]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/target/target_core_transport.c
ASoC: cs4271: configure reset GPIO as output
[mirror_ubuntu-eoan-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
243
244 return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
250 {
251 int rc;
252
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
260 }
261 }
262
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
270 }
271
272 return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
279 {
280 struct se_session *se_sess;
281 int rc;
282
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
287 }
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
292 }
293
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
297
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
302 }
303
304 return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307
308 /*
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310 */
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
316 {
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
319
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
322 /*
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324 *
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
327 */
328 if (se_nacl) {
329 /*
330 *
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333 *
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
338 */
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
344 /*
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
347 */
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 }
354
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
356 /*
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
359 */
360 se_nacl->nacl_sess = se_sess;
361
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
365 }
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
378 {
379 unsigned long flags;
380
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
394 {
395 struct se_session *sess;
396
397 /*
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
400 */
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
405
406 if (IS_ERR(sess))
407 return sess;
408
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
414 }
415 /*
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
418 */
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
424 }
425 }
426
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434 struct se_session *se_sess;
435 ssize_t len = 0;
436
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
445
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
449 }
450 spin_unlock_bh(&se_tpg->session_lock);
451
452 return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455
456 static void target_complete_nacl(struct kref *kref)
457 {
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
460 struct se_portal_group *se_tpg = nacl->se_tpg;
461
462 if (!nacl->dynamic_stop) {
463 complete(&nacl->acl_free_comp);
464 return;
465 }
466
467 mutex_lock(&se_tpg->acl_node_mutex);
468 list_del(&nacl->acl_list);
469 mutex_unlock(&se_tpg->acl_node_mutex);
470
471 core_tpg_wait_for_nacl_pr_ref(nacl);
472 core_free_device_list_for_node(nacl, se_tpg);
473 kfree(nacl);
474 }
475
476 void target_put_nacl(struct se_node_acl *nacl)
477 {
478 kref_put(&nacl->acl_kref, target_complete_nacl);
479 }
480 EXPORT_SYMBOL(target_put_nacl);
481
482 void transport_deregister_session_configfs(struct se_session *se_sess)
483 {
484 struct se_node_acl *se_nacl;
485 unsigned long flags;
486 /*
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
488 */
489 se_nacl = se_sess->se_node_acl;
490 if (se_nacl) {
491 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
492 if (!list_empty(&se_sess->sess_acl_list))
493 list_del_init(&se_sess->sess_acl_list);
494 /*
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
498 */
499 if (list_empty(&se_nacl->acl_sess_list))
500 se_nacl->nacl_sess = NULL;
501 else {
502 se_nacl->nacl_sess = container_of(
503 se_nacl->acl_sess_list.prev,
504 struct se_session, sess_acl_list);
505 }
506 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
507 }
508 }
509 EXPORT_SYMBOL(transport_deregister_session_configfs);
510
511 void transport_free_session(struct se_session *se_sess)
512 {
513 struct se_node_acl *se_nacl = se_sess->se_node_acl;
514
515 /*
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
518 */
519 if (se_nacl) {
520 struct se_portal_group *se_tpg = se_nacl->se_tpg;
521 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
522 unsigned long flags;
523
524 se_sess->se_node_acl = NULL;
525
526 /*
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
530 */
531 mutex_lock(&se_tpg->acl_node_mutex);
532 if (se_nacl->dynamic_node_acl &&
533 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 if (list_empty(&se_nacl->acl_sess_list))
536 se_nacl->dynamic_stop = true;
537 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
538
539 if (se_nacl->dynamic_stop)
540 list_del(&se_nacl->acl_list);
541 }
542 mutex_unlock(&se_tpg->acl_node_mutex);
543
544 if (se_nacl->dynamic_stop)
545 target_put_nacl(se_nacl);
546
547 target_put_nacl(se_nacl);
548 }
549 if (se_sess->sess_cmd_map) {
550 percpu_ida_destroy(&se_sess->sess_tag_pool);
551 kvfree(se_sess->sess_cmd_map);
552 }
553 kmem_cache_free(se_sess_cache, se_sess);
554 }
555 EXPORT_SYMBOL(transport_free_session);
556
557 void transport_deregister_session(struct se_session *se_sess)
558 {
559 struct se_portal_group *se_tpg = se_sess->se_tpg;
560 unsigned long flags;
561
562 if (!se_tpg) {
563 transport_free_session(se_sess);
564 return;
565 }
566
567 spin_lock_irqsave(&se_tpg->session_lock, flags);
568 list_del(&se_sess->sess_list);
569 se_sess->se_tpg = NULL;
570 se_sess->fabric_sess_ptr = NULL;
571 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
572
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg->se_tpg_tfo->get_fabric_name());
575 /*
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
579 *
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
582 */
583
584 transport_free_session(se_sess);
585 }
586 EXPORT_SYMBOL(transport_deregister_session);
587
588 static void target_remove_from_state_list(struct se_cmd *cmd)
589 {
590 struct se_device *dev = cmd->se_dev;
591 unsigned long flags;
592
593 if (!dev)
594 return;
595
596 spin_lock_irqsave(&dev->execute_task_lock, flags);
597 if (cmd->state_active) {
598 list_del(&cmd->state_list);
599 cmd->state_active = false;
600 }
601 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
602 }
603
604 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
605 {
606 unsigned long flags;
607
608 target_remove_from_state_list(cmd);
609
610 /*
611 * Clear struct se_cmd->se_lun before the handoff to FE.
612 */
613 cmd->se_lun = NULL;
614
615 spin_lock_irqsave(&cmd->t_state_lock, flags);
616 /*
617 * Determine if frontend context caller is requesting the stopping of
618 * this command for frontend exceptions.
619 */
620 if (cmd->transport_state & CMD_T_STOP) {
621 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
622 __func__, __LINE__, cmd->tag);
623
624 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
625
626 complete_all(&cmd->t_transport_stop_comp);
627 return 1;
628 }
629 cmd->transport_state &= ~CMD_T_ACTIVE;
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631
632 /*
633 * Some fabric modules like tcm_loop can release their internally
634 * allocated I/O reference and struct se_cmd now.
635 *
636 * Fabric modules are expected to return '1' here if the se_cmd being
637 * passed is released at this point, or zero if not being released.
638 */
639 return cmd->se_tfo->check_stop_free ? cmd->se_tfo->check_stop_free(cmd)
640 : 0;
641 }
642
643 static void transport_lun_remove_cmd(struct se_cmd *cmd)
644 {
645 struct se_lun *lun = cmd->se_lun;
646
647 if (!lun)
648 return;
649
650 if (cmpxchg(&cmd->lun_ref_active, true, false))
651 percpu_ref_put(&lun->lun_ref);
652 }
653
654 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655 {
656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657
658 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
659 transport_lun_remove_cmd(cmd);
660 /*
661 * Allow the fabric driver to unmap any resources before
662 * releasing the descriptor via TFO->release_cmd()
663 */
664 if (remove)
665 cmd->se_tfo->aborted_task(cmd);
666
667 if (transport_cmd_check_stop_to_fabric(cmd))
668 return;
669 if (remove && ack_kref)
670 transport_put_cmd(cmd);
671 }
672
673 static void target_complete_failure_work(struct work_struct *work)
674 {
675 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
676
677 transport_generic_request_failure(cmd,
678 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
679 }
680
681 /*
682 * Used when asking transport to copy Sense Data from the underlying
683 * Linux/SCSI struct scsi_cmnd
684 */
685 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
686 {
687 struct se_device *dev = cmd->se_dev;
688
689 WARN_ON(!cmd->se_lun);
690
691 if (!dev)
692 return NULL;
693
694 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
695 return NULL;
696
697 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
698
699 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
700 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
701 return cmd->sense_buffer;
702 }
703
704 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
705 {
706 struct se_device *dev = cmd->se_dev;
707 int success = scsi_status == GOOD;
708 unsigned long flags;
709
710 cmd->scsi_status = scsi_status;
711
712
713 spin_lock_irqsave(&cmd->t_state_lock, flags);
714
715 if (dev && dev->transport->transport_complete) {
716 dev->transport->transport_complete(cmd,
717 cmd->t_data_sg,
718 transport_get_sense_buffer(cmd));
719 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
720 success = 1;
721 }
722
723 /*
724 * Check for case where an explicit ABORT_TASK has been received
725 * and transport_wait_for_tasks() will be waiting for completion..
