]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/target/target_core_transport.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
243
244 return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
250 {
251 int rc;
252
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
260 }
261 }
262
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
270 }
271
272 return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
279 {
280 struct se_session *se_sess;
281 int rc;
282
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
287 }
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
292 }
293
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
297
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
302 }
303
304 return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307
308 /*
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310 */
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
316 {
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
319
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
322 /*
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324 *
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
327 */
328 if (se_nacl) {
329 /*
330 *
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333 *
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
338 */
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
344 /*
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
347 */
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 }
354
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
356 /*
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
359 */
360 se_nacl->nacl_sess = se_sess;
361
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
365 }
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
378 {
379 unsigned long flags;
380
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
394 {
395 struct se_session *sess;
396
397 /*
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
400 */
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
405
406 if (IS_ERR(sess))
407 return sess;
408
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
414 }
415 /*
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
418 */
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
424 }
425 }
426
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434 struct se_session *se_sess;
435 ssize_t len = 0;
436
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
445
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
449 }
450 spin_unlock_bh(&se_tpg->session_lock);
451
452 return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455
456 static void target_complete_nacl(struct kref *kref)
457 {
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
460 struct se_portal_group *se_tpg = nacl->se_tpg;
461
462 if (!nacl->dynamic_stop) {
463 complete(&nacl->acl_free_comp);
464 return;
465 }
466
467 mutex_lock(&se_tpg->acl_node_mutex);
468 list_del(&nacl->acl_list);
469 mutex_unlock(&se_tpg->acl_node_mutex);
470
471 core_tpg_wait_for_nacl_pr_ref(nacl);
472 core_free_device_list_for_node(nacl, se_tpg);
473 kfree(nacl);
474 }
475
476 void target_put_nacl(struct se_node_acl *nacl)
477 {
478 kref_put(&nacl->acl_kref, target_complete_nacl);
479 }
480 EXPORT_SYMBOL(target_put_nacl);
481
482 void transport_deregister_session_configfs(struct se_session *se_sess)
483 {
484 struct se_node_acl *se_nacl;
485 unsigned long flags;
486 /*
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
488 */
489 se_nacl = se_sess->se_node_acl;
490 if (se_nacl) {
491 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
492 if (!list_empty(&se_sess->sess_acl_list))
493 list_del_init(&se_sess->sess_acl_list);
494 /*
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
498 */
499 if (list_empty(&se_nacl->acl_sess_list))
500 se_nacl->nacl_sess = NULL;
501 else {
502 se_nacl->nacl_sess = container_of(
503 se_nacl->acl_sess_list.prev,
504 struct se_session, sess_acl_list);
505 }
506 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
507 }
508 }
509 EXPORT_SYMBOL(transport_deregister_session_configfs);
510
511 void transport_free_session(struct se_session *se_sess)
512 {
513 struct se_node_acl *se_nacl = se_sess->se_node_acl;
514
515 /*
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
518 */
519 if (se_nacl) {
520 struct se_portal_group *se_tpg = se_nacl->se_tpg;
521 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
522 unsigned long flags;
523
524 se_sess->se_node_acl = NULL;
525
526 /*
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
530 */
531 mutex_lock(&se_tpg->acl_node_mutex);
532 if (se_nacl->dynamic_node_acl &&
533 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 if (list_empty(&se_nacl->acl_sess_list))
536 se_nacl->dynamic_stop = true;
537 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
538
539 if (se_nacl->dynamic_stop)
540 list_del(&se_nacl->acl_list);
541 }
542 mutex_unlock(&se_tpg->acl_node_mutex);
543
544 if (se_nacl->dynamic_stop)
545 target_put_nacl(se_nacl);
546
547 target_put_nacl(se_nacl);
548 }
549 if (se_sess->sess_cmd_map) {
550 percpu_ida_destroy(&se_sess->sess_tag_pool);
551 kvfree(se_sess->sess_cmd_map);
552 }
553 kmem_cache_free(se_sess_cache, se_sess);
