]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/target/target_core_rd.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / target / target_core_rd.c
1 /*******************************************************************************
2 * Filename: target_core_rd.c
3 *
4 * This file contains the Storage Engine <-> Ramdisk transport
5 * specific functions.
6 *
7 * (c) Copyright 2003-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 *
25 ******************************************************************************/
26
27 #include <linux/string.h>
28 #include <linux/parser.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_host.h>
34
35 #include <target/target_core_base.h>
36 #include <target/target_core_backend.h>
37 #include <target/target_core_backend_configfs.h>
38
39 #include "target_core_rd.h"
40
41 static inline struct rd_dev *RD_DEV(struct se_device *dev)
42 {
43 return container_of(dev, struct rd_dev, dev);
44 }
45
46 /* rd_attach_hba(): (Part of se_subsystem_api_t template)
47 *
48 *
49 */
50 static int rd_attach_hba(struct se_hba *hba, u32 host_id)
51 {
52 struct rd_host *rd_host;
53
54 rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
55 if (!rd_host) {
56 pr_err("Unable to allocate memory for struct rd_host\n");
57 return -ENOMEM;
58 }
59
60 rd_host->rd_host_id = host_id;
61
62 hba->hba_ptr = rd_host;
63
64 pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
65 " Generic Target Core Stack %s\n", hba->hba_id,
66 RD_HBA_VERSION, TARGET_CORE_MOD_VERSION);
67
68 return 0;
69 }
70
71 static void rd_detach_hba(struct se_hba *hba)
72 {
73 struct rd_host *rd_host = hba->hba_ptr;
74
75 pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
76 " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
77
78 kfree(rd_host);
79 hba->hba_ptr = NULL;
80 }
81
82 static u32 rd_release_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
83 u32 sg_table_count)
84 {
85 struct page *pg;
86 struct scatterlist *sg;
87 u32 i, j, page_count = 0, sg_per_table;
88
89 for (i = 0; i < sg_table_count; i++) {
90 sg = sg_table[i].sg_table;
91 sg_per_table = sg_table[i].rd_sg_count;
92
93 for (j = 0; j < sg_per_table; j++) {
94 pg = sg_page(&sg[j]);
95 if (pg) {
96 __free_page(pg);
97 page_count++;
98 }
99 }
100 kfree(sg);
101 }
102
103 kfree(sg_table);
104 return page_count;
105 }
106
107 static void rd_release_device_space(struct rd_dev *rd_dev)
108 {
109 u32 page_count;
110
111 if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
112 return;
113
114 page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_table_array,
115 rd_dev->sg_table_count);
116
117 pr_debug("CORE_RD[%u] - Released device space for Ramdisk"
118 " Device ID: %u, pages %u in %u tables total bytes %lu\n",
119 rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
120 rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
121
122 rd_dev->sg_table_array = NULL;
123 rd_dev->sg_table_count = 0;
124 }
125
126
127 /* rd_build_device_space():
128 *
129 *
130 */
131 static int rd_allocate_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
132 u32 total_sg_needed, unsigned char init_payload)
133 {
134 u32 i = 0, j, page_offset = 0, sg_per_table;
135 u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
136 sizeof(struct scatterlist));
137 struct page *pg;
138 struct scatterlist *sg;
139 unsigned char *p;
140
141 while (total_sg_needed) {
142 sg_per_table = (total_sg_needed > max_sg_per_table) ?