726 */
727 if (cmd->transport_state & CMD_T_ABORTED ||
728 cmd->transport_state & CMD_T_STOP) {
729 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
730 complete_all(&cmd->t_transport_stop_comp);
731 return;
732 } else if (!success) {
733 INIT_WORK(&cmd->work, target_complete_failure_work);
734 } else {
735 INIT_WORK(&cmd->work, target_complete_ok_work);
736 }
737
738 cmd->t_state = TRANSPORT_COMPLETE;
739 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
740 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
741
742 if (cmd->se_cmd_flags & SCF_USE_CPUID)
743 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
744 else
745 queue_work(target_completion_wq, &cmd->work);
746 }
747 EXPORT_SYMBOL(target_complete_cmd);
748
749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
750 {
751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
753 cmd->residual_count += cmd->data_length - length;
754 } else {
755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
756 cmd->residual_count = cmd->data_length - length;
757 }
758
759 cmd->data_length = length;
760 }
761
762 target_complete_cmd(cmd, scsi_status);
763 }
764 EXPORT_SYMBOL(target_complete_cmd_with_length);
765
766 static void target_add_to_state_list(struct se_cmd *cmd)
767 {
768 struct se_device *dev = cmd->se_dev;
769 unsigned long flags;
770
771 spin_lock_irqsave(&dev->execute_task_lock, flags);
772 if (!cmd->state_active) {
773 list_add_tail(&cmd->state_list, &dev->state_list);
774 cmd->state_active = true;
775 }
776 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
777 }
778
779 /*
780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
781 */
782 static void transport_write_pending_qf(struct se_cmd *cmd);
783 static void transport_complete_qf(struct se_cmd *cmd);
784
785 void target_qf_do_work(struct work_struct *work)
786 {
787 struct se_device *dev = container_of(work, struct se_device,
788 qf_work_queue);
789 LIST_HEAD(qf_cmd_list);
790 struct se_cmd *cmd, *cmd_tmp;
791
792 spin_lock_irq(&dev->qf_cmd_lock);
793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
794 spin_unlock_irq(&dev->qf_cmd_lock);
795
796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
797 list_del(&cmd->se_qf_node);
798 atomic_dec_mb(&dev->dev_qf_count);
799
800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
804 : "UNKNOWN");
805
806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
807 transport_write_pending_qf(cmd);
808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
809 transport_complete_qf(cmd);
810 }
811 }
812
813 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
814 {
815 switch (cmd->data_direction) {
816 case DMA_NONE:
817 return "NONE";
818 case DMA_FROM_DEVICE:
819 return "READ";
820 case DMA_TO_DEVICE:
821 return "WRITE";
822 case DMA_BIDIRECTIONAL:
823 return "BIDI";
824 default:
825 break;
826 }
827
828 return "UNKNOWN";
829 }
830
831 void transport_dump_dev_state(
832 struct se_device *dev,
833 char *b,
834 int *bl)
835 {
836 *bl += sprintf(b + *bl, "Status: ");
837 if (dev->export_count)
838 *bl += sprintf(b + *bl, "ACTIVATED");
839 else
840 *bl += sprintf(b + *bl, "DEACTIVATED");
841
842 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
843 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
844 dev->dev_attrib.block_size,
845 dev->dev_attrib.hw_max_sectors);
846 *bl += sprintf(b + *bl, " ");
847 }
848
849 void transport_dump_vpd_proto_id(
850 struct t10_vpd *vpd,
851 unsigned char *p_buf,
852 int p_buf_len)
853 {
854 unsigned char buf[VPD_TMP_BUF_SIZE];
855 int len;
856
857 memset(buf, 0, VPD_TMP_BUF_SIZE);
858 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
859
860 switch (vpd->protocol_identifier) {
861 case 0x00:
862 sprintf(buf+len, "Fibre Channel\n");
863 break;
864 case 0x10:
865 sprintf(buf+len, "Parallel SCSI\n");
866 break;
867 case 0x20:
868 sprintf(buf+len, "SSA\n");
869 break;
870 case 0x30:
871 sprintf(buf+len, "IEEE 1394\n");
872 break;
873 case 0x40:
874 sprintf(buf+len, "SCSI Remote Direct Memory Access"
875 " Protocol\n");
876 break;
877 case 0x50:
878 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
879 break;
880 case 0x60:
881 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
882 break;
883 case 0x70:
884 sprintf(buf+len, "Automation/Drive Interface Transport"
885 " Protocol\n");
886 break;
887 case 0x80:
888 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
889 break;
890 default:
891 sprintf(buf+len, "Unknown 0x%02x\n",
892 vpd->protocol_identifier);
893 break;
894 }
895
896 if (p_buf)
897 strncpy(p_buf, buf, p_buf_len);
898 else
899 pr_debug("%s", buf);
900 }
901
902 void
903 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
904 {
905 /*
906 * Check if the Protocol Identifier Valid (PIV) bit is set..
907 *
908 * from spc3r23.pdf section 7.5.1
909 */
910 if (page_83[1] & 0x80) {
911 vpd->protocol_identifier = (page_83[0] & 0xf0);
912 vpd->protocol_identifier_set = 1;
913 transport_dump_vpd_proto_id(vpd, NULL, 0);
914 }
915 }
916 EXPORT_SYMBOL(transport_set_vpd_proto_id);
917
918 int transport_dump_vpd_assoc(
919 struct t10_vpd *vpd,
920 unsigned char *p_buf,
921 int p_buf_len)
922 {
923 unsigned char buf[VPD_TMP_BUF_SIZE];
924 int ret = 0;
925 int len;
926
927 memset(buf, 0, VPD_TMP_BUF_SIZE);
928 len = sprintf(buf, "T10 VPD Identifier Association: ");
929
930 switch (vpd->association) {
931 case 0x00:
932 sprintf(buf+len, "addressed logical unit\n");
933 break;
934 case 0x10:
935 sprintf(buf+len, "target port\n");
936 break;
937 case 0x20:
938 sprintf(buf+len, "SCSI target device\n");
939 break;
940 default:
941 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
942 ret = -EINVAL;
943 break;
944 }
945
946 if (p_buf)
947 strncpy(p_buf, buf, p_buf_len);
948 else
949 pr_debug("%s", buf);
950
951 return ret;
952 }
953
954 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
955 {
956 /*
957 * The VPD identification association..
958 *
959 * from spc3r23.pdf Section 7.6.3.1 Table 297
960 */
961 vpd->association = (page_83[1] & 0x30);
962 return transport_dump_vpd_assoc(vpd, NULL, 0);
963 }
964 EXPORT_SYMBOL(transport_set_vpd_assoc);
965
966 int transport_dump_vpd_ident_type(
967 struct t10_vpd *vpd,
968 unsigned char *p_buf,
969 int p_buf_len)
970 {
971 unsigned char buf[VPD_TMP_BUF_SIZE];
972 int ret = 0;
973 int len;
974
975 memset(buf, 0, VPD_TMP_BUF_SIZE);
976 len = sprintf(buf, "T10 VPD Identifier Type: ");
977
978 switch (vpd->device_identifier_type) {
979 case 0x00:
980 sprintf(buf+len, "Vendor specific\n");
981 break;
982 case 0x01:
983 sprintf(buf+len, "T10 Vendor ID based\n");
984 break;
985 case 0x02:
986 sprintf(buf+len, "EUI-64 based\n");
987 break;
988 case 0x03:
989 sprintf(buf+len, "NAA\n");
990 break;
991 case 0x04:
992 sprintf(buf+len, "Relative target port identifier\n");
993 break;
994 case 0x08:
995 sprintf(buf+len, "SCSI name string\n");
996 break;
997 default:
998 sprintf(buf+len, "Unsupported: 0x%02x\n",
999 vpd->device_identifier_type);
1000 ret = -EINVAL;
1001 break;
1002 }
1003
1004 if (p_buf) {
1005 if (p_buf_len < strlen(buf)+1)
1006 return -EINVAL;
1007 strncpy(p_buf, buf, p_buf_len);
1008 } else {
1009 pr_debug("%s", buf);
1010 }
1011
1012 return ret;
1013 }
1014
1015 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1016 {
1017 /*
1018 * The VPD identifier type..
1019 *
1020 * from spc3r23.pdf Section 7.6.3.1 Table 298
1021 */
1022 vpd->device_identifier_type = (page_83[1] & 0x0f);
1023 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1024 }
1025 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1026
1027 int transport_dump_vpd_ident(
1028 struct t10_vpd *vpd,
1029 unsigned char *p_buf,
1030 int p_buf_len)
1031 {
1032 unsigned char buf[VPD_TMP_BUF_SIZE];
1033 int ret = 0;
1034
1035 memset(buf, 0, VPD_TMP_BUF_SIZE);
1036
1037 switch (vpd->device_identifier_code_set) {
1038 case 0x01: /* Binary */
1039 snprintf(buf, sizeof(buf),
1040 "T10 VPD Binary Device Identifier: %s\n",
1041 &vpd->device_identifier[0]);
1042 break;
1043 case 0x02: /* ASCII */
1044 snprintf(buf, sizeof(buf),
1045 "T10 VPD ASCII Device Identifier: %s\n",
1046 &vpd->device_identifier[0]);
1047 break;
1048 case 0x03: /* UTF-8 */
1049 snprintf(buf, sizeof(buf),
1050 "T10 VPD UTF-8 Device Identifier: %s\n",
1051 &vpd->device_identifier[0]);
1052 break;
1053 default:
1054 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1055 " 0x%02x", vpd->device_identifier_code_set);
1056 ret = -EINVAL;
1057 break;
1058 }
1059
1060 if (p_buf)
1061 strncpy(p_buf, buf, p_buf_len);
1062 else
1063 pr_debug("%s", buf);
1064
1065 return ret;
1066 }
1067
1068 int
1069 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1070 {
1071 static const char hex_str[] = "0123456789abcdef";
1072 int j = 0, i = 4; /* offset to start of the identifier */
1073
1074 /*
1075 * The VPD Code Set (encoding)
1076 *
1077 * from spc3r23.pdf Section 7.6.3.1 Table 296
1078 */
1079 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1080 switch (vpd->device_identifier_code_set) {
1081 case 0x01: /* Binary */
1082 vpd->device_identifier[j++] =
1083 hex_str[vpd->device_identifier_type];
1084 while (i < (4 + page_83[3])) {
1085 vpd->device_identifier[j++] =
1086 hex_str[(page_83[i] & 0xf0) >> 4];
1087 vpd->device_identifier[j++] =
1088 hex_str[page_83[i] & 0x0f];
1089 i++;
1090 }
1091 break;
1092 case 0x02: /* ASCII */
1093 case 0x03: /* UTF-8 */
1094 while (i < (4 + page_83[3]))
1095 vpd->device_identifier[j++] = page_83[i++];
1096 break;
1097 default:
1098 break;
1099 }
1100
1101 return transport_dump_vpd_ident(vpd, NULL, 0);
1102 }
1103 EXPORT_SYMBOL(transport_set_vpd_ident);
1104
1105 static sense_reason_t
1106 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1107 unsigned int size)
1108 {
1109 u32 mtl;
1110
1111 if (!cmd->se_tfo->max_data_sg_nents)
1112 return TCM_NO_SENSE;
1113 /*
1114 * Check if fabric enforced maximum SGL entries per I/O descriptor
1115 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1116 * residual_count and reduce original cmd->data_length to maximum
1117 * length based on single PAGE_SIZE entry scatter-lists.
1118 */
1119 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1120 if (cmd->data_length > mtl) {
1121 /*
1122 * If an existing CDB overflow is present, calculate new residual
1123 * based on CDB size minus fabric maximum transfer length.
1124 *
1125 * If an existing CDB underflow is present, calculate new residual
1126 * based on original cmd->data_length minus fabric maximum transfer
1127 * length.
1128 *
1129 * Otherwise, set the underflow residual based on cmd->data_length
1130 * minus fabric maximum transfer length.
1131 */
1132 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1133 cmd->residual_count = (size - mtl);
1134 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1135 u32 orig_dl = size + cmd->residual_count;
1136 cmd->residual_count = (orig_dl - mtl);
1137 } else {
1138 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1139 cmd->residual_count = (cmd->data_length - mtl);
1140 }
1141 cmd->data_length = mtl;
1142 /*
1143 * Reset sbc_check_prot() calculated protection payload
1144 * length based upon the new smaller MTL.
