]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/target/target_core_transport.c
config: Add RTL8XXXU wifi module
[mirror_ubuntu-zesty-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_lba_map_cache = kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map),
125 __alignof__(struct t10_alua_lba_map), 0, NULL);
126 if (!t10_alua_lba_map_cache) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 "cache failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_mem_cache = kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member),
134 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 if (!t10_alua_lba_map_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 "cache failed\n");
138 goto out_free_lba_map_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_lba_map_mem_cache;
145
146 return 0;
147
148 out_free_lba_map_mem_cache:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 kmem_cache_destroy(se_sess_cache);
164 out:
165 return -ENOMEM;
166 }
167
168 void release_se_kmem_caches(void)
169 {
170 destroy_workqueue(target_completion_wq);
171 kmem_cache_destroy(se_sess_cache);
172 kmem_cache_destroy(se_ua_cache);
173 kmem_cache_destroy(t10_pr_reg_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 kmem_cache_destroy(t10_alua_lba_map_cache);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186 * Allocate a new row index for the entry type specified
187 */
188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 u32 new_index;
191
192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194 spin_lock(&scsi_mib_index_lock);
195 new_index = ++scsi_mib_index[type];
196 spin_unlock(&scsi_mib_index_lock);
197
198 return new_index;
199 }
200
201 void transport_subsystem_check_init(void)
202 {
203 int ret;
204 static int sub_api_initialized;
205
206 if (sub_api_initialized)
207 return;
208
209 ret = request_module("target_core_iblock");
210 if (ret != 0)
211 pr_err("Unable to load target_core_iblock\n");
212
213 ret = request_module("target_core_file");
214 if (ret != 0)
215 pr_err("Unable to load target_core_file\n");
216
217 ret = request_module("target_core_pscsi");
218 if (ret != 0)
219 pr_err("Unable to load target_core_pscsi\n");
220
221 ret = request_module("target_core_user");
222 if (ret != 0)
223 pr_err("Unable to load target_core_user\n");
224
225 sub_api_initialized = 1;
226 }
227
228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 struct se_session *se_sess;
231
232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 if (!se_sess) {
234 pr_err("Unable to allocate struct se_session from"
235 " se_sess_cache\n");
236 return ERR_PTR(-ENOMEM);
237 }
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 spin_lock_init(&se_sess->sess_cmd_lock);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
288 }
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
293 }
294
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
298
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 */
312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
317 {
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
320
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 /*
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 *
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
328 */
329 if (se_nacl) {
330 /*
331 *
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 *
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
339 */
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
345 /*
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
348 */
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
354 }
355
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 /*
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
360 */
361 se_nacl->nacl_sess = se_sess;
362
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 }
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
395 {
396 struct se_session *sess;
397
398 /*
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
401 */
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
406
407 if (IS_ERR(sess))
408 return sess;
409
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
415 }
416 /*
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
419 */
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
425 }
426 }
427
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
430 }
431 EXPORT_SYMBOL(target_alloc_session);
432
433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 {
435 struct se_session *se_sess;
436 ssize_t len = 0;
437
438 spin_lock_bh(&se_tpg->session_lock);
439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
440 if (!se_sess->se_node_acl)
441 continue;
442 if (!se_sess->se_node_acl->dynamic_node_acl)
443 continue;
444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
445 break;
446
447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
448 se_sess->se_node_acl->initiatorname);
449 len += 1; /* Include NULL terminator */
450 }
451 spin_unlock_bh(&se_tpg->session_lock);
452
453 return len;
454 }
455 EXPORT_SYMBOL(target_show_dynamic_sessions);
456
457 static void target_complete_nacl(struct kref *kref)
458 {
459 struct se_node_acl *nacl = container_of(kref,
460 struct se_node_acl, acl_kref);
461 struct se_portal_group *se_tpg = nacl->se_tpg;
462
463 if (!nacl->dynamic_stop) {
464 complete(&nacl->acl_free_comp);
465 return;
466 }
467
468 mutex_lock(&se_tpg->acl_node_mutex);
469 list_del(&nacl->acl_list);
470 mutex_unlock(&se_tpg->acl_node_mutex);
471
472 core_tpg_wait_for_nacl_pr_ref(nacl);
473 core_free_device_list_for_node(nacl, se_tpg);
474 kfree(nacl);
475 }
476
477 void target_put_nacl(struct se_node_acl *nacl)
478 {
479 kref_put(&nacl->acl_kref, target_complete_nacl);
480 }
481 EXPORT_SYMBOL(target_put_nacl);
482
483 void transport_deregister_session_configfs(struct se_session *se_sess)
484 {
485 struct se_node_acl *se_nacl;
486 unsigned long flags;
487 /*
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 */
490 se_nacl = se_sess->se_node_acl;
491 if (se_nacl) {
492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
493 if (!list_empty(&se_sess->sess_acl_list))
494 list_del_init(&se_sess->sess_acl_list);
495 /*
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
499 */
500 if (list_empty(&se_nacl->acl_sess_list))
501 se_nacl->nacl_sess = NULL;
502 else {
503 se_nacl->nacl_sess = container_of(
504 se_nacl->acl_sess_list.prev,
505 struct se_session, sess_acl_list);
506 }
507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 }
509 }
510 EXPORT_SYMBOL(transport_deregister_session_configfs);
511
512 void transport_free_session(struct se_session *se_sess)
513 {
514 struct se_node_acl *se_nacl = se_sess->se_node_acl;
515
516 /*
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
519 */
520 if (se_nacl) {
521 struct se_portal_group *se_tpg = se_nacl->se_tpg;
522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
523 unsigned long flags;
524
525 se_sess->se_node_acl = NULL;
526
527 /*
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
531 */
532 mutex_lock(&se_tpg->acl_node_mutex);
533 if (se_nacl->dynamic_node_acl &&
534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
536 if (list_empty(&se_nacl->acl_sess_list))
537 se_nacl->dynamic_stop = true;
538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539
540 if (se_nacl->dynamic_stop)
541 list_del(&se_nacl->acl_list);
542 }
543 mutex_unlock(&se_tpg->acl_node_mutex);
544
545 if (se_nacl->dynamic_stop)
546 target_put_nacl(se_nacl);
547
548 target_put_nacl(se_nacl);
549 }
550 if (se_sess->sess_cmd_map) {
551 percpu_ida_destroy(&se_sess->sess_tag_pool);
552 kvfree(se_sess->sess_cmd_map);
553 }
554 kmem_cache_free(se_sess_cache, se_sess);
555 }
556 EXPORT_SYMBOL(transport_free_session);
557
558 void transport_deregister_session(struct se_session *se_sess)
559 {
560 struct se_portal_group *se_tpg = se_sess->se_tpg;
561 unsigned long flags;
562
563 if (!se_tpg) {
564 transport_free_session(se_sess);
565 return;
566 }
567
568 spin_lock_irqsave(&se_tpg->session_lock, flags);
569 list_del(&se_sess->sess_list);
570 se_sess->se_tpg = NULL;
571 se_sess->fabric_sess_ptr = NULL;
572 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg->se_tpg_tfo->get_fabric_name());
576 /*
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
580 *
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
583 */
584
585 transport_free_session(se_sess);
586 }
587 EXPORT_SYMBOL(transport_deregister_session);
588
589 static void target_remove_from_state_list(struct se_cmd *cmd)
590 {
591 struct se_device *dev = cmd->se_dev;
592 unsigned long flags;
593
594 if (!dev)
595 return;
596
597 if (cmd->transport_state & CMD_T_BUSY)
598 return;
599
600 spin_lock_irqsave(&dev->execute_task_lock, flags);
601 if (cmd->state_active) {
602 list_del(&cmd->state_list);
603 cmd->state_active = false;
604 }
605 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
606 }
607
608 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
609 bool write_pending)
610 {
611 unsigned long flags;
612
613 if (remove_from_lists) {
614 target_remove_from_state_list(cmd);
615
616 /*
617 * Clear struct se_cmd->se_lun before the handoff to FE.
618 */
619 cmd->se_lun = NULL;
620 }
621
622 spin_lock_irqsave(&cmd->t_state_lock, flags);
623 if (write_pending)
624 cmd->t_state = TRANSPORT_WRITE_PENDING;
625
626 /*
627 * Determine if frontend context caller is requesting the stopping of
628 * this command for frontend exceptions.
629 */
630 if (cmd->transport_state & CMD_T_STOP) {
631 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
632 __func__, __LINE__, cmd->tag);
633
634 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
635
636 complete_all(&cmd->t_transport_stop_comp);
637 return 1;
638 }
639
640 cmd->transport_state &= ~CMD_T_ACTIVE;
641 if (remove_from_lists) {
642 /*
643 * Some fabric modules like tcm_loop can release
644 * their internally allocated I/O reference now and
645 * struct se_cmd now.
646 *
647 * Fabric modules are expected to return '1' here if the
648 * se_cmd being passed is released at this point,
649 * or zero if not being released.
650 */
651 if (cmd->se_tfo->check_stop_free != NULL) {
652 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
653 return cmd->se_tfo->check_stop_free(cmd);
654 }
655 }
656
657 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
658 return 0;
659 }
660
661 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
662 {
663 return transport_cmd_check_stop(cmd, true, false);
664 }
665
666 static void transport_lun_remove_cmd(struct se_cmd *cmd)
667 {
668 struct se_lun *lun = cmd->se_lun;
669
670 if (!lun)
671 return;
672
673 if (cmpxchg(&cmd->lun_ref_active, true, false))
674 percpu_ref_put(&lun->lun_ref);
675 }
676
677 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
678 {
679 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
680
681 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
682 transport_lun_remove_cmd(cmd);
683 /*
684 * Allow the fabric driver to unmap any resources before
685 * releasing the descriptor via TFO->release_cmd()
686 */
687 if (remove)
688 cmd->se_tfo->aborted_task(cmd);
689
690 if (transport_cmd_check_stop_to_fabric(cmd))
691 return;
692 if (remove && ack_kref)
693 transport_put_cmd(cmd);
694 }
695
696 static void target_complete_failure_work(struct work_struct *work)
697 {
698 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
699
700 transport_generic_request_failure(cmd,
701 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
702 }
703
704 /*
705 * Used when asking transport to copy Sense Data from the underlying
706 * Linux/SCSI struct scsi_cmnd
707 */
708 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
709 {
710 struct se_device *dev = cmd->se_dev;
711
712 WARN_ON(!cmd->se_lun);
713
714 if (!dev)
715 return NULL;
716
717 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
718 return NULL;
719
720 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
721
722 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
723 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
724 return cmd->sense_buffer;
725 }
726
727 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
728 {
729 struct se_device *dev = cmd->se_dev;
730 int success = scsi_status == GOOD;
731 unsigned long flags;
732
733 cmd->scsi_status = scsi_status;
734
735
736 spin_lock_irqsave(&cmd->t_state_lock, flags);
737 cmd->transport_state &= ~CMD_T_BUSY;
738
739 if (dev && dev->transport->transport_complete) {
740 dev->transport->transport_complete(cmd,
741 cmd->t_data_sg,
742 transport_get_sense_buffer(cmd));
743 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
744 success = 1;
745 }
746
747 /*
748 * Check for case where an explicit ABORT_TASK has been received
749 * and transport_wait_for_tasks() will be waiting for completion..
