]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/target/target_core_transport.c
regulator: palmas: Fix off-by-one for ramp_delay and register value mapping
[mirror_ubuntu-hirsute-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2012 RisingTide Systems LLC.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54
55 static struct workqueue_struct *target_completion_wq;
56 static struct kmem_cache *se_sess_cache;
57 struct kmem_cache *se_ua_cache;
58 struct kmem_cache *t10_pr_reg_cache;
59 struct kmem_cache *t10_alua_lu_gp_cache;
60 struct kmem_cache *t10_alua_lu_gp_mem_cache;
61 struct kmem_cache *t10_alua_tg_pt_gp_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
63
64 static void transport_complete_task_attr(struct se_cmd *cmd);
65 static void transport_handle_queue_full(struct se_cmd *cmd,
66 struct se_device *dev);
67 static int transport_generic_get_mem(struct se_cmd *cmd);
68 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool);
69 static void transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
122 "t10_alua_tg_pt_gp_mem_cache",
123 sizeof(struct t10_alua_tg_pt_gp_member),
124 __alignof__(struct t10_alua_tg_pt_gp_member),
125 0, NULL);
126 if (!t10_alua_tg_pt_gp_mem_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "mem_t failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131
132 target_completion_wq = alloc_workqueue("target_completion",
133 WQ_MEM_RECLAIM, 0);
134 if (!target_completion_wq)
135 goto out_free_tg_pt_gp_mem_cache;
136
137 return 0;
138
139 out_free_tg_pt_gp_mem_cache:
140 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
141 out_free_tg_pt_gp_cache:
142 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
143 out_free_lu_gp_mem_cache:
144 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
145 out_free_lu_gp_cache:
146 kmem_cache_destroy(t10_alua_lu_gp_cache);
147 out_free_pr_reg_cache:
148 kmem_cache_destroy(t10_pr_reg_cache);
149 out_free_ua_cache:
150 kmem_cache_destroy(se_ua_cache);
151 out_free_sess_cache:
152 kmem_cache_destroy(se_sess_cache);
153 out:
154 return -ENOMEM;
155 }
156
157 void release_se_kmem_caches(void)
158 {
159 destroy_workqueue(target_completion_wq);
160 kmem_cache_destroy(se_sess_cache);
161 kmem_cache_destroy(se_ua_cache);
162 kmem_cache_destroy(t10_pr_reg_cache);
163 kmem_cache_destroy(t10_alua_lu_gp_cache);
164 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
167 }
168
169 /* This code ensures unique mib indexes are handed out. */
170 static DEFINE_SPINLOCK(scsi_mib_index_lock);
171 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172
173 /*
174 * Allocate a new row index for the entry type specified
175 */
176 u32 scsi_get_new_index(scsi_index_t type)
177 {
178 u32 new_index;
179
180 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
181
182 spin_lock(&scsi_mib_index_lock);
183 new_index = ++scsi_mib_index[type];
184 spin_unlock(&scsi_mib_index_lock);
185
186 return new_index;
187 }
188
189 void transport_subsystem_check_init(void)
190 {
191 int ret;
192 static int sub_api_initialized;
193
194 if (sub_api_initialized)
195 return;
196
197 ret = request_module("target_core_iblock");
198 if (ret != 0)
199 pr_err("Unable to load target_core_iblock\n");
200
201 ret = request_module("target_core_file");
202 if (ret != 0)
203 pr_err("Unable to load target_core_file\n");
204
205 ret = request_module("target_core_pscsi");
206 if (ret != 0)
207 pr_err("Unable to load target_core_pscsi\n");
208
209 sub_api_initialized = 1;
210 }
211
212 struct se_session *transport_init_session(void)
213 {
214 struct se_session *se_sess;
215
216 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
217 if (!se_sess) {
218 pr_err("Unable to allocate struct se_session from"
219 " se_sess_cache\n");
220 return ERR_PTR(-ENOMEM);
221 }
222 INIT_LIST_HEAD(&se_sess->sess_list);
223 INIT_LIST_HEAD(&se_sess->sess_acl_list);
224 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
225 spin_lock_init(&se_sess->sess_cmd_lock);
226 kref_init(&se_sess->sess_kref);
227
228 return se_sess;
229 }
230 EXPORT_SYMBOL(transport_init_session);
231
232 /*
233 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
234 */
235 void __transport_register_session(
236 struct se_portal_group *se_tpg,
237 struct se_node_acl *se_nacl,
238 struct se_session *se_sess,
239 void *fabric_sess_ptr)
240 {
241 unsigned char buf[PR_REG_ISID_LEN];
242
243 se_sess->se_tpg = se_tpg;
244 se_sess->fabric_sess_ptr = fabric_sess_ptr;
245 /*
246 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
247 *
248 * Only set for struct se_session's that will actually be moving I/O.
249 * eg: *NOT* discovery sessions.
250 */
251 if (se_nacl) {
252 /*
253 * If the fabric module supports an ISID based TransportID,
254 * save this value in binary from the fabric I_T Nexus now.
255 */
256 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
257 memset(&buf[0], 0, PR_REG_ISID_LEN);
258 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
259 &buf[0], PR_REG_ISID_LEN);
260 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
261 }
262 kref_get(&se_nacl->acl_kref);
263
264 spin_lock_irq(&se_nacl->nacl_sess_lock);
265 /*
266 * The se_nacl->nacl_sess pointer will be set to the
267 * last active I_T Nexus for each struct se_node_acl.
268 */
269 se_nacl->nacl_sess = se_sess;
270
271 list_add_tail(&se_sess->sess_acl_list,
272 &se_nacl->acl_sess_list);
273 spin_unlock_irq(&se_nacl->nacl_sess_lock);
274 }
275 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
276
277 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
278 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
279 }
280 EXPORT_SYMBOL(__transport_register_session);
281
282 void transport_register_session(
283 struct se_portal_group *se_tpg,
284 struct se_node_acl *se_nacl,
285 struct se_session *se_sess,
286 void *fabric_sess_ptr)
287 {
288 unsigned long flags;
289
290 spin_lock_irqsave(&se_tpg->session_lock, flags);
291 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
292 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
293 }
294 EXPORT_SYMBOL(transport_register_session);
295
296 static void target_release_session(struct kref *kref)
297 {
298 struct se_session *se_sess = container_of(kref,
299 struct se_session, sess_kref);
300 struct se_portal_group *se_tpg = se_sess->se_tpg;
301
302 se_tpg->se_tpg_tfo->close_session(se_sess);
303 }
304
305 void target_get_session(struct se_session *se_sess)
306 {
307 kref_get(&se_sess->sess_kref);
308 }
309 EXPORT_SYMBOL(target_get_session);
310
311 void target_put_session(struct se_session *se_sess)
312 {
313 struct se_portal_group *tpg = se_sess->se_tpg;
314
315 if (tpg->se_tpg_tfo->put_session != NULL) {
316 tpg->se_tpg_tfo->put_session(se_sess);
317 return;
318 }
319 kref_put(&se_sess->sess_kref, target_release_session);
320 }
321 EXPORT_SYMBOL(target_put_session);
322
323 static void target_complete_nacl(struct kref *kref)
324 {
325 struct se_node_acl *nacl = container_of(kref,
326 struct se_node_acl, acl_kref);
327
328 complete(&nacl->acl_free_comp);
329 }
330
331 void target_put_nacl(struct se_node_acl *nacl)
332 {
333 kref_put(&nacl->acl_kref, target_complete_nacl);
334 }
335
336 void transport_deregister_session_configfs(struct se_session *se_sess)
337 {
338 struct se_node_acl *se_nacl;
339 unsigned long flags;
340 /*
341 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
342 */
343 se_nacl = se_sess->se_node_acl;
344 if (se_nacl) {
345 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
346 if (se_nacl->acl_stop == 0)
347 list_del(&se_sess->sess_acl_list);
348 /*
349 * If the session list is empty, then clear the pointer.
350 * Otherwise, set the struct se_session pointer from the tail
351 * element of the per struct se_node_acl active session list.
352 */
353 if (list_empty(&se_nacl->acl_sess_list))
354 se_nacl->nacl_sess = NULL;
355 else {
356 se_nacl->nacl_sess = container_of(
357 se_nacl->acl_sess_list.prev,
358 struct se_session, sess_acl_list);
359 }
360 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
361 }
362 }
363 EXPORT_SYMBOL(transport_deregister_session_configfs);
364
365 void transport_free_session(struct se_session *se_sess)
366 {
367 kmem_cache_free(se_sess_cache, se_sess);
368 }
369 EXPORT_SYMBOL(transport_free_session);
370
371 void transport_deregister_session(struct se_session *se_sess)
372 {
373 struct se_portal_group *se_tpg = se_sess->se_tpg;
374 struct target_core_fabric_ops *se_tfo;
375 struct se_node_acl *se_nacl;
376 unsigned long flags;
377 bool comp_nacl = true;
378
379 if (!se_tpg) {
380 transport_free_session(se_sess);
381 return;
382 }
383 se_tfo = se_tpg->se_tpg_tfo;
384
385 spin_lock_irqsave(&se_tpg->session_lock, flags);
386 list_del(&se_sess->sess_list);
387 se_sess->se_tpg = NULL;
388 se_sess->fabric_sess_ptr = NULL;
389 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
390
391 /*
392 * Determine if we need to do extra work for this initiator node's
393 * struct se_node_acl if it had been previously dynamically generated.
394 */
395 se_nacl = se_sess->se_node_acl;
396
397 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 if (se_nacl && se_nacl->dynamic_node_acl) {
399 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
400 list_del(&se_nacl->acl_list);
401 se_tpg->num_node_acls--;
402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
403 core_tpg_wait_for_nacl_pr_ref(se_nacl);
404 core_free_device_list_for_node(se_nacl, se_tpg);
405 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
406
407 comp_nacl = false;
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 }
410 }
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412
413 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
414 se_tpg->se_tpg_tfo->get_fabric_name());
415 /*
416 * If last kref is dropping now for an explict NodeACL, awake sleeping
417 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
418 * removal context.
419 */
420 if (se_nacl && comp_nacl == true)
421 target_put_nacl(se_nacl);
422
423 transport_free_session(se_sess);
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428 * Called with cmd->t_state_lock held.