1145 */
1146 if (cmd->prot_length) {
1147 u32 sectors = (mtl / dev->dev_attrib.block_size);
1148 cmd->prot_length = dev->prot_length * sectors;
1149 }
1150 }
1151 return TCM_NO_SENSE;
1152 }
1153
1154 sense_reason_t
1155 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1156 {
1157 struct se_device *dev = cmd->se_dev;
1158
1159 if (cmd->unknown_data_length) {
1160 cmd->data_length = size;
1161 } else if (size != cmd->data_length) {
1162 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1163 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1164 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1165 cmd->data_length, size, cmd->t_task_cdb[0]);
1166
1167 if (cmd->data_direction == DMA_TO_DEVICE &&
1168 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1169 pr_err("Rejecting underflow/overflow WRITE data\n");
1170 return TCM_INVALID_CDB_FIELD;
1171 }
1172 /*
1173 * Reject READ_* or WRITE_* with overflow/underflow for
1174 * type SCF_SCSI_DATA_CDB.
1175 */
1176 if (dev->dev_attrib.block_size != 512) {
1177 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1178 " CDB on non 512-byte sector setup subsystem"
1179 " plugin: %s\n", dev->transport->name);
1180 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1181 return TCM_INVALID_CDB_FIELD;
1182 }
1183 /*
1184 * For the overflow case keep the existing fabric provided
1185 * ->data_length. Otherwise for the underflow case, reset
1186 * ->data_length to the smaller SCSI expected data transfer
1187 * length.
1188 */
1189 if (size > cmd->data_length) {
1190 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1191 cmd->residual_count = (size - cmd->data_length);
1192 } else {
1193 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1194 cmd->residual_count = (cmd->data_length - size);
1195 cmd->data_length = size;
1196 }
1197 }
1198
1199 return target_check_max_data_sg_nents(cmd, dev, size);
1200
1201 }
1202
1203 /*
1204 * Used by fabric modules containing a local struct se_cmd within their
1205 * fabric dependent per I/O descriptor.
1206 *
1207 * Preserves the value of @cmd->tag.
1208 */
1209 void transport_init_se_cmd(
1210 struct se_cmd *cmd,
1211 const struct target_core_fabric_ops *tfo,
1212 struct se_session *se_sess,
1213 u32 data_length,
1214 int data_direction,
1215 int task_attr,
1216 unsigned char *sense_buffer)
1217 {
1218 INIT_LIST_HEAD(&cmd->se_delayed_node);
1219 INIT_LIST_HEAD(&cmd->se_qf_node);
1220 INIT_LIST_HEAD(&cmd->se_cmd_list);
1221 INIT_LIST_HEAD(&cmd->state_list);
1222 init_completion(&cmd->t_transport_stop_comp);
1223 init_completion(&cmd->cmd_wait_comp);
1224 spin_lock_init(&cmd->t_state_lock);
1225 kref_init(&cmd->cmd_kref);
1226
1227 cmd->se_tfo = tfo;
1228 cmd->se_sess = se_sess;
1229 cmd->data_length = data_length;
1230 cmd->data_direction = data_direction;
1231 cmd->sam_task_attr = task_attr;
1232 cmd->sense_buffer = sense_buffer;
1233
1234 cmd->state_active = false;
1235 }
1236 EXPORT_SYMBOL(transport_init_se_cmd);
1237
1238 static sense_reason_t
1239 transport_check_alloc_task_attr(struct se_cmd *cmd)
1240 {
1241 struct se_device *dev = cmd->se_dev;
1242
1243 /*
1244 * Check if SAM Task Attribute emulation is enabled for this
1245 * struct se_device storage object
1246 */
1247 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1248 return 0;
1249
1250 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1251 pr_debug("SAM Task Attribute ACA"
1252 " emulation is not supported\n");
1253 return TCM_INVALID_CDB_FIELD;
1254 }
1255
1256 return 0;
1257 }
1258
1259 sense_reason_t
1260 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1261 {
1262 struct se_device *dev = cmd->se_dev;
1263 sense_reason_t ret;
1264
1265 /*
1266 * Ensure that the received CDB is less than the max (252 + 8) bytes
1267 * for VARIABLE_LENGTH_CMD
1268 */
1269 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1270 pr_err("Received SCSI CDB with command_size: %d that"
1271 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1272 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1273 return TCM_INVALID_CDB_FIELD;
1274 }
1275 /*
1276 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1277 * allocate the additional extended CDB buffer now.. Otherwise
1278 * setup the pointer from __t_task_cdb to t_task_cdb.
1279 */
1280 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1281 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1282 GFP_KERNEL);
1283 if (!cmd->t_task_cdb) {
1284 pr_err("Unable to allocate cmd->t_task_cdb"
1285 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1286 scsi_command_size(cdb),
1287 (unsigned long)sizeof(cmd->__t_task_cdb));
1288 return TCM_OUT_OF_RESOURCES;
1289 }
1290 } else
1291 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1292 /*
1293 * Copy the original CDB into cmd->
1294 */
1295 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1296
1297 trace_target_sequencer_start(cmd);
1298
1299 ret = dev->transport->parse_cdb(cmd);
1300 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1301 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1302 cmd->se_tfo->get_fabric_name(),
1303 cmd->se_sess->se_node_acl->initiatorname,
1304 cmd->t_task_cdb[0]);
1305 if (ret)
1306 return ret;
1307
1308 ret = transport_check_alloc_task_attr(cmd);
1309 if (ret)
1310 return ret;
1311
1312 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1313 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1314 return 0;
1315 }
1316 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1317
1318 /*
1319 * Used by fabric module frontends to queue tasks directly.
1320 * May only be used from process context.
1321 */
1322 int transport_handle_cdb_direct(
1323 struct se_cmd *cmd)
1324 {
1325 sense_reason_t ret;
1326
1327 if (!cmd->se_lun) {
1328 dump_stack();
1329 pr_err("cmd->se_lun is NULL\n");
1330 return -EINVAL;
1331 }
1332 if (in_interrupt()) {
1333 dump_stack();
1334 pr_err("transport_generic_handle_cdb cannot be called"
1335 " from interrupt context\n");
1336 return -EINVAL;
1337 }
1338 /*
1339 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1340 * outstanding descriptors are handled correctly during shutdown via
1341 * transport_wait_for_tasks()
1342 *
1343 * Also, we don't take cmd->t_state_lock here as we only expect
1344 * this to be called for initial descriptor submission.
1345 */
1346 cmd->t_state = TRANSPORT_NEW_CMD;
1347 cmd->transport_state |= CMD_T_ACTIVE;
1348
1349 /*
1350 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1351 * so follow TRANSPORT_NEW_CMD processing thread context usage
1352 * and call transport_generic_request_failure() if necessary..
1353 */
1354 ret = transport_generic_new_cmd(cmd);
1355 if (ret)
1356 transport_generic_request_failure(cmd, ret);
1357 return 0;
1358 }
1359 EXPORT_SYMBOL(transport_handle_cdb_direct);
1360
1361 sense_reason_t
1362 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1363 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1364 {
1365 if (!sgl || !sgl_count)
1366 return 0;
1367
1368 /*
1369 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1370 * scatterlists already have been set to follow what the fabric
1371 * passes for the original expected data transfer length.
1372 */
1373 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1374 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1375 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1376 return TCM_INVALID_CDB_FIELD;
1377 }
1378
1379 cmd->t_data_sg = sgl;
1380 cmd->t_data_nents = sgl_count;
1381 cmd->t_bidi_data_sg = sgl_bidi;
1382 cmd->t_bidi_data_nents = sgl_bidi_count;
1383
1384 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1385 return 0;
1386 }
1387
1388 /*
1389 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1390 * se_cmd + use pre-allocated SGL memory.
1391 *
1392 * @se_cmd: command descriptor to submit
1393 * @se_sess: associated se_sess for endpoint
1394 * @cdb: pointer to SCSI CDB
1395 * @sense: pointer to SCSI sense buffer
1396 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1397 * @data_length: fabric expected data transfer length
1398 * @task_addr: SAM task attribute
1399 * @data_dir: DMA data direction
1400 * @flags: flags for command submission from target_sc_flags_tables
1401 * @sgl: struct scatterlist memory for unidirectional mapping
1402 * @sgl_count: scatterlist count for unidirectional mapping
1403 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1404 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1405 * @sgl_prot: struct scatterlist memory protection information
1406 * @sgl_prot_count: scatterlist count for protection information
1407 *
1408 * Task tags are supported if the caller has set @se_cmd->tag.
1409 *
1410 * Returns non zero to signal active I/O shutdown failure. All other
1411 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1412 * but still return zero here.
1413 *
1414 * This may only be called from process context, and also currently
1415 * assumes internal allocation of fabric payload buffer by target-core.
1416 */
1417 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1418 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1419 u32 data_length, int task_attr, int data_dir, int flags,
1420 struct scatterlist *sgl, u32 sgl_count,
1421 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1422 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1423 {
1424 struct se_portal_group *se_tpg;
1425 sense_reason_t rc;
1426 int ret;
1427
1428 se_tpg = se_sess->se_tpg;
1429 BUG_ON(!se_tpg);
1430 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1431 BUG_ON(in_interrupt());
1432 /*
1433 * Initialize se_cmd for target operation. From this point
1434 * exceptions are handled by sending exception status via
1435 * target_core_fabric_ops->queue_status() callback
1436 */
1437 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1438 data_length, data_dir, task_attr, sense);
1439
1440 if (flags & TARGET_SCF_USE_CPUID)
1441 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1442 else
1443 se_cmd->cpuid = WORK_CPU_UNBOUND;
1444
1445 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1446 se_cmd->unknown_data_length = 1;
1447 /*
1448 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1449 * se_sess->sess_cmd_list. A second kref_get here is necessary
1450 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1451 * kref_put() to happen during fabric packet acknowledgement.