554 }
555 EXPORT_SYMBOL(transport_free_session);
556
557 void transport_deregister_session(struct se_session *se_sess)
558 {
559 struct se_portal_group *se_tpg = se_sess->se_tpg;
560 unsigned long flags;
561
562 if (!se_tpg) {
563 transport_free_session(se_sess);
564 return;
565 }
566
567 spin_lock_irqsave(&se_tpg->session_lock, flags);
568 list_del(&se_sess->sess_list);
569 se_sess->se_tpg = NULL;
570 se_sess->fabric_sess_ptr = NULL;
571 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
572
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg->se_tpg_tfo->get_fabric_name());
575 /*
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
579 *
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
582 */
583
584 transport_free_session(se_sess);
585 }
586 EXPORT_SYMBOL(transport_deregister_session);
587
588 static void target_remove_from_state_list(struct se_cmd *cmd)
589 {
590 struct se_device *dev = cmd->se_dev;
591 unsigned long flags;
592
593 if (!dev)
594 return;
595
596 if (cmd->transport_state & CMD_T_BUSY)
597 return;
598
599 spin_lock_irqsave(&dev->execute_task_lock, flags);
600 if (cmd->state_active) {
601 list_del(&cmd->state_list);
602 cmd->state_active = false;
603 }
604 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
605 }
606
607 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
608 bool write_pending)
609 {
610 unsigned long flags;
611
612 if (remove_from_lists) {
613 target_remove_from_state_list(cmd);
614
615 /*
616 * Clear struct se_cmd->se_lun before the handoff to FE.
617 */
618 cmd->se_lun = NULL;
619 }
620
621 spin_lock_irqsave(&cmd->t_state_lock, flags);
622 if (write_pending)
623 cmd->t_state = TRANSPORT_WRITE_PENDING;
624
625 /*
626 * Determine if frontend context caller is requesting the stopping of
627 * this command for frontend exceptions.
628 */
629 if (cmd->transport_state & CMD_T_STOP) {
630 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
631 __func__, __LINE__, cmd->tag);
632
633 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
634
635 complete_all(&cmd->t_transport_stop_comp);
636 return 1;
637 }
638
639 cmd->transport_state &= ~CMD_T_ACTIVE;
640 if (remove_from_lists) {
641 /*
642 * Some fabric modules like tcm_loop can release
643 * their internally allocated I/O reference now and
644 * struct se_cmd now.
645 *
646 * Fabric modules are expected to return '1' here if the
647 * se_cmd being passed is released at this point,
648 * or zero if not being released.
649 */
650 if (cmd->se_tfo->check_stop_free != NULL) {
651 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
652 return cmd->se_tfo->check_stop_free(cmd);
653 }
654 }
655
656 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
657 return 0;
658 }
659
660 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
661 {
662 return transport_cmd_check_stop(cmd, true, false);
663 }
664
665 static void transport_lun_remove_cmd(struct se_cmd *cmd)
666 {
667 struct se_lun *lun = cmd->se_lun;
668
669 if (!lun)
670 return;
671
672 if (cmpxchg(&cmd->lun_ref_active, true, false))
673 percpu_ref_put(&lun->lun_ref);
674 }
675
676 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
677 {
678 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
679
680 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
681 transport_lun_remove_cmd(cmd);
682 /*
683 * Allow the fabric driver to unmap any resources before
684 * releasing the descriptor via TFO->release_cmd()
685 */
686 if (remove)
687 cmd->se_tfo->aborted_task(cmd);
688
689 if (transport_cmd_check_stop_to_fabric(cmd))
690 return;
691 if (remove && ack_kref)
692 transport_put_cmd(cmd);
693 }
694
695 static void target_complete_failure_work(struct work_struct *work)
696 {
697 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698
699 transport_generic_request_failure(cmd,
700 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
701 }
702
703 /*
704 * Used when asking transport to copy Sense Data from the underlying
705 * Linux/SCSI struct scsi_cmnd
706 */
707 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
708 {
709 struct se_device *dev = cmd->se_dev;
710
711 WARN_ON(!cmd->se_lun);
712
713 if (!dev)
714 return NULL;
715
716 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
717 return NULL;
718
719 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
720
721 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
722 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
723 return cmd->sense_buffer;
724 }
725
726 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
727 {
728 struct se_device *dev = cmd->se_dev;
729 int success = scsi_status == GOOD;
730 unsigned long flags;
731
732 cmd->scsi_status = scsi_status;
733
734
735 spin_lock_irqsave(&cmd->t_state_lock, flags);
736 cmd->transport_state &= ~CMD_T_BUSY;
737
738 if (dev && dev->transport->transport_complete) {
739 dev->transport->transport_complete(cmd,
740 cmd->t_data_sg,
741 transport_get_sense_buffer(cmd));
742 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
743 success = 1;
744 }
745
746 /*
747 * Check for case where an explicit ABORT_TASK has been received
748 * and transport_wait_for_tasks() will be waiting for completion..