429 */
430 static void target_remove_from_state_list(struct se_cmd *cmd)
431 {
432 struct se_device *dev = cmd->se_dev;
433 unsigned long flags;
434
435 if (!dev)
436 return;
437
438 if (cmd->transport_state & CMD_T_BUSY)
439 return;
440
441 spin_lock_irqsave(&dev->execute_task_lock, flags);
442 if (cmd->state_active) {
443 list_del(&cmd->state_list);
444 cmd->state_active = false;
445 }
446 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
447 }
448
449 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
450 {
451 unsigned long flags;
452
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
454 /*
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
457 */
458 if (cmd->transport_state & CMD_T_LUN_STOP) {
459 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
460 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
461
462 cmd->transport_state &= ~CMD_T_ACTIVE;
463 if (remove_from_lists)
464 target_remove_from_state_list(cmd);
465 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
466
467 complete(&cmd->transport_lun_stop_comp);
468 return 1;
469 }
470
471 if (remove_from_lists) {
472 target_remove_from_state_list(cmd);
473
474 /*
475 * Clear struct se_cmd->se_lun before the handoff to FE.
476 */
477 cmd->se_lun = NULL;
478 }
479
480 /*
481 * Determine if frontend context caller is requesting the stopping of
482 * this command for frontend exceptions.
483 */
484 if (cmd->transport_state & CMD_T_STOP) {
485 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
486 __func__, __LINE__,
487 cmd->se_tfo->get_task_tag(cmd));
488
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
493 }
494
495 cmd->transport_state &= ~CMD_T_ACTIVE;
496 if (remove_from_lists) {
497 /*
498 * Some fabric modules like tcm_loop can release
499 * their internally allocated I/O reference now and
500 * struct se_cmd now.
501 *
502 * Fabric modules are expected to return '1' here if the
503 * se_cmd being passed is released at this point,
504 * or zero if not being released.
505 */
506 if (cmd->se_tfo->check_stop_free != NULL) {
507 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
508 return cmd->se_tfo->check_stop_free(cmd);
509 }
510 }
511
512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513 return 0;
514 }
515
516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
517 {
518 return transport_cmd_check_stop(cmd, true);
519 }
520
521 static void transport_lun_remove_cmd(struct se_cmd *cmd)
522 {
523 struct se_lun *lun = cmd->se_lun;
524 unsigned long flags;
525
526 if (!lun)
527 return;
528
529 spin_lock_irqsave(&cmd->t_state_lock, flags);
530 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
531 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
532 target_remove_from_state_list(cmd);
533 }
534 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537 if (!list_empty(&cmd->se_lun_node))
538 list_del_init(&cmd->se_lun_node);
539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544 if (transport_cmd_check_stop_to_fabric(cmd))
545 return;
546 if (remove)
547 transport_put_cmd(cmd);
548 }
549
550 static void target_complete_failure_work(struct work_struct *work)
551 {
552 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
553
554 transport_generic_request_failure(cmd,
555 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
556 }
557
558 /*
559 * Used when asking transport to copy Sense Data from the underlying
560 * Linux/SCSI struct scsi_cmnd
561 */
562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
563 {
564 struct se_device *dev = cmd->se_dev;
565
566 WARN_ON(!cmd->se_lun);
567
568 if (!dev)
569 return NULL;
570
571 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
572 return NULL;
573
574 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
575
576 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
577 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
578 return cmd->sense_buffer;
579 }
580
581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
582 {
583 struct se_device *dev = cmd->se_dev;
584 int success = scsi_status == GOOD;
585 unsigned long flags;
586
587 cmd->scsi_status = scsi_status;
588
589
590 spin_lock_irqsave(&cmd->t_state_lock, flags);
591 cmd->transport_state &= ~CMD_T_BUSY;
592
593 if (dev && dev->transport->transport_complete) {
594 dev->transport->transport_complete(cmd,
595 cmd->t_data_sg,
596 transport_get_sense_buffer(cmd));
597 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
598 success = 1;
599 }
600
601 /*
602 * See if we are waiting to complete for an exception condition.
603 */
604 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606 complete(&cmd->task_stop_comp);
607 return;
608 }
609
610 if (!success)
611 cmd->transport_state |= CMD_T_FAILED;
612
613 /*
614 * Check for case where an explict ABORT_TASK has been received
615 * and transport_wait_for_tasks() will be waiting for completion..
616 */
617 if (cmd->transport_state & CMD_T_ABORTED &&
618 cmd->transport_state & CMD_T_STOP) {
619 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
620 complete(&cmd->t_transport_stop_comp);
621 return;
622 } else if (cmd->transport_state & CMD_T_FAILED) {
623 INIT_WORK(&cmd->work, target_complete_failure_work);
624 } else {
625 INIT_WORK(&cmd->work, target_complete_ok_work);
626 }
627
628 cmd->t_state = TRANSPORT_COMPLETE;
629 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631
632 queue_work(target_completion_wq, &cmd->work);
633 }
634 EXPORT_SYMBOL(target_complete_cmd);
635
636 static void target_add_to_state_list(struct se_cmd *cmd)
637 {
638 struct se_device *dev = cmd->se_dev;
639 unsigned long flags;
640
641 spin_lock_irqsave(&dev->execute_task_lock, flags);
642 if (!cmd->state_active) {
643 list_add_tail(&cmd->state_list, &dev->state_list);
644 cmd->state_active = true;
645 }
646 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
647 }
648
649 /*
650 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
651 */
652 static void transport_write_pending_qf(struct se_cmd *cmd);
653 static void transport_complete_qf(struct se_cmd *cmd);
654
655 void target_qf_do_work(struct work_struct *work)
656 {
657 struct se_device *dev = container_of(work, struct se_device,
658 qf_work_queue);
659 LIST_HEAD(qf_cmd_list);
660 struct se_cmd *cmd, *cmd_tmp;
661
662 spin_lock_irq(&dev->qf_cmd_lock);
663 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
664 spin_unlock_irq(&dev->qf_cmd_lock);
665
666 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
667 list_del(&cmd->se_qf_node);
668 atomic_dec(&dev->dev_qf_count);
669 smp_mb__after_atomic_dec();
670
671 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
672 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
673 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
674 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
675 : "UNKNOWN");
676
677 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
678 transport_write_pending_qf(cmd);
679 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
680 transport_complete_qf(cmd);
681 }
682 }
683
684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
685 {
686 switch (cmd->data_direction) {
687 case DMA_NONE:
688 return "NONE";
689 case DMA_FROM_DEVICE:
690 return "READ";
691 case DMA_TO_DEVICE:
692 return "WRITE";
693 case DMA_BIDIRECTIONAL:
694 return "BIDI";
695 default:
696 break;
697 }
698
699 return "UNKNOWN";
700 }
701
702 void transport_dump_dev_state(
703 struct se_device *dev,
704 char *b,
705 int *bl)
706 {
707 *bl += sprintf(b + *bl, "Status: ");
708 if (dev->export_count)
709 *bl += sprintf(b + *bl, "ACTIVATED");
710 else
711 *bl += sprintf(b + *bl, "DEACTIVATED");
712
713 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
714 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
715 dev->dev_attrib.block_size,
716 dev->dev_attrib.hw_max_sectors);
717 *bl += sprintf(b + *bl, " ");
718 }
719
720 void transport_dump_vpd_proto_id(
721 struct t10_vpd *vpd,
722 unsigned char *p_buf,
723 int p_buf_len)
724 {
725 unsigned char buf[VPD_TMP_BUF_SIZE];
726 int len;
727
728 memset(buf, 0, VPD_TMP_BUF_SIZE);
729 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
730
731 switch (vpd->protocol_identifier) {
732 case 0x00:
733 sprintf(buf+len, "Fibre Channel\n");
734 break;
735 case 0x10:
736 sprintf(buf+len, "Parallel SCSI\n");
737 break;
738 case 0x20:
739 sprintf(buf+len, "SSA\n");
740 break;
741 case 0x30:
742 sprintf(buf+len, "IEEE 1394\n");
743 break;
744 case 0x40:
745 sprintf(buf+len, "SCSI Remote Direct Memory Access"
746 " Protocol\n");
747 break;
748 case 0x50:
749 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
750 break;
751 case 0x60:
752 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
753 break;
754 case 0x70:
755 sprintf(buf+len, "Automation/Drive Interface Transport"
756 " Protocol\n");
757 break;
758 case 0x80:
759 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
760 break;
761 default:
762 sprintf(buf+len, "Unknown 0x%02x\n",
763 vpd->protocol_identifier);
764 break;
765 }
766
767 if (p_buf)
768 strncpy(p_buf, buf, p_buf_len);
769 else
770 pr_debug("%s", buf);
771 }
772
773 void
774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
775 {
776 /*
777 * Check if the Protocol Identifier Valid (PIV) bit is set..
778 *
779 * from spc3r23.pdf section 7.5.1
780 */
781 if (page_83[1] & 0x80) {
782 vpd->protocol_identifier = (page_83[0] & 0xf0);
783 vpd->protocol_identifier_set = 1;
784 transport_dump_vpd_proto_id(vpd, NULL, 0);
785 }
786 }
787 EXPORT_SYMBOL(transport_set_vpd_proto_id);
788
789 int transport_dump_vpd_assoc(
790 struct t10_vpd *vpd,
791 unsigned char *p_buf,
792 int p_buf_len)
793 {
794 unsigned char buf[VPD_TMP_BUF_SIZE];
795 int ret = 0;
796 int len;
797
798 memset(buf, 0, VPD_TMP_BUF_SIZE);
799 len = sprintf(buf, "T10 VPD Identifier Association: ");
800
801 switch (vpd->association) {
802 case 0x00:
803 sprintf(buf+len, "addressed logical unit\n");
804 break;
805 case 0x10:
806 sprintf(buf+len, "target port\n");
807 break;
808 case 0x20:
809 sprintf(buf+len, "SCSI target device\n");
810 break;
811 default:
812 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
813 ret = -EINVAL;
814 break;
815 }
816
817 if (p_buf)
818 strncpy(p_buf, buf, p_buf_len);
819 else
820 pr_debug("%s", buf);
821
822 return ret;
823 }
824
825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
826 {
827 /*
828 * The VPD identification association..