1452 */
1453 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1454 if (ret)
1455 return ret;
1456 /*
1457 * Signal bidirectional data payloads to target-core
1458 */
1459 if (flags & TARGET_SCF_BIDI_OP)
1460 se_cmd->se_cmd_flags |= SCF_BIDI;
1461 /*
1462 * Locate se_lun pointer and attach it to struct se_cmd
1463 */
1464 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1465 if (rc) {
1466 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1467 target_put_sess_cmd(se_cmd);
1468 return 0;
1469 }
1470
1471 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1472 if (rc != 0) {
1473 transport_generic_request_failure(se_cmd, rc);
1474 return 0;
1475 }
1476
1477 /*
1478 * Save pointers for SGLs containing protection information,
1479 * if present.
1480 */
1481 if (sgl_prot_count) {
1482 se_cmd->t_prot_sg = sgl_prot;
1483 se_cmd->t_prot_nents = sgl_prot_count;
1484 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1485 }
1486
1487 /*
1488 * When a non zero sgl_count has been passed perform SGL passthrough
1489 * mapping for pre-allocated fabric memory instead of having target
1490 * core perform an internal SGL allocation..
1491 */
1492 if (sgl_count != 0) {
1493 BUG_ON(!sgl);
1494
1495 /*
1496 * A work-around for tcm_loop as some userspace code via
1497 * scsi-generic do not memset their associated read buffers,
1498 * so go ahead and do that here for type non-data CDBs. Also
1499 * note that this is currently guaranteed to be a single SGL
1500 * for this case by target core in target_setup_cmd_from_cdb()
1501 * -> transport_generic_cmd_sequencer().
1502 */
1503 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1504 se_cmd->data_direction == DMA_FROM_DEVICE) {
1505 unsigned char *buf = NULL;
1506
1507 if (sgl)
1508 buf = kmap(sg_page(sgl)) + sgl->offset;
1509
1510 if (buf) {
1511 memset(buf, 0, sgl->length);
1512 kunmap(sg_page(sgl));
1513 }
1514 }
1515
1516 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1517 sgl_bidi, sgl_bidi_count);
1518 if (rc != 0) {
1519 transport_generic_request_failure(se_cmd, rc);
1520 return 0;
1521 }
1522 }
1523
1524 /*
1525 * Check if we need to delay processing because of ALUA
1526 * Active/NonOptimized primary access state..
1527 */
1528 core_alua_check_nonop_delay(se_cmd);
1529
1530 transport_handle_cdb_direct(se_cmd);
1531 return 0;
1532 }
1533 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1534
1535 /*
1536 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1537 *
1538 * @se_cmd: command descriptor to submit
1539 * @se_sess: associated se_sess for endpoint
1540 * @cdb: pointer to SCSI CDB
1541 * @sense: pointer to SCSI sense buffer
1542 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1543 * @data_length: fabric expected data transfer length
1544 * @task_addr: SAM task attribute
1545 * @data_dir: DMA data direction
1546 * @flags: flags for command submission from target_sc_flags_tables
1547 *
1548 * Task tags are supported if the caller has set @se_cmd->tag.
1549 *
1550 * Returns non zero to signal active I/O shutdown failure. All other
1551 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1552 * but still return zero here.
1553 *
1554 * This may only be called from process context, and also currently
1555 * assumes internal allocation of fabric payload buffer by target-core.
1556 *
1557 * It also assumes interal target core SGL memory allocation.
1558 */
1559 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1560 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1561 u32 data_length, int task_attr, int data_dir, int flags)
1562 {
1563 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1564 unpacked_lun, data_length, task_attr, data_dir,
1565 flags, NULL, 0, NULL, 0, NULL, 0);
1566 }
1567 EXPORT_SYMBOL(target_submit_cmd);
1568
1569 static void target_complete_tmr_failure(struct work_struct *work)
1570 {
1571 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1572
1573 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1574 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1575
1576 transport_cmd_check_stop_to_fabric(se_cmd);
1577 }
1578
1579 /**
1580 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1581 * for TMR CDBs
1582 *
1583 * @se_cmd: command descriptor to submit
1584 * @se_sess: associated se_sess for endpoint
1585 * @sense: pointer to SCSI sense buffer
1586 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1587 * @fabric_context: fabric context for TMR req
1588 * @tm_type: Type of TM request
1589 * @gfp: gfp type for caller
1590 * @tag: referenced task tag for TMR_ABORT_TASK
1591 * @flags: submit cmd flags
1592 *
1593 * Callable from all contexts.
1594 **/
1595
1596 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1597 unsigned char *sense, u64 unpacked_lun,
1598 void *fabric_tmr_ptr, unsigned char tm_type,
1599 gfp_t gfp, u64 tag, int flags)
1600 {
1601 struct se_portal_group *se_tpg;
1602 int ret;
1603
1604 se_tpg = se_sess->se_tpg;
1605 BUG_ON(!se_tpg);
1606
1607 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1608 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1609 /*
1610 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1611 * allocation failure.
1612 */
1613 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1614 if (ret < 0)
1615 return -ENOMEM;
1616
1617 if (tm_type == TMR_ABORT_TASK)
1618 se_cmd->se_tmr_req->ref_task_tag = tag;
1619
1620 /* See target_submit_cmd for commentary */
1621 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1622 if (ret) {
1623 core_tmr_release_req(se_cmd->se_tmr_req);
1624 return ret;
1625 }
1626
1627 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1628 if (ret) {
1629 /*
1630 * For callback during failure handling, push this work off
1631 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1632 */
1633 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1634 schedule_work(&se_cmd->work);
1635 return 0;
1636 }
1637 transport_generic_handle_tmr(se_cmd);
1638 return 0;
1639 }
1640 EXPORT_SYMBOL(target_submit_tmr);
1641
1642 /*
1643 * Handle SAM-esque emulation for generic transport request failures.
1644 */
1645 void transport_generic_request_failure(struct se_cmd *cmd,
1646 sense_reason_t sense_reason)
1647 {
1648 int ret = 0, post_ret = 0;
1649
1650 if (transport_check_aborted_status(cmd, 1))
1651 return;
1652
1653 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1654 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1655 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1656 cmd->se_tfo->get_cmd_state(cmd),
1657 cmd->t_state, sense_reason);
1658 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1659 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1660 (cmd->transport_state & CMD_T_STOP) != 0,
1661 (cmd->transport_state & CMD_T_SENT) != 0);
1662
1663 /*
1664 * For SAM Task Attribute emulation for failed struct se_cmd
1665 */
1666 transport_complete_task_attr(cmd);
1667 /*
1668 * Handle special case for COMPARE_AND_WRITE failure, where the
1669 * callback is expected to drop the per device ->caw_sem.
1670 */
1671 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1672 cmd->transport_complete_callback)
1673 cmd->transport_complete_callback(cmd, false, &post_ret);
1674
1675 switch (sense_reason) {
1676 case TCM_NON_EXISTENT_LUN:
1677 case TCM_UNSUPPORTED_SCSI_OPCODE:
1678 case TCM_INVALID_CDB_FIELD:
1679 case TCM_INVALID_PARAMETER_LIST:
1680 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1681 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1682 case TCM_UNKNOWN_MODE_PAGE:
1683 case TCM_WRITE_PROTECTED:
1684 case TCM_ADDRESS_OUT_OF_RANGE:
1685 case TCM_CHECK_CONDITION_ABORT_CMD:
1686 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1687 case TCM_CHECK_CONDITION_NOT_READY:
1688 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1689 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1690 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1691 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1692 case TCM_TOO_MANY_TARGET_DESCS:
1693 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1694 case TCM_TOO_MANY_SEGMENT_DESCS:
1695 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1696 break;
1697 case TCM_OUT_OF_RESOURCES:
1698 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1699 break;
1700 case TCM_RESERVATION_CONFLICT:
1701 /*
1702 * No SENSE Data payload for this case, set SCSI Status
1703 * and queue the response to $FABRIC_MOD.
1704 *
1705 * Uses linux/include/scsi/scsi.h SAM status codes defs
1706 */
1707 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1708 /*
1709 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1710 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1711 * CONFLICT STATUS.
1712 *
1713 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1714 */
1715 if (cmd->se_sess &&
1716 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1717 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1718 cmd->orig_fe_lun, 0x2C,
1719 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1720 }
1721 trace_target_cmd_complete(cmd);
1722 ret = cmd->se_tfo->queue_status(cmd);
1723 if (ret == -EAGAIN || ret == -ENOMEM)
1724 goto queue_full;
1725 goto check_stop;
1726 default:
1727 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1728 cmd->t_task_cdb[0], sense_reason);
1729 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1730 break;
1731 }
1732
1733 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1734 if (ret == -EAGAIN || ret == -ENOMEM)
1735 goto queue_full;
1736
1737 check_stop:
1738 transport_lun_remove_cmd(cmd);
1739 transport_cmd_check_stop_to_fabric(cmd);
1740 return;
1741
1742 queue_full:
1743 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1744 transport_handle_queue_full(cmd, cmd->se_dev);
1745 }
1746 EXPORT_SYMBOL(transport_generic_request_failure);
1747
1748 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1749 {
1750 sense_reason_t ret;
1751
1752 if (!cmd->execute_cmd) {
1753 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1754 goto err;
1755 }
1756 if (do_checks) {
1757 /*
1758 * Check for an existing UNIT ATTENTION condition after
1759 * target_handle_task_attr() has done SAM task attr
1760 * checking, and possibly have already defered execution
1761 * out to target_restart_delayed_cmds() context.
1762 */
1763 ret = target_scsi3_ua_check(cmd);
1764 if (ret)
1765 goto err;
1766
1767 ret = target_alua_state_check(cmd);
1768 if (ret)
1769 goto err;
1770
1771 ret = target_check_reservation(cmd);
1772 if (ret) {
1773 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1774 goto err;
1775 }
1776 }
1777
1778 ret = cmd->execute_cmd(cmd);
1779 if (!ret)
1780 return;
1781 err:
1782 spin_lock_irq(&cmd->t_state_lock);
1783 cmd->transport_state &= ~CMD_T_SENT;
1784 spin_unlock_irq(&cmd->t_state_lock);
1785
1786 transport_generic_request_failure(cmd, ret);
1787 }
1788
1789 static int target_write_prot_action(struct se_cmd *cmd)
1790 {
1791 u32 sectors;
1792 /*
1793 * Perform WRITE_INSERT of PI using software emulation when backend
1794 * device has PI enabled, if the transport has not already generated
1795 * PI using hardware WRITE_INSERT offload.
