]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/winbond/wb35reg.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / winbond / wb35reg.c
1 #include "sysdef.h"
2 #include "wb35reg_f.h"
3
4 #include <linux/usb.h>
5 #include <linux/slab.h>
6
7 extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
8
9 // true : read command process successfully
10 // false : register not support
11 // RegisterNo : start base
12 // pRegisterData : data point
13 // NumberOfData : number of register data
14 // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
15 // NO_INCREMENT - Function will write data into the same register
16 unsigned char
17 Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag)
18 {
19 struct wb35_reg *reg = &pHwData->reg;
20 struct urb *urb = NULL;
21 struct wb35_reg_queue *reg_queue = NULL;
22 u16 UrbSize;
23 struct usb_ctrlrequest *dr;
24 u16 i, DataSize = NumberOfData*4;
25
26 // Module shutdown
27 if (pHwData->SurpriseRemove)
28 return false;
29
30 // Trying to use burst write function if use new hardware
31 UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
32 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
33 urb = usb_alloc_urb(0, GFP_ATOMIC);
34 if( urb && reg_queue ) {
35 reg_queue->DIRECT = 2;// burst write register
36 reg_queue->INDEX = RegisterNo;
37 reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
38 memcpy( reg_queue->pBuffer, pRegisterData, DataSize );
39 //the function for reversing register data from little endian to big endian
40 for( i=0; i<NumberOfData ; i++ )
41 reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] );
42
43 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
44 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
45 dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode
46 dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment
47 dr->wIndex = cpu_to_le16( RegisterNo );
48 dr->wLength = cpu_to_le16( DataSize );
49 reg_queue->Next = NULL;
50 reg_queue->pUsbReq = dr;
51 reg_queue->urb = urb;
52
53 spin_lock_irq( &reg->EP0VM_spin_lock );
54 if (reg->reg_first == NULL)
55 reg->reg_first = reg_queue;
56 else
57 reg->reg_last->Next = reg_queue;
58 reg->reg_last = reg_queue;
59
60 spin_unlock_irq( &reg->EP0VM_spin_lock );
61
62 // Start EP0VM
63 Wb35Reg_EP0VM_start(pHwData);
64
65 return true;
66 } else {
67 if (urb)
68 usb_free_urb(urb);
69 if (reg_queue)
70 kfree(reg_queue);
71 return false;
72 }
73 return false;
74 }
75
76 void
77 Wb35Reg_Update(struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue)
78 {
79 struct wb35_reg *reg = &pHwData->reg;
80 switch (RegisterNo) {
81 case 0x3b0: reg->U1B0 = RegisterValue; break;
82 case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
83 case 0x400: reg->D00_DmaControl = RegisterValue; break;
84 case 0x800: reg->M00_MacControl = RegisterValue; break;
85 case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
86 case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
87 case 0x824: reg->M24_MacControl = RegisterValue; break;
88 case 0x828: reg->M28_MacControl = RegisterValue; break;
89 case 0x82c: reg->M2C_MacControl = RegisterValue; break;
90 case 0x838: reg->M38_MacControl = RegisterValue; break;
91 case 0x840: reg->M40_MacControl = RegisterValue; break;
92 case 0x844: reg->M44_MacControl = RegisterValue; break;
93 case 0x848: reg->M48_MacControl = RegisterValue; break;
94 case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
95 case 0x860: reg->M60_MacControl = RegisterValue; break;
96 case 0x868: reg->M68_MacControl = RegisterValue; break;
97 case 0x870: reg->M70_MacControl = RegisterValue; break;
98 case 0x874: reg->M74_MacControl = RegisterValue; break;
99 case 0x878: reg->M78_ERPInformation = RegisterValue; break;
100 case 0x87C: reg->M7C_MacControl = RegisterValue; break;
101 case 0x880: reg->M80_MacControl = RegisterValue; break;