143 max_sg_per_table : total_sg_needed;
144
145 sg = kzalloc(sg_per_table * sizeof(struct scatterlist),
146 GFP_KERNEL);
147 if (!sg) {
148 pr_err("Unable to allocate scatterlist array"
149 " for struct rd_dev\n");
150 return -ENOMEM;
151 }
152
153 sg_init_table(sg, sg_per_table);
154
155 sg_table[i].sg_table = sg;
156 sg_table[i].rd_sg_count = sg_per_table;
157 sg_table[i].page_start_offset = page_offset;
158 sg_table[i++].page_end_offset = (page_offset + sg_per_table)
159 - 1;
160
161 for (j = 0; j < sg_per_table; j++) {
162 pg = alloc_pages(GFP_KERNEL, 0);
163 if (!pg) {
164 pr_err("Unable to allocate scatterlist"
165 " pages for struct rd_dev_sg_table\n");
166 return -ENOMEM;
167 }
168 sg_assign_page(&sg[j], pg);
169 sg[j].length = PAGE_SIZE;
170
171 p = kmap(pg);
172 memset(p, init_payload, PAGE_SIZE);
173 kunmap(pg);
174 }
175
176 page_offset += sg_per_table;
177 total_sg_needed -= sg_per_table;
178 }
179
180 return 0;
181 }
182
183 static int rd_build_device_space(struct rd_dev *rd_dev)
184 {
185 struct rd_dev_sg_table *sg_table;
186 u32 sg_tables, total_sg_needed;
187 u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
188 sizeof(struct scatterlist));
189 int rc;
190
191 if (rd_dev->rd_page_count <= 0) {
192 pr_err("Illegal page count: %u for Ramdisk device\n",
193 rd_dev->rd_page_count);
194 return -EINVAL;
195 }
196
197 /* Don't need backing pages for NULLIO */
198 if (rd_dev->rd_flags & RDF_NULLIO)
199 return 0;
200
201 total_sg_needed = rd_dev->rd_page_count;
202
203 sg_tables = (total_sg_needed / max_sg_per_table) + 1;
204
205 sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
206 if (!sg_table) {
207 pr_err("Unable to allocate memory for Ramdisk"
208 " scatterlist tables\n");
209 return -ENOMEM;
210 }
211
212 rd_dev->sg_table_array = sg_table;
213 rd_dev->sg_table_count = sg_tables;
214
215 rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0x00);
216 if (rc)
217 return rc;
218
219 pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
220 " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
221 rd_dev->rd_dev_id, rd_dev->rd_page_count,
222 rd_dev->sg_table_count);
223
224 return 0;
225 }
226
227 static void rd_release_prot_space(struct rd_dev *rd_dev)
228 {
229 u32 page_count;
230
231 if (!rd_dev->sg_prot_array || !rd_dev->sg_prot_count)
232 return;
233
234 page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_prot_array,
235 rd_dev->sg_prot_count);
236
237 pr_debug("CORE_RD[%u] - Released protection space for Ramdisk"
238 " Device ID: %u, pages %u in %u tables total bytes %lu\n",
239 rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
240 rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
241
242 rd_dev->sg_prot_array = NULL;
243 rd_dev->sg_prot_count = 0;
244 }
245
246 static int rd_build_prot_space(struct rd_dev *rd_dev, int prot_length, int block_size)
247 {
248 struct rd_dev_sg_table *sg_table;
249 u32 total_sg_needed, sg_tables;
250 u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
251 sizeof(struct scatterlist));
252 int rc;
253
254 if (rd_dev->rd_flags & RDF_NULLIO)
255 return 0;
256 /*
257 * prot_length=8byte dif data
258 * tot sg needed = rd_page_count * (PGSZ/block_size) *
259 * (prot_length/block_size) + pad
260 * PGSZ canceled each other.
261 */
262 total_sg_needed = (rd_dev->rd_page_count * prot_length / block_size) + 1;
263
264 sg_tables = (total_sg_needed / max_sg_per_table) + 1;
265
266 sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
267 if (!sg_table) {
268 pr_err("Unable to allocate memory for Ramdisk protection"
269 " scatterlist tables\n");
270 return -ENOMEM;
271 }
272
273 rd_dev->sg_prot_array = sg_table;
274 rd_dev->sg_prot_count = sg_tables;
275
276 rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0xff);
277 if (rc)
278 return rc;
279
280 pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u prot space of"
281 " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
282 rd_dev->rd_dev_id, total_sg_needed, rd_dev->sg_prot_count);
283
284 return 0;
285 }
286
287 static struct se_device *rd_alloc_device(struct se_hba *hba, const char *name)
288 {
289 struct rd_dev *rd_dev;
290 struct rd_host *rd_host = hba->hba_ptr;
291
292 rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
293 if (!rd_dev) {
294 pr_err("Unable to allocate memory for struct rd_dev\n");