750 */
751 if (cmd->transport_state & CMD_T_ABORTED ||
752 cmd->transport_state & CMD_T_STOP) {
753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754 complete_all(&cmd->t_transport_stop_comp);
755 return;
756 } else if (!success) {
757 INIT_WORK(&cmd->work, target_complete_failure_work);
758 } else {
759 INIT_WORK(&cmd->work, target_complete_ok_work);
760 }
761
762 cmd->t_state = TRANSPORT_COMPLETE;
763 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
764 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
765
766 if (cmd->se_cmd_flags & SCF_USE_CPUID)
767 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
768 else
769 queue_work(target_completion_wq, &cmd->work);
770 }
771 EXPORT_SYMBOL(target_complete_cmd);
772
773 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
774 {
775 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
776 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
777 cmd->residual_count += cmd->data_length - length;
778 } else {
779 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
780 cmd->residual_count = cmd->data_length - length;
781 }
782
783 cmd->data_length = length;
784 }
785
786 target_complete_cmd(cmd, scsi_status);
787 }
788 EXPORT_SYMBOL(target_complete_cmd_with_length);
789
790 static void target_add_to_state_list(struct se_cmd *cmd)
791 {
792 struct se_device *dev = cmd->se_dev;
793 unsigned long flags;
794
795 spin_lock_irqsave(&dev->execute_task_lock, flags);
796 if (!cmd->state_active) {
797 list_add_tail(&cmd->state_list, &dev->state_list);
798 cmd->state_active = true;
799 }
800 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
801 }
802
803 /*
804 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
805 */
806 static void transport_write_pending_qf(struct se_cmd *cmd);
807 static void transport_complete_qf(struct se_cmd *cmd);
808
809 void target_qf_do_work(struct work_struct *work)
810 {
811 struct se_device *dev = container_of(work, struct se_device,
812 qf_work_queue);
813 LIST_HEAD(qf_cmd_list);
814 struct se_cmd *cmd, *cmd_tmp;
815
816 spin_lock_irq(&dev->qf_cmd_lock);
817 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
818 spin_unlock_irq(&dev->qf_cmd_lock);
819
820 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
821 list_del(&cmd->se_qf_node);
822 atomic_dec_mb(&dev->dev_qf_count);
823
824 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
825 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
826 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
827 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
828 : "UNKNOWN");
829
830 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
831 transport_write_pending_qf(cmd);
832 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
833 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
834 transport_complete_qf(cmd);
835 }
836 }
837
838 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
839 {
840 switch (cmd->data_direction) {
841 case DMA_NONE:
842 return "NONE";
843 case DMA_FROM_DEVICE:
844 return "READ";
845 case DMA_TO_DEVICE:
846 return "WRITE";
847 case DMA_BIDIRECTIONAL:
848 return "BIDI";
849 default:
850 break;
851 }
852
853 return "UNKNOWN";
854 }
855
856 void transport_dump_dev_state(
857 struct se_device *dev,
858 char *b,
859 int *bl)
860 {
861 *bl += sprintf(b + *bl, "Status: ");
862 if (dev->export_count)
863 *bl += sprintf(b + *bl, "ACTIVATED");
864 else
865 *bl += sprintf(b + *bl, "DEACTIVATED");
866
867 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
868 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
869 dev->dev_attrib.block_size,
870 dev->dev_attrib.hw_max_sectors);
871 *bl += sprintf(b + *bl, " ");
872 }
873
874 void transport_dump_vpd_proto_id(
875 struct t10_vpd *vpd,
876 unsigned char *p_buf,
877 int p_buf_len)
878 {
879 unsigned char buf[VPD_TMP_BUF_SIZE];
880 int len;
881
882 memset(buf, 0, VPD_TMP_BUF_SIZE);
883 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
884
885 switch (vpd->protocol_identifier) {
886 case 0x00:
887 sprintf(buf+len, "Fibre Channel\n");
888 break;
889 case 0x10:
890 sprintf(buf+len, "Parallel SCSI\n");
891 break;
892 case 0x20:
893 sprintf(buf+len, "SSA\n");
894 break;
895 case 0x30:
896 sprintf(buf+len, "IEEE 1394\n");
897 break;
898 case 0x40:
899 sprintf(buf+len, "SCSI Remote Direct Memory Access"
900 " Protocol\n");
901 break;
902 case 0x50:
903 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
904 break;
905 case 0x60:
906 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
907 break;
908 case 0x70:
909 sprintf(buf+len, "Automation/Drive Interface Transport"
910 " Protocol\n");
911 break;
912 case 0x80:
913 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
914 break;
915 default:
916 sprintf(buf+len, "Unknown 0x%02x\n",
917 vpd->protocol_identifier);
918 break;
919 }
920
921 if (p_buf)
922 strncpy(p_buf, buf, p_buf_len);
923 else
924 pr_debug("%s", buf);
925 }
926
927 void
928 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
929 {
930 /*
931 * Check if the Protocol Identifier Valid (PIV) bit is set..
932 *
933 * from spc3r23.pdf section 7.5.1
934 */
935 if (page_83[1] & 0x80) {
936 vpd->protocol_identifier = (page_83[0] & 0xf0);
937 vpd->protocol_identifier_set = 1;
938 transport_dump_vpd_proto_id(vpd, NULL, 0);
939 }
940 }
941 EXPORT_SYMBOL(transport_set_vpd_proto_id);
942
943 int transport_dump_vpd_assoc(
944 struct t10_vpd *vpd,
945 unsigned char *p_buf,
946 int p_buf_len)
947 {
948 unsigned char buf[VPD_TMP_BUF_SIZE];
949 int ret = 0;
950 int len;
951
952 memset(buf, 0, VPD_TMP_BUF_SIZE);
953 len = sprintf(buf, "T10 VPD Identifier Association: ");
954
955 switch (vpd->association) {
956 case 0x00:
957 sprintf(buf+len, "addressed logical unit\n");
958 break;
959 case 0x10:
960 sprintf(buf+len, "target port\n");
961 break;
962 case 0x20:
963 sprintf(buf+len, "SCSI target device\n");
964 break;
965 default:
966 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
967 ret = -EINVAL;
968 break;
969 }
970
971 if (p_buf)
972 strncpy(p_buf, buf, p_buf_len);
973 else
974 pr_debug("%s", buf);
975
976 return ret;
977 }
978
979 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
980 {
981 /*
982 * The VPD identification association..
983 *
984 * from spc3r23.pdf Section 7.6.3.1 Table 297
985 */
986 vpd->association = (page_83[1] & 0x30);
987 return transport_dump_vpd_assoc(vpd, NULL, 0);
988 }
989 EXPORT_SYMBOL(transport_set_vpd_assoc);
990
991 int transport_dump_vpd_ident_type(
992 struct t10_vpd *vpd,
993 unsigned char *p_buf,
994 int p_buf_len)
995 {
996 unsigned char buf[VPD_TMP_BUF_SIZE];
997 int ret = 0;
998 int len;
999
1000 memset(buf, 0, VPD_TMP_BUF_SIZE);
1001 len = sprintf(buf, "T10 VPD Identifier Type: ");
1002
1003 switch (vpd->device_identifier_type) {
1004 case 0x00:
1005 sprintf(buf+len, "Vendor specific\n");
1006 break;
1007 case 0x01:
1008 sprintf(buf+len, "T10 Vendor ID based\n");
1009 break;
1010 case 0x02:
1011 sprintf(buf+len, "EUI-64 based\n");
1012 break;
1013 case 0x03:
1014 sprintf(buf+len, "NAA\n");
1015 break;
1016 case 0x04:
1017 sprintf(buf+len, "Relative target port identifier\n");
1018 break;
1019 case 0x08:
1020 sprintf(buf+len, "SCSI name string\n");
1021 break;
1022 default:
1023 sprintf(buf+len, "Unsupported: 0x%02x\n",
1024 vpd->device_identifier_type);
1025 ret = -EINVAL;
1026 break;
1027 }
1028
1029 if (p_buf) {
1030 if (p_buf_len < strlen(buf)+1)
1031 return -EINVAL;
1032 strncpy(p_buf, buf, p_buf_len);
1033 } else {
1034 pr_debug("%s", buf);
1035 }
1036
1037 return ret;
1038 }
1039
1040 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1041 {
1042 /*
1043 * The VPD identifier type..