749 */
750 if (cmd->transport_state & CMD_T_ABORTED ||
751 cmd->transport_state & CMD_T_STOP) {
752 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
753 complete_all(&cmd->t_transport_stop_comp);
754 return;
755 } else if (!success) {
756 INIT_WORK(&cmd->work, target_complete_failure_work);
757 } else {
758 INIT_WORK(&cmd->work, target_complete_ok_work);
759 }
760
761 cmd->t_state = TRANSPORT_COMPLETE;
762 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
763 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
764
765 if (cmd->se_cmd_flags & SCF_USE_CPUID)
766 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
767 else
768 queue_work(target_completion_wq, &cmd->work);
769 }
770 EXPORT_SYMBOL(target_complete_cmd);
771
772 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
773 {
774 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
775 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
776 cmd->residual_count += cmd->data_length - length;
777 } else {
778 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
779 cmd->residual_count = cmd->data_length - length;
780 }
781
782 cmd->data_length = length;
783 }
784
785 target_complete_cmd(cmd, scsi_status);
786 }
787 EXPORT_SYMBOL(target_complete_cmd_with_length);
788
789 static void target_add_to_state_list(struct se_cmd *cmd)
790 {
791 struct se_device *dev = cmd->se_dev;
792 unsigned long flags;
793
794 spin_lock_irqsave(&dev->execute_task_lock, flags);
795 if (!cmd->state_active) {
796 list_add_tail(&cmd->state_list, &dev->state_list);
797 cmd->state_active = true;
798 }
799 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
800 }
801
802 /*
803 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
804 */
805 static void transport_write_pending_qf(struct se_cmd *cmd);
806 static void transport_complete_qf(struct se_cmd *cmd);
807
808 void target_qf_do_work(struct work_struct *work)
809 {
810 struct se_device *dev = container_of(work, struct se_device,
811 qf_work_queue);
812 LIST_HEAD(qf_cmd_list);
813 struct se_cmd *cmd, *cmd_tmp;
814
815 spin_lock_irq(&dev->qf_cmd_lock);
816 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
817 spin_unlock_irq(&dev->qf_cmd_lock);
818
819 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
820 list_del(&cmd->se_qf_node);
821 atomic_dec_mb(&dev->dev_qf_count);
822
823 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
824 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
825 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
826 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
827 : "UNKNOWN");
828
829 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
830 transport_write_pending_qf(cmd);
831 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
832 transport_complete_qf(cmd);
833 }
834 }
835
836 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
837 {
838 switch (cmd->data_direction) {
839 case DMA_NONE:
840 return "NONE";
841 case DMA_FROM_DEVICE:
842 return "READ";
843 case DMA_TO_DEVICE:
844 return "WRITE";
845 case DMA_BIDIRECTIONAL:
846 return "BIDI";
847 default:
848 break;
849 }
850
851 return "UNKNOWN";
852 }
853
854 void transport_dump_dev_state(
855 struct se_device *dev,
856 char *b,
857 int *bl)
858 {
859 *bl += sprintf(b + *bl, "Status: ");
860 if (dev->export_count)
861 *bl += sprintf(b + *bl, "ACTIVATED");
862 else
863 *bl += sprintf(b + *bl, "DEACTIVATED");
864
865 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
866 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
867 dev->dev_attrib.block_size,
868 dev->dev_attrib.hw_max_sectors);
869 *bl += sprintf(b + *bl, " ");
870 }
871
872 void transport_dump_vpd_proto_id(
873 struct t10_vpd *vpd,
874 unsigned char *p_buf,
875 int p_buf_len)
876 {
877 unsigned char buf[VPD_TMP_BUF_SIZE];
878 int len;
879
880 memset(buf, 0, VPD_TMP_BUF_SIZE);
881 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
882
883 switch (vpd->protocol_identifier) {
884 case 0x00:
885 sprintf(buf+len, "Fibre Channel\n");
886 break;
887 case 0x10:
888 sprintf(buf+len, "Parallel SCSI\n");
889 break;
890 case 0x20:
891 sprintf(buf+len, "SSA\n");
892 break;
893 case 0x30:
894 sprintf(buf+len, "IEEE 1394\n");
895 break;
896 case 0x40:
897 sprintf(buf+len, "SCSI Remote Direct Memory Access"
898 " Protocol\n");
899 break;
900 case 0x50:
901 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
902 break;
903 case 0x60:
904 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
905 break;
906 case 0x70:
907 sprintf(buf+len, "Automation/Drive Interface Transport"
908 " Protocol\n");
909 break;
910 case 0x80:
911 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
912 break;
913 default:
914 sprintf(buf+len, "Unknown 0x%02x\n",
915 vpd->protocol_identifier);
916 break;
917 }
918
919 if (p_buf)
920 strncpy(p_buf, buf, p_buf_len);
921 else
922 pr_debug("%s", buf);
923 }
924
925 void
926 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
927 {
928 /*
929 * Check if the Protocol Identifier Valid (PIV) bit is set..
930 *
931 * from spc3r23.pdf section 7.5.1
932 */
933 if (page_83[1] & 0x80) {
934 vpd->protocol_identifier = (page_83[0] & 0xf0);
935 vpd->protocol_identifier_set = 1;
936 transport_dump_vpd_proto_id(vpd, NULL, 0);
937 }
938 }
939 EXPORT_SYMBOL(transport_set_vpd_proto_id);
940
941 int transport_dump_vpd_assoc(
942 struct t10_vpd *vpd,
943 unsigned char *p_buf,
944 int p_buf_len)
945 {
946 unsigned char buf[VPD_TMP_BUF_SIZE];
947 int ret = 0;
948 int len;
949
950 memset(buf, 0, VPD_TMP_BUF_SIZE);
951 len = sprintf(buf, "T10 VPD Identifier Association: ");
952
953 switch (vpd->association) {
954 case 0x00:
955 sprintf(buf+len, "addressed logical unit\n");
956 break;
957 case 0x10:
958 sprintf(buf+len, "target port\n");
959 break;
960 case 0x20:
961 sprintf(buf+len, "SCSI target device\n");
962 break;
963 default:
964 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
965 ret = -EINVAL;
966 break;
967 }
968
969 if (p_buf)
970 strncpy(p_buf, buf, p_buf_len);
971 else
972 pr_debug("%s", buf);
973
974 return ret;
975 }
976
977 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
978 {
979 /*
980 * The VPD identification association..