295 return NULL;
296 }
297
298 rd_dev->rd_host = rd_host;
299
300 return &rd_dev->dev;
301 }
302
303 static int rd_configure_device(struct se_device *dev)
304 {
305 struct rd_dev *rd_dev = RD_DEV(dev);
306 struct rd_host *rd_host = dev->se_hba->hba_ptr;
307 int ret;
308
309 if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
310 pr_debug("Missing rd_pages= parameter\n");
311 return -EINVAL;
312 }
313
314 ret = rd_build_device_space(rd_dev);
315 if (ret < 0)
316 goto fail;
317
318 dev->dev_attrib.hw_block_size = RD_BLOCKSIZE;
319 dev->dev_attrib.hw_max_sectors = UINT_MAX;
320 dev->dev_attrib.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
321
322 rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
323
324 pr_debug("CORE_RD[%u] - Added TCM MEMCPY Ramdisk Device ID: %u of"
325 " %u pages in %u tables, %lu total bytes\n",
326 rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count,
327 rd_dev->sg_table_count,
328 (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
329
330 return 0;
331
332 fail:
333 rd_release_device_space(rd_dev);
334 return ret;
335 }
336
337 static void rd_free_device(struct se_device *dev)
338 {
339 struct rd_dev *rd_dev = RD_DEV(dev);
340
341 rd_release_device_space(rd_dev);
342 kfree(rd_dev);
343 }
344
345 static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
346 {
347 struct rd_dev_sg_table *sg_table;
348 u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
349 sizeof(struct scatterlist));
350
351 i = page / sg_per_table;
352 if (i < rd_dev->sg_table_count) {
353 sg_table = &rd_dev->sg_table_array[i];
354 if ((sg_table->page_start_offset <= page) &&
355 (sg_table->page_end_offset >= page))
356 return sg_table;
357 }
358
359 pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n",
360 page);
361
362 return NULL;
363 }
364
365 static struct rd_dev_sg_table *rd_get_prot_table(struct rd_dev *rd_dev, u32 page)
366 {
367 struct rd_dev_sg_table *sg_table;
368 u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
369 sizeof(struct scatterlist));
370
371 i = page / sg_per_table;
372 if (i < rd_dev->sg_prot_count) {
373 sg_table = &rd_dev->sg_prot_array[i];
374 if ((sg_table->page_start_offset <= page) &&
375 (sg_table->page_end_offset >= page))
376 return sg_table;
377 }
378
379 pr_err("Unable to locate struct prot rd_dev_sg_table for page: %u\n",
380 page);
381
382 return NULL;
383 }
384
385 static sense_reason_t
386 rd_execute_rw(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_nents,
387 enum dma_data_direction data_direction)
388 {
389 struct se_device *se_dev = cmd->se_dev;
390 struct rd_dev *dev = RD_DEV(se_dev);
391 struct rd_dev_sg_table *table;
392 struct scatterlist *rd_sg;
393 struct sg_mapping_iter m;
394 u32 rd_offset;
395 u32 rd_size;
396 u32 rd_page;
397 u32 src_len;
398 u64 tmp;
399 sense_reason_t rc;
400
401 if (dev->rd_flags & RDF_NULLIO) {
402 target_complete_cmd(cmd, SAM_STAT_GOOD);
403 return 0;
404 }
405
406 tmp = cmd->t_task_lba * se_dev->dev_attrib.block_size;
407 rd_offset = do_div(tmp, PAGE_SIZE);
408 rd_page = tmp;
409 rd_size = cmd->data_length;
410
411 table = rd_get_sg_table(dev, rd_page);
412 if (!table)
413 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
414
415 rd_sg = &table->sg_table[rd_page - table->page_start_offset];
416
417 pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n",
418 dev->rd_dev_id,
419 data_direction == DMA_FROM_DEVICE ? "Read" : "Write",
420 cmd->t_task_lba, rd_size, rd_page, rd_offset);
421
422 if (cmd->prot_type && data_direction == DMA_TO_DEVICE) {
423 struct rd_dev_sg_table *prot_table;
424 struct scatterlist *prot_sg;
425 u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size;
426 u32 prot_offset, prot_page;
427
428 tmp = cmd->t_task_lba * se_dev->prot_length;
429 prot_offset = do_div(tmp, PAGE_SIZE);
430 prot_page = tmp;
431
432 prot_table = rd_get_prot_table(dev, prot_page);
433 if (!prot_table)
434 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
435
436 prot_sg = &prot_table->sg_table[prot_page - prot_table->page_start_offset];
437
438 rc = sbc_dif_verify_write(cmd, cmd->t_task_lba, sectors, 0,
439 prot_sg, prot_offset);
440 if (rc)
441 return rc;
442 }
443
444 src_len = PAGE_SIZE - rd_offset;
445 sg_miter_start(&m, sgl, sgl_nents,
446 data_direction == DMA_FROM_DEVICE ?