1044 *
1045 * from spc3r23.pdf Section 7.6.3.1 Table 298
1046 */
1047 vpd->device_identifier_type = (page_83[1] & 0x0f);
1048 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1049 }
1050 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1051
1052 int transport_dump_vpd_ident(
1053 struct t10_vpd *vpd,
1054 unsigned char *p_buf,
1055 int p_buf_len)
1056 {
1057 unsigned char buf[VPD_TMP_BUF_SIZE];
1058 int ret = 0;
1059
1060 memset(buf, 0, VPD_TMP_BUF_SIZE);
1061
1062 switch (vpd->device_identifier_code_set) {
1063 case 0x01: /* Binary */
1064 snprintf(buf, sizeof(buf),
1065 "T10 VPD Binary Device Identifier: %s\n",
1066 &vpd->device_identifier[0]);
1067 break;
1068 case 0x02: /* ASCII */
1069 snprintf(buf, sizeof(buf),
1070 "T10 VPD ASCII Device Identifier: %s\n",
1071 &vpd->device_identifier[0]);
1072 break;
1073 case 0x03: /* UTF-8 */
1074 snprintf(buf, sizeof(buf),
1075 "T10 VPD UTF-8 Device Identifier: %s\n",
1076 &vpd->device_identifier[0]);
1077 break;
1078 default:
1079 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1080 " 0x%02x", vpd->device_identifier_code_set);
1081 ret = -EINVAL;
1082 break;
1083 }
1084
1085 if (p_buf)
1086 strncpy(p_buf, buf, p_buf_len);
1087 else
1088 pr_debug("%s", buf);
1089
1090 return ret;
1091 }
1092
1093 int
1094 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1095 {
1096 static const char hex_str[] = "0123456789abcdef";
1097 int j = 0, i = 4; /* offset to start of the identifier */
1098
1099 /*
1100 * The VPD Code Set (encoding)
1101 *
1102 * from spc3r23.pdf Section 7.6.3.1 Table 296
1103 */
1104 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1105 switch (vpd->device_identifier_code_set) {
1106 case 0x01: /* Binary */
1107 vpd->device_identifier[j++] =
1108 hex_str[vpd->device_identifier_type];
1109 while (i < (4 + page_83[3])) {
1110 vpd->device_identifier[j++] =
1111 hex_str[(page_83[i] & 0xf0) >> 4];
1112 vpd->device_identifier[j++] =
1113 hex_str[page_83[i] & 0x0f];
1114 i++;
1115 }
1116 break;
1117 case 0x02: /* ASCII */
1118 case 0x03: /* UTF-8 */
1119 while (i < (4 + page_83[3]))
1120 vpd->device_identifier[j++] = page_83[i++];
1121 break;
1122 default:
1123 break;
1124 }
1125
1126 return transport_dump_vpd_ident(vpd, NULL, 0);
1127 }
1128 EXPORT_SYMBOL(transport_set_vpd_ident);
1129
1130 static sense_reason_t
1131 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1132 unsigned int size)
1133 {
1134 u32 mtl;
1135
1136 if (!cmd->se_tfo->max_data_sg_nents)
1137 return TCM_NO_SENSE;
1138 /*
1139 * Check if fabric enforced maximum SGL entries per I/O descriptor
1140 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1141 * residual_count and reduce original cmd->data_length to maximum
1142 * length based on single PAGE_SIZE entry scatter-lists.
1143 */
1144 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1145 if (cmd->data_length > mtl) {
1146 /*
1147 * If an existing CDB overflow is present, calculate new residual
1148 * based on CDB size minus fabric maximum transfer length.
1149 *
1150 * If an existing CDB underflow is present, calculate new residual
1151 * based on original cmd->data_length minus fabric maximum transfer
1152 * length.
1153 *
1154 * Otherwise, set the underflow residual based on cmd->data_length
1155 * minus fabric maximum transfer length.
1156 */
1157 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1158 cmd->residual_count = (size - mtl);
1159 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1160 u32 orig_dl = size + cmd->residual_count;
1161 cmd->residual_count = (orig_dl - mtl);
1162 } else {
1163 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1164 cmd->residual_count = (cmd->data_length - mtl);
1165 }
1166 cmd->data_length = mtl;
1167 /*
1168 * Reset sbc_check_prot() calculated protection payload
1169 * length based upon the new smaller MTL.
1170 */
1171 if (cmd->prot_length) {
1172 u32 sectors = (mtl / dev->dev_attrib.block_size);
1173 cmd->prot_length = dev->prot_length * sectors;
1174 }
1175 }
1176 return TCM_NO_SENSE;
1177 }
1178
1179 sense_reason_t
1180 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1181 {
1182 struct se_device *dev = cmd->se_dev;
1183
1184 if (cmd->unknown_data_length) {
1185 cmd->data_length = size;
1186 } else if (size != cmd->data_length) {
1187 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1188 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1189 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1190 cmd->data_length, size, cmd->t_task_cdb[0]);
1191
1192 if (cmd->data_direction == DMA_TO_DEVICE &&
1193 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1194 pr_err("Rejecting underflow/overflow WRITE data\n");
1195 return TCM_INVALID_CDB_FIELD;
1196 }
1197 /*
1198 * Reject READ_* or WRITE_* with overflow/underflow for
1199 * type SCF_SCSI_DATA_CDB.
1200 */
1201 if (dev->dev_attrib.block_size != 512) {
1202 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1203 " CDB on non 512-byte sector setup subsystem"
1204 " plugin: %s\n", dev->transport->name);
1205 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1206 return TCM_INVALID_CDB_FIELD;
1207 }
1208 /*
1209 * For the overflow case keep the existing fabric provided
1210 * ->data_length. Otherwise for the underflow case, reset
1211 * ->data_length to the smaller SCSI expected data transfer
1212 * length.
1213 */
1214 if (size > cmd->data_length) {
1215 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1216 cmd->residual_count = (size - cmd->data_length);
1217 } else {
1218 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1219 cmd->residual_count = (cmd->data_length - size);
1220 cmd->data_length = size;
1221 }
1222 }
1223
1224 return target_check_max_data_sg_nents(cmd, dev, size);
1225
1226 }
1227
1228 /*
1229 * Used by fabric modules containing a local struct se_cmd within their
1230 * fabric dependent per I/O descriptor.
1231 *
1232 * Preserves the value of @cmd->tag.
1233 */
1234 void transport_init_se_cmd(
1235 struct se_cmd *cmd,
1236 const struct target_core_fabric_ops *tfo,
1237 struct se_session *se_sess,
1238 u32 data_length,
1239 int data_direction,
1240 int task_attr,
1241 unsigned char *sense_buffer)
1242 {
1243 INIT_LIST_HEAD(&cmd->se_delayed_node);
1244 INIT_LIST_HEAD(&cmd->se_qf_node);
1245 INIT_LIST_HEAD(&cmd->se_cmd_list);
1246 INIT_LIST_HEAD(&cmd->state_list);
1247 init_completion(&cmd->t_transport_stop_comp);
1248 init_completion(&cmd->cmd_wait_comp);
1249 spin_lock_init(&cmd->t_state_lock);
1250 kref_init(&cmd->cmd_kref);
1251 cmd->transport_state = CMD_T_DEV_ACTIVE;
1252
1253 cmd->se_tfo = tfo;
1254 cmd->se_sess = se_sess;
1255 cmd->data_length = data_length;
1256 cmd->data_direction = data_direction;
1257 cmd->sam_task_attr = task_attr;
1258 cmd->sense_buffer = sense_buffer;
1259
1260 cmd->state_active = false;
1261 }
1262 EXPORT_SYMBOL(transport_init_se_cmd);
1263
1264 static sense_reason_t
1265 transport_check_alloc_task_attr(struct se_cmd *cmd)
1266 {
1267 struct se_device *dev = cmd->se_dev;
1268
1269 /*
1270 * Check if SAM Task Attribute emulation is enabled for this
1271 * struct se_device storage object
1272 */
1273 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1274 return 0;
1275
1276 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1277 pr_debug("SAM Task Attribute ACA"
1278 " emulation is not supported\n");
1279 return TCM_INVALID_CDB_FIELD;
1280 }
1281
1282 return 0;
1283 }
1284
1285 sense_reason_t
1286 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1287 {
1288 struct se_device *dev = cmd->se_dev;
1289 sense_reason_t ret;
1290
1291 /*
1292 * Ensure that the received CDB is less than the max (252 + 8) bytes
1293 * for VARIABLE_LENGTH_CMD
1294 */
1295 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1296 pr_err("Received SCSI CDB with command_size: %d that"
1297 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1298 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1299 return TCM_INVALID_CDB_FIELD;
1300 }
1301 /*
1302 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1303 * allocate the additional extended CDB buffer now.. Otherwise
1304 * setup the pointer from __t_task_cdb to t_task_cdb.
1305 */
1306 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1307 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1308 GFP_KERNEL);
1309 if (!cmd->t_task_cdb) {
1310 pr_err("Unable to allocate cmd->t_task_cdb"
1311 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1312 scsi_command_size(cdb),
1313 (unsigned long)sizeof(cmd->__t_task_cdb));
1314 return TCM_OUT_OF_RESOURCES;
1315 }
1316 } else
1317 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1318 /*
1319 * Copy the original CDB into cmd->
1320 */
1321 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1322
1323 trace_target_sequencer_start(cmd);
1324
1325 ret = dev->transport->parse_cdb(cmd);
1326 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1327 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1328 cmd->se_tfo->get_fabric_name(),
1329 cmd->se_sess->se_node_acl->initiatorname,
1330 cmd->t_task_cdb[0]);
1331 if (ret)
1332 return ret;
1333
1334 ret = transport_check_alloc_task_attr(cmd);
1335 if (ret)
1336 return ret;
1337
1338 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1339 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1340 return 0;
1341 }
1342 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1343
1344 /*
1345 * Used by fabric module frontends to queue tasks directly.
1346 * May only be used from process context.
1347 */
1348 int transport_handle_cdb_direct(
1349 struct se_cmd *cmd)
1350 {
1351 sense_reason_t ret;
1352
1353 if (!cmd->se_lun) {
1354 dump_stack();
1355 pr_err("cmd->se_lun is NULL\n");
1356 return -EINVAL;
1357 }
1358 if (in_interrupt()) {
1359 dump_stack();
1360 pr_err("transport_generic_handle_cdb cannot be called"
1361 " from interrupt context\n");
1362 return -EINVAL;
1363 }
1364 /*
1365 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1366 * outstanding descriptors are handled correctly during shutdown via
1367 * transport_wait_for_tasks()
1368 *
1369 * Also, we don't take cmd->t_state_lock here as we only expect
1370 * this to be called for initial descriptor submission.
1371 */
1372 cmd->t_state = TRANSPORT_NEW_CMD;
1373 cmd->transport_state |= CMD_T_ACTIVE;
1374
1375 /*
1376 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1377 * so follow TRANSPORT_NEW_CMD processing thread context usage
1378 * and call transport_generic_request_failure() if necessary..
1379 */
1380 ret = transport_generic_new_cmd(cmd);
1381 if (ret)
1382 transport_generic_request_failure(cmd, ret);
1383 return 0;
1384 }
1385 EXPORT_SYMBOL(transport_handle_cdb_direct);
1386
1387 sense_reason_t
1388 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1389 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1390 {
1391 if (!sgl || !sgl_count)
1392 return 0;
1393
1394 /*
1395 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1396 * scatterlists already have been set to follow what the fabric
1397 * passes for the original expected data transfer length.
1398 */
1399 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1400 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1401 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1402 return TCM_INVALID_CDB_FIELD;
1403 }
1404
1405 cmd->t_data_sg = sgl;
1406 cmd->t_data_nents = sgl_count;
1407 cmd->t_bidi_data_sg = sgl_bidi;
1408 cmd->t_bidi_data_nents = sgl_bidi_count;
1409
1410 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1411 return 0;
1412 }
1413
1414 /*
1415 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1416 * se_cmd + use pre-allocated SGL memory.