829 *
830 * from spc3r23.pdf Section 7.6.3.1 Table 297
831 */
832 vpd->association = (page_83[1] & 0x30);
833 return transport_dump_vpd_assoc(vpd, NULL, 0);
834 }
835 EXPORT_SYMBOL(transport_set_vpd_assoc);
836
837 int transport_dump_vpd_ident_type(
838 struct t10_vpd *vpd,
839 unsigned char *p_buf,
840 int p_buf_len)
841 {
842 unsigned char buf[VPD_TMP_BUF_SIZE];
843 int ret = 0;
844 int len;
845
846 memset(buf, 0, VPD_TMP_BUF_SIZE);
847 len = sprintf(buf, "T10 VPD Identifier Type: ");
848
849 switch (vpd->device_identifier_type) {
850 case 0x00:
851 sprintf(buf+len, "Vendor specific\n");
852 break;
853 case 0x01:
854 sprintf(buf+len, "T10 Vendor ID based\n");
855 break;
856 case 0x02:
857 sprintf(buf+len, "EUI-64 based\n");
858 break;
859 case 0x03:
860 sprintf(buf+len, "NAA\n");
861 break;
862 case 0x04:
863 sprintf(buf+len, "Relative target port identifier\n");
864 break;
865 case 0x08:
866 sprintf(buf+len, "SCSI name string\n");
867 break;
868 default:
869 sprintf(buf+len, "Unsupported: 0x%02x\n",
870 vpd->device_identifier_type);
871 ret = -EINVAL;
872 break;
873 }
874
875 if (p_buf) {
876 if (p_buf_len < strlen(buf)+1)
877 return -EINVAL;
878 strncpy(p_buf, buf, p_buf_len);
879 } else {
880 pr_debug("%s", buf);
881 }
882
883 return ret;
884 }
885
886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
887 {
888 /*
889 * The VPD identifier type..
890 *
891 * from spc3r23.pdf Section 7.6.3.1 Table 298
892 */
893 vpd->device_identifier_type = (page_83[1] & 0x0f);
894 return transport_dump_vpd_ident_type(vpd, NULL, 0);
895 }
896 EXPORT_SYMBOL(transport_set_vpd_ident_type);
897
898 int transport_dump_vpd_ident(
899 struct t10_vpd *vpd,
900 unsigned char *p_buf,
901 int p_buf_len)
902 {
903 unsigned char buf[VPD_TMP_BUF_SIZE];
904 int ret = 0;
905
906 memset(buf, 0, VPD_TMP_BUF_SIZE);
907
908 switch (vpd->device_identifier_code_set) {
909 case 0x01: /* Binary */
910 snprintf(buf, sizeof(buf),
911 "T10 VPD Binary Device Identifier: %s\n",
912 &vpd->device_identifier[0]);
913 break;
914 case 0x02: /* ASCII */
915 snprintf(buf, sizeof(buf),
916 "T10 VPD ASCII Device Identifier: %s\n",
917 &vpd->device_identifier[0]);
918 break;
919 case 0x03: /* UTF-8 */
920 snprintf(buf, sizeof(buf),
921 "T10 VPD UTF-8 Device Identifier: %s\n",
922 &vpd->device_identifier[0]);
923 break;
924 default:
925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
926 " 0x%02x", vpd->device_identifier_code_set);
927 ret = -EINVAL;
928 break;
929 }
930
931 if (p_buf)
932 strncpy(p_buf, buf, p_buf_len);
933 else
934 pr_debug("%s", buf);
935
936 return ret;
937 }
938
939 int
940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
941 {
942 static const char hex_str[] = "0123456789abcdef";
943 int j = 0, i = 4; /* offset to start of the identifier */
944
945 /*
946 * The VPD Code Set (encoding)
947 *
948 * from spc3r23.pdf Section 7.6.3.1 Table 296
949 */
950 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
951 switch (vpd->device_identifier_code_set) {
952 case 0x01: /* Binary */
953 vpd->device_identifier[j++] =
954 hex_str[vpd->device_identifier_type];
955 while (i < (4 + page_83[3])) {
956 vpd->device_identifier[j++] =
957 hex_str[(page_83[i] & 0xf0) >> 4];
958 vpd->device_identifier[j++] =
959 hex_str[page_83[i] & 0x0f];
960 i++;
961 }
962 break;
963 case 0x02: /* ASCII */
964 case 0x03: /* UTF-8 */
965 while (i < (4 + page_83[3]))
966 vpd->device_identifier[j++] = page_83[i++];
967 break;
968 default:
969 break;
970 }
971
972 return transport_dump_vpd_ident(vpd, NULL, 0);
973 }
974 EXPORT_SYMBOL(transport_set_vpd_ident);
975
976 sense_reason_t
977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
978 {
979 struct se_device *dev = cmd->se_dev;
980
981 if (cmd->unknown_data_length) {
982 cmd->data_length = size;
983 } else if (size != cmd->data_length) {
984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
985 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
987 cmd->data_length, size, cmd->t_task_cdb[0]);
988
989 if (cmd->data_direction == DMA_TO_DEVICE) {
990 pr_err("Rejecting underflow/overflow"
991 " WRITE data\n");
992 return TCM_INVALID_CDB_FIELD;
993 }
994 /*
995 * Reject READ_* or WRITE_* with overflow/underflow for
996 * type SCF_SCSI_DATA_CDB.
997 */
998 if (dev->dev_attrib.block_size != 512) {
999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1000 " CDB on non 512-byte sector setup subsystem"
1001 " plugin: %s\n", dev->transport->name);
1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1003 return TCM_INVALID_CDB_FIELD;
1004 }
1005 /*
1006 * For the overflow case keep the existing fabric provided
1007 * ->data_length. Otherwise for the underflow case, reset
1008 * ->data_length to the smaller SCSI expected data transfer
1009 * length.
1010 */
1011 if (size > cmd->data_length) {
1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1013 cmd->residual_count = (size - cmd->data_length);
1014 } else {
1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1016 cmd->residual_count = (cmd->data_length - size);
1017 cmd->data_length = size;
1018 }
1019 }
1020
1021 return 0;
1022
1023 }
1024
1025 /*
1026 * Used by fabric modules containing a local struct se_cmd within their
1027 * fabric dependent per I/O descriptor.
1028 */
1029 void transport_init_se_cmd(
1030 struct se_cmd *cmd,
1031 struct target_core_fabric_ops *tfo,
1032 struct se_session *se_sess,
1033 u32 data_length,
1034 int data_direction,
1035 int task_attr,
1036 unsigned char *sense_buffer)
1037 {
1038 INIT_LIST_HEAD(&cmd->se_lun_node);
1039 INIT_LIST_HEAD(&cmd->se_delayed_node);
1040 INIT_LIST_HEAD(&cmd->se_qf_node);
1041 INIT_LIST_HEAD(&cmd->se_cmd_list);
1042 INIT_LIST_HEAD(&cmd->state_list);
1043 init_completion(&cmd->transport_lun_fe_stop_comp);
1044 init_completion(&cmd->transport_lun_stop_comp);
1045 init_completion(&cmd->t_transport_stop_comp);
1046 init_completion(&cmd->cmd_wait_comp);
1047 init_completion(&cmd->task_stop_comp);
1048 spin_lock_init(&cmd->t_state_lock);
1049 cmd->transport_state = CMD_T_DEV_ACTIVE;
1050
1051 cmd->se_tfo = tfo;
1052 cmd->se_sess = se_sess;
1053 cmd->data_length = data_length;
1054 cmd->data_direction = data_direction;
1055 cmd->sam_task_attr = task_attr;
1056 cmd->sense_buffer = sense_buffer;
1057
1058 cmd->state_active = false;
1059 }
1060 EXPORT_SYMBOL(transport_init_se_cmd);
1061
1062 static sense_reason_t
1063 transport_check_alloc_task_attr(struct se_cmd *cmd)
1064 {
1065 struct se_device *dev = cmd->se_dev;
1066
1067 /*
1068 * Check if SAM Task Attribute emulation is enabled for this
1069 * struct se_device storage object
1070 */
1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1072 return 0;
1073
1074 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1075 pr_debug("SAM Task Attribute ACA"
1076 " emulation is not supported\n");
1077 return TCM_INVALID_CDB_FIELD;
1078 }
1079 /*
1080 * Used to determine when ORDERED commands should go from
1081 * Dormant to Active status.
1082 */
1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1084 smp_mb__after_atomic_inc();
1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1086 cmd->se_ordered_id, cmd->sam_task_attr,
1087 dev->transport->name);
1088 return 0;
1089 }
1090
1091 sense_reason_t
1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1093 {
1094 struct se_device *dev = cmd->se_dev;
1095 unsigned long flags;
1096 sense_reason_t ret;
1097
1098 /*
1099 * Ensure that the received CDB is less than the max (252 + 8) bytes
1100 * for VARIABLE_LENGTH_CMD
1101 */
1102 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1103 pr_err("Received SCSI CDB with command_size: %d that"
1104 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1105 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1106 return TCM_INVALID_CDB_FIELD;
1107 }
1108 /*
1109 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1110 * allocate the additional extended CDB buffer now.. Otherwise
1111 * setup the pointer from __t_task_cdb to t_task_cdb.
1112 */
1113 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1114 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1115 GFP_KERNEL);
1116 if (!cmd->t_task_cdb) {
1117 pr_err("Unable to allocate cmd->t_task_cdb"
1118 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1119 scsi_command_size(cdb),
1120 (unsigned long)sizeof(cmd->__t_task_cdb));
1121 return TCM_OUT_OF_RESOURCES;
1122 }
1123 } else
1124 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1125 /*
1126 * Copy the original CDB into cmd->
1127 */
1128 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1129
1130 /*
1131 * Check for an existing UNIT ATTENTION condition
1132 */
1133 ret = target_scsi3_ua_check(cmd);
1134 if (ret)
1135 return ret;
1136
1137 ret = target_alua_state_check(cmd);
1138 if (ret)
1139 return ret;
1140
1141 ret = target_check_reservation(cmd);
1142 if (ret)
1143 return ret;
1144
1145 ret = dev->transport->parse_cdb(cmd);
1146 if (ret)
1147 return ret;
1148
1149 ret = transport_check_alloc_task_attr(cmd);
1150 if (ret)
1151 return ret;
1152
1153 spin_lock_irqsave(&cmd->t_state_lock, flags);
1154 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1156
1157 spin_lock(&cmd->se_lun->lun_sep_lock);
1158 if (cmd->se_lun->lun_sep)
1159 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1160 spin_unlock(&cmd->se_lun->lun_sep_lock);
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1164
1165 /*
1166 * Used by fabric module frontends to queue tasks directly.