102 case 0x884: reg->M84_MacControl = RegisterValue; break;
103 case 0x888: reg->M88_MacControl = RegisterValue; break;
104 case 0x898: reg->M98_MacControl = RegisterValue; break;
105 case 0x100c: reg->BB0C = RegisterValue; break;
106 case 0x102c: reg->BB2C = RegisterValue; break;
107 case 0x1030: reg->BB30 = RegisterValue; break;
108 case 0x103c: reg->BB3C = RegisterValue; break;
109 case 0x1048: reg->BB48 = RegisterValue; break;
110 case 0x104c: reg->BB4C = RegisterValue; break;
111 case 0x1050: reg->BB50 = RegisterValue; break;
112 case 0x1054: reg->BB54 = RegisterValue; break;
113 case 0x1058: reg->BB58 = RegisterValue; break;
114 case 0x105c: reg->BB5C = RegisterValue; break;
115 case 0x1060: reg->BB60 = RegisterValue; break;
116 }
117 }
118
119 // true : read command process successfully
120 // false : register not support
121 unsigned char
122 Wb35Reg_WriteSync( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue )
123 {
124 struct wb35_reg *reg = &pHwData->reg;
125 int ret = -1;
126
127 // Module shutdown
128 if (pHwData->SurpriseRemove)
129 return false;
130
131 RegisterValue = cpu_to_le32(RegisterValue);
132
133 // update the register by send usb message------------------------------------
134 reg->SyncIoPause = 1;
135
136 // 20060717.5 Wait until EP0VM stop
137 while (reg->EP0vm_state != VM_STOP)
138 msleep(10);
139
140 // Sync IoCallDriver
141 reg->EP0vm_state = VM_RUNNING;
142 ret = usb_control_msg( pHwData->WbUsb.udev,
143 usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ),
144 0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
145 0x0,RegisterNo, &RegisterValue, 4, HZ*100 );
146 reg->EP0vm_state = VM_STOP;
147 reg->SyncIoPause = 0;
148
149 Wb35Reg_EP0VM_start(pHwData);
150
151 if (ret < 0) {
152 #ifdef _PE_REG_DUMP_
153 printk("EP0 Write register usb message sending error\n");
154 #endif
155
156 pHwData->SurpriseRemove = 1; // 20060704.2
157 return false;
158 }
159
160 return true;
161 }
162
163 // true : read command process successfully
164 // false : register not support
165 unsigned char
166 Wb35Reg_Write( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue )
167 {
168 struct wb35_reg *reg = &pHwData->reg;
169 struct usb_ctrlrequest *dr;
170 struct urb *urb = NULL;
171 struct wb35_reg_queue *reg_queue = NULL;
172 u16 UrbSize;
173
174
175 // Module shutdown
176 if (pHwData->SurpriseRemove)
177 return false;
178
179 // update the register by send urb request------------------------------------
180 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
181 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
182 urb = usb_alloc_urb(0, GFP_ATOMIC);
183 if (urb && reg_queue) {
184 reg_queue->DIRECT = 1;// burst write register
185 reg_queue->INDEX = RegisterNo;
186 reg_queue->VALUE = cpu_to_le32(RegisterValue);
187 reg_queue->RESERVED_VALID = false;
188 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
189 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
190 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
191 dr->wValue = cpu_to_le16(0x0);
192 dr->wIndex = cpu_to_le16(RegisterNo);
193 dr->wLength = cpu_to_le16(4);
194
195 // Enter the sending queue
196 reg_queue->Next = NULL;
197 reg_queue->pUsbReq = dr;
198 reg_queue->urb = urb;
199
200 spin_lock_irq(&reg->EP0VM_spin_lock );
201 if (reg->reg_first == NULL)
202 reg->reg_first = reg_queue;
203 else
204 reg->reg_last->Next = reg_queue;
205 reg->reg_last = reg_queue;
206
207 spin_unlock_irq( &reg->EP0VM_spin_lock );
208
209 // Start EP0VM
210 Wb35Reg_EP0VM_start(pHwData);
211
212 return true;
213 } else {
214 if (urb)
215 usb_free_urb(urb);
216 kfree(reg_queue);
217 return false;
218 }
219 }
220
221 //This command will be executed with a user defined value. When it completes,
222 //this value is useful. For example, hal_set_current_channel will use it.