981 *
982 * from spc3r23.pdf Section 7.6.3.1 Table 297
983 */
984 vpd->association = (page_83[1] & 0x30);
985 return transport_dump_vpd_assoc(vpd, NULL, 0);
986 }
987 EXPORT_SYMBOL(transport_set_vpd_assoc);
988
989 int transport_dump_vpd_ident_type(
990 struct t10_vpd *vpd,
991 unsigned char *p_buf,
992 int p_buf_len)
993 {
994 unsigned char buf[VPD_TMP_BUF_SIZE];
995 int ret = 0;
996 int len;
997
998 memset(buf, 0, VPD_TMP_BUF_SIZE);
999 len = sprintf(buf, "T10 VPD Identifier Type: ");
1000
1001 switch (vpd->device_identifier_type) {
1002 case 0x00:
1003 sprintf(buf+len, "Vendor specific\n");
1004 break;
1005 case 0x01:
1006 sprintf(buf+len, "T10 Vendor ID based\n");
1007 break;
1008 case 0x02:
1009 sprintf(buf+len, "EUI-64 based\n");
1010 break;
1011 case 0x03:
1012 sprintf(buf+len, "NAA\n");
1013 break;
1014 case 0x04:
1015 sprintf(buf+len, "Relative target port identifier\n");
1016 break;
1017 case 0x08:
1018 sprintf(buf+len, "SCSI name string\n");
1019 break;
1020 default:
1021 sprintf(buf+len, "Unsupported: 0x%02x\n",
1022 vpd->device_identifier_type);
1023 ret = -EINVAL;
1024 break;
1025 }
1026
1027 if (p_buf) {
1028 if (p_buf_len < strlen(buf)+1)
1029 return -EINVAL;
1030 strncpy(p_buf, buf, p_buf_len);
1031 } else {
1032 pr_debug("%s", buf);
1033 }
1034
1035 return ret;
1036 }
1037
1038 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1039 {
1040 /*
1041 * The VPD identifier type..
1042 *
1043 * from spc3r23.pdf Section 7.6.3.1 Table 298
1044 */
1045 vpd->device_identifier_type = (page_83[1] & 0x0f);
1046 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1047 }
1048 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1049
1050 int transport_dump_vpd_ident(
1051 struct t10_vpd *vpd,
1052 unsigned char *p_buf,
1053 int p_buf_len)
1054 {
1055 unsigned char buf[VPD_TMP_BUF_SIZE];
1056 int ret = 0;
1057
1058 memset(buf, 0, VPD_TMP_BUF_SIZE);
1059
1060 switch (vpd->device_identifier_code_set) {
1061 case 0x01: /* Binary */
1062 snprintf(buf, sizeof(buf),
1063 "T10 VPD Binary Device Identifier: %s\n",
1064 &vpd->device_identifier[0]);
1065 break;
1066 case 0x02: /* ASCII */
1067 snprintf(buf, sizeof(buf),
1068 "T10 VPD ASCII Device Identifier: %s\n",
1069 &vpd->device_identifier[0]);
1070 break;
1071 case 0x03: /* UTF-8 */
1072 snprintf(buf, sizeof(buf),
1073 "T10 VPD UTF-8 Device Identifier: %s\n",
1074 &vpd->device_identifier[0]);
1075 break;
1076 default:
1077 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1078 " 0x%02x", vpd->device_identifier_code_set);
1079 ret = -EINVAL;
1080 break;
1081 }
1082
1083 if (p_buf)
1084 strncpy(p_buf, buf, p_buf_len);
1085 else
1086 pr_debug("%s", buf);
1087
1088 return ret;
1089 }
1090
1091 int
1092 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1093 {
1094 static const char hex_str[] = "0123456789abcdef";
1095 int j = 0, i = 4; /* offset to start of the identifier */
1096
1097 /*
1098 * The VPD Code Set (encoding)
1099 *
1100 * from spc3r23.pdf Section 7.6.3.1 Table 296
1101 */
1102 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1103 switch (vpd->device_identifier_code_set) {
1104 case 0x01: /* Binary */
1105 vpd->device_identifier[j++] =
1106 hex_str[vpd->device_identifier_type];
1107 while (i < (4 + page_83[3])) {
1108 vpd->device_identifier[j++] =
1109 hex_str[(page_83[i] & 0xf0) >> 4];
1110 vpd->device_identifier[j++] =
1111 hex_str[page_83[i] & 0x0f];
1112 i++;
1113 }
1114 break;
1115 case 0x02: /* ASCII */
1116 case 0x03: /* UTF-8 */
1117 while (i < (4 + page_83[3]))
1118 vpd->device_identifier[j++] = page_83[i++];
1119 break;
1120 default:
1121 break;
1122 }
1123
1124 return transport_dump_vpd_ident(vpd, NULL, 0);
1125 }
1126 EXPORT_SYMBOL(transport_set_vpd_ident);
1127
1128 static sense_reason_t
1129 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1130 unsigned int size)
1131 {
1132 u32 mtl;
1133
1134 if (!cmd->se_tfo->max_data_sg_nents)
1135 return TCM_NO_SENSE;
1136 /*
1137 * Check if fabric enforced maximum SGL entries per I/O descriptor
1138 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1139 * residual_count and reduce original cmd->data_length to maximum
1140 * length based on single PAGE_SIZE entry scatter-lists.