1796 */
1797 switch (cmd->prot_op) {
1798 case TARGET_PROT_DOUT_INSERT:
1799 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1800 sbc_dif_generate(cmd);
1801 break;
1802 case TARGET_PROT_DOUT_STRIP:
1803 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1804 break;
1805
1806 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1807 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1808 sectors, 0, cmd->t_prot_sg, 0);
1809 if (unlikely(cmd->pi_err)) {
1810 spin_lock_irq(&cmd->t_state_lock);
1811 cmd->transport_state &= ~CMD_T_SENT;
1812 spin_unlock_irq(&cmd->t_state_lock);
1813 transport_generic_request_failure(cmd, cmd->pi_err);
1814 return -1;
1815 }
1816 break;
1817 default:
1818 break;
1819 }
1820
1821 return 0;
1822 }
1823
1824 static bool target_handle_task_attr(struct se_cmd *cmd)
1825 {
1826 struct se_device *dev = cmd->se_dev;
1827
1828 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1829 return false;
1830
1831 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1832
1833 /*
1834 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1835 * to allow the passed struct se_cmd list of tasks to the front of the list.
1836 */
1837 switch (cmd->sam_task_attr) {
1838 case TCM_HEAD_TAG:
1839 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1840 cmd->t_task_cdb[0]);
1841 return false;
1842 case TCM_ORDERED_TAG:
1843 atomic_inc_mb(&dev->dev_ordered_sync);
1844
1845 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1846 cmd->t_task_cdb[0]);
1847
1848 /*
1849 * Execute an ORDERED command if no other older commands
1850 * exist that need to be completed first.
1851 */
1852 if (!atomic_read(&dev->simple_cmds))
1853 return false;
1854 break;
1855 default:
1856 /*
1857 * For SIMPLE and UNTAGGED Task Attribute commands
1858 */
1859 atomic_inc_mb(&dev->simple_cmds);
1860 break;
1861 }
1862
1863 if (atomic_read(&dev->dev_ordered_sync) == 0)
1864 return false;
1865
1866 spin_lock(&dev->delayed_cmd_lock);
1867 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1868 spin_unlock(&dev->delayed_cmd_lock);
1869
1870 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1871 cmd->t_task_cdb[0], cmd->sam_task_attr);
1872 return true;
1873 }
1874
1875 static int __transport_check_aborted_status(struct se_cmd *, int);
1876
1877 void target_execute_cmd(struct se_cmd *cmd)
1878 {
1879 /*
1880 * Determine if frontend context caller is requesting the stopping of
1881 * this command for frontend exceptions.
1882 *
1883 * If the received CDB has aleady been aborted stop processing it here.
1884 */
1885 spin_lock_irq(&cmd->t_state_lock);
1886 if (__transport_check_aborted_status(cmd, 1)) {
1887 spin_unlock_irq(&cmd->t_state_lock);
1888 return;
1889 }
1890 if (cmd->transport_state & CMD_T_STOP) {
1891 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1892 __func__, __LINE__, cmd->tag);
1893
1894 spin_unlock_irq(&cmd->t_state_lock);
1895 complete_all(&cmd->t_transport_stop_comp);
1896 return;
1897 }
1898
1899 cmd->t_state = TRANSPORT_PROCESSING;
1900 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1901 spin_unlock_irq(&cmd->t_state_lock);
1902
1903 if (target_write_prot_action(cmd))
1904 return;
1905
1906 if (target_handle_task_attr(cmd)) {
1907 spin_lock_irq(&cmd->t_state_lock);
1908 cmd->transport_state &= ~CMD_T_SENT;
1909 spin_unlock_irq(&cmd->t_state_lock);
1910 return;
1911 }
1912
1913 __target_execute_cmd(cmd, true);
1914 }
1915 EXPORT_SYMBOL(target_execute_cmd);
1916
1917 /*
1918 * Process all commands up to the last received ORDERED task attribute which
1919 * requires another blocking boundary
1920 */
1921 static void target_restart_delayed_cmds(struct se_device *dev)
1922 {
1923 for (;;) {
1924 struct se_cmd *cmd;
1925
1926 spin_lock(&dev->delayed_cmd_lock);
1927 if (list_empty(&dev->delayed_cmd_list)) {
1928 spin_unlock(&dev->delayed_cmd_lock);
1929 break;
1930 }
1931
1932 cmd = list_entry(dev->delayed_cmd_list.next,
1933 struct se_cmd, se_delayed_node);
1934 list_del(&cmd->se_delayed_node);
1935 spin_unlock(&dev->delayed_cmd_lock);
1936
1937 __target_execute_cmd(cmd, true);
1938
1939 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1940 break;
1941 }
1942 }
1943
1944 /*
1945 * Called from I/O completion to determine which dormant/delayed
1946 * and ordered cmds need to have their tasks added to the execution queue.
1947 */
1948 static void transport_complete_task_attr(struct se_cmd *cmd)
1949 {
1950 struct se_device *dev = cmd->se_dev;
1951
1952 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1953 return;
1954
1955 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1956 goto restart;
1957
1958 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1959 atomic_dec_mb(&dev->simple_cmds);
1960 dev->dev_cur_ordered_id++;
1961 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1962 dev->dev_cur_ordered_id++;
1963 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1964 dev->dev_cur_ordered_id);
1965 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1966 atomic_dec_mb(&dev->dev_ordered_sync);
1967
1968 dev->dev_cur_ordered_id++;
1969 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1970 dev->dev_cur_ordered_id);
1971 }
1972 restart:
1973 target_restart_delayed_cmds(dev);
1974 }
1975
1976 static void transport_complete_qf(struct se_cmd *cmd)
1977 {
1978 int ret = 0;
1979
1980 transport_complete_task_attr(cmd);
1981
1982 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1983 trace_target_cmd_complete(cmd);
1984 ret = cmd->se_tfo->queue_status(cmd);
1985 goto out;
1986 }
1987
1988 switch (cmd->data_direction) {
1989 case DMA_FROM_DEVICE:
1990 if (cmd->scsi_status)
1991 goto queue_status;
1992
1993 trace_target_cmd_complete(cmd);
1994 ret = cmd->se_tfo->queue_data_in(cmd);
1995 break;
1996 case DMA_TO_DEVICE:
1997 if (cmd->se_cmd_flags & SCF_BIDI) {
1998 ret = cmd->se_tfo->queue_data_in(cmd);
1999 break;
2000 }
2001 /* Fall through for DMA_TO_DEVICE */
2002 case DMA_NONE:
2003 queue_status:
2004 trace_target_cmd_complete(cmd);
2005 ret = cmd->se_tfo->queue_status(cmd);
2006 break;
2007 default:
2008 break;
2009 }
2010
2011 out:
2012 if (ret < 0) {
2013 transport_handle_queue_full(cmd, cmd->se_dev);
2014 return;
2015 }
2016 transport_lun_remove_cmd(cmd);
2017 transport_cmd_check_stop_to_fabric(cmd);
2018 }
2019
2020 static void transport_handle_queue_full(
2021 struct se_cmd *cmd,
2022 struct se_device *dev)
2023 {
2024 spin_lock_irq(&dev->qf_cmd_lock);
2025 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2026 atomic_inc_mb(&dev->dev_qf_count);
2027 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2028
2029 schedule_work(&cmd->se_dev->qf_work_queue);
2030 }
2031
2032 static bool target_read_prot_action(struct se_cmd *cmd)
2033 {
2034 switch (cmd->prot_op) {
2035 case TARGET_PROT_DIN_STRIP:
2036 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2037 u32 sectors = cmd->data_length >>
2038 ilog2(cmd->se_dev->dev_attrib.block_size);
2039
2040 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2041 sectors, 0, cmd->t_prot_sg,
2042 0);
2043 if (cmd->pi_err)
2044 return true;
2045 }
2046 break;
2047 case TARGET_PROT_DIN_INSERT:
2048 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2049 break;
2050
2051 sbc_dif_generate(cmd);
2052 break;
2053 default:
2054 break;
2055 }
2056
2057 return false;
2058 }
2059
2060 static void target_complete_ok_work(struct work_struct *work)
2061 {
2062 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2063 int ret;
2064
2065 /*
2066 * Check if we need to move delayed/dormant tasks from cmds on the
2067 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2068 * Attribute.
2069 */
2070 transport_complete_task_attr(cmd);
2071
2072 /*
2073 * Check to schedule QUEUE_FULL work, or execute an existing
2074 * cmd->transport_qf_callback()
2075 */
2076 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2077 schedule_work(&cmd->se_dev->qf_work_queue);
2078
2079 /*
2080 * Check if we need to send a sense buffer from
2081 * the struct se_cmd in question.
2082 */
2083 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2084 WARN_ON(!cmd->scsi_status);
2085 ret = transport_send_check_condition_and_sense(
2086 cmd, 0, 1);
2087 if (ret == -EAGAIN || ret == -ENOMEM)
2088 goto queue_full;
2089
2090 transport_lun_remove_cmd(cmd);
2091 transport_cmd_check_stop_to_fabric(cmd);
2092 return;
2093 }
2094 /*
2095 * Check for a callback, used by amongst other things
2096 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2097 */
2098 if (cmd->transport_complete_callback) {
2099 sense_reason_t rc;
2100 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2101 bool zero_dl = !(cmd->data_length);
2102 int post_ret = 0;
2103
2104 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2105 if (!rc && !post_ret) {
2106 if (caw && zero_dl)
2107 goto queue_rsp;
2108
2109 return;
2110 } else if (rc) {
2111 ret = transport_send_check_condition_and_sense(cmd,
2112 rc, 0);
2113 if (ret == -EAGAIN || ret == -ENOMEM)
2114 goto queue_full;
2115
2116 transport_lun_remove_cmd(cmd);
2117 transport_cmd_check_stop_to_fabric(cmd);
2118 return;
2119 }
2120 }
2121
2122 queue_rsp:
2123 switch (cmd->data_direction) {
2124 case DMA_FROM_DEVICE:
2125 if (cmd->scsi_status)
2126 goto queue_status;
2127
2128 atomic_long_add(cmd->data_length,
2129 &cmd->se_lun->lun_stats.tx_data_octets);
2130 /*
2131 * Perform READ_STRIP of PI using software emulation when
2132 * backend had PI enabled, if the transport will not be
2133 * performing hardware READ_STRIP offload.