1417 *
1418 * @se_cmd: command descriptor to submit
1419 * @se_sess: associated se_sess for endpoint
1420 * @cdb: pointer to SCSI CDB
1421 * @sense: pointer to SCSI sense buffer
1422 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1423 * @data_length: fabric expected data transfer length
1424 * @task_addr: SAM task attribute
1425 * @data_dir: DMA data direction
1426 * @flags: flags for command submission from target_sc_flags_tables
1427 * @sgl: struct scatterlist memory for unidirectional mapping
1428 * @sgl_count: scatterlist count for unidirectional mapping
1429 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1430 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1431 * @sgl_prot: struct scatterlist memory protection information
1432 * @sgl_prot_count: scatterlist count for protection information
1433 *
1434 * Task tags are supported if the caller has set @se_cmd->tag.
1435 *
1436 * Returns non zero to signal active I/O shutdown failure. All other
1437 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1438 * but still return zero here.
1439 *
1440 * This may only be called from process context, and also currently
1441 * assumes internal allocation of fabric payload buffer by target-core.
1442 */
1443 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1444 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1445 u32 data_length, int task_attr, int data_dir, int flags,
1446 struct scatterlist *sgl, u32 sgl_count,
1447 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1448 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1449 {
1450 struct se_portal_group *se_tpg;
1451 sense_reason_t rc;
1452 int ret;
1453
1454 se_tpg = se_sess->se_tpg;
1455 BUG_ON(!se_tpg);
1456 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1457 BUG_ON(in_interrupt());
1458 /*
1459 * Initialize se_cmd for target operation. From this point
1460 * exceptions are handled by sending exception status via
1461 * target_core_fabric_ops->queue_status() callback
1462 */
1463 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1464 data_length, data_dir, task_attr, sense);
1465
1466 if (flags & TARGET_SCF_USE_CPUID)
1467 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1468 else
1469 se_cmd->cpuid = WORK_CPU_UNBOUND;
1470
1471 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1472 se_cmd->unknown_data_length = 1;
1473 /*
1474 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1475 * se_sess->sess_cmd_list. A second kref_get here is necessary
1476 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1477 * kref_put() to happen during fabric packet acknowledgement.
1478 */
1479 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1480 if (ret)
1481 return ret;
1482 /*
1483 * Signal bidirectional data payloads to target-core
1484 */
1485 if (flags & TARGET_SCF_BIDI_OP)
1486 se_cmd->se_cmd_flags |= SCF_BIDI;
1487 /*
1488 * Locate se_lun pointer and attach it to struct se_cmd
1489 */
1490 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1491 if (rc) {
1492 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1493 target_put_sess_cmd(se_cmd);
1494 return 0;
1495 }
1496
1497 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1498 if (rc != 0) {
1499 transport_generic_request_failure(se_cmd, rc);
1500 return 0;
1501 }
1502
1503 /*
1504 * Save pointers for SGLs containing protection information,
1505 * if present.
1506 */
1507 if (sgl_prot_count) {
1508 se_cmd->t_prot_sg = sgl_prot;
1509 se_cmd->t_prot_nents = sgl_prot_count;
1510 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1511 }
1512
1513 /*
1514 * When a non zero sgl_count has been passed perform SGL passthrough
1515 * mapping for pre-allocated fabric memory instead of having target
1516 * core perform an internal SGL allocation..
1517 */
1518 if (sgl_count != 0) {
1519 BUG_ON(!sgl);
1520
1521 /*
1522 * A work-around for tcm_loop as some userspace code via
1523 * scsi-generic do not memset their associated read buffers,
1524 * so go ahead and do that here for type non-data CDBs. Also
1525 * note that this is currently guaranteed to be a single SGL
1526 * for this case by target core in target_setup_cmd_from_cdb()
1527 * -> transport_generic_cmd_sequencer().
1528 */
1529 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1530 se_cmd->data_direction == DMA_FROM_DEVICE) {
1531 unsigned char *buf = NULL;
1532
1533 if (sgl)
1534 buf = kmap(sg_page(sgl)) + sgl->offset;
1535
1536 if (buf) {
1537 memset(buf, 0, sgl->length);
1538 kunmap(sg_page(sgl));
1539 }
1540 }
1541
1542 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1543 sgl_bidi, sgl_bidi_count);
1544 if (rc != 0) {
1545 transport_generic_request_failure(se_cmd, rc);
1546 return 0;
1547 }
1548 }
1549
1550 /*
1551 * Check if we need to delay processing because of ALUA
1552 * Active/NonOptimized primary access state..
1553 */
1554 core_alua_check_nonop_delay(se_cmd);
1555
1556 transport_handle_cdb_direct(se_cmd);
1557 return 0;
1558 }
1559 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1560
1561 /*
1562 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1563 *
1564 * @se_cmd: command descriptor to submit
1565 * @se_sess: associated se_sess for endpoint
1566 * @cdb: pointer to SCSI CDB
1567 * @sense: pointer to SCSI sense buffer
1568 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1569 * @data_length: fabric expected data transfer length
1570 * @task_addr: SAM task attribute
1571 * @data_dir: DMA data direction
1572 * @flags: flags for command submission from target_sc_flags_tables
1573 *
1574 * Task tags are supported if the caller has set @se_cmd->tag.
1575 *
1576 * Returns non zero to signal active I/O shutdown failure. All other
1577 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1578 * but still return zero here.
1579 *
1580 * This may only be called from process context, and also currently
1581 * assumes internal allocation of fabric payload buffer by target-core.
1582 *
1583 * It also assumes interal target core SGL memory allocation.
1584 */
1585 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1586 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1587 u32 data_length, int task_attr, int data_dir, int flags)
1588 {
1589 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1590 unpacked_lun, data_length, task_attr, data_dir,
1591 flags, NULL, 0, NULL, 0, NULL, 0);
1592 }
1593 EXPORT_SYMBOL(target_submit_cmd);
1594
1595 static void target_complete_tmr_failure(struct work_struct *work)
1596 {
1597 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1598
1599 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1600 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1601
1602 transport_cmd_check_stop_to_fabric(se_cmd);
1603 }
1604
1605 /**
1606 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1607 * for TMR CDBs
1608 *
1609 * @se_cmd: command descriptor to submit
1610 * @se_sess: associated se_sess for endpoint
1611 * @sense: pointer to SCSI sense buffer
1612 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1613 * @fabric_context: fabric context for TMR req
1614 * @tm_type: Type of TM request
1615 * @gfp: gfp type for caller
1616 * @tag: referenced task tag for TMR_ABORT_TASK
1617 * @flags: submit cmd flags
1618 *
1619 * Callable from all contexts.
1620 **/
1621
1622 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1623 unsigned char *sense, u64 unpacked_lun,
1624 void *fabric_tmr_ptr, unsigned char tm_type,
1625 gfp_t gfp, u64 tag, int flags)
1626 {
1627 struct se_portal_group *se_tpg;
1628 int ret;
1629
1630 se_tpg = se_sess->se_tpg;
1631 BUG_ON(!se_tpg);
1632
1633 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1634 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1635 /*
1636 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1637 * allocation failure.
1638 */
1639 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1640 if (ret < 0)
1641 return -ENOMEM;
1642
1643 if (tm_type == TMR_ABORT_TASK)
1644 se_cmd->se_tmr_req->ref_task_tag = tag;
1645
1646 /* See target_submit_cmd for commentary */
1647 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1648 if (ret) {
1649 core_tmr_release_req(se_cmd->se_tmr_req);
1650 return ret;
1651 }
1652
1653 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1654 if (ret) {
1655 /*
1656 * For callback during failure handling, push this work off
1657 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1658 */
1659 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1660 schedule_work(&se_cmd->work);
1661 return 0;
1662 }
1663 transport_generic_handle_tmr(se_cmd);
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(target_submit_tmr);
1667
1668 /*
1669 * Handle SAM-esque emulation for generic transport request failures.
1670 */
1671 void transport_generic_request_failure(struct se_cmd *cmd,
1672 sense_reason_t sense_reason)
1673 {
1674 int ret = 0, post_ret = 0;
1675
1676 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1677 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1678 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1679 cmd->se_tfo->get_cmd_state(cmd),
1680 cmd->t_state, sense_reason);
1681 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1682 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1683 (cmd->transport_state & CMD_T_STOP) != 0,
1684 (cmd->transport_state & CMD_T_SENT) != 0);
1685
1686 /*
1687 * For SAM Task Attribute emulation for failed struct se_cmd
1688 */
1689 transport_complete_task_attr(cmd);
1690 /*
1691 * Handle special case for COMPARE_AND_WRITE failure, where the
1692 * callback is expected to drop the per device ->caw_sem.
1693 */
1694 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1695 cmd->transport_complete_callback)
1696 cmd->transport_complete_callback(cmd, false, &post_ret);
1697
1698 switch (sense_reason) {
1699 case TCM_NON_EXISTENT_LUN:
1700 case TCM_UNSUPPORTED_SCSI_OPCODE:
1701 case TCM_INVALID_CDB_FIELD:
1702 case TCM_INVALID_PARAMETER_LIST:
1703 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1704 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1705 case TCM_UNKNOWN_MODE_PAGE:
1706 case TCM_WRITE_PROTECTED:
1707 case TCM_ADDRESS_OUT_OF_RANGE:
1708 case TCM_CHECK_CONDITION_ABORT_CMD:
1709 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1710 case TCM_CHECK_CONDITION_NOT_READY:
1711 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1712 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1713 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1714 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1715 case TCM_TOO_MANY_TARGET_DESCS:
1716 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1717 case TCM_TOO_MANY_SEGMENT_DESCS:
1718 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1719 break;
1720 case TCM_OUT_OF_RESOURCES:
1721 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1722 break;
1723 case TCM_RESERVATION_CONFLICT:
1724 /*
1725 * No SENSE Data payload for this case, set SCSI Status
1726 * and queue the response to $FABRIC_MOD.
1727 *
1728 * Uses linux/include/scsi/scsi.h SAM status codes defs
1729 */
1730 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1731 /*
1732 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1733 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1734 * CONFLICT STATUS.
1735 *
1736 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1737 */
1738 if (cmd->se_sess &&
1739 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1740 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1741 cmd->orig_fe_lun, 0x2C,
1742 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1743 }
1744 trace_target_cmd_complete(cmd);
1745 ret = cmd->se_tfo->queue_status(cmd);
1746 if (ret)
1747 goto queue_full;
1748 goto check_stop;
1749 default:
1750 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1751 cmd->t_task_cdb[0], sense_reason);
1752 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1753 break;
1754 }
1755
1756 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1757 if (ret)
1758 goto queue_full;
1759
1760 check_stop:
1761 transport_lun_remove_cmd(cmd);
1762 transport_cmd_check_stop_to_fabric(cmd);
1763 return;
1764
1765 queue_full:
1766 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1767 }
1768 EXPORT_SYMBOL(transport_generic_request_failure);
1769
1770 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1771 {
1772 sense_reason_t ret;
1773
1774 if (!cmd->execute_cmd) {
1775 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1776 goto err;
1777 }
1778 if (do_checks) {
1779 /*
1780 * Check for an existing UNIT ATTENTION condition after
1781 * target_handle_task_attr() has done SAM task attr
1782 * checking, and possibly have already defered execution
1783 * out to target_restart_delayed_cmds() context.