223 // true : read command process successfully
224 // false : register not support
225 unsigned char
226 Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue,
227 s8 *pValue, s8 Len)
228 {
229 struct wb35_reg *reg = &pHwData->reg;
230 struct usb_ctrlrequest *dr;
231 struct urb *urb = NULL;
232 struct wb35_reg_queue *reg_queue = NULL;
233 u16 UrbSize;
234
235 // Module shutdown
236 if (pHwData->SurpriseRemove)
237 return false;
238
239 // update the register by send urb request------------------------------------
240 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
241 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
242 urb = usb_alloc_urb(0, GFP_ATOMIC);
243 if (urb && reg_queue) {
244 reg_queue->DIRECT = 1;// burst write register
245 reg_queue->INDEX = RegisterNo;
246 reg_queue->VALUE = cpu_to_le32(RegisterValue);
247 //NOTE : Users must guarantee the size of value will not exceed the buffer size.
248 memcpy(reg_queue->RESERVED, pValue, Len);
249 reg_queue->RESERVED_VALID = true;
250 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
251 dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
252 dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
253 dr->wValue = cpu_to_le16(0x0);
254 dr->wIndex = cpu_to_le16(RegisterNo);
255 dr->wLength = cpu_to_le16(4);
256
257 // Enter the sending queue
258 reg_queue->Next = NULL;
259 reg_queue->pUsbReq = dr;
260 reg_queue->urb = urb;
261 spin_lock_irq (&reg->EP0VM_spin_lock );
262 if( reg->reg_first == NULL )
263 reg->reg_first = reg_queue;
264 else
265 reg->reg_last->Next = reg_queue;
266 reg->reg_last = reg_queue;
267
268 spin_unlock_irq ( &reg->EP0VM_spin_lock );
269
270 // Start EP0VM
271 Wb35Reg_EP0VM_start(pHwData);
272 return true;
273 } else {
274 if (urb)
275 usb_free_urb(urb);
276 kfree(reg_queue);
277 return false;
278 }
279 }
280
281 // true : read command process successfully
282 // false : register not support
283 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
284 unsigned char
285 Wb35Reg_ReadSync( struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue )
286 {
287 struct wb35_reg *reg = &pHwData->reg;
288 u32 * pltmp = pRegisterValue;
289 int ret = -1;
290
291 // Module shutdown
292 if (pHwData->SurpriseRemove)
293 return false;
294
295 // Read the register by send usb message------------------------------------
296
297 reg->SyncIoPause = 1;
298
299 // 20060717.5 Wait until EP0VM stop
300 while (reg->EP0vm_state != VM_STOP)
301 msleep(10);
302
303 reg->EP0vm_state = VM_RUNNING;
304 ret = usb_control_msg( pHwData->WbUsb.udev,
305 usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
306 0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN,
307 0x0, RegisterNo, pltmp, 4, HZ*100 );
308
309 *pRegisterValue = cpu_to_le32(*pltmp);
310
311 reg->EP0vm_state = VM_STOP;
312
313 Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue );
314 reg->SyncIoPause = 0;
315
316 Wb35Reg_EP0VM_start( pHwData );
317
318 if (ret < 0) {
319 #ifdef _PE_REG_DUMP_
320 printk("EP0 Read register usb message sending error\n");
321 #endif
322
323 pHwData->SurpriseRemove = 1; // 20060704.2
324 return false;
325 }
326
327 return true;
328 }
329
330 // true : read command process successfully
331 // false : register not support
332 // pRegisterValue : It must be a resident buffer due to asynchronous read register.