1167 * Many only be used from process context only
1168 */
1169 int transport_handle_cdb_direct(
1170 struct se_cmd *cmd)
1171 {
1172 sense_reason_t ret;
1173
1174 if (!cmd->se_lun) {
1175 dump_stack();
1176 pr_err("cmd->se_lun is NULL\n");
1177 return -EINVAL;
1178 }
1179 if (in_interrupt()) {
1180 dump_stack();
1181 pr_err("transport_generic_handle_cdb cannot be called"
1182 " from interrupt context\n");
1183 return -EINVAL;
1184 }
1185 /*
1186 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1187 * outstanding descriptors are handled correctly during shutdown via
1188 * transport_wait_for_tasks()
1189 *
1190 * Also, we don't take cmd->t_state_lock here as we only expect
1191 * this to be called for initial descriptor submission.
1192 */
1193 cmd->t_state = TRANSPORT_NEW_CMD;
1194 cmd->transport_state |= CMD_T_ACTIVE;
1195
1196 /*
1197 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1198 * so follow TRANSPORT_NEW_CMD processing thread context usage
1199 * and call transport_generic_request_failure() if necessary..
1200 */
1201 ret = transport_generic_new_cmd(cmd);
1202 if (ret)
1203 transport_generic_request_failure(cmd, ret);
1204 return 0;
1205 }
1206 EXPORT_SYMBOL(transport_handle_cdb_direct);
1207
1208 static sense_reason_t
1209 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1210 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1211 {
1212 if (!sgl || !sgl_count)
1213 return 0;
1214
1215 /*
1216 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1217 * scatterlists already have been set to follow what the fabric
1218 * passes for the original expected data transfer length.
1219 */
1220 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1221 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1222 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1223 return TCM_INVALID_CDB_FIELD;
1224 }
1225
1226 cmd->t_data_sg = sgl;
1227 cmd->t_data_nents = sgl_count;
1228
1229 if (sgl_bidi && sgl_bidi_count) {
1230 cmd->t_bidi_data_sg = sgl_bidi;
1231 cmd->t_bidi_data_nents = sgl_bidi_count;
1232 }
1233 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1234 return 0;
1235 }
1236
1237 /*
1238 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1239 * se_cmd + use pre-allocated SGL memory.
1240 *
1241 * @se_cmd: command descriptor to submit
1242 * @se_sess: associated se_sess for endpoint
1243 * @cdb: pointer to SCSI CDB
1244 * @sense: pointer to SCSI sense buffer
1245 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1246 * @data_length: fabric expected data transfer length
1247 * @task_addr: SAM task attribute
1248 * @data_dir: DMA data direction
1249 * @flags: flags for command submission from target_sc_flags_tables
1250 * @sgl: struct scatterlist memory for unidirectional mapping
1251 * @sgl_count: scatterlist count for unidirectional mapping
1252 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1253 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1254 *
1255 * Returns non zero to signal active I/O shutdown failure. All other
1256 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1257 * but still return zero here.
1258 *
1259 * This may only be called from process context, and also currently
1260 * assumes internal allocation of fabric payload buffer by target-core.
1261 */
1262 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1263 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1264 u32 data_length, int task_attr, int data_dir, int flags,
1265 struct scatterlist *sgl, u32 sgl_count,
1266 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1267 {
1268 struct se_portal_group *se_tpg;
1269 sense_reason_t rc;
1270 int ret;
1271
1272 se_tpg = se_sess->se_tpg;
1273 BUG_ON(!se_tpg);
1274 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1275 BUG_ON(in_interrupt());
1276 /*
1277 * Initialize se_cmd for target operation. From this point
1278 * exceptions are handled by sending exception status via
1279 * target_core_fabric_ops->queue_status() callback
1280 */
1281 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1282 data_length, data_dir, task_attr, sense);
1283 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1284 se_cmd->unknown_data_length = 1;
1285 /*
1286 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1287 * se_sess->sess_cmd_list. A second kref_get here is necessary
1288 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1289 * kref_put() to happen during fabric packet acknowledgement.
1290 */
1291 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1292 if (ret)
1293 return ret;
1294 /*
1295 * Signal bidirectional data payloads to target-core
1296 */
1297 if (flags & TARGET_SCF_BIDI_OP)
1298 se_cmd->se_cmd_flags |= SCF_BIDI;
1299 /*
1300 * Locate se_lun pointer and attach it to struct se_cmd
1301 */
1302 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1303 if (rc) {
1304 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1305 target_put_sess_cmd(se_sess, se_cmd);
1306 return 0;
1307 }
1308
1309 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1310 if (rc != 0) {
1311 transport_generic_request_failure(se_cmd, rc);
1312 return 0;
1313 }
1314 /*
1315 * When a non zero sgl_count has been passed perform SGL passthrough
1316 * mapping for pre-allocated fabric memory instead of having target
1317 * core perform an internal SGL allocation..
1318 */
1319 if (sgl_count != 0) {
1320 BUG_ON(!sgl);
1321
1322 /*
1323 * A work-around for tcm_loop as some userspace code via
1324 * scsi-generic do not memset their associated read buffers,
1325 * so go ahead and do that here for type non-data CDBs. Also
1326 * note that this is currently guaranteed to be a single SGL
1327 * for this case by target core in target_setup_cmd_from_cdb()
1328 * -> transport_generic_cmd_sequencer().
1329 */
1330 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1331 se_cmd->data_direction == DMA_FROM_DEVICE) {
1332 unsigned char *buf = NULL;
1333
1334 if (sgl)
1335 buf = kmap(sg_page(sgl)) + sgl->offset;
1336
1337 if (buf) {
1338 memset(buf, 0, sgl->length);
1339 kunmap(sg_page(sgl));
1340 }
1341 }
1342
1343 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1344 sgl_bidi, sgl_bidi_count);
1345 if (rc != 0) {
1346 transport_generic_request_failure(se_cmd, rc);
1347 return 0;
1348 }
1349 }
1350 /*
1351 * Check if we need to delay processing because of ALUA
1352 * Active/NonOptimized primary access state..
1353 */
1354 core_alua_check_nonop_delay(se_cmd);
1355
1356 transport_handle_cdb_direct(se_cmd);
1357 return 0;
1358 }
1359 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1360
1361 /*
1362 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1363 *
1364 * @se_cmd: command descriptor to submit
1365 * @se_sess: associated se_sess for endpoint
1366 * @cdb: pointer to SCSI CDB
1367 * @sense: pointer to SCSI sense buffer
1368 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1369 * @data_length: fabric expected data transfer length
1370 * @task_addr: SAM task attribute
1371 * @data_dir: DMA data direction
1372 * @flags: flags for command submission from target_sc_flags_tables
1373 *
1374 * Returns non zero to signal active I/O shutdown failure. All other
1375 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1376 * but still return zero here.
1377 *
1378 * This may only be called from process context, and also currently
1379 * assumes internal allocation of fabric payload buffer by target-core.
1380 *
1381 * It also assumes interal target core SGL memory allocation.
1382 */
1383 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1384 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1385 u32 data_length, int task_attr, int data_dir, int flags)
1386 {
1387 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1388 unpacked_lun, data_length, task_attr, data_dir,
1389 flags, NULL, 0, NULL, 0);
1390 }
1391 EXPORT_SYMBOL(target_submit_cmd);
1392
1393 static void target_complete_tmr_failure(struct work_struct *work)
1394 {
1395 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1396
1397 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1398 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1399
1400 transport_cmd_check_stop_to_fabric(se_cmd);
1401 }
1402
1403 /**
1404 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1405 * for TMR CDBs
1406 *
1407 * @se_cmd: command descriptor to submit
1408 * @se_sess: associated se_sess for endpoint
1409 * @sense: pointer to SCSI sense buffer
1410 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1411 * @fabric_context: fabric context for TMR req
1412 * @tm_type: Type of TM request
1413 * @gfp: gfp type for caller
1414 * @tag: referenced task tag for TMR_ABORT_TASK
1415 * @flags: submit cmd flags
1416 *
1417 * Callable from all contexts.
1418 **/
1419
1420 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1421 unsigned char *sense, u32 unpacked_lun,
1422 void *fabric_tmr_ptr, unsigned char tm_type,
1423 gfp_t gfp, unsigned int tag, int flags)
1424 {
1425 struct se_portal_group *se_tpg;
1426 int ret;
1427
1428 se_tpg = se_sess->se_tpg;
1429 BUG_ON(!se_tpg);
1430
1431 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1432 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1433 /*
1434 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1435 * allocation failure.
1436 */
1437 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1438 if (ret < 0)
1439 return -ENOMEM;
1440
1441 if (tm_type == TMR_ABORT_TASK)
1442 se_cmd->se_tmr_req->ref_task_tag = tag;
1443
1444 /* See target_submit_cmd for commentary */
1445 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1446 if (ret) {
1447 core_tmr_release_req(se_cmd->se_tmr_req);
1448 return ret;
1449 }
1450
1451 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1452 if (ret) {
1453 /*
1454 * For callback during failure handling, push this work off
1455 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1456 */
1457 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1458 schedule_work(&se_cmd->work);
1459 return 0;
1460 }
1461 transport_generic_handle_tmr(se_cmd);
1462 return 0;
1463 }
1464 EXPORT_SYMBOL(target_submit_tmr);
1465
1466 /*
1467 * If the cmd is active, request it to be stopped and sleep until it
1468 * has completed.
1469 */
1470 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1471 {
1472 bool was_active = false;
1473
1474 if (cmd->transport_state & CMD_T_BUSY) {
1475 cmd->transport_state |= CMD_T_REQUEST_STOP;
1476 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1477
1478 pr_debug("cmd %p waiting to complete\n", cmd);
1479 wait_for_completion(&cmd->task_stop_comp);
1480 pr_debug("cmd %p stopped successfully\n", cmd);
1481
1482 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1483 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1484 cmd->transport_state &= ~CMD_T_BUSY;
1485 was_active = true;
1486 }
1487
1488 return was_active;
1489 }
1490
1491 /*
1492 * Handle SAM-esque emulation for generic transport request failures.