2134 */
2135 if (target_read_prot_action(cmd)) {
2136 ret = transport_send_check_condition_and_sense(cmd,
2137 cmd->pi_err, 0);
2138 if (ret == -EAGAIN || ret == -ENOMEM)
2139 goto queue_full;
2140
2141 transport_lun_remove_cmd(cmd);
2142 transport_cmd_check_stop_to_fabric(cmd);
2143 return;
2144 }
2145
2146 trace_target_cmd_complete(cmd);
2147 ret = cmd->se_tfo->queue_data_in(cmd);
2148 if (ret == -EAGAIN || ret == -ENOMEM)
2149 goto queue_full;
2150 break;
2151 case DMA_TO_DEVICE:
2152 atomic_long_add(cmd->data_length,
2153 &cmd->se_lun->lun_stats.rx_data_octets);
2154 /*
2155 * Check if we need to send READ payload for BIDI-COMMAND
2156 */
2157 if (cmd->se_cmd_flags & SCF_BIDI) {
2158 atomic_long_add(cmd->data_length,
2159 &cmd->se_lun->lun_stats.tx_data_octets);
2160 ret = cmd->se_tfo->queue_data_in(cmd);
2161 if (ret == -EAGAIN || ret == -ENOMEM)
2162 goto queue_full;
2163 break;
2164 }
2165 /* Fall through for DMA_TO_DEVICE */
2166 case DMA_NONE:
2167 queue_status:
2168 trace_target_cmd_complete(cmd);
2169 ret = cmd->se_tfo->queue_status(cmd);
2170 if (ret == -EAGAIN || ret == -ENOMEM)
2171 goto queue_full;
2172 break;
2173 default:
2174 break;
2175 }
2176
2177 transport_lun_remove_cmd(cmd);
2178 transport_cmd_check_stop_to_fabric(cmd);
2179 return;
2180
2181 queue_full:
2182 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2183 " data_direction: %d\n", cmd, cmd->data_direction);
2184 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2185 transport_handle_queue_full(cmd, cmd->se_dev);
2186 }
2187
2188 void target_free_sgl(struct scatterlist *sgl, int nents)
2189 {
2190 struct scatterlist *sg;
2191 int count;
2192
2193 for_each_sg(sgl, sg, nents, count)
2194 __free_page(sg_page(sg));
2195
2196 kfree(sgl);
2197 }
2198 EXPORT_SYMBOL(target_free_sgl);
2199
2200 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2201 {
2202 /*
2203 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2204 * emulation, and free + reset pointers if necessary..
2205 */
2206 if (!cmd->t_data_sg_orig)
2207 return;
2208
2209 kfree(cmd->t_data_sg);
2210 cmd->t_data_sg = cmd->t_data_sg_orig;
2211 cmd->t_data_sg_orig = NULL;
2212 cmd->t_data_nents = cmd->t_data_nents_orig;
2213 cmd->t_data_nents_orig = 0;
2214 }
2215
2216 static inline void transport_free_pages(struct se_cmd *cmd)
2217 {
2218 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2219 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2220 cmd->t_prot_sg = NULL;
2221 cmd->t_prot_nents = 0;
2222 }
2223
2224 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2225 /*
2226 * Release special case READ buffer payload required for
2227 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2228 */
2229 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2230 target_free_sgl(cmd->t_bidi_data_sg,
2231 cmd->t_bidi_data_nents);
2232 cmd->t_bidi_data_sg = NULL;
2233 cmd->t_bidi_data_nents = 0;
2234 }
2235 transport_reset_sgl_orig(cmd);
2236 return;
2237 }
2238 transport_reset_sgl_orig(cmd);
2239
2240 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2241 cmd->t_data_sg = NULL;
2242 cmd->t_data_nents = 0;
2243
2244 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2245 cmd->t_bidi_data_sg = NULL;
2246 cmd->t_bidi_data_nents = 0;
2247 }
2248
2249 /**
2250 * transport_put_cmd - release a reference to a command
2251 * @cmd: command to release
2252 *
2253 * This routine releases our reference to the command and frees it if possible.
2254 */
2255 static int transport_put_cmd(struct se_cmd *cmd)
2256 {
2257 BUG_ON(!cmd->se_tfo);
2258 /*
2259 * If this cmd has been setup with target_get_sess_cmd(), drop
2260 * the kref and call ->release_cmd() in kref callback.
2261 */
2262 return target_put_sess_cmd(cmd);
2263 }
2264
2265 void *transport_kmap_data_sg(struct se_cmd *cmd)
2266 {
2267 struct scatterlist *sg = cmd->t_data_sg;
2268 struct page **pages;
2269 int i;
2270
2271 /*
2272 * We need to take into account a possible offset here for fabrics like
2273 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2274 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2275 */
2276 if (!cmd->t_data_nents)
2277 return NULL;
2278
2279 BUG_ON(!sg);
2280 if (cmd->t_data_nents == 1)
2281 return kmap(sg_page(sg)) + sg->offset;
2282
2283 /* >1 page. use vmap */
2284 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2285 if (!pages)
2286 return NULL;
2287
2288 /* convert sg[] to pages[] */
2289 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2290 pages[i] = sg_page(sg);
2291 }
2292
2293 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2294 kfree(pages);
2295 if (!cmd->t_data_vmap)
2296 return NULL;
2297
2298 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2299 }
2300 EXPORT_SYMBOL(transport_kmap_data_sg);
2301
2302 void transport_kunmap_data_sg(struct se_cmd *cmd)
2303 {
2304 if (!cmd->t_data_nents) {
2305 return;
2306 } else if (cmd->t_data_nents == 1) {
2307 kunmap(sg_page(cmd->t_data_sg));
2308 return;
2309 }
2310
2311 vunmap(cmd->t_data_vmap);
2312 cmd->t_data_vmap = NULL;
2313 }
2314 EXPORT_SYMBOL(transport_kunmap_data_sg);
2315
2316 int
2317 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2318 bool zero_page, bool chainable)
2319 {
2320 struct scatterlist *sg;
2321 struct page *page;
2322 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2323 unsigned int nalloc, nent;
2324 int i = 0;
2325
2326 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2327 if (chainable)
2328 nalloc++;
2329 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2330 if (!sg)
2331 return -ENOMEM;
2332
2333 sg_init_table(sg, nalloc);
2334
2335 while (length) {
2336 u32 page_len = min_t(u32, length, PAGE_SIZE);
2337 page = alloc_page(GFP_KERNEL | zero_flag);
2338 if (!page)
2339 goto out;
2340
2341 sg_set_page(&sg[i], page, page_len, 0);
2342 length -= page_len;
2343 i++;
2344 }
2345 *sgl = sg;
2346 *nents = nent;
2347 return 0;
2348
2349 out:
2350 while (i > 0) {
2351 i--;
2352 __free_page(sg_page(&sg[i]));
2353 }
2354 kfree(sg);
2355 return -ENOMEM;
2356 }
2357 EXPORT_SYMBOL(target_alloc_sgl);
2358
2359 /*
2360 * Allocate any required resources to execute the command. For writes we
2361 * might not have the payload yet, so notify the fabric via a call to
2362 * ->write_pending instead. Otherwise place it on the execution queue.
2363 */
2364 sense_reason_t
2365 transport_generic_new_cmd(struct se_cmd *cmd)
2366 {
2367 unsigned long flags;
2368 int ret = 0;
2369 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2370
2371 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2372 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2373 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2374 cmd->prot_length, true, false);
2375 if (ret < 0)
2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2377 }
2378
2379 /*
2380 * Determine is the TCM fabric module has already allocated physical
2381 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2382 * beforehand.
2383 */
2384 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2385 cmd->data_length) {
2386
2387 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2388 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2389 u32 bidi_length;
2390
2391 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2392 bidi_length = cmd->t_task_nolb *
2393 cmd->se_dev->dev_attrib.block_size;
2394 else
2395 bidi_length = cmd->data_length;
2396
2397 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2398 &cmd->t_bidi_data_nents,
2399 bidi_length, zero_flag, false);
2400 if (ret < 0)
2401 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2402 }
2403
2404 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2405 cmd->data_length, zero_flag, false);
2406 if (ret < 0)
2407 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2408 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2409 cmd->data_length) {
2410 /*
2411 * Special case for COMPARE_AND_WRITE with fabrics
2412 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2413 */
2414 u32 caw_length = cmd->t_task_nolb *
2415 cmd->se_dev->dev_attrib.block_size;
2416
2417 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2418 &cmd->t_bidi_data_nents,
2419 caw_length, zero_flag, false);
2420 if (ret < 0)
2421 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2422 }
2423 /*
2424 * If this command is not a write we can execute it right here,
2425 * for write buffers we need to notify the fabric driver first
2426 * and let it call back once the write buffers are ready.
2427 */
2428 target_add_to_state_list(cmd);
2429 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2430 target_execute_cmd(cmd);
2431 return 0;
2432 }
2433
2434 spin_lock_irqsave(&cmd->t_state_lock, flags);
2435 cmd->t_state = TRANSPORT_WRITE_PENDING;
2436 /*
2437 * Determine if frontend context caller is requesting the stopping of
2438 * this command for frontend exceptions.
2439 */
2440 if (cmd->transport_state & CMD_T_STOP) {
2441 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2442 __func__, __LINE__, cmd->tag);
2443
2444 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2445
2446 complete_all(&cmd->t_transport_stop_comp);
2447 return 0;
2448 }
2449 cmd->transport_state &= ~CMD_T_ACTIVE;
2450 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2451
2452 ret = cmd->se_tfo->write_pending(cmd);
2453 if (ret == -EAGAIN || ret == -ENOMEM)
2454 goto queue_full;
2455
2456 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2457 WARN_ON(ret);
2458
2459 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2460
2461 queue_full:
2462 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2463 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2464 transport_handle_queue_full(cmd, cmd->se_dev);
2465 return 0;
2466 }
2467 EXPORT_SYMBOL(transport_generic_new_cmd);
2468
2469 static void transport_write_pending_qf(struct se_cmd *cmd)
2470 {
2471 int ret;
2472
2473 ret = cmd->se_tfo->write_pending(cmd);
2474 if (ret == -EAGAIN || ret == -ENOMEM) {
2475 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2476 cmd);
2477 transport_handle_queue_full(cmd, cmd->se_dev);
2478 }
2479 }
2480
2481 static bool
2482 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2483 unsigned long *flags);
2484
2485 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2486 {
2487 unsigned long flags;
2488
2489 spin_lock_irqsave(&cmd->t_state_lock, flags);
2490 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2491 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2492 }
2493
2494 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2495 {
2496 int ret = 0;
2497 bool aborted = false, tas = false;
2498
2499 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2500 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2501 target_wait_free_cmd(cmd, &aborted, &tas);
2502
2503 if (!aborted || tas)
2504 ret = transport_put_cmd(cmd);
2505 } else {
2506 if (wait_for_tasks)
2507 target_wait_free_cmd(cmd, &aborted, &tas);
2508 /*
2509 * Handle WRITE failure case where transport_generic_new_cmd()
2510 * has already added se_cmd to state_list, but fabric has
2511 * failed command before I/O submission.
