bits_on(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
737
738 return ret;
739 }
740
741 /*
742 * Description: Turn on Radio power
743 *
744 * Parameters:
745 * In:
746 * priv - The adapter to be turned on
747 * Out:
748 * none
749 *
750 * Return Value: true if success; otherwise false
751 *
752 */
753 int vnt_radio_power_on(struct vnt_private *priv)
754 {
755 int ret = true;
756
757 vnt_exit_deep_sleep(priv);
758
759 vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
760
761 switch (priv->rf_type) {
762 case RF_AL2230:
763 case RF_AL2230S:
764 case RF_AIROHA7230:
765 case RF_VT3226:
766 case RF_VT3226D0:
767 case RF_VT3342A0:
768 vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
769 (SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
770 break;
771 }
772
773 vnt_mac_reg_bits_off(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
774
775 return ret;
776 }
777
778 void vnt_set_bss_mode(struct vnt_private *priv)
779 {
780 if (priv->rf_type == RF_AIROHA7230 && priv->bb_type == BB_TYPE_11A)
781 vnt_mac_set_bb_type(priv, BB_TYPE_11G);
782 else
783 vnt_mac_set_bb_type(priv, priv->bb_type);
784
785 priv->packet_type = vnt_get_pkt_type(priv);
786
787 if (priv->bb_type == BB_TYPE_11A)
788 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
789 else if (priv->bb_type == BB_TYPE_11B)
790 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
791 else if (priv->bb_type == BB_TYPE_11G)
792 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
793
794 vnt_update_ifs(priv);
795 vnt_set_rspinf(priv, (u8)priv->bb_type);
796
797 if (priv->bb_type == BB_TYPE_11A) {
798 if (priv->rf_type == RF_AIROHA7230) {
799 priv->bb_vga[0] = 0x20;
800
801 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
802 0xe7, priv->bb_vga[0]);
803 }
804
805 priv->bb_vga[2] = 0x10;
806 priv->bb_vga[3] = 0x10;
807 } else {
808 if (priv->rf_type == RF_AIROHA7230) {
809 priv->bb_vga[0] = 0x1c;
810
811 vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
812 0xe7, priv->bb_vga[0]);
813 }
814
815 priv->bb_vga[2] = 0x0;
816 priv->bb_vga[3] = 0x0;
817 }
818
819 vnt_set_vga_gain_offset(priv, priv->bb_vga[0]);
820 }