1493 */
1494 void transport_generic_request_failure(struct se_cmd *cmd,
1495 sense_reason_t sense_reason)
1496 {
1497 int ret = 0;
1498
1499 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1500 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1501 cmd->t_task_cdb[0]);
1502 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1503 cmd->se_tfo->get_cmd_state(cmd),
1504 cmd->t_state, sense_reason);
1505 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1506 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1507 (cmd->transport_state & CMD_T_STOP) != 0,
1508 (cmd->transport_state & CMD_T_SENT) != 0);
1509
1510 /*
1511 * For SAM Task Attribute emulation for failed struct se_cmd
1512 */
1513 transport_complete_task_attr(cmd);
1514
1515 switch (sense_reason) {
1516 case TCM_NON_EXISTENT_LUN:
1517 case TCM_UNSUPPORTED_SCSI_OPCODE:
1518 case TCM_INVALID_CDB_FIELD:
1519 case TCM_INVALID_PARAMETER_LIST:
1520 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1521 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1522 case TCM_UNKNOWN_MODE_PAGE:
1523 case TCM_WRITE_PROTECTED:
1524 case TCM_ADDRESS_OUT_OF_RANGE:
1525 case TCM_CHECK_CONDITION_ABORT_CMD:
1526 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1527 case TCM_CHECK_CONDITION_NOT_READY:
1528 break;
1529 case TCM_OUT_OF_RESOURCES:
1530 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1531 break;
1532 case TCM_RESERVATION_CONFLICT:
1533 /*
1534 * No SENSE Data payload for this case, set SCSI Status
1535 * and queue the response to $FABRIC_MOD.
1536 *
1537 * Uses linux/include/scsi/scsi.h SAM status codes defs
1538 */
1539 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1540 /*
1541 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1542 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1543 * CONFLICT STATUS.
1544 *
1545 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1546 */
1547 if (cmd->se_sess &&
1548 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1549 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1550 cmd->orig_fe_lun, 0x2C,
1551 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1552
1553 ret = cmd->se_tfo->queue_status(cmd);
1554 if (ret == -EAGAIN || ret == -ENOMEM)
1555 goto queue_full;
1556 goto check_stop;
1557 default:
1558 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1559 cmd->t_task_cdb[0], sense_reason);
1560 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1561 break;
1562 }
1563
1564 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1565 if (ret == -EAGAIN || ret == -ENOMEM)
1566 goto queue_full;
1567
1568 check_stop:
1569 transport_lun_remove_cmd(cmd);
1570 if (!transport_cmd_check_stop_to_fabric(cmd))
1571 ;
1572 return;
1573
1574 queue_full:
1575 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1576 transport_handle_queue_full(cmd, cmd->se_dev);
1577 }
1578 EXPORT_SYMBOL(transport_generic_request_failure);
1579
1580 static void __target_execute_cmd(struct se_cmd *cmd)
1581 {
1582 sense_reason_t ret;
1583
1584 spin_lock_irq(&cmd->t_state_lock);
1585 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1586 spin_unlock_irq(&cmd->t_state_lock);
1587
1588 if (cmd->execute_cmd) {
1589 ret = cmd->execute_cmd(cmd);
1590 if (ret) {
1591 spin_lock_irq(&cmd->t_state_lock);
1592 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1593 spin_unlock_irq(&cmd->t_state_lock);
1594
1595 transport_generic_request_failure(cmd, ret);
1596 }
1597 }
1598 }
1599
1600 static bool target_handle_task_attr(struct se_cmd *cmd)
1601 {
1602 struct se_device *dev = cmd->se_dev;
1603
1604 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1605 return false;
1606
1607 /*
1608 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1609 * to allow the passed struct se_cmd list of tasks to the front of the list.
1610 */
1611 switch (cmd->sam_task_attr) {
1612 case MSG_HEAD_TAG:
1613 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1614 "se_ordered_id: %u\n",
1615 cmd->t_task_cdb[0], cmd->se_ordered_id);
1616 return false;
1617 case MSG_ORDERED_TAG:
1618 atomic_inc(&dev->dev_ordered_sync);
1619 smp_mb__after_atomic_inc();
1620
1621 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1622 " se_ordered_id: %u\n",
1623 cmd->t_task_cdb[0], cmd->se_ordered_id);
1624
1625 /*
1626 * Execute an ORDERED command if no other older commands
1627 * exist that need to be completed first.
1628 */
1629 if (!atomic_read(&dev->simple_cmds))
1630 return false;
1631 break;
1632 default:
1633 /*
1634 * For SIMPLE and UNTAGGED Task Attribute commands
1635 */
1636 atomic_inc(&dev->simple_cmds);
1637 smp_mb__after_atomic_inc();
1638 break;
1639 }
1640
1641 if (atomic_read(&dev->dev_ordered_sync) == 0)
1642 return false;
1643
1644 spin_lock(&dev->delayed_cmd_lock);
1645 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1646 spin_unlock(&dev->delayed_cmd_lock);
1647
1648 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1649 " delayed CMD list, se_ordered_id: %u\n",
1650 cmd->t_task_cdb[0], cmd->sam_task_attr,
1651 cmd->se_ordered_id);
1652 return true;
1653 }
1654
1655 void target_execute_cmd(struct se_cmd *cmd)
1656 {
1657 /*
1658 * If the received CDB has aleady been aborted stop processing it here.
1659 */
1660 if (transport_check_aborted_status(cmd, 1)) {
1661 complete(&cmd->transport_lun_stop_comp);
1662 return;
1663 }
1664
1665 /*
1666 * Determine if IOCTL context caller in requesting the stopping of this
1667 * command for LUN shutdown purposes.
1668 */
1669 spin_lock_irq(&cmd->t_state_lock);
1670 if (cmd->transport_state & CMD_T_LUN_STOP) {
1671 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1672 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1673
1674 cmd->transport_state &= ~CMD_T_ACTIVE;
1675 spin_unlock_irq(&cmd->t_state_lock);
1676 complete(&cmd->transport_lun_stop_comp);
1677 return;
1678 }
1679 /*
1680 * Determine if frontend context caller is requesting the stopping of
1681 * this command for frontend exceptions.
1682 */
1683 if (cmd->transport_state & CMD_T_STOP) {
1684 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1685 __func__, __LINE__,
1686 cmd->se_tfo->get_task_tag(cmd));
1687
1688 spin_unlock_irq(&cmd->t_state_lock);
1689 complete(&cmd->t_transport_stop_comp);
1690 return;
1691 }
1692
1693 cmd->t_state = TRANSPORT_PROCESSING;
1694 cmd->transport_state |= CMD_T_ACTIVE;
1695 spin_unlock_irq(&cmd->t_state_lock);
1696
1697 if (!target_handle_task_attr(cmd))
1698 __target_execute_cmd(cmd);
1699 }
1700 EXPORT_SYMBOL(target_execute_cmd);
1701
1702 /*
1703 * Process all commands up to the last received ORDERED task attribute which
1704 * requires another blocking boundary
1705 */
1706 static void target_restart_delayed_cmds(struct se_device *dev)
1707 {
1708 for (;;) {
1709 struct se_cmd *cmd;
1710
1711 spin_lock(&dev->delayed_cmd_lock);
1712 if (list_empty(&dev->delayed_cmd_list)) {
1713 spin_unlock(&dev->delayed_cmd_lock);
1714 break;
1715 }
1716
1717 cmd = list_entry(dev->delayed_cmd_list.next,
1718 struct se_cmd, se_delayed_node);
1719 list_del(&cmd->se_delayed_node);
1720 spin_unlock(&dev->delayed_cmd_lock);
1721
1722 __target_execute_cmd(cmd);
1723
1724 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1725 break;
1726 }
1727 }
1728
1729 /*
1730 * Called from I/O completion to determine which dormant/delayed
1731 * and ordered cmds need to have their tasks added to the execution queue.
1732 */
1733 static void transport_complete_task_attr(struct se_cmd *cmd)
1734 {
1735 struct se_device *dev = cmd->se_dev;
1736
1737 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1738 return;
1739
1740 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1741 atomic_dec(&dev->simple_cmds);
1742 smp_mb__after_atomic_dec();
1743 dev->dev_cur_ordered_id++;
1744 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1745 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1746 cmd->se_ordered_id);
1747 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1748 dev->dev_cur_ordered_id++;
1749 pr_debug("Incremented dev_cur_ordered_id: %u for"
1750 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1751 cmd->se_ordered_id);
1752 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1753 atomic_dec(&dev->dev_ordered_sync);
1754 smp_mb__after_atomic_dec();
1755
1756 dev->dev_cur_ordered_id++;
1757 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1758 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1759 }
1760
1761 target_restart_delayed_cmds(dev);
1762 }
1763
1764 static void transport_complete_qf(struct se_cmd *cmd)
1765 {
1766 int ret = 0;
1767
1768 transport_complete_task_attr(cmd);
1769
1770 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1771 ret = cmd->se_tfo->queue_status(cmd);
1772 if (ret)
1773 goto out;
1774 }
1775
1776 switch (cmd->data_direction) {
1777 case DMA_FROM_DEVICE:
1778 ret = cmd->se_tfo->queue_data_in(cmd);
1779 break;
1780 case DMA_TO_DEVICE:
1781 if (cmd->t_bidi_data_sg) {
1782 ret = cmd->se_tfo->queue_data_in(cmd);
1783 if (ret < 0)
1784 break;
1785 }
1786 /* Fall through for DMA_TO_DEVICE */
1787 case DMA_NONE:
1788 ret = cmd->se_tfo->queue_status(cmd);
1789 break;
1790 default:
1791 break;
1792 }
1793
1794 out:
1795 if (ret < 0) {
1796 transport_handle_queue_full(cmd, cmd->se_dev);
1797 return;
1798 }
1799 transport_lun_remove_cmd(cmd);
1800 transport_cmd_check_stop_to_fabric(cmd);
1801 }
1802
1803 static void transport_handle_queue_full(
1804 struct se_cmd *cmd,
1805 struct se_device *dev)
1806 {
1807 spin_lock_irq(&dev->qf_cmd_lock);
1808 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1809 atomic_inc(&dev->dev_qf_count);
1810 smp_mb__after_atomic_inc();
1811 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1812
1813 schedule_work(&cmd->se_dev->qf_work_queue);
1814 }
1815
1816 static void target_complete_ok_work(struct work_struct *work)
1817 {
1818 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1819 int ret;
1820
1821 /*
1822 * Check if we need to move delayed/dormant tasks from cmds on the
1823 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1824 * Attribute.
1825 */
1826 transport_complete_task_attr(cmd);
1827
1828 /*
1829 * Check to schedule QUEUE_FULL work, or execute an existing
1830 * cmd->transport_qf_callback()
1831 */
1832 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1833 schedule_work(&cmd->se_dev->qf_work_queue);
1834
1835 /*
1836 * Check if we need to send a sense buffer from
1837 * the struct se_cmd in question.