447 SG_MITER_TO_SG : SG_MITER_FROM_SG);
448 while (rd_size) {
449 u32 len;
450 void *rd_addr;
451
452 sg_miter_next(&m);
453 if (!(u32)m.length) {
454 pr_debug("RD[%u]: invalid sgl %p len %zu\n",
455 dev->rd_dev_id, m.addr, m.length);
456 sg_miter_stop(&m);
457 return TCM_INCORRECT_AMOUNT_OF_DATA;
458 }
459 len = min((u32)m.length, src_len);
460 if (len > rd_size) {
461 pr_debug("RD[%u]: size underrun page %d offset %d "
462 "size %d\n", dev->rd_dev_id,
463 rd_page, rd_offset, rd_size);
464 len = rd_size;
465 }
466 m.consumed = len;
467
468 rd_addr = sg_virt(rd_sg) + rd_offset;
469
470 if (data_direction == DMA_FROM_DEVICE)
471 memcpy(m.addr, rd_addr, len);
472 else
473 memcpy(rd_addr, m.addr, len);
474
475 rd_size -= len;
476 if (!rd_size)
477 continue;
478
479 src_len -= len;
480 if (src_len) {
481 rd_offset += len;
482 continue;
483 }
484
485 /* rd page completed, next one please */
486 rd_page++;
487 rd_offset = 0;
488 src_len = PAGE_SIZE;
489 if (rd_page <= table->page_end_offset) {
490 rd_sg++;
491 continue;
492 }
493
494 table = rd_get_sg_table(dev, rd_page);
495 if (!table) {
496 sg_miter_stop(&m);
497 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
498 }
499
500 /* since we increment, the first sg entry is correct */
501 rd_sg = table->sg_table;
502 }
503 sg_miter_stop(&m);
504
505 if (cmd->prot_type && data_direction == DMA_FROM_DEVICE) {
506 struct rd_dev_sg_table *prot_table;
507 struct scatterlist *prot_sg;
508 u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size;
509 u32 prot_offset, prot_page;
510
511 tmp = cmd->t_task_lba * se_dev->prot_length;
512 prot_offset = do_div(tmp, PAGE_SIZE);
513 prot_page = tmp;
514
515 prot_table = rd_get_prot_table(dev, prot_page);
516 if (!prot_table)
517 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
518
519 prot_sg = &prot_table->sg_table[prot_page - prot_table->page_start_offset];
520
521 rc = sbc_dif_verify_read(cmd, cmd->t_task_lba, sectors, 0,
522 prot_sg, prot_offset);
523 if (rc)
524 return rc;
525 }
526
527 target_complete_cmd(cmd, SAM_STAT_GOOD);
528 return 0;
529 }
530
531 enum {
532 Opt_rd_pages, Opt_rd_nullio, Opt_err
533 };
534
535 static match_table_t tokens = {
536 {Opt_rd_pages, "rd_pages=%d"},
537 {Opt_rd_nullio, "rd_nullio=%d"},
538 {Opt_err, NULL}
539 };
540
541 static ssize_t rd_set_configfs_dev_params(struct se_device *dev,
542 const char *page, ssize_t count)
543 {
544 struct rd_dev *rd_dev = RD_DEV(dev);
545 char *orig, *ptr, *opts;
546 substring_t args[MAX_OPT_ARGS];
547 int ret = 0, arg, token;
548
549 opts = kstrdup(page, GFP_KERNEL);
550 if (!opts)
551 return -ENOMEM;
552
553 orig = opts;
554
555 while ((ptr = strsep(&opts, ",\n")) != NULL) {
556 if (!*ptr)
557 continue;
558
559 token = match_token(ptr, tokens, args);
560 switch (token) {
561 case Opt_rd_pages:
562 match_int(args, &arg);
563 rd_dev->rd_page_count = arg;
564 pr_debug("RAMDISK: Referencing Page"
565 " Count: %u\n", rd_dev->rd_page_count);
566 rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
567 break;
568 case Opt_rd_nullio:
569 match_int(args, &arg);
570 if (arg != 1)
571 break;
572
573 pr_debug("RAMDISK: Setting NULLIO flag: %d\n", arg);
574 rd_dev->rd_flags |= RDF_NULLIO;
575 break;
576 default:
577 break;
578 }
579 }
580
581 kfree(orig);
582 return (!ret) ? count : ret;
583 }
584
585 static ssize_t rd_show_configfs_dev_params(struct se_device *dev, char *b)
586 {
587 struct rd_dev *rd_dev = RD_DEV(dev);
588
589 ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: rd_mcp\n",
590 rd_dev->rd_dev_id);
591 bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu"