333 unsigned char
334 Wb35Reg_Read(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue )
335 {
336 struct wb35_reg *reg = &pHwData->reg;
337 struct usb_ctrlrequest * dr;
338 struct urb *urb;
339 struct wb35_reg_queue *reg_queue;
340 u16 UrbSize;
341
342 // Module shutdown
343 if (pHwData->SurpriseRemove)
344 return false;
345
346 // update the variable by send Urb to read register ------------------------------------
347 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
348 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
349 urb = usb_alloc_urb(0, GFP_ATOMIC);
350 if( urb && reg_queue )
351 {
352 reg_queue->DIRECT = 0;// read register
353 reg_queue->INDEX = RegisterNo;
354 reg_queue->pBuffer = pRegisterValue;
355 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
356 dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN;
357 dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode
358 dr->wValue = cpu_to_le16(0x0);
359 dr->wIndex = cpu_to_le16 (RegisterNo);
360 dr->wLength = cpu_to_le16 (4);
361
362 // Enter the sending queue
363 reg_queue->Next = NULL;
364 reg_queue->pUsbReq = dr;
365 reg_queue->urb = urb;
366 spin_lock_irq ( &reg->EP0VM_spin_lock );
367 if( reg->reg_first == NULL )
368 reg->reg_first = reg_queue;
369 else
370 reg->reg_last->Next = reg_queue;
371 reg->reg_last = reg_queue;
372
373 spin_unlock_irq( &reg->EP0VM_spin_lock );
374
375 // Start EP0VM
376 Wb35Reg_EP0VM_start( pHwData );
377
378 return true;
379 } else {
380 if (urb)
381 usb_free_urb( urb );
382 kfree(reg_queue);
383 return false;
384 }
385 }
386
387
388 void
389 Wb35Reg_EP0VM_start( struct hw_data * pHwData )
390 {
391 struct wb35_reg *reg = &pHwData->reg;
392
393 if (atomic_inc_return(&reg->RegFireCount) == 1) {
394 reg->EP0vm_state = VM_RUNNING;
395 Wb35Reg_EP0VM(pHwData);
396 } else
397 atomic_dec(&reg->RegFireCount);
398 }
399
400 void
401 Wb35Reg_EP0VM(struct hw_data * pHwData )
402 {
403 struct wb35_reg *reg = &pHwData->reg;
404 struct urb *urb;
405 struct usb_ctrlrequest *dr;
406 u32 * pBuffer;
407 int ret = -1;
408 struct wb35_reg_queue *reg_queue;
409
410
411 if (reg->SyncIoPause)
412 goto cleanup;
413
414 if (pHwData->SurpriseRemove)
415 goto cleanup;
416
417 // Get the register data and send to USB through Irp
418 spin_lock_irq( &reg->EP0VM_spin_lock );
419 reg_queue = reg->reg_first;
420 spin_unlock_irq( &reg->EP0VM_spin_lock );
421
422 if (!reg_queue)
423 goto cleanup;
424
425 // Get an Urb, send it
426 urb = (struct urb *)reg_queue->urb;
427
428 dr = reg_queue->pUsbReq;
429 urb = reg_queue->urb;
430 pBuffer = reg_queue->pBuffer;
431 if (reg_queue->DIRECT == 1) // output
432 pBuffer = &reg_queue->VALUE;
433
434 usb_fill_control_urb( urb, pHwData->WbUsb.udev,
435 REG_DIRECTION(pHwData->WbUsb.udev,reg_queue),
436 (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength),
437 Wb35Reg_EP0VM_complete, (void*)pHwData);
438
439 reg->EP0vm_state = VM_RUNNING;
440
441 ret = usb_submit_urb(urb, GFP_ATOMIC);
442
443 if (ret < 0) {
444 #ifdef _PE_REG_DUMP_
445 printk("EP0 Irp sending error\n");
446 #endif
447 goto cleanup;
448 }
449
450 return;
451
452 cleanup:
453 reg->EP0vm_state = VM_STOP;
454 atomic_dec(&reg->RegFireCount);
455 }
456
457
458 void
459 Wb35Reg_EP0VM_complete(struct urb *urb)
460 {
461 struct hw_data * pHwData = (struct hw_data *)urb->context;
462 struct wb35_reg *reg = &pHwData->reg;
463 struct wb35_reg_queue *reg_queue;
464
465
466 // Variable setting
467 reg->EP0vm_state = VM_COMPLETED;
468 reg->EP0VM_status = urb->status;
469
470 if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove
471 reg->EP0vm_state = VM_STOP;
472 atomic_dec(&reg->RegFireCount);
473 } else {
474 // Complete to send, remove the URB from the first
475 spin_lock_irq( &reg->EP0VM_spin_lock );
476 reg_queue = reg->reg_first;
477 if (reg_queue == reg->reg_last)
478 reg->reg_last = NULL;
479 reg->reg_first = reg->reg_first->Next;
480 spin_unlock_irq( &reg->EP0VM_spin_lock );