1838 */
1839 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1840 WARN_ON(!cmd->scsi_status);
1841 ret = transport_send_check_condition_and_sense(
1842 cmd, 0, 1);
1843 if (ret == -EAGAIN || ret == -ENOMEM)
1844 goto queue_full;
1845
1846 transport_lun_remove_cmd(cmd);
1847 transport_cmd_check_stop_to_fabric(cmd);
1848 return;
1849 }
1850 /*
1851 * Check for a callback, used by amongst other things
1852 * XDWRITE_READ_10 emulation.
1853 */
1854 if (cmd->transport_complete_callback)
1855 cmd->transport_complete_callback(cmd);
1856
1857 switch (cmd->data_direction) {
1858 case DMA_FROM_DEVICE:
1859 spin_lock(&cmd->se_lun->lun_sep_lock);
1860 if (cmd->se_lun->lun_sep) {
1861 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1862 cmd->data_length;
1863 }
1864 spin_unlock(&cmd->se_lun->lun_sep_lock);
1865
1866 ret = cmd->se_tfo->queue_data_in(cmd);
1867 if (ret == -EAGAIN || ret == -ENOMEM)
1868 goto queue_full;
1869 break;
1870 case DMA_TO_DEVICE:
1871 spin_lock(&cmd->se_lun->lun_sep_lock);
1872 if (cmd->se_lun->lun_sep) {
1873 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1874 cmd->data_length;
1875 }
1876 spin_unlock(&cmd->se_lun->lun_sep_lock);
1877 /*
1878 * Check if we need to send READ payload for BIDI-COMMAND
1879 */
1880 if (cmd->t_bidi_data_sg) {
1881 spin_lock(&cmd->se_lun->lun_sep_lock);
1882 if (cmd->se_lun->lun_sep) {
1883 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1884 cmd->data_length;
1885 }
1886 spin_unlock(&cmd->se_lun->lun_sep_lock);
1887 ret = cmd->se_tfo->queue_data_in(cmd);
1888 if (ret == -EAGAIN || ret == -ENOMEM)
1889 goto queue_full;
1890 break;
1891 }
1892 /* Fall through for DMA_TO_DEVICE */
1893 case DMA_NONE:
1894 ret = cmd->se_tfo->queue_status(cmd);
1895 if (ret == -EAGAIN || ret == -ENOMEM)
1896 goto queue_full;
1897 break;
1898 default:
1899 break;
1900 }
1901
1902 transport_lun_remove_cmd(cmd);
1903 transport_cmd_check_stop_to_fabric(cmd);
1904 return;
1905
1906 queue_full:
1907 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1908 " data_direction: %d\n", cmd, cmd->data_direction);
1909 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1910 transport_handle_queue_full(cmd, cmd->se_dev);
1911 }
1912
1913 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1914 {
1915 struct scatterlist *sg;
1916 int count;
1917
1918 for_each_sg(sgl, sg, nents, count)
1919 __free_page(sg_page(sg));
1920
1921 kfree(sgl);
1922 }
1923
1924 static inline void transport_free_pages(struct se_cmd *cmd)
1925 {
1926 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
1927 return;
1928
1929 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1930 cmd->t_data_sg = NULL;
1931 cmd->t_data_nents = 0;
1932
1933 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1934 cmd->t_bidi_data_sg = NULL;
1935 cmd->t_bidi_data_nents = 0;
1936 }
1937
1938 /**
1939 * transport_release_cmd - free a command
1940 * @cmd: command to free
1941 *
1942 * This routine unconditionally frees a command, and reference counting
1943 * or list removal must be done in the caller.
1944 */
1945 static void transport_release_cmd(struct se_cmd *cmd)
1946 {
1947 BUG_ON(!cmd->se_tfo);
1948
1949 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1950 core_tmr_release_req(cmd->se_tmr_req);
1951 if (cmd->t_task_cdb != cmd->__t_task_cdb)
1952 kfree(cmd->t_task_cdb);
1953 /*
1954 * If this cmd has been setup with target_get_sess_cmd(), drop
1955 * the kref and call ->release_cmd() in kref callback.
1956 */
1957 if (cmd->check_release != 0) {
1958 target_put_sess_cmd(cmd->se_sess, cmd);
1959 return;
1960 }
1961 cmd->se_tfo->release_cmd(cmd);
1962 }
1963
1964 /**
1965 * transport_put_cmd - release a reference to a command
1966 * @cmd: command to release
1967 *
1968 * This routine releases our reference to the command and frees it if possible.
1969 */
1970 static void transport_put_cmd(struct se_cmd *cmd)
1971 {
1972 unsigned long flags;
1973
1974 spin_lock_irqsave(&cmd->t_state_lock, flags);
1975 if (atomic_read(&cmd->t_fe_count) &&
1976 !atomic_dec_and_test(&cmd->t_fe_count)) {
1977 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1978 return;
1979 }
1980
1981 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
1982 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
1983 target_remove_from_state_list(cmd);
1984 }
1985 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1986
1987 transport_free_pages(cmd);
1988 transport_release_cmd(cmd);
1989 return;
1990 }
1991
1992 void *transport_kmap_data_sg(struct se_cmd *cmd)
1993 {
1994 struct scatterlist *sg = cmd->t_data_sg;
1995 struct page **pages;
1996 int i;
1997
1998 /*
1999 * We need to take into account a possible offset here for fabrics like
2000 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2001 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2002 */
2003 if (!cmd->t_data_nents)
2004 return NULL;
2005
2006 BUG_ON(!sg);
2007 if (cmd->t_data_nents == 1)
2008 return kmap(sg_page(sg)) + sg->offset;
2009
2010 /* >1 page. use vmap */
2011 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2012 if (!pages)
2013 return NULL;
2014
2015 /* convert sg[] to pages[] */
2016 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2017 pages[i] = sg_page(sg);
2018 }
2019
2020 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2021 kfree(pages);
2022 if (!cmd->t_data_vmap)
2023 return NULL;
2024
2025 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2026 }
2027 EXPORT_SYMBOL(transport_kmap_data_sg);
2028
2029 void transport_kunmap_data_sg(struct se_cmd *cmd)
2030 {
2031 if (!cmd->t_data_nents) {
2032 return;
2033 } else if (cmd->t_data_nents == 1) {
2034 kunmap(sg_page(cmd->t_data_sg));
2035 return;
2036 }
2037
2038 vunmap(cmd->t_data_vmap);
2039 cmd->t_data_vmap = NULL;
2040 }
2041 EXPORT_SYMBOL(transport_kunmap_data_sg);
2042
2043 static int
2044 transport_generic_get_mem(struct se_cmd *cmd)
2045 {
2046 u32 length = cmd->data_length;
2047 unsigned int nents;
2048 struct page *page;
2049 gfp_t zero_flag;
2050 int i = 0;
2051
2052 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2053 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2054 if (!cmd->t_data_sg)
2055 return -ENOMEM;
2056
2057 cmd->t_data_nents = nents;
2058 sg_init_table(cmd->t_data_sg, nents);
2059
2060 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2061
2062 while (length) {
2063 u32 page_len = min_t(u32, length, PAGE_SIZE);
2064 page = alloc_page(GFP_KERNEL | zero_flag);
2065 if (!page)
2066 goto out;
2067
2068 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2069 length -= page_len;
2070 i++;
2071 }
2072 return 0;
2073
2074 out:
2075 while (i > 0) {
2076 i--;
2077 __free_page(sg_page(&cmd->t_data_sg[i]));
2078 }
2079 kfree(cmd->t_data_sg);
2080 cmd->t_data_sg = NULL;
2081 return -ENOMEM;
2082 }
2083
2084 /*
2085 * Allocate any required resources to execute the command. For writes we
2086 * might not have the payload yet, so notify the fabric via a call to
2087 * ->write_pending instead. Otherwise place it on the execution queue.
2088 */
2089 sense_reason_t
2090 transport_generic_new_cmd(struct se_cmd *cmd)
2091 {
2092 int ret = 0;
2093
2094 /*
2095 * Determine is the TCM fabric module has already allocated physical
2096 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2097 * beforehand.
2098 */
2099 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2100 cmd->data_length) {
2101 ret = transport_generic_get_mem(cmd);
2102 if (ret < 0)
2103 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2104 }
2105
2106 atomic_inc(&cmd->t_fe_count);
2107
2108 /*
2109 * If this command is not a write we can execute it right here,
2110 * for write buffers we need to notify the fabric driver first
2111 * and let it call back once the write buffers are ready.
2112 */
2113 target_add_to_state_list(cmd);
2114 if (cmd->data_direction != DMA_TO_DEVICE) {
2115 target_execute_cmd(cmd);
2116 return 0;
2117 }
2118
2119 spin_lock_irq(&cmd->t_state_lock);
2120 cmd->t_state = TRANSPORT_WRITE_PENDING;
2121 spin_unlock_irq(&cmd->t_state_lock);
2122
2123 transport_cmd_check_stop(cmd, false);
2124
2125 ret = cmd->se_tfo->write_pending(cmd);
2126 if (ret == -EAGAIN || ret == -ENOMEM)
2127 goto queue_full;
2128
2129 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2130 WARN_ON(ret);
2131
2132 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2133
2134 queue_full:
2135 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2136 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2137 transport_handle_queue_full(cmd, cmd->se_dev);
2138 return 0;
2139 }
2140 EXPORT_SYMBOL(transport_generic_new_cmd);
2141
2142 static void transport_write_pending_qf(struct se_cmd *cmd)
2143 {
2144 int ret;
2145
2146 ret = cmd->se_tfo->write_pending(cmd);
2147 if (ret == -EAGAIN || ret == -ENOMEM) {
2148 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2149 cmd);
2150 transport_handle_queue_full(cmd, cmd->se_dev);
2151 }
2152 }
2153
2154 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2155 {
2156 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2157 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2158 transport_wait_for_tasks(cmd);
2159
2160 transport_release_cmd(cmd);
2161 } else {
2162 if (wait_for_tasks)
2163 transport_wait_for_tasks(cmd);
2164
2165 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2166
2167 if (cmd->se_lun)
2168 transport_lun_remove_cmd(cmd);
2169
2170 transport_put_cmd(cmd);
2171 }
2172 }
2173 EXPORT_SYMBOL(transport_generic_free_cmd);
2174
2175 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2176 * @se_sess: session to reference
2177 * @se_cmd: command descriptor to add
2178 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2179 */
2180 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2181 bool ack_kref)
2182 {
2183 unsigned long flags;
2184 int ret = 0;
2185
2186 kref_init(&se_cmd->cmd_kref);
2187 /*
2188 * Add a second kref if the fabric caller is expecting to handle
2189 * fabric acknowledgement that requires two target_put_sess_cmd()
2190 * invocations before se_cmd descriptor release.