1784 */
1785 ret = target_scsi3_ua_check(cmd);
1786 if (ret)
1787 goto err;
1788
1789 ret = target_alua_state_check(cmd);
1790 if (ret)
1791 goto err;
1792
1793 ret = target_check_reservation(cmd);
1794 if (ret) {
1795 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1796 goto err;
1797 }
1798 }
1799
1800 ret = cmd->execute_cmd(cmd);
1801 if (!ret)
1802 return;
1803 err:
1804 spin_lock_irq(&cmd->t_state_lock);
1805 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1806 spin_unlock_irq(&cmd->t_state_lock);
1807
1808 transport_generic_request_failure(cmd, ret);
1809 }
1810
1811 static int target_write_prot_action(struct se_cmd *cmd)
1812 {
1813 u32 sectors;
1814 /*
1815 * Perform WRITE_INSERT of PI using software emulation when backend
1816 * device has PI enabled, if the transport has not already generated
1817 * PI using hardware WRITE_INSERT offload.
1818 */
1819 switch (cmd->prot_op) {
1820 case TARGET_PROT_DOUT_INSERT:
1821 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1822 sbc_dif_generate(cmd);
1823 break;
1824 case TARGET_PROT_DOUT_STRIP:
1825 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1826 break;
1827
1828 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1829 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1830 sectors, 0, cmd->t_prot_sg, 0);
1831 if (unlikely(cmd->pi_err)) {
1832 spin_lock_irq(&cmd->t_state_lock);
1833 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1834 spin_unlock_irq(&cmd->t_state_lock);
1835 transport_generic_request_failure(cmd, cmd->pi_err);
1836 return -1;
1837 }
1838 break;
1839 default:
1840 break;
1841 }
1842
1843 return 0;
1844 }
1845
1846 static bool target_handle_task_attr(struct se_cmd *cmd)
1847 {
1848 struct se_device *dev = cmd->se_dev;
1849
1850 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1851 return false;
1852
1853 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1854
1855 /*
1856 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1857 * to allow the passed struct se_cmd list of tasks to the front of the list.
1858 */
1859 switch (cmd->sam_task_attr) {
1860 case TCM_HEAD_TAG:
1861 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1862 cmd->t_task_cdb[0]);
1863 return false;
1864 case TCM_ORDERED_TAG:
1865 atomic_inc_mb(&dev->dev_ordered_sync);
1866
1867 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1868 cmd->t_task_cdb[0]);
1869
1870 /*
1871 * Execute an ORDERED command if no other older commands
1872 * exist that need to be completed first.
1873 */
1874 if (!atomic_read(&dev->simple_cmds))
1875 return false;
1876 break;
1877 default:
1878 /*
1879 * For SIMPLE and UNTAGGED Task Attribute commands
1880 */
1881 atomic_inc_mb(&dev->simple_cmds);
1882 break;
1883 }
1884
1885 if (atomic_read(&dev->dev_ordered_sync) == 0)
1886 return false;
1887
1888 spin_lock(&dev->delayed_cmd_lock);
1889 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1890 spin_unlock(&dev->delayed_cmd_lock);
1891
1892 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1893 cmd->t_task_cdb[0], cmd->sam_task_attr);
1894 return true;
1895 }
1896
1897 static int __transport_check_aborted_status(struct se_cmd *, int);
1898
1899 void target_execute_cmd(struct se_cmd *cmd)
1900 {
1901 /*
1902 * Determine if frontend context caller is requesting the stopping of
1903 * this command for frontend exceptions.
1904 *
1905 * If the received CDB has aleady been aborted stop processing it here.
1906 */
1907 spin_lock_irq(&cmd->t_state_lock);
1908 if (__transport_check_aborted_status(cmd, 1)) {
1909 spin_unlock_irq(&cmd->t_state_lock);
1910 return;
1911 }
1912 if (cmd->transport_state & CMD_T_STOP) {
1913 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1914 __func__, __LINE__, cmd->tag);
1915
1916 spin_unlock_irq(&cmd->t_state_lock);
1917 complete_all(&cmd->t_transport_stop_comp);
1918 return;
1919 }
1920
1921 cmd->t_state = TRANSPORT_PROCESSING;
1922 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1923 spin_unlock_irq(&cmd->t_state_lock);
1924
1925 if (target_write_prot_action(cmd))
1926 return;
1927
1928 if (target_handle_task_attr(cmd)) {
1929 spin_lock_irq(&cmd->t_state_lock);
1930 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1931 spin_unlock_irq(&cmd->t_state_lock);
1932 return;
1933 }
1934
1935 __target_execute_cmd(cmd, true);
1936 }
1937 EXPORT_SYMBOL(target_execute_cmd);
1938
1939 /*
1940 * Process all commands up to the last received ORDERED task attribute which
1941 * requires another blocking boundary
1942 */
1943 static void target_restart_delayed_cmds(struct se_device *dev)
1944 {
1945 for (;;) {
1946 struct se_cmd *cmd;
1947
1948 spin_lock(&dev->delayed_cmd_lock);
1949 if (list_empty(&dev->delayed_cmd_list)) {
1950 spin_unlock(&dev->delayed_cmd_lock);
1951 break;
1952 }
1953
1954 cmd = list_entry(dev->delayed_cmd_list.next,
1955 struct se_cmd, se_delayed_node);
1956 list_del(&cmd->se_delayed_node);
1957 spin_unlock(&dev->delayed_cmd_lock);
1958
1959 __target_execute_cmd(cmd, true);
1960
1961 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1962 break;
1963 }
1964 }
1965
1966 /*
1967 * Called from I/O completion to determine which dormant/delayed
1968 * and ordered cmds need to have their tasks added to the execution queue.
1969 */
1970 static void transport_complete_task_attr(struct se_cmd *cmd)
1971 {
1972 struct se_device *dev = cmd->se_dev;
1973
1974 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1975 return;
1976
1977 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1978 goto restart;
1979
1980 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1981 atomic_dec_mb(&dev->simple_cmds);
1982 dev->dev_cur_ordered_id++;
1983 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1984 dev->dev_cur_ordered_id);
1985 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1986 dev->dev_cur_ordered_id++;
1987 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1988 dev->dev_cur_ordered_id);
1989 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1990 atomic_dec_mb(&dev->dev_ordered_sync);
1991
1992 dev->dev_cur_ordered_id++;
1993 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1994 dev->dev_cur_ordered_id);
1995 }
1996 restart:
1997 target_restart_delayed_cmds(dev);
1998 }
1999
2000 static void transport_complete_qf(struct se_cmd *cmd)
2001 {
2002 int ret = 0;
2003
2004 transport_complete_task_attr(cmd);
2005 /*
2006 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2007 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2008 * the same callbacks should not be retried. Return CHECK_CONDITION
2009 * if a scsi_status is not already set.
2010 *
2011 * If a fabric driver ->queue_status() has returned non zero, always
2012 * keep retrying no matter what..
2013 */
2014 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2015 if (cmd->scsi_status)
2016 goto queue_status;
2017
2018 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2019 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2020 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2021 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2022 goto queue_status;
2023 }
2024
2025 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2026 goto queue_status;
2027
2028 switch (cmd->data_direction) {
2029 case DMA_FROM_DEVICE:
2030 if (cmd->scsi_status)
2031 goto queue_status;
2032
2033 trace_target_cmd_complete(cmd);
2034 ret = cmd->se_tfo->queue_data_in(cmd);
2035 break;
2036 case DMA_TO_DEVICE:
2037 if (cmd->se_cmd_flags & SCF_BIDI) {
2038 ret = cmd->se_tfo->queue_data_in(cmd);
2039 break;
2040 }
2041 /* Fall through for DMA_TO_DEVICE */
2042 case DMA_NONE:
2043 queue_status:
2044 trace_target_cmd_complete(cmd);
2045 ret = cmd->se_tfo->queue_status(cmd);
2046 break;
2047 default:
2048 break;
2049 }
2050
2051 if (ret < 0) {
2052 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2053 return;
2054 }
2055 transport_lun_remove_cmd(cmd);
2056 transport_cmd_check_stop_to_fabric(cmd);
2057 }
2058
2059 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2060 int err, bool write_pending)
2061 {
2062 /*
2063 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2064 * ->queue_data_in() callbacks from new process context.
2065 *
2066 * Otherwise for other errors, transport_complete_qf() will send
2067 * CHECK_CONDITION via ->queue_status() instead of attempting to
2068 * retry associated fabric driver data-transfer callbacks.
2069 */
2070 if (err == -EAGAIN || err == -ENOMEM) {
2071 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2072 TRANSPORT_COMPLETE_QF_OK;
2073 } else {
2074 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2075 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2076 }
2077
2078 spin_lock_irq(&dev->qf_cmd_lock);
2079 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2080 atomic_inc_mb(&dev->dev_qf_count);
2081 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2082
2083 schedule_work(&cmd->se_dev->qf_work_queue);
2084 }
2085
2086 static bool target_read_prot_action(struct se_cmd *cmd)
2087 {
2088 switch (cmd->prot_op) {
2089 case TARGET_PROT_DIN_STRIP:
2090 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2091 u32 sectors = cmd->data_length >>
2092 ilog2(cmd->se_dev->dev_attrib.block_size);
2093
2094 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2095 sectors, 0, cmd->t_prot_sg,
2096 0);
2097 if (cmd->pi_err)
2098 return true;
2099 }
2100 break;
2101 case TARGET_PROT_DIN_INSERT:
2102 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2103 break;
2104
2105 sbc_dif_generate(cmd);
2106 break;
2107 default:
2108 break;
2109 }
2110
2111 return false;
2112 }
2113
2114 static void target_complete_ok_work(struct work_struct *work)
2115 {
2116 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2117 int ret;
2118
2119 /*
2120 * Check if we need to move delayed/dormant tasks from cmds on the
2121 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2122 * Attribute.
2123 */
2124 transport_complete_task_attr(cmd);
2125
2126 /*
2127 * Check to schedule QUEUE_FULL work, or execute an existing
2128 * cmd->transport_qf_callback()
2129 */
2130 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2131 schedule_work(&cmd->se_dev->qf_work_queue);
2132
2133 /*
2134 * Check if we need to send a sense buffer from
2135 * the struct se_cmd in question.