481
482 if (reg->EP0VM_status) {
483 #ifdef _PE_REG_DUMP_
484 printk("EP0 IoCompleteRoutine return error\n");
485 #endif
486 reg->EP0vm_state = VM_STOP;
487 pHwData->SurpriseRemove = 1;
488 } else {
489 // Success. Update the result
490
491 // Start the next send
492 Wb35Reg_EP0VM(pHwData);
493 }
494
495 kfree(reg_queue);
496 }
497
498 usb_free_urb(urb);
499 }
500
501
502 void
503 Wb35Reg_destroy(struct hw_data * pHwData)
504 {
505 struct wb35_reg *reg = &pHwData->reg;
506 struct urb *urb;
507 struct wb35_reg_queue *reg_queue;
508
509
510 Uxx_power_off_procedure(pHwData);
511
512 // Wait for Reg operation completed
513 do {
514 msleep(10); // Delay for waiting function enter 940623.1.a
515 } while (reg->EP0vm_state != VM_STOP);
516 msleep(10); // Delay for waiting function enter 940623.1.b
517
518 // Release all the data in RegQueue
519 spin_lock_irq( &reg->EP0VM_spin_lock );
520 reg_queue = reg->reg_first;
521 while (reg_queue) {
522 if (reg_queue == reg->reg_last)
523 reg->reg_last = NULL;
524 reg->reg_first = reg->reg_first->Next;
525
526 urb = reg_queue->urb;
527 spin_unlock_irq( &reg->EP0VM_spin_lock );
528 if (urb) {
529 usb_free_urb(urb);
530 kfree(reg_queue);
531 } else {
532 #ifdef _PE_REG_DUMP_
533 printk("EP0 queue release error\n");
534 #endif
535 }
536 spin_lock_irq( &reg->EP0VM_spin_lock );
537
538 reg_queue = reg->reg_first;
539 }
540 spin_unlock_irq( &reg->EP0VM_spin_lock );
541 }
542
543 //====================================================================================
544 // The function can be run in passive-level only.
545 //====================================================================================
546 unsigned char Wb35Reg_initial(struct hw_data * pHwData)
547 {
548 struct wb35_reg *reg=&pHwData->reg;
549 u32 ltmp;
550 u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
551
552 // Spin lock is acquired for read and write IRP command
553 spin_lock_init( &reg->EP0VM_spin_lock );
554
555 // Getting RF module type from EEPROM ------------------------------------
556 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d)
557 Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
558
559 //Update RF module type and determine the PHY type by inf or EEPROM
560 reg->EEPROMPhyType = (u8)( ltmp & 0xff );
561 // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
562 // 16V AL2230, 17 - AL7230, 18 - AL2230S
563 // 32 Reserved
564 // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
565 if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
566 if( (reg->EEPROMPhyType == RF_MAXIM_2825) ||
567 (reg->EEPROMPhyType == RF_MAXIM_2827) ||
568 (reg->EEPROMPhyType == RF_MAXIM_2828) ||
569 (reg->EEPROMPhyType == RF_MAXIM_2829) ||
570 (reg->EEPROMPhyType == RF_MAXIM_V1) ||
571 (reg->EEPROMPhyType == RF_AIROHA_2230) ||
572 (reg->EEPROMPhyType == RF_AIROHA_2230S) ||
573 (reg->EEPROMPhyType == RF_AIROHA_7230) ||
574 (reg->EEPROMPhyType == RF_WB_242) ||
575 (reg->EEPROMPhyType == RF_WB_242_1))
576 pHwData->phy_type = reg->EEPROMPhyType;
577 }
578
579 // Power On procedure running. The relative parameter will be set according to phy_type
580 Uxx_power_on_procedure( pHwData );
581
582 // Reading MAC address
583 Uxx_ReadEthernetAddress( pHwData );
584
585 // Read VCO trim for RF parameter
586 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 );
587 Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim );
588
589 // Read Antenna On/Off of software flag
590 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 );
591 Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet );
592
593 // Read TXVGA
594 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 );
595 Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga );
596
597 // Get Scan interval setting from EEPROM offset 0x1c
598 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 );
599 Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval );
600
601 // Update Ethernet address