2191 */
2192 if (ack_kref == true) {
2193 kref_get(&se_cmd->cmd_kref);
2194 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2195 }
2196
2197 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2198 if (se_sess->sess_tearing_down) {
2199 ret = -ESHUTDOWN;
2200 goto out;
2201 }
2202 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2203 se_cmd->check_release = 1;
2204
2205 out:
2206 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2207 return ret;
2208 }
2209
2210 static void target_release_cmd_kref(struct kref *kref)
2211 {
2212 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2213 struct se_session *se_sess = se_cmd->se_sess;
2214 unsigned long flags;
2215
2216 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2217 if (list_empty(&se_cmd->se_cmd_list)) {
2218 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2219 se_cmd->se_tfo->release_cmd(se_cmd);
2220 return;
2221 }
2222 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2223 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2224 complete(&se_cmd->cmd_wait_comp);
2225 return;
2226 }
2227 list_del(&se_cmd->se_cmd_list);
2228 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2229
2230 se_cmd->se_tfo->release_cmd(se_cmd);
2231 }
2232
2233 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2234 * @se_sess: session to reference
2235 * @se_cmd: command descriptor to drop
2236 */
2237 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2238 {
2239 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2240 }
2241 EXPORT_SYMBOL(target_put_sess_cmd);
2242
2243 /* target_sess_cmd_list_set_waiting - Flag all commands in
2244 * sess_cmd_list to complete cmd_wait_comp. Set
2245 * sess_tearing_down so no more commands are queued.
2246 * @se_sess: session to flag
2247 */
2248 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2249 {
2250 struct se_cmd *se_cmd;
2251 unsigned long flags;
2252
2253 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2254
2255 WARN_ON(se_sess->sess_tearing_down);
2256 se_sess->sess_tearing_down = 1;
2257
2258 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list)
2259 se_cmd->cmd_wait_set = 1;
2260
2261 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2262 }
2263 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2264
2265 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2266 * @se_sess: session to wait for active I/O
2267 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2268 */
2269 void target_wait_for_sess_cmds(
2270 struct se_session *se_sess,
2271 int wait_for_tasks)
2272 {
2273 struct se_cmd *se_cmd, *tmp_cmd;
2274 bool rc = false;
2275
2276 list_for_each_entry_safe(se_cmd, tmp_cmd,
2277 &se_sess->sess_cmd_list, se_cmd_list) {
2278 list_del(&se_cmd->se_cmd_list);
2279
2280 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2281 " %d\n", se_cmd, se_cmd->t_state,
2282 se_cmd->se_tfo->get_cmd_state(se_cmd));
2283
2284 if (wait_for_tasks) {
2285 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2286 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2287 se_cmd->se_tfo->get_cmd_state(se_cmd));
2288
2289 rc = transport_wait_for_tasks(se_cmd);
2290
2291 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2292 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2293 se_cmd->se_tfo->get_cmd_state(se_cmd));
2294 }
2295
2296 if (!rc) {
2297 wait_for_completion(&se_cmd->cmd_wait_comp);
2298 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2299 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2300 se_cmd->se_tfo->get_cmd_state(se_cmd));
2301 }
2302
2303 se_cmd->se_tfo->release_cmd(se_cmd);
2304 }
2305 }
2306 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2307
2308 /* transport_lun_wait_for_tasks():
2309 *
2310 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2311 * an struct se_lun to be successfully shutdown.
2312 */
2313 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2314 {
2315 unsigned long flags;
2316 int ret = 0;
2317
2318 /*
2319 * If the frontend has already requested this struct se_cmd to
2320 * be stopped, we can safely ignore this struct se_cmd.
2321 */
2322 spin_lock_irqsave(&cmd->t_state_lock, flags);
2323 if (cmd->transport_state & CMD_T_STOP) {
2324 cmd->transport_state &= ~CMD_T_LUN_STOP;
2325
2326 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2327 cmd->se_tfo->get_task_tag(cmd));
2328 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2329 transport_cmd_check_stop(cmd, false);
2330 return -EPERM;
2331 }
2332 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2333 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2334
2335 // XXX: audit task_flags checks.
2336 spin_lock_irqsave(&cmd->t_state_lock, flags);
2337 if ((cmd->transport_state & CMD_T_BUSY) &&
2338 (cmd->transport_state & CMD_T_SENT)) {
2339 if (!target_stop_cmd(cmd, &flags))
2340 ret++;
2341 }
2342 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2343
2344 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2345 " %d\n", cmd, ret);
2346 if (!ret) {
2347 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2348 cmd->se_tfo->get_task_tag(cmd));
2349 wait_for_completion(&cmd->transport_lun_stop_comp);
2350 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2351 cmd->se_tfo->get_task_tag(cmd));
2352 }
2353
2354 return 0;
2355 }
2356
2357 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2358 {
2359 struct se_cmd *cmd = NULL;
2360 unsigned long lun_flags, cmd_flags;
2361 /*
2362 * Do exception processing and return CHECK_CONDITION status to the
2363 * Initiator Port.
2364 */
2365 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2366 while (!list_empty(&lun->lun_cmd_list)) {
2367 cmd = list_first_entry(&lun->lun_cmd_list,
2368 struct se_cmd, se_lun_node);
2369 list_del_init(&cmd->se_lun_node);
2370
2371 spin_lock(&cmd->t_state_lock);
2372 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2373 "_lun_stop for ITT: 0x%08x\n",
2374 cmd->se_lun->unpacked_lun,
2375 cmd->se_tfo->get_task_tag(cmd));
2376 cmd->transport_state |= CMD_T_LUN_STOP;
2377 spin_unlock(&cmd->t_state_lock);
2378
2379 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2380
2381 if (!cmd->se_lun) {
2382 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2383 cmd->se_tfo->get_task_tag(cmd),
2384 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2385 BUG();
2386 }
2387 /*
2388 * If the Storage engine still owns the iscsi_cmd_t, determine
2389 * and/or stop its context.
2390 */
2391 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2392 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2393 cmd->se_tfo->get_task_tag(cmd));
2394
2395 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2396 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2397 continue;
2398 }
2399
2400 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2401 "_wait_for_tasks(): SUCCESS\n",
2402 cmd->se_lun->unpacked_lun,
2403 cmd->se_tfo->get_task_tag(cmd));
2404
2405 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2406 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2407 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2408 goto check_cond;
2409 }
2410 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2411 target_remove_from_state_list(cmd);
2412 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2413
2414 /*
2415 * The Storage engine stopped this struct se_cmd before it was
2416 * send to the fabric frontend for delivery back to the
2417 * Initiator Node. Return this SCSI CDB back with an
2418 * CHECK_CONDITION status.
2419 */
2420 check_cond:
2421 transport_send_check_condition_and_sense(cmd,
2422 TCM_NON_EXISTENT_LUN, 0);
2423 /*
2424 * If the fabric frontend is waiting for this iscsi_cmd_t to
2425 * be released, notify the waiting thread now that LU has
2426 * finished accessing it.
2427 */
2428 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2429 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2430 pr_debug("SE_LUN[%d] - Detected FE stop for"
2431 " struct se_cmd: %p ITT: 0x%08x\n",
2432 lun->unpacked_lun,
2433 cmd, cmd->se_tfo->get_task_tag(cmd));
2434
2435 spin_unlock_irqrestore(&cmd->t_state_lock,
2436 cmd_flags);
2437 transport_cmd_check_stop(cmd, false);
2438 complete(&cmd->transport_lun_fe_stop_comp);
2439 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2440 continue;
2441 }
2442 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2443 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2444
2445 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2446 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2447 }
2448 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2449 }
2450
2451 static int transport_clear_lun_thread(void *p)
2452 {
2453 struct se_lun *lun = p;
2454
2455 __transport_clear_lun_from_sessions(lun);
2456 complete(&lun->lun_shutdown_comp);
2457
2458 return 0;
2459 }
2460
2461 int transport_clear_lun_from_sessions(struct se_lun *lun)
2462 {
2463 struct task_struct *kt;
2464
2465 kt = kthread_run(transport_clear_lun_thread, lun,
2466 "tcm_cl_%u", lun->unpacked_lun);
2467 if (IS_ERR(kt)) {
2468 pr_err("Unable to start clear_lun thread\n");
2469 return PTR_ERR(kt);
2470 }
2471 wait_for_completion(&lun->lun_shutdown_comp);
2472
2473 return 0;
2474 }
2475
2476 /**
2477 * transport_wait_for_tasks - wait for completion to occur
2478 * @cmd: command to wait
2479 *
2480 * Called from frontend fabric context to wait for storage engine
2481 * to pause and/or release frontend generated struct se_cmd.
2482 */
2483 bool transport_wait_for_tasks(struct se_cmd *cmd)
2484 {
2485 unsigned long flags;
2486
2487 spin_lock_irqsave(&cmd->t_state_lock, flags);
2488 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2489 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2490 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2491 return false;
2492 }
2493
2494 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2495 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2497 return false;
2498 }
2499 /*
2500 * If we are already stopped due to an external event (ie: LUN shutdown)
2501 * sleep until the connection can have the passed struct se_cmd back.
2502 * The cmd->transport_lun_stopped_sem will be upped by
2503 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2504 * has completed its operation on the struct se_cmd.
2505 */
2506 if (cmd->transport_state & CMD_T_LUN_STOP) {
2507 pr_debug("wait_for_tasks: Stopping"
2508 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2509 "_stop_comp); for ITT: 0x%08x\n",
2510 cmd->se_tfo->get_task_tag(cmd));
2511 /*
2512 * There is a special case for WRITES where a FE exception +
2513 * LUN shutdown means ConfigFS context is still sleeping on
2514 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2515 * We go ahead and up transport_lun_stop_comp just to be sure
2516 * here.
2517 */
2518 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2519 complete(&cmd->transport_lun_stop_comp);
2520 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2521 spin_lock_irqsave(&cmd->t_state_lock, flags);
2522
2523 target_remove_from_state_list(cmd);
2524 /*
2525 * At this point, the frontend who was the originator of this
2526 * struct se_cmd, now owns the structure and can be released through
2527 * normal means below.