592 " SG_table_count: %u nullio: %d\n", rd_dev->rd_page_count,
593 PAGE_SIZE, rd_dev->sg_table_count,
594 !!(rd_dev->rd_flags & RDF_NULLIO));
595 return bl;
596 }
597
598 static sector_t rd_get_blocks(struct se_device *dev)
599 {
600 struct rd_dev *rd_dev = RD_DEV(dev);
601
602 unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
603 dev->dev_attrib.block_size) - 1;
604
605 return blocks_long;
606 }
607
608 static int rd_init_prot(struct se_device *dev)
609 {
610 struct rd_dev *rd_dev = RD_DEV(dev);
611
612 if (!dev->dev_attrib.pi_prot_type)
613 return 0;
614
615 return rd_build_prot_space(rd_dev, dev->prot_length,
616 dev->dev_attrib.block_size);
617 }
618
619 static void rd_free_prot(struct se_device *dev)
620 {
621 struct rd_dev *rd_dev = RD_DEV(dev);
622
623 rd_release_prot_space(rd_dev);
624 }
625
626 static struct sbc_ops rd_sbc_ops = {
627 .execute_rw = rd_execute_rw,
628 };
629
630 static sense_reason_t
631 rd_parse_cdb(struct se_cmd *cmd)
632 {
633 return sbc_parse_cdb(cmd, &rd_sbc_ops);
634 }
635
636 DEF_TB_DEFAULT_ATTRIBS(rd_mcp);
637
638 static struct configfs_attribute *rd_mcp_backend_dev_attrs[] = {
639 &rd_mcp_dev_attrib_emulate_model_alias.attr,
640 &rd_mcp_dev_attrib_emulate_dpo.attr,
641 &rd_mcp_dev_attrib_emulate_fua_write.attr,
642 &rd_mcp_dev_attrib_emulate_fua_read.attr,
643 &rd_mcp_dev_attrib_emulate_write_cache.attr,
644 &rd_mcp_dev_attrib_emulate_ua_intlck_ctrl.attr,
645 &rd_mcp_dev_attrib_emulate_tas.attr,
646 &rd_mcp_dev_attrib_emulate_tpu.attr,
647 &rd_mcp_dev_attrib_emulate_tpws.attr,
648 &rd_mcp_dev_attrib_emulate_caw.attr,
649 &rd_mcp_dev_attrib_emulate_3pc.attr,
650 &rd_mcp_dev_attrib_pi_prot_type.attr,
651 &rd_mcp_dev_attrib_hw_pi_prot_type.attr,
652 &rd_mcp_dev_attrib_pi_prot_format.attr,
653 &rd_mcp_dev_attrib_enforce_pr_isids.attr,
654 &rd_mcp_dev_attrib_is_nonrot.attr,
655 &rd_mcp_dev_attrib_emulate_rest_reord.attr,
656 &rd_mcp_dev_attrib_force_pr_aptpl.attr,
657 &rd_mcp_dev_attrib_hw_block_size.attr,
658 &rd_mcp_dev_attrib_block_size.attr,
659 &rd_mcp_dev_attrib_hw_max_sectors.attr,
660 &rd_mcp_dev_attrib_optimal_sectors.attr,
661 &rd_mcp_dev_attrib_hw_queue_depth.attr,
662 &rd_mcp_dev_attrib_queue_depth.attr,
663 &rd_mcp_dev_attrib_max_unmap_lba_count.attr,
664 &rd_mcp_dev_attrib_max_unmap_block_desc_count.attr,
665 &rd_mcp_dev_attrib_unmap_granularity.attr,
666 &rd_mcp_dev_attrib_unmap_granularity_alignment.attr,
667 &rd_mcp_dev_attrib_max_write_same_len.attr,
668 NULL,
669 };
670
671 static struct se_subsystem_api rd_mcp_template = {
672 .name = "rd_mcp",
673 .inquiry_prod = "RAMDISK-MCP",
674 .inquiry_rev = RD_MCP_VERSION,
675 .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV,
676 .attach_hba = rd_attach_hba,
677 .detach_hba = rd_detach_hba,
678 .alloc_device = rd_alloc_device,
679 .configure_device = rd_configure_device,
680 .free_device = rd_free_device,
681 .parse_cdb = rd_parse_cdb,
682 .set_configfs_dev_params = rd_set_configfs_dev_params,
683 .show_configfs_dev_params = rd_show_configfs_dev_params,
684 .get_device_type = sbc_get_device_type,
685 .get_blocks = rd_get_blocks,
686 .init_prot = rd_init_prot,
687 .free_prot = rd_free_prot,
688 };
689
690 int __init rd_module_init(void)
691 {
692 struct target_backend_cits *tbc = &rd_mcp_template.tb_cits;
693 int ret;
694
695 target_core_setup_sub_cits(&rd_mcp_template);
696 tbc->tb_dev_attrib_cit.ct_attrs = rd_mcp_backend_dev_attrs;
697
698 ret = transport_subsystem_register(&rd_mcp_template);
699 if (ret < 0) {
700 return ret;
701 }
702
703 return 0;
704 }
705
706 void rd_module_exit(void)
707 {
708 transport_subsystem_release(&rd_mcp_template);
709 }