2136 */
2137 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2138 WARN_ON(!cmd->scsi_status);
2139 ret = transport_send_check_condition_and_sense(
2140 cmd, 0, 1);
2141 if (ret)
2142 goto queue_full;
2143
2144 transport_lun_remove_cmd(cmd);
2145 transport_cmd_check_stop_to_fabric(cmd);
2146 return;
2147 }
2148 /*
2149 * Check for a callback, used by amongst other things
2150 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2151 */
2152 if (cmd->transport_complete_callback) {
2153 sense_reason_t rc;
2154 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2155 bool zero_dl = !(cmd->data_length);
2156 int post_ret = 0;
2157
2158 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2159 if (!rc && !post_ret) {
2160 if (caw && zero_dl)
2161 goto queue_rsp;
2162
2163 return;
2164 } else if (rc) {
2165 ret = transport_send_check_condition_and_sense(cmd,
2166 rc, 0);
2167 if (ret)
2168 goto queue_full;
2169
2170 transport_lun_remove_cmd(cmd);
2171 transport_cmd_check_stop_to_fabric(cmd);
2172 return;
2173 }
2174 }
2175
2176 queue_rsp:
2177 switch (cmd->data_direction) {
2178 case DMA_FROM_DEVICE:
2179 if (cmd->scsi_status)
2180 goto queue_status;
2181
2182 atomic_long_add(cmd->data_length,
2183 &cmd->se_lun->lun_stats.tx_data_octets);
2184 /*
2185 * Perform READ_STRIP of PI using software emulation when
2186 * backend had PI enabled, if the transport will not be
2187 * performing hardware READ_STRIP offload.
2188 */
2189 if (target_read_prot_action(cmd)) {
2190 ret = transport_send_check_condition_and_sense(cmd,
2191 cmd->pi_err, 0);
2192 if (ret)
2193 goto queue_full;
2194
2195 transport_lun_remove_cmd(cmd);
2196 transport_cmd_check_stop_to_fabric(cmd);
2197 return;
2198 }
2199
2200 trace_target_cmd_complete(cmd);
2201 ret = cmd->se_tfo->queue_data_in(cmd);
2202 if (ret)
2203 goto queue_full;
2204 break;
2205 case DMA_TO_DEVICE:
2206 atomic_long_add(cmd->data_length,
2207 &cmd->se_lun->lun_stats.rx_data_octets);
2208 /*
2209 * Check if we need to send READ payload for BIDI-COMMAND
2210 */
2211 if (cmd->se_cmd_flags & SCF_BIDI) {
2212 atomic_long_add(cmd->data_length,
2213 &cmd->se_lun->lun_stats.tx_data_octets);
2214 ret = cmd->se_tfo->queue_data_in(cmd);
2215 if (ret)
2216 goto queue_full;
2217 break;
2218 }
2219 /* Fall through for DMA_TO_DEVICE */
2220 case DMA_NONE:
2221 queue_status:
2222 trace_target_cmd_complete(cmd);
2223 ret = cmd->se_tfo->queue_status(cmd);
2224 if (ret)
2225 goto queue_full;
2226 break;
2227 default:
2228 break;
2229 }
2230
2231 transport_lun_remove_cmd(cmd);
2232 transport_cmd_check_stop_to_fabric(cmd);
2233 return;
2234
2235 queue_full:
2236 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2237 " data_direction: %d\n", cmd, cmd->data_direction);
2238
2239 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2240 }
2241
2242 void target_free_sgl(struct scatterlist *sgl, int nents)
2243 {
2244 struct scatterlist *sg;
2245 int count;
2246
2247 for_each_sg(sgl, sg, nents, count)
2248 __free_page(sg_page(sg));
2249
2250 kfree(sgl);
2251 }
2252 EXPORT_SYMBOL(target_free_sgl);
2253
2254 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2255 {
2256 /*
2257 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2258 * emulation, and free + reset pointers if necessary..
2259 */
2260 if (!cmd->t_data_sg_orig)
2261 return;
2262
2263 kfree(cmd->t_data_sg);
2264 cmd->t_data_sg = cmd->t_data_sg_orig;
2265 cmd->t_data_sg_orig = NULL;
2266 cmd->t_data_nents = cmd->t_data_nents_orig;
2267 cmd->t_data_nents_orig = 0;
2268 }
2269
2270 static inline void transport_free_pages(struct se_cmd *cmd)
2271 {
2272 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2273 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2274 cmd->t_prot_sg = NULL;
2275 cmd->t_prot_nents = 0;
2276 }
2277
2278 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2279 /*
2280 * Release special case READ buffer payload required for
2281 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2282 */
2283 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2284 target_free_sgl(cmd->t_bidi_data_sg,
2285 cmd->t_bidi_data_nents);
2286 cmd->t_bidi_data_sg = NULL;
2287 cmd->t_bidi_data_nents = 0;
2288 }
2289 transport_reset_sgl_orig(cmd);
2290 return;
2291 }
2292 transport_reset_sgl_orig(cmd);
2293
2294 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2295 cmd->t_data_sg = NULL;
2296 cmd->t_data_nents = 0;
2297
2298 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2299 cmd->t_bidi_data_sg = NULL;
2300 cmd->t_bidi_data_nents = 0;
2301 }
2302
2303 /**
2304 * transport_put_cmd - release a reference to a command
2305 * @cmd: command to release
2306 *
2307 * This routine releases our reference to the command and frees it if possible.
2308 */
2309 static int transport_put_cmd(struct se_cmd *cmd)
2310 {
2311 BUG_ON(!cmd->se_tfo);
2312 /*
2313 * If this cmd has been setup with target_get_sess_cmd(), drop
2314 * the kref and call ->release_cmd() in kref callback.
2315 */
2316 return target_put_sess_cmd(cmd);
2317 }
2318
2319 void *transport_kmap_data_sg(struct se_cmd *cmd)
2320 {
2321 struct scatterlist *sg = cmd->t_data_sg;
2322 struct page **pages;
2323 int i;
2324
2325 /*
2326 * We need to take into account a possible offset here for fabrics like
2327 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2328 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2329 */
2330 if (!cmd->t_data_nents)
2331 return NULL;
2332
2333 BUG_ON(!sg);
2334 if (cmd->t_data_nents == 1)
2335 return kmap(sg_page(sg)) + sg->offset;
2336
2337 /* >1 page. use vmap */
2338 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2339 if (!pages)
2340 return NULL;
2341
2342 /* convert sg[] to pages[] */
2343 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2344 pages[i] = sg_page(sg);
2345 }
2346
2347 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2348 kfree(pages);
2349 if (!cmd->t_data_vmap)
2350 return NULL;
2351
2352 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2353 }
2354 EXPORT_SYMBOL(transport_kmap_data_sg);
2355
2356 void transport_kunmap_data_sg(struct se_cmd *cmd)
2357 {
2358 if (!cmd->t_data_nents) {
2359 return;
2360 } else if (cmd->t_data_nents == 1) {
2361 kunmap(sg_page(cmd->t_data_sg));
2362 return;
2363 }
2364
2365 vunmap(cmd->t_data_vmap);
2366 cmd->t_data_vmap = NULL;
2367 }
2368 EXPORT_SYMBOL(transport_kunmap_data_sg);
2369
2370 int
2371 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2372 bool zero_page, bool chainable)
2373 {
2374 struct scatterlist *sg;
2375 struct page *page;
2376 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2377 unsigned int nalloc, nent;
2378 int i = 0;
2379
2380 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2381 if (chainable)
2382 nalloc++;
2383 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2384 if (!sg)
2385 return -ENOMEM;
2386
2387 sg_init_table(sg, nalloc);
2388
2389 while (length) {
2390 u32 page_len = min_t(u32, length, PAGE_SIZE);
2391 page = alloc_page(GFP_KERNEL | zero_flag);
2392 if (!page)
2393 goto out;
2394
2395 sg_set_page(&sg[i], page, page_len, 0);
2396 length -= page_len;
2397 i++;
2398 }
2399 *sgl = sg;
2400 *nents = nent;
2401 return 0;
2402
2403 out:
2404 while (i > 0) {
2405 i--;
2406 __free_page(sg_page(&sg[i]));
2407 }
2408 kfree(sg);
2409 return -ENOMEM;
2410 }
2411 EXPORT_SYMBOL(target_alloc_sgl);
2412
2413 /*
2414 * Allocate any required resources to execute the command. For writes we
2415 * might not have the payload yet, so notify the fabric via a call to
2416 * ->write_pending instead. Otherwise place it on the execution queue.
2417 */
2418 sense_reason_t
2419 transport_generic_new_cmd(struct se_cmd *cmd)
2420 {
2421 int ret = 0;
2422 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2423
2424 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2425 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2426 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2427 cmd->prot_length, true, false);
2428 if (ret < 0)
2429 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2430 }
2431
2432 /*
2433 * Determine is the TCM fabric module has already allocated physical
2434 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2435 * beforehand.
2436 */
2437 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2438 cmd->data_length) {
2439
2440 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2441 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2442 u32 bidi_length;
2443
2444 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2445 bidi_length = cmd->t_task_nolb *
2446 cmd->se_dev->dev_attrib.block_size;
2447 else
2448 bidi_length = cmd->data_length;
2449
2450 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2451 &cmd->t_bidi_data_nents,
2452 bidi_length, zero_flag, false);
2453 if (ret < 0)
2454 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2455 }
2456
2457 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2458 cmd->data_length, zero_flag, false);
2459 if (ret < 0)
2460 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2461 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2462 cmd->data_length) {
2463 /*
2464 * Special case for COMPARE_AND_WRITE with fabrics
2465 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2466 */
2467 u32 caw_length = cmd->t_task_nolb *
2468 cmd->se_dev->dev_attrib.block_size;
2469
2470 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2471 &cmd->t_bidi_data_nents,
2472 caw_length, zero_flag, false);
2473 if (ret < 0)
2474 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2475 }
2476 /*
2477 * If this command is not a write we can execute it right here,
2478 * for write buffers we need to notify the fabric driver first
2479 * and let it call back once the write buffers are ready.