2512 */
2513 if (cmd->state_active)
2514 target_remove_from_state_list(cmd);
2515
2516 if (cmd->se_lun)
2517 transport_lun_remove_cmd(cmd);
2518
2519 if (!aborted || tas)
2520 ret = transport_put_cmd(cmd);
2521 }
2522 /*
2523 * If the task has been internally aborted due to TMR ABORT_TASK
2524 * or LUN_RESET, target_core_tmr.c is responsible for performing
2525 * the remaining calls to target_put_sess_cmd(), and not the
2526 * callers of this function.
2527 */
2528 if (aborted) {
2529 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2530 wait_for_completion(&cmd->cmd_wait_comp);
2531 cmd->se_tfo->release_cmd(cmd);
2532 ret = 1;
2533 }
2534 return ret;
2535 }
2536 EXPORT_SYMBOL(transport_generic_free_cmd);
2537
2538 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2539 * @se_cmd: command descriptor to add
2540 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2541 */
2542 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2543 {
2544 struct se_session *se_sess = se_cmd->se_sess;
2545 unsigned long flags;
2546 int ret = 0;
2547
2548 /*
2549 * Add a second kref if the fabric caller is expecting to handle
2550 * fabric acknowledgement that requires two target_put_sess_cmd()
2551 * invocations before se_cmd descriptor release.
2552 */
2553 if (ack_kref) {
2554 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2555 return -EINVAL;
2556
2557 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2558 }
2559
2560 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2561 if (se_sess->sess_tearing_down) {
2562 ret = -ESHUTDOWN;
2563 goto out;
2564 }
2565 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2566 out:
2567 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2568
2569 if (ret && ack_kref)
2570 target_put_sess_cmd(se_cmd);
2571
2572 return ret;
2573 }
2574 EXPORT_SYMBOL(target_get_sess_cmd);
2575
2576 static void target_free_cmd_mem(struct se_cmd *cmd)
2577 {
2578 transport_free_pages(cmd);
2579
2580 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2581 core_tmr_release_req(cmd->se_tmr_req);
2582 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2583 kfree(cmd->t_task_cdb);
2584 }
2585
2586 static void target_release_cmd_kref(struct kref *kref)
2587 {
2588 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2589 struct se_session *se_sess = se_cmd->se_sess;
2590 unsigned long flags;
2591 bool fabric_stop;
2592
2593 if (se_sess) {
2594 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2595
2596 spin_lock(&se_cmd->t_state_lock);
2597 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2598 (se_cmd->transport_state & CMD_T_ABORTED);
2599 spin_unlock(&se_cmd->t_state_lock);
2600
2601 if (se_cmd->cmd_wait_set || fabric_stop) {
2602 list_del_init(&se_cmd->se_cmd_list);
2603 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2604 target_free_cmd_mem(se_cmd);
2605 complete(&se_cmd->cmd_wait_comp);
2606 return;
2607 }
2608 list_del_init(&se_cmd->se_cmd_list);
2609 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2610 }
2611
2612 target_free_cmd_mem(se_cmd);
2613 se_cmd->se_tfo->release_cmd(se_cmd);
2614 }
2615
2616 /**
2617 * target_put_sess_cmd - decrease the command reference count
2618 * @se_cmd: command to drop a reference from
2619 *
2620 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2621 * refcount to drop to zero. Returns zero otherwise.
2622 */
2623 int target_put_sess_cmd(struct se_cmd *se_cmd)
2624 {
2625 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2626 }
2627 EXPORT_SYMBOL(target_put_sess_cmd);
2628
2629 /* target_sess_cmd_list_set_waiting - Flag all commands in
2630 * sess_cmd_list to complete cmd_wait_comp. Set
2631 * sess_tearing_down so no more commands are queued.
2632 * @se_sess: session to flag
2633 */
2634 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2635 {
2636 struct se_cmd *se_cmd, *tmp_cmd;
2637 unsigned long flags;
2638 int rc;
2639
2640 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2641 if (se_sess->sess_tearing_down) {
2642 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2643 return;
2644 }
2645 se_sess->sess_tearing_down = 1;
2646 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2647
2648 list_for_each_entry_safe(se_cmd, tmp_cmd,
2649 &se_sess->sess_wait_list, se_cmd_list) {
2650 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2651 if (rc) {
2652 se_cmd->cmd_wait_set = 1;
2653 spin_lock(&se_cmd->t_state_lock);
2654 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2655 spin_unlock(&se_cmd->t_state_lock);
2656 } else
2657 list_del_init(&se_cmd->se_cmd_list);
2658 }
2659
2660 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2661 }
2662 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2663
2664 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2665 * @se_sess: session to wait for active I/O
2666 */
2667 void target_wait_for_sess_cmds(struct se_session *se_sess)
2668 {
2669 struct se_cmd *se_cmd, *tmp_cmd;
2670 unsigned long flags;
2671 bool tas;
2672
2673 list_for_each_entry_safe(se_cmd, tmp_cmd,
2674 &se_sess->sess_wait_list, se_cmd_list) {
2675 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2676 " %d\n", se_cmd, se_cmd->t_state,
2677 se_cmd->se_tfo->get_cmd_state(se_cmd));
2678
2679 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2680 tas = (se_cmd->transport_state & CMD_T_TAS);
2681 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2682
2683 if (!target_put_sess_cmd(se_cmd)) {
2684 if (tas)
2685 target_put_sess_cmd(se_cmd);
2686 }
2687
2688 wait_for_completion(&se_cmd->cmd_wait_comp);
2689 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2690 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2691 se_cmd->se_tfo->get_cmd_state(se_cmd));
2692
2693 se_cmd->se_tfo->release_cmd(se_cmd);
2694 }
2695
2696 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2697 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2698 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2699
2700 }
2701 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2702
2703 static void target_lun_confirm(struct percpu_ref *ref)
2704 {
2705 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2706
2707 complete(&lun->lun_ref_comp);
2708 }
2709
2710 void transport_clear_lun_ref(struct se_lun *lun)
2711 {
2712 /*
2713 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2714 * the initial reference and schedule confirm kill to be
2715 * executed after one full RCU grace period has completed.
2716 */
2717 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2718 /*
2719 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2720 * to call target_lun_confirm after lun->lun_ref has been marked
2721 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2722 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2723 * fails for all new incoming I/O.
2724 */
2725 wait_for_completion(&lun->lun_ref_comp);
2726 /*
2727 * The second completion waits for percpu_ref_put_many() to
2728 * invoke ->release() after lun->lun_ref has switched to
2729 * atomic_t mode, and lun->lun_ref.count has reached zero.
2730 *
2731 * At this point all target-core lun->lun_ref references have
2732 * been dropped via transport_lun_remove_cmd(), and it's safe
2733 * to proceed with the remaining LUN shutdown.