602 memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN );
603
604 // Update software variable
605 pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
606 TxVga &= 0x000000ff;
607 pHwData->PowerIndexFromEEPROM = (u8)TxVga;
608 pHwData->VCO_trim = (u8)VCO_trim & 0xff;
609 if (pHwData->VCO_trim == 0xff)
610 pHwData->VCO_trim = 0x28;
611
612 reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720
613 if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 )
614 reg->EEPROMRegion = REGION_AUTO;
615
616 //For Get Tx VGA from EEPROM 20060315.5 move here
617 GetTxVgaFromEEPROM( pHwData );
618
619 // Set Scan Interval
620 pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
621 if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10
622 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
623
624 // Initial register
625 RFSynthesizer_initial(pHwData);
626
627 BBProcessor_initial(pHwData); // Async write, must wait until complete
628
629 Wb35Reg_phy_calibration(pHwData);
630
631 Mxx_initial(pHwData);
632 Dxx_initial(pHwData);
633
634 if (pHwData->SurpriseRemove)
635 return false;
636 else
637 return true; // Initial fail
638 }
639
640 //===================================================================================
641 // CardComputeCrc --
642 //
643 // Description:
644 // Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
645 //
646 // Arguments:
647 // Buffer - the input buffer
648 // Length - the length of Buffer
649 //
650 // Return Value:
651 // The 32-bit CRC value.
652 //
653 // Note:
654 // This is adapted from the comments in the assembly language
655 // version in _GENREQ.ASM of the DWB NE1000/2000 driver.
656 //==================================================================================
657 u32
658 CardComputeCrc(u8 * Buffer, u32 Length)
659 {
660 u32 Crc, Carry;
661 u32 i, j;
662 u8 CurByte;
663
664 Crc = 0xffffffff;
665
666 for (i = 0; i < Length; i++) {
667
668 CurByte = Buffer[i];
669
670 for (j = 0; j < 8; j++) {
671
672 Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
673 Crc <<= 1;
674 CurByte >>= 1;
675
676 if (Carry) {
677 Crc =(Crc ^ 0x04c11db6) | Carry;
678 }
679 }
680 }
681
682 return Crc;
683 }
684
685
686 //==================================================================
687 // BitReverse --
688 // Reverse the bits in the input argument, dwData, which is
689 // regarded as a string of bits with the length, DataLength.
690 //
691 // Arguments:
692 // dwData :
693 // DataLength :
694 //
695 // Return:
696 // The converted value.
697 //==================================================================
698 u32 BitReverse( u32 dwData, u32 DataLength)
699 {
700 u32 HalfLength, i, j;
701 u32 BitA, BitB;
702
703 if ( DataLength <= 0) return 0; // No conversion is done.
704 dwData = dwData & (0xffffffff >> (32 - DataLength));
705
706 HalfLength = DataLength / 2;
707 for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--)
708 {
709 BitA = GetBit( dwData, i);
710 BitB = GetBit( dwData, j);
711 if (BitA && !BitB) {
712 dwData = ClearBit( dwData, i);
713 dwData = SetBit( dwData, j);
714 } else if (!BitA && BitB) {
715 dwData = SetBit( dwData, i);
716 dwData = ClearBit( dwData, j);
717 } else
718 {
719 // Do nothing since these two bits are of the save values.
720 }
721 }
722
723 return dwData;
724 }
725
726 void Wb35Reg_phy_calibration( struct hw_data * pHwData )
727 {
728 u32 BB3c, BB54;
729
730 if ((pHwData->phy_type == RF_WB_242) ||
731 (pHwData->phy_type == RF_WB_242_1)) {
732 phy_calibration_winbond ( pHwData, 2412 ); // Sync operation
733 Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c );
734 Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 );
735
736 pHwData->BB3c_cal = BB3c;
737 pHwData->BB54_cal = BB54;
738
739 RFSynthesizer_initial(pHwData);
740 BBProcessor_initial(pHwData); // Async operation
741
742 Wb35Reg_WriteSync( pHwData, 0x103c, BB3c );
743 Wb35Reg_WriteSync( pHwData, 0x1054, BB54 );
744 }
745 }
746
747