2480 */
2481 target_add_to_state_list(cmd);
2482 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2483 target_execute_cmd(cmd);
2484 return 0;
2485 }
2486 transport_cmd_check_stop(cmd, false, true);
2487
2488 ret = cmd->se_tfo->write_pending(cmd);
2489 if (ret)
2490 goto queue_full;
2491
2492 return 0;
2493
2494 queue_full:
2495 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2496 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2497 return 0;
2498 }
2499 EXPORT_SYMBOL(transport_generic_new_cmd);
2500
2501 static void transport_write_pending_qf(struct se_cmd *cmd)
2502 {
2503 int ret;
2504
2505 ret = cmd->se_tfo->write_pending(cmd);
2506 if (ret) {
2507 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2508 cmd);
2509 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2510 }
2511 }
2512
2513 static bool
2514 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2515 unsigned long *flags);
2516
2517 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2518 {
2519 unsigned long flags;
2520
2521 spin_lock_irqsave(&cmd->t_state_lock, flags);
2522 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2523 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2524 }
2525
2526 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2527 {
2528 int ret = 0;
2529 bool aborted = false, tas = false;
2530
2531 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2532 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2533 target_wait_free_cmd(cmd, &aborted, &tas);
2534
2535 if (!aborted || tas)
2536 ret = transport_put_cmd(cmd);
2537 } else {
2538 if (wait_for_tasks)
2539 target_wait_free_cmd(cmd, &aborted, &tas);
2540 /*
2541 * Handle WRITE failure case where transport_generic_new_cmd()
2542 * has already added se_cmd to state_list, but fabric has
2543 * failed command before I/O submission.
2544 */
2545 if (cmd->state_active)
2546 target_remove_from_state_list(cmd);
2547
2548 if (cmd->se_lun)
2549 transport_lun_remove_cmd(cmd);
2550
2551 if (!aborted || tas)
2552 ret = transport_put_cmd(cmd);
2553 }
2554 /*
2555 * If the task has been internally aborted due to TMR ABORT_TASK
2556 * or LUN_RESET, target_core_tmr.c is responsible for performing
2557 * the remaining calls to target_put_sess_cmd(), and not the
2558 * callers of this function.
2559 */
2560 if (aborted) {
2561 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2562 wait_for_completion(&cmd->cmd_wait_comp);
2563 cmd->se_tfo->release_cmd(cmd);
2564 ret = 1;
2565 }
2566 return ret;
2567 }
2568 EXPORT_SYMBOL(transport_generic_free_cmd);
2569
2570 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2571 * @se_cmd: command descriptor to add
2572 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2573 */
2574 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2575 {
2576 struct se_session *se_sess = se_cmd->se_sess;
2577 unsigned long flags;
2578 int ret = 0;
2579
2580 /*
2581 * Add a second kref if the fabric caller is expecting to handle
2582 * fabric acknowledgement that requires two target_put_sess_cmd()
2583 * invocations before se_cmd descriptor release.
2584 */
2585 if (ack_kref) {
2586 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2587 return -EINVAL;
2588
2589 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2590 }
2591
2592 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2593 if (se_sess->sess_tearing_down) {
2594 ret = -ESHUTDOWN;
2595 goto out;
2596 }
2597 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2598 out:
2599 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2600
2601 if (ret && ack_kref)
2602 target_put_sess_cmd(se_cmd);
2603
2604 return ret;
2605 }
2606 EXPORT_SYMBOL(target_get_sess_cmd);
2607
2608 static void target_free_cmd_mem(struct se_cmd *cmd)
2609 {
2610 transport_free_pages(cmd);
2611
2612 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2613 core_tmr_release_req(cmd->se_tmr_req);
2614 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2615 kfree(cmd->t_task_cdb);
2616 }
2617
2618 static void target_release_cmd_kref(struct kref *kref)
2619 {
2620 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2621 struct se_session *se_sess = se_cmd->se_sess;
2622 unsigned long flags;
2623 bool fabric_stop;
2624
2625 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2626
2627 spin_lock(&se_cmd->t_state_lock);
2628 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2629 (se_cmd->transport_state & CMD_T_ABORTED);
2630 spin_unlock(&se_cmd->t_state_lock);
2631
2632 if (se_cmd->cmd_wait_set || fabric_stop) {
2633 list_del_init(&se_cmd->se_cmd_list);
2634 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2635 target_free_cmd_mem(se_cmd);
2636 complete(&se_cmd->cmd_wait_comp);
2637 return;
2638 }
2639 list_del_init(&se_cmd->se_cmd_list);
2640 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2641
2642 target_free_cmd_mem(se_cmd);
2643 se_cmd->se_tfo->release_cmd(se_cmd);
2644 }
2645
2646 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2647 * @se_cmd: command descriptor to drop
2648 */
2649 int target_put_sess_cmd(struct se_cmd *se_cmd)
2650 {
2651 struct se_session *se_sess = se_cmd->se_sess;
2652
2653 if (!se_sess) {
2654 target_free_cmd_mem(se_cmd);
2655 se_cmd->se_tfo->release_cmd(se_cmd);
2656 return 1;
2657 }
2658 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2659 }
2660 EXPORT_SYMBOL(target_put_sess_cmd);
2661
2662 /* target_sess_cmd_list_set_waiting - Flag all commands in
2663 * sess_cmd_list to complete cmd_wait_comp. Set
2664 * sess_tearing_down so no more commands are queued.
2665 * @se_sess: session to flag
2666 */
2667 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2668 {
2669 struct se_cmd *se_cmd, *tmp_cmd;
2670 unsigned long flags;
2671 int rc;
2672
2673 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2674 if (se_sess->sess_tearing_down) {
2675 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2676 return;
2677 }
2678 se_sess->sess_tearing_down = 1;
2679 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2680
2681 list_for_each_entry_safe(se_cmd, tmp_cmd,
2682 &se_sess->sess_wait_list, se_cmd_list) {
2683 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2684 if (rc) {
2685 se_cmd->cmd_wait_set = 1;
2686 spin_lock(&se_cmd->t_state_lock);
2687 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2688 spin_unlock(&se_cmd->t_state_lock);
2689 } else
2690 list_del_init(&se_cmd->se_cmd_list);
2691 }
2692
2693 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2694 }
2695 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2696
2697 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2698 * @se_sess: session to wait for active I/O
2699 */
2700 void target_wait_for_sess_cmds(struct se_session *se_sess)
2701 {
2702 struct se_cmd *se_cmd, *tmp_cmd;
2703 unsigned long flags;
2704 bool tas;
2705
2706 list_for_each_entry_safe(se_cmd, tmp_cmd,
2707 &se_sess->sess_wait_list, se_cmd_list) {
2708 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2709 " %d\n", se_cmd, se_cmd->t_state,
2710 se_cmd->se_tfo->get_cmd_state(se_cmd));
2711
2712 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2713 tas = (se_cmd->transport_state & CMD_T_TAS);
2714 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2715
2716 if (!target_put_sess_cmd(se_cmd)) {
2717 if (tas)
2718 target_put_sess_cmd(se_cmd);
2719 }
2720
2721 wait_for_completion(&se_cmd->cmd_wait_comp);
2722 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2723 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2724 se_cmd->se_tfo->get_cmd_state(se_cmd));
2725
2726 se_cmd->se_tfo->release_cmd(se_cmd);
2727 }
2728
2729 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2730 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2731 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2732
2733 }
2734 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2735
2736 static void target_lun_confirm(struct percpu_ref *ref)
2737 {
2738 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2739
2740 complete(&lun->lun_ref_comp);
2741 }
2742
2743 void transport_clear_lun_ref(struct se_lun *lun)
2744 {
2745 /*
2746 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2747 * the initial reference and schedule confirm kill to be
2748 * executed after one full RCU grace period has completed.
2749 */
2750 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2751 /*
2752 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2753 * to call target_lun_confirm after lun->lun_ref has been marked
2754 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2755 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2756 * fails for all new incoming I/O.
2757 */
2758 wait_for_completion(&lun->lun_ref_comp);
2759 /*
2760 * The second completion waits for percpu_ref_put_many() to
2761 * invoke ->release() after lun->lun_ref has switched to
2762 * atomic_t mode, and lun->lun_ref.count has reached zero.
2763 *
2764 * At this point all target-core lun->lun_ref references have
2765 * been dropped via transport_lun_remove_cmd(), and it's safe
2766 * to proceed with the remaining LUN shutdown.
2767 */
2768 wait_for_completion(&lun->lun_shutdown_comp);
2769 }
2770
2771 static bool
2772 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2773 bool *aborted, bool *tas, unsigned long *flags)
2774 __releases(&cmd->t_state_lock)
2775 __acquires(&cmd->t_state_lock)
2776 {
2777
2778 assert_spin_locked(&cmd->t_state_lock);
2779 WARN_ON_ONCE(!irqs_disabled());
2780
2781 if (fabric_stop)
2782 cmd->transport_state |= CMD_T_FABRIC_STOP;
2783
2784 if (cmd->transport_state & CMD_T_ABORTED)
2785 *aborted = true;
2786
2787 if (cmd->transport_state & CMD_T_TAS)
2788 *tas = true;
2789
2790 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2791 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2792 return false;
2793
2794 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2795 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2796 return false;
2797
2798 if (!(cmd->transport_state & CMD_T_ACTIVE))
2799 return false;
2800
2801 if (fabric_stop && *aborted)
2802 return false;
2803
2804 cmd->transport_state |= CMD_T_STOP;
2805
2806 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2807 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2808 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2809
2810 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2811
2812 wait_for_completion(&cmd->t_transport_stop_comp);
2813
2814 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2815 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2816
2817 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2818 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2819
2820 return true;
2821 }
2822
2823 /**
2824 * transport_wait_for_tasks - wait for completion to occur
2825 * @cmd: command to wait
2826 *
2827 * Called from frontend fabric context to wait for storage engine
2828 * to pause and/or release frontend generated struct se_cmd.