2734 */
2735 wait_for_completion(&lun->lun_shutdown_comp);
2736 }
2737
2738 static bool
2739 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2740 bool *aborted, bool *tas, unsigned long *flags)
2741 __releases(&cmd->t_state_lock)
2742 __acquires(&cmd->t_state_lock)
2743 {
2744
2745 assert_spin_locked(&cmd->t_state_lock);
2746 WARN_ON_ONCE(!irqs_disabled());
2747
2748 if (fabric_stop)
2749 cmd->transport_state |= CMD_T_FABRIC_STOP;
2750
2751 if (cmd->transport_state & CMD_T_ABORTED)
2752 *aborted = true;
2753
2754 if (cmd->transport_state & CMD_T_TAS)
2755 *tas = true;
2756
2757 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2758 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2759 return false;
2760
2761 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2762 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2763 return false;
2764
2765 if (!(cmd->transport_state & CMD_T_ACTIVE))
2766 return false;
2767
2768 if (fabric_stop && *aborted)
2769 return false;
2770
2771 cmd->transport_state |= CMD_T_STOP;
2772
2773 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2774 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2775 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2776
2777 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2778
2779 wait_for_completion(&cmd->t_transport_stop_comp);
2780
2781 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2782 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2783
2784 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2785 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2786
2787 return true;
2788 }
2789
2790 /**
2791 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2792 * @cmd: command to wait on
2793 */
2794 bool transport_wait_for_tasks(struct se_cmd *cmd)
2795 {
2796 unsigned long flags;
2797 bool ret, aborted = false, tas = false;
2798
2799 spin_lock_irqsave(&cmd->t_state_lock, flags);
2800 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2801 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2802
2803 return ret;
2804 }
2805 EXPORT_SYMBOL(transport_wait_for_tasks);
2806
2807 struct sense_info {
2808 u8 key;
2809 u8 asc;
2810 u8 ascq;
2811 bool add_sector_info;
2812 };
2813
2814 static const struct sense_info sense_info_table[] = {
2815 [TCM_NO_SENSE] = {
2816 .key = NOT_READY
2817 },
2818 [TCM_NON_EXISTENT_LUN] = {
2819 .key = ILLEGAL_REQUEST,
2820 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2821 },
2822 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2823 .key = ILLEGAL_REQUEST,
2824 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2825 },
2826 [TCM_SECTOR_COUNT_TOO_MANY] = {
2827 .key = ILLEGAL_REQUEST,
2828 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2829 },
2830 [TCM_UNKNOWN_MODE_PAGE] = {
2831 .key = ILLEGAL_REQUEST,
2832 .asc = 0x24, /* INVALID FIELD IN CDB */
2833 },
2834 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2835 .key = ABORTED_COMMAND,
2836 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2837 .ascq = 0x03,
2838 },
2839 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2840 .key = ABORTED_COMMAND,
2841 .asc = 0x0c, /* WRITE ERROR */
2842 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2843 },
2844 [TCM_INVALID_CDB_FIELD] = {
2845 .key = ILLEGAL_REQUEST,
2846 .asc = 0x24, /* INVALID FIELD IN CDB */
2847 },
2848 [TCM_INVALID_PARAMETER_LIST] = {
2849 .key = ILLEGAL_REQUEST,
2850 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2851 },
2852 [TCM_TOO_MANY_TARGET_DESCS] = {
2853 .key = ILLEGAL_REQUEST,
2854 .asc = 0x26,
2855 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2856 },
2857 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2858 .key = ILLEGAL_REQUEST,
2859 .asc = 0x26,
2860 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2861 },
2862 [TCM_TOO_MANY_SEGMENT_DESCS] = {
2863 .key = ILLEGAL_REQUEST,
2864 .asc = 0x26,
2865 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2866 },
2867 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2868 .key = ILLEGAL_REQUEST,
2869 .asc = 0x26,
2870 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2871 },
2872 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2873 .key = ILLEGAL_REQUEST,
2874 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2875 },
2876 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2877 .key = ILLEGAL_REQUEST,
2878 .asc = 0x0c, /* WRITE ERROR */
2879 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2880 },
2881 [TCM_SERVICE_CRC_ERROR] = {
2882 .key = ABORTED_COMMAND,
2883 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2884 .ascq = 0x05, /* N/A */
2885 },
2886 [TCM_SNACK_REJECTED] = {
2887 .key = ABORTED_COMMAND,
2888 .asc = 0x11, /* READ ERROR */
2889 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2890 },
2891 [TCM_WRITE_PROTECTED] = {
2892 .key = DATA_PROTECT,
2893 .asc = 0x27, /* WRITE PROTECTED */
2894 },
2895 [TCM_ADDRESS_OUT_OF_RANGE] = {
2896 .key = ILLEGAL_REQUEST,
2897 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2898 },
2899 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2900 .key = UNIT_ATTENTION,
2901 },
2902 [TCM_CHECK_CONDITION_NOT_READY] = {
2903 .key = NOT_READY,
2904 },
2905 [TCM_MISCOMPARE_VERIFY] = {
2906 .key = MISCOMPARE,
2907 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2908 .ascq = 0x00,
2909 },
2910 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2911 .key = ABORTED_COMMAND,
2912 .asc = 0x10,
2913 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2914 .add_sector_info = true,
2915 },
2916 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2917 .key = ABORTED_COMMAND,
2918 .asc = 0x10,
2919 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2920 .add_sector_info = true,
2921 },
2922 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2923 .key = ABORTED_COMMAND,
2924 .asc = 0x10,
2925 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2926 .add_sector_info = true,
2927 },
2928 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2929 .key = COPY_ABORTED,
2930 .asc = 0x0d,
2931 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2932
2933 },
2934 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2935 /*
2936 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2937 * Solaris initiators. Returning NOT READY instead means the
2938 * operations will be retried a finite number of times and we
2939 * can survive intermittent errors.
2940 */
2941 .key = NOT_READY,
2942 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2943 },
2944 };
2945
2946 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2947 {
2948 const struct sense_info *si;
2949 u8 *buffer = cmd->sense_buffer;
2950 int r = (__force int)reason;
2951 u8 asc, ascq;
2952 bool desc_format = target_sense_desc_format(cmd->se_dev);
2953
2954 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2955 si = &sense_info_table[r];
2956 else
2957 si = &sense_info_table[(__force int)
2958 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2959
2960 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2961 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2962 WARN_ON_ONCE(asc == 0);
2963 } else if (si->asc == 0) {
2964 WARN_ON_ONCE(cmd->scsi_asc == 0);
2965 asc = cmd->scsi_asc;
2966 ascq = cmd->scsi_ascq;
2967 } else {
2968 asc = si->asc;
2969 ascq = si->ascq;
2970 }
2971
2972 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2973 if (si->add_sector_info)
2974 return scsi_set_sense_information(buffer,
2975 cmd->scsi_sense_length,
2976 cmd->bad_sector);
2977
2978 return 0;
2979 }
2980
2981 int
2982 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2983 sense_reason_t reason, int from_transport)
2984 {
2985 unsigned long flags;
2986
2987 spin_lock_irqsave(&cmd->t_state_lock, flags);
2988 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2989 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2990 return 0;
2991 }
2992 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2993 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2994
2995 if (!from_transport) {
2996 int rc;
2997
2998 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2999 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3000 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3001 rc = translate_sense_reason(cmd, reason);
3002 if (rc)
3003 return rc;
3004 }
3005
3006 trace_target_cmd_complete(cmd);
3007 return cmd->se_tfo->queue_status(cmd);
3008 }
3009 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3010
3011 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3012 __releases(&cmd->t_state_lock)
3013 __acquires(&cmd->t_state_lock)
3014 {
3015 assert_spin_locked(&cmd->t_state_lock);
3016 WARN_ON_ONCE(!irqs_disabled());
3017
3018 if (!(cmd->transport_state & CMD_T_ABORTED))
3019 return 0;
3020 /*
3021 * If cmd has been aborted but either no status is to be sent or it has
3022 * already been sent, just return
3023 */
3024 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3025 if (send_status)
3026 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3027 return 1;
3028 }
3029
3030 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3031 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3032
3033 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3034 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3035 trace_target_cmd_complete(cmd);
3036
3037 spin_unlock_irq(&cmd->t_state_lock);
3038 cmd->se_tfo->queue_status(cmd);
3039 spin_lock_irq(&cmd->t_state_lock);
3040
3041 return 1;
3042 }
3043
3044 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3045 {
3046 int ret;
3047
3048 spin_lock_irq(&cmd->t_state_lock);
3049 ret = __transport_check_aborted_status(cmd, send_status);
3050 spin_unlock_irq(&cmd->t_state_lock);
3051
3052 return ret;
3053 }
3054 EXPORT_SYMBOL(transport_check_aborted_status);
3055
3056 void transport_send_task_abort(struct se_cmd *cmd)
3057 {
3058 unsigned long flags;
3059
3060 spin_lock_irqsave(&cmd->t_state_lock, flags);
3061 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3062 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3063 return;
3064 }
3065 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3066
3067 /*
3068 * If there are still expected incoming fabric WRITEs, we wait
3069 * until until they have completed before sending a TASK_ABORTED
3070 * response. This response with TASK_ABORTED status will be
3071 * queued back to fabric module by transport_check_aborted_status().
3072 */
3073 if (cmd->data_direction == DMA_TO_DEVICE) {
3074 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3075 spin_lock_irqsave(&cmd->t_state_lock, flags);
3076 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3077 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3078 goto send_abort;
3079 }
3080 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3081 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3082 return;
3083 }
3084 }
3085 send_abort:
3086 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3087
3088 transport_lun_remove_cmd(cmd);
3089
3090 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3091 cmd->t_task_cdb[0], cmd->tag);
3092
3093 trace_target_cmd_complete(cmd);
3094 cmd->se_tfo->queue_status(cmd);
3095 }
3096
3097 static void target_tmr_work(struct work_struct *work)
3098 {
3099 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3100 struct se_device *dev = cmd->se_dev;
3101 struct se_tmr_req *tmr = cmd->se_tmr_req;
3102 unsigned long flags;
3103 int ret;
3104
3105 spin_lock_irqsave(&cmd->t_state_lock, flags);
3106 if (cmd->transport_state & CMD_T_ABORTED) {
3107 tmr->response = TMR_FUNCTION_REJECTED;
3108 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3109 goto check_stop;
3110 }
3111 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3112
3113 switch (tmr->function) {
3114 case TMR_ABORT_TASK:
3115 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3116 break;
3117 case TMR_ABORT_TASK_SET:
3118 case TMR_CLEAR_ACA:
3119 case TMR_CLEAR_TASK_SET:
3120 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3121 break;
3122 case TMR_LUN_RESET:
3123 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3124 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3125 TMR_FUNCTION_REJECTED;
3126 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3127 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3128 cmd->orig_fe_lun, 0x29,
3129 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3130 }
3131 break;
3132 case TMR_TARGET_WARM_RESET:
3133 tmr->response = TMR_FUNCTION_REJECTED;
3134 break;
3135 case TMR_TARGET_COLD_RESET:
3136 tmr->response = TMR_FUNCTION_REJECTED;
3137 break;
3138 default:
3139 pr_err("Uknown TMR function: 0x%02x.\n",
3140 tmr->function);
3141 tmr->response = TMR_FUNCTION_REJECTED;
3142 break;
3143 }
3144
3145 spin_lock_irqsave(&cmd->t_state_lock, flags);
3146 if (cmd->transport_state & CMD_T_ABORTED) {
3147 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3148 goto check_stop;
3149 }
3150 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3151
3152 cmd->se_tfo->queue_tm_rsp(cmd);
3153
3154 check_stop:
3155 transport_cmd_check_stop_to_fabric(cmd);
3156 }
3157
3158 int transport_generic_handle_tmr(
3159 struct se_cmd *cmd)
3160 {
3161 unsigned long flags;
3162 bool aborted = false;
3163
3164 spin_lock_irqsave(&cmd->t_state_lock, flags);
3165 if (cmd->transport_state & CMD_T_ABORTED) {
3166 aborted = true;
3167 } else {
3168 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3169 cmd->transport_state |= CMD_T_ACTIVE;
3170 }
3171 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3172
3173 if (aborted) {
3174 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3175 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3176 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3177 transport_cmd_check_stop_to_fabric(cmd);
3178 return 0;
3179 }
3180
3181 INIT_WORK(&cmd->work, target_tmr_work);
3182 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3183 return 0;
3184 }
3185 EXPORT_SYMBOL(transport_generic_handle_tmr);
3186
3187 bool
3188 target_check_wce(struct se_device *dev)
3189 {
3190 bool wce = false;
3191
3192 if (dev->transport->get_write_cache)
3193 wce = dev->transport->get_write_cache(dev);
3194 else if (dev->dev_attrib.emulate_write_cache > 0)
3195 wce = true;
3196
3197 return wce;
3198 }
3199
3200 bool
3201 target_check_fua(struct se_device *dev)
3202 {
3203 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3204 }