2528 */
2529 pr_debug("wait_for_tasks: Stopped"
2530 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2531 "stop_comp); for ITT: 0x%08x\n",
2532 cmd->se_tfo->get_task_tag(cmd));
2533
2534 cmd->transport_state &= ~CMD_T_LUN_STOP;
2535 }
2536
2537 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2538 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2539 return false;
2540 }
2541
2542 cmd->transport_state |= CMD_T_STOP;
2543
2544 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2545 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2546 cmd, cmd->se_tfo->get_task_tag(cmd),
2547 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2548
2549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2550
2551 wait_for_completion(&cmd->t_transport_stop_comp);
2552
2553 spin_lock_irqsave(&cmd->t_state_lock, flags);
2554 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2555
2556 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2557 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2558 cmd->se_tfo->get_task_tag(cmd));
2559
2560 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2561
2562 return true;
2563 }
2564 EXPORT_SYMBOL(transport_wait_for_tasks);
2565
2566 static int transport_get_sense_codes(
2567 struct se_cmd *cmd,
2568 u8 *asc,
2569 u8 *ascq)
2570 {
2571 *asc = cmd->scsi_asc;
2572 *ascq = cmd->scsi_ascq;
2573
2574 return 0;
2575 }
2576
2577 int
2578 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2579 sense_reason_t reason, int from_transport)
2580 {
2581 unsigned char *buffer = cmd->sense_buffer;
2582 unsigned long flags;
2583 u8 asc = 0, ascq = 0;
2584
2585 spin_lock_irqsave(&cmd->t_state_lock, flags);
2586 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2587 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2588 return 0;
2589 }
2590 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2591 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2592
2593 if (!reason && from_transport)
2594 goto after_reason;
2595
2596 if (!from_transport)
2597 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2598
2599 /*
2600 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2601 * SENSE KEY values from include/scsi/scsi.h
2602 */
2603 switch (reason) {
2604 case TCM_NO_SENSE:
2605 /* CURRENT ERROR */
2606 buffer[0] = 0x70;
2607 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2608 /* Not Ready */
2609 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2610 /* NO ADDITIONAL SENSE INFORMATION */
2611 buffer[SPC_ASC_KEY_OFFSET] = 0;
2612 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2613 break;
2614 case TCM_NON_EXISTENT_LUN:
2615 /* CURRENT ERROR */
2616 buffer[0] = 0x70;
2617 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2618 /* ILLEGAL REQUEST */
2619 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2620 /* LOGICAL UNIT NOT SUPPORTED */
2621 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2622 break;
2623 case TCM_UNSUPPORTED_SCSI_OPCODE:
2624 case TCM_SECTOR_COUNT_TOO_MANY:
2625 /* CURRENT ERROR */
2626 buffer[0] = 0x70;
2627 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2628 /* ILLEGAL REQUEST */
2629 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2630 /* INVALID COMMAND OPERATION CODE */
2631 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2632 break;
2633 case TCM_UNKNOWN_MODE_PAGE:
2634 /* CURRENT ERROR */
2635 buffer[0] = 0x70;
2636 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2637 /* ILLEGAL REQUEST */
2638 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2639 /* INVALID FIELD IN CDB */
2640 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2641 break;
2642 case TCM_CHECK_CONDITION_ABORT_CMD:
2643 /* CURRENT ERROR */
2644 buffer[0] = 0x70;
2645 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2646 /* ABORTED COMMAND */
2647 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2648 /* BUS DEVICE RESET FUNCTION OCCURRED */
2649 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2650 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2651 break;
2652 case TCM_INCORRECT_AMOUNT_OF_DATA:
2653 /* CURRENT ERROR */
2654 buffer[0] = 0x70;
2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2656 /* ABORTED COMMAND */
2657 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2658 /* WRITE ERROR */
2659 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2660 /* NOT ENOUGH UNSOLICITED DATA */
2661 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2662 break;
2663 case TCM_INVALID_CDB_FIELD:
2664 /* CURRENT ERROR */
2665 buffer[0] = 0x70;
2666 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2667 /* ILLEGAL REQUEST */
2668 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2669 /* INVALID FIELD IN CDB */
2670 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2671 break;
2672 case TCM_INVALID_PARAMETER_LIST:
2673 /* CURRENT ERROR */
2674 buffer[0] = 0x70;
2675 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2676 /* ILLEGAL REQUEST */
2677 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2678 /* INVALID FIELD IN PARAMETER LIST */
2679 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2680 break;
2681 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2682 /* CURRENT ERROR */
2683 buffer[0] = 0x70;
2684 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2685 /* ILLEGAL REQUEST */
2686 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2687 /* PARAMETER LIST LENGTH ERROR */
2688 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2689 break;
2690 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2691 /* CURRENT ERROR */
2692 buffer[0] = 0x70;
2693 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2694 /* ABORTED COMMAND */
2695 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2696 /* WRITE ERROR */
2697 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2698 /* UNEXPECTED_UNSOLICITED_DATA */
2699 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2700 break;
2701 case TCM_SERVICE_CRC_ERROR:
2702 /* CURRENT ERROR */
2703 buffer[0] = 0x70;
2704 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2705 /* ABORTED COMMAND */
2706 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2707 /* PROTOCOL SERVICE CRC ERROR */
2708 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2709 /* N/A */
2710 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2711 break;
2712 case TCM_SNACK_REJECTED:
2713 /* CURRENT ERROR */
2714 buffer[0] = 0x70;
2715 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2716 /* ABORTED COMMAND */
2717 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2718 /* READ ERROR */
2719 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2720 /* FAILED RETRANSMISSION REQUEST */
2721 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2722 break;
2723 case TCM_WRITE_PROTECTED:
2724 /* CURRENT ERROR */
2725 buffer[0] = 0x70;
2726 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2727 /* DATA PROTECT */
2728 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2729 /* WRITE PROTECTED */
2730 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2731 break;
2732 case TCM_ADDRESS_OUT_OF_RANGE:
2733 /* CURRENT ERROR */
2734 buffer[0] = 0x70;
2735 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2736 /* ILLEGAL REQUEST */
2737 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2738 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2739 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2740 break;
2741 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2742 /* CURRENT ERROR */
2743 buffer[0] = 0x70;
2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2745 /* UNIT ATTENTION */
2746 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2747 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2748 buffer[SPC_ASC_KEY_OFFSET] = asc;
2749 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2750 break;
2751 case TCM_CHECK_CONDITION_NOT_READY:
2752 /* CURRENT ERROR */
2753 buffer[0] = 0x70;
2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2755 /* Not Ready */
2756 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2757 transport_get_sense_codes(cmd, &asc, &ascq);
2758 buffer[SPC_ASC_KEY_OFFSET] = asc;
2759 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2760 break;
2761 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2762 default:
2763 /* CURRENT ERROR */
2764 buffer[0] = 0x70;
2765 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2766 /* ILLEGAL REQUEST */
2767 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2768 /* LOGICAL UNIT COMMUNICATION FAILURE */
2769 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2770 break;
2771 }
2772 /*
2773 * This code uses linux/include/scsi/scsi.h SAM status codes!
2774 */
2775 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2776 /*
2777 * Automatically padded, this value is encoded in the fabric's
2778 * data_length response PDU containing the SCSI defined sense data.
2779 */
2780 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2781
2782 after_reason:
2783 return cmd->se_tfo->queue_status(cmd);
2784 }
2785 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2786
2787 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2788 {
2789 if (!(cmd->transport_state & CMD_T_ABORTED))
2790 return 0;
2791
2792 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2793 return 1;
2794
2795 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2796 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2797
2798 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2799 cmd->se_tfo->queue_status(cmd);
2800
2801 return 1;
2802 }
2803 EXPORT_SYMBOL(transport_check_aborted_status);
2804
2805 void transport_send_task_abort(struct se_cmd *cmd)
2806 {
2807 unsigned long flags;
2808
2809 spin_lock_irqsave(&cmd->t_state_lock, flags);
2810 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2811 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2812 return;
2813 }
2814 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2815
2816 /*
2817 * If there are still expected incoming fabric WRITEs, we wait
2818 * until until they have completed before sending a TASK_ABORTED
2819 * response. This response with TASK_ABORTED status will be
2820 * queued back to fabric module by transport_check_aborted_status().
2821 */
2822 if (cmd->data_direction == DMA_TO_DEVICE) {
2823 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2824 cmd->transport_state |= CMD_T_ABORTED;
2825 smp_mb__after_atomic_inc();
2826 }
2827 }
2828 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2829
2830 transport_lun_remove_cmd(cmd);
2831
2832 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2833 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2834 cmd->se_tfo->get_task_tag(cmd));
2835
2836 cmd->se_tfo->queue_status(cmd);
2837 }
2838
2839 static void target_tmr_work(struct work_struct *work)
2840 {
2841 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2842 struct se_device *dev = cmd->se_dev;
2843 struct se_tmr_req *tmr = cmd->se_tmr_req;
2844 int ret;
2845
2846 switch (tmr->function) {
2847 case TMR_ABORT_TASK:
2848 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2849 break;
2850 case TMR_ABORT_TASK_SET:
2851 case TMR_CLEAR_ACA:
2852 case TMR_CLEAR_TASK_SET:
2853 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2854 break;
2855 case TMR_LUN_RESET:
2856 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2857 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2858 TMR_FUNCTION_REJECTED;
2859 break;
2860 case TMR_TARGET_WARM_RESET:
2861 tmr->response = TMR_FUNCTION_REJECTED;
2862 break;
2863 case TMR_TARGET_COLD_RESET:
2864 tmr->response = TMR_FUNCTION_REJECTED;
2865 break;
2866 default:
2867 pr_err("Uknown TMR function: 0x%02x.\n",
2868 tmr->function);
2869 tmr->response = TMR_FUNCTION_REJECTED;
2870 break;
2871 }
2872
2873 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2874 cmd->se_tfo->queue_tm_rsp(cmd);
2875
2876 transport_cmd_check_stop_to_fabric(cmd);
2877 }
2878
2879 int transport_generic_handle_tmr(
2880 struct se_cmd *cmd)
2881 {
2882 INIT_WORK(&cmd->work, target_tmr_work);
2883 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2884 return 0;
2885 }
2886 EXPORT_SYMBOL(transport_generic_handle_tmr);