2829 */
2830 bool transport_wait_for_tasks(struct se_cmd *cmd)
2831 {
2832 unsigned long flags;
2833 bool ret, aborted = false, tas = false;
2834
2835 spin_lock_irqsave(&cmd->t_state_lock, flags);
2836 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2837 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2838
2839 return ret;
2840 }
2841 EXPORT_SYMBOL(transport_wait_for_tasks);
2842
2843 struct sense_info {
2844 u8 key;
2845 u8 asc;
2846 u8 ascq;
2847 bool add_sector_info;
2848 };
2849
2850 static const struct sense_info sense_info_table[] = {
2851 [TCM_NO_SENSE] = {
2852 .key = NOT_READY
2853 },
2854 [TCM_NON_EXISTENT_LUN] = {
2855 .key = ILLEGAL_REQUEST,
2856 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2857 },
2858 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2859 .key = ILLEGAL_REQUEST,
2860 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2861 },
2862 [TCM_SECTOR_COUNT_TOO_MANY] = {
2863 .key = ILLEGAL_REQUEST,
2864 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2865 },
2866 [TCM_UNKNOWN_MODE_PAGE] = {
2867 .key = ILLEGAL_REQUEST,
2868 .asc = 0x24, /* INVALID FIELD IN CDB */
2869 },
2870 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2871 .key = ABORTED_COMMAND,
2872 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2873 .ascq = 0x03,
2874 },
2875 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2876 .key = ABORTED_COMMAND,
2877 .asc = 0x0c, /* WRITE ERROR */
2878 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2879 },
2880 [TCM_INVALID_CDB_FIELD] = {
2881 .key = ILLEGAL_REQUEST,
2882 .asc = 0x24, /* INVALID FIELD IN CDB */
2883 },
2884 [TCM_INVALID_PARAMETER_LIST] = {
2885 .key = ILLEGAL_REQUEST,
2886 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2887 },
2888 [TCM_TOO_MANY_TARGET_DESCS] = {
2889 .key = ILLEGAL_REQUEST,
2890 .asc = 0x26,
2891 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2892 },
2893 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2894 .key = ILLEGAL_REQUEST,
2895 .asc = 0x26,
2896 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2897 },
2898 [TCM_TOO_MANY_SEGMENT_DESCS] = {
2899 .key = ILLEGAL_REQUEST,
2900 .asc = 0x26,
2901 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2902 },
2903 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2904 .key = ILLEGAL_REQUEST,
2905 .asc = 0x26,
2906 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2907 },
2908 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2909 .key = ILLEGAL_REQUEST,
2910 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2911 },
2912 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2913 .key = ILLEGAL_REQUEST,
2914 .asc = 0x0c, /* WRITE ERROR */
2915 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2916 },
2917 [TCM_SERVICE_CRC_ERROR] = {
2918 .key = ABORTED_COMMAND,
2919 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2920 .ascq = 0x05, /* N/A */
2921 },
2922 [TCM_SNACK_REJECTED] = {
2923 .key = ABORTED_COMMAND,
2924 .asc = 0x11, /* READ ERROR */
2925 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2926 },
2927 [TCM_WRITE_PROTECTED] = {
2928 .key = DATA_PROTECT,
2929 .asc = 0x27, /* WRITE PROTECTED */
2930 },
2931 [TCM_ADDRESS_OUT_OF_RANGE] = {
2932 .key = ILLEGAL_REQUEST,
2933 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2934 },
2935 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2936 .key = UNIT_ATTENTION,
2937 },
2938 [TCM_CHECK_CONDITION_NOT_READY] = {
2939 .key = NOT_READY,
2940 },
2941 [TCM_MISCOMPARE_VERIFY] = {
2942 .key = MISCOMPARE,
2943 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2944 .ascq = 0x00,
2945 },
2946 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2947 .key = ABORTED_COMMAND,
2948 .asc = 0x10,
2949 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2950 .add_sector_info = true,
2951 },
2952 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2953 .key = ABORTED_COMMAND,
2954 .asc = 0x10,
2955 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2956 .add_sector_info = true,
2957 },
2958 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2959 .key = ABORTED_COMMAND,
2960 .asc = 0x10,
2961 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2962 .add_sector_info = true,
2963 },
2964 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2965 .key = COPY_ABORTED,
2966 .asc = 0x0d,
2967 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2968
2969 },
2970 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2971 /*
2972 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2973 * Solaris initiators. Returning NOT READY instead means the
2974 * operations will be retried a finite number of times and we
2975 * can survive intermittent errors.
2976 */
2977 .key = NOT_READY,
2978 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2979 },
2980 };
2981
2982 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2983 {
2984 const struct sense_info *si;
2985 u8 *buffer = cmd->sense_buffer;
2986 int r = (__force int)reason;
2987 u8 asc, ascq;
2988 bool desc_format = target_sense_desc_format(cmd->se_dev);
2989
2990 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2991 si = &sense_info_table[r];
2992 else
2993 si = &sense_info_table[(__force int)
2994 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2995
2996 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2997 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2998 WARN_ON_ONCE(asc == 0);
2999 } else if (si->asc == 0) {
3000 WARN_ON_ONCE(cmd->scsi_asc == 0);
3001 asc = cmd->scsi_asc;
3002 ascq = cmd->scsi_ascq;
3003 } else {
3004 asc = si->asc;
3005 ascq = si->ascq;
3006 }
3007
3008 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3009 if (si->add_sector_info)
3010 return scsi_set_sense_information(buffer,
3011 cmd->scsi_sense_length,
3012 cmd->bad_sector);
3013
3014 return 0;
3015 }
3016
3017 int
3018 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3019 sense_reason_t reason, int from_transport)
3020 {
3021 unsigned long flags;
3022
3023 spin_lock_irqsave(&cmd->t_state_lock, flags);
3024 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3026 return 0;
3027 }
3028 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3029 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3030
3031 if (!from_transport) {
3032 int rc;
3033
3034 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3035 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3036 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3037 rc = translate_sense_reason(cmd, reason);
3038 if (rc)
3039 return rc;
3040 }
3041
3042 trace_target_cmd_complete(cmd);
3043 return cmd->se_tfo->queue_status(cmd);
3044 }
3045 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3046
3047 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3048 __releases(&cmd->t_state_lock)
3049 __acquires(&cmd->t_state_lock)
3050 {
3051 int ret;
3052
3053 assert_spin_locked(&cmd->t_state_lock);
3054 WARN_ON_ONCE(!irqs_disabled());
3055
3056 if (!(cmd->transport_state & CMD_T_ABORTED))
3057 return 0;
3058 /*
3059 * If cmd has been aborted but either no status is to be sent or it has
3060 * already been sent, just return
3061 */
3062 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3063 if (send_status)
3064 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3065 return 1;
3066 }
3067
3068 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3069 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3070
3071 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3072 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3073 trace_target_cmd_complete(cmd);
3074
3075 spin_unlock_irq(&cmd->t_state_lock);
3076 ret = cmd->se_tfo->queue_status(cmd);
3077 if (ret)
3078 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3079 spin_lock_irq(&cmd->t_state_lock);
3080
3081 return 1;
3082 }
3083
3084 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3085 {
3086 int ret;
3087
3088 spin_lock_irq(&cmd->t_state_lock);
3089 ret = __transport_check_aborted_status(cmd, send_status);
3090 spin_unlock_irq(&cmd->t_state_lock);
3091
3092 return ret;
3093 }
3094 EXPORT_SYMBOL(transport_check_aborted_status);
3095
3096 void transport_send_task_abort(struct se_cmd *cmd)
3097 {
3098 unsigned long flags;
3099 int ret;
3100
3101 spin_lock_irqsave(&cmd->t_state_lock, flags);
3102 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3103 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3104 return;
3105 }
3106 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3107
3108 /*
3109 * If there are still expected incoming fabric WRITEs, we wait
3110 * until until they have completed before sending a TASK_ABORTED
3111 * response. This response with TASK_ABORTED status will be
3112 * queued back to fabric module by transport_check_aborted_status().
3113 */
3114 if (cmd->data_direction == DMA_TO_DEVICE) {
3115 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3116 spin_lock_irqsave(&cmd->t_state_lock, flags);
3117 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3118 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3119 goto send_abort;
3120 }
3121 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3122 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3123 return;
3124 }
3125 }
3126 send_abort:
3127 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3128
3129 transport_lun_remove_cmd(cmd);
3130
3131 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3132 cmd->t_task_cdb[0], cmd->tag);
3133
3134 trace_target_cmd_complete(cmd);
3135 ret = cmd->se_tfo->queue_status(cmd);
3136 if (ret)
3137 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3138 }
3139
3140 static void target_tmr_work(struct work_struct *work)
3141 {
3142 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3143 struct se_device *dev = cmd->se_dev;
3144 struct se_tmr_req *tmr = cmd->se_tmr_req;
3145 unsigned long flags;
3146 int ret;
3147
3148 spin_lock_irqsave(&cmd->t_state_lock, flags);
3149 if (cmd->transport_state & CMD_T_ABORTED) {
3150 tmr->response = TMR_FUNCTION_REJECTED;
3151 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3152 goto check_stop;
3153 }
3154 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3155
3156 switch (tmr->function) {
3157 case TMR_ABORT_TASK:
3158 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3159 break;
3160 case TMR_ABORT_TASK_SET:
3161 case TMR_CLEAR_ACA:
3162 case TMR_CLEAR_TASK_SET:
3163 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3164 break;
3165 case TMR_LUN_RESET:
3166 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3167 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3168 TMR_FUNCTION_REJECTED;
3169 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3170 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3171 cmd->orig_fe_lun, 0x29,
3172 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3173 }
3174 break;
3175 case TMR_TARGET_WARM_RESET:
3176 tmr->response = TMR_FUNCTION_REJECTED;
3177 break;
3178 case TMR_TARGET_COLD_RESET:
3179 tmr->response = TMR_FUNCTION_REJECTED;
3180 break;
3181 default:
3182 pr_err("Uknown TMR function: 0x%02x.\n",
3183 tmr->function);
3184 tmr->response = TMR_FUNCTION_REJECTED;
3185 break;
3186 }
3187
3188 spin_lock_irqsave(&cmd->t_state_lock, flags);
3189 if (cmd->transport_state & CMD_T_ABORTED) {
3190 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3191 goto check_stop;
3192 }
3193 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3194
3195 cmd->se_tfo->queue_tm_rsp(cmd);
3196
3197 check_stop:
3198 transport_cmd_check_stop_to_fabric(cmd);
3199 }
3200
3201 int transport_generic_handle_tmr(
3202 struct se_cmd *cmd)
3203 {
3204 unsigned long flags;
3205 bool aborted = false;
3206
3207 spin_lock_irqsave(&cmd->t_state_lock, flags);
3208 if (cmd->transport_state & CMD_T_ABORTED) {
3209 aborted = true;
3210 } else {
3211 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3212 cmd->transport_state |= CMD_T_ACTIVE;
3213 }
3214 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3215
3216 if (aborted) {
3217 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3218 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3219 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3220 transport_cmd_check_stop_to_fabric(cmd);
3221 return 0;
3222 }
3223
3224 INIT_WORK(&cmd->work, target_tmr_work);
3225 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3226 return 0;
3227 }
3228 EXPORT_SYMBOL(transport_generic_handle_tmr);
3229
3230 bool
3231 target_check_wce(struct se_device *dev)
3232 {
3233 bool wce = false;
3234
3235 if (dev->transport->get_write_cache)
3236 wce = dev->transport->get_write_cache(dev);
3237 else if (dev->dev_attrib.emulate_write_cache > 0)
3238 wce = true;
3239
3240 return wce;
3241 }
3242
3243 bool
3244 target_check_fua(struct se_device *dev)
3245 {
3246 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3247 }