1141 */
1142 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1143 if (cmd->data_length > mtl) {
1144 /*
1145 * If an existing CDB overflow is present, calculate new residual
1146 * based on CDB size minus fabric maximum transfer length.
1147 *
1148 * If an existing CDB underflow is present, calculate new residual
1149 * based on original cmd->data_length minus fabric maximum transfer
1150 * length.
1151 *
1152 * Otherwise, set the underflow residual based on cmd->data_length
1153 * minus fabric maximum transfer length.
1154 */
1155 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1156 cmd->residual_count = (size - mtl);
1157 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1158 u32 orig_dl = size + cmd->residual_count;
1159 cmd->residual_count = (orig_dl - mtl);
1160 } else {
1161 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1162 cmd->residual_count = (cmd->data_length - mtl);
1163 }
1164 cmd->data_length = mtl;
1165 /*
1166 * Reset sbc_check_prot() calculated protection payload
1167 * length based upon the new smaller MTL.
1168 */
1169 if (cmd->prot_length) {
1170 u32 sectors = (mtl / dev->dev_attrib.block_size);
1171 cmd->prot_length = dev->prot_length * sectors;
1172 }
1173 }
1174 return TCM_NO_SENSE;
1175 }
1176
1177 sense_reason_t
1178 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1179 {
1180 struct se_device *dev = cmd->se_dev;
1181
1182 if (cmd->unknown_data_length) {
1183 cmd->data_length = size;
1184 } else if (size != cmd->data_length) {
1185 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1186 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1187 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1188 cmd->data_length, size, cmd->t_task_cdb[0]);
1189
1190 if (cmd->data_direction == DMA_TO_DEVICE &&
1191 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1192 pr_err("Rejecting underflow/overflow WRITE data\n");
1193 return TCM_INVALID_CDB_FIELD;
1194 }
1195 /*
1196 * Reject READ_* or WRITE_* with overflow/underflow for
1197 * type SCF_SCSI_DATA_CDB.
1198 */
1199 if (dev->dev_attrib.block_size != 512) {
1200 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1201 " CDB on non 512-byte sector setup subsystem"
1202 " plugin: %s\n", dev->transport->name);
1203 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1204 return TCM_INVALID_CDB_FIELD;
1205 }
1206 /*
1207 * For the overflow case keep the existing fabric provided
1208 * ->data_length. Otherwise for the underflow case, reset
1209 * ->data_length to the smaller SCSI expected data transfer
1210 * length.
1211 */
1212 if (size > cmd->data_length) {
1213 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1214 cmd->residual_count = (size - cmd->data_length);
1215 } else {
1216 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1217 cmd->residual_count = (cmd->data_length - size);
1218 cmd->data_length = size;
1219 }
1220 }
1221
1222 return target_check_max_data_sg_nents(cmd, dev, size);
1223
1224 }
1225
1226 /*
1227 * Used by fabric modules containing a local struct se_cmd within their
1228 * fabric dependent per I/O descriptor.
1229 *
1230 * Preserves the value of @cmd->tag.
1231 */
1232 void transport_init_se_cmd(
1233 struct se_cmd *cmd,
1234 const struct target_core_fabric_ops *tfo,
1235 struct se_session *se_sess,
1236 u32 data_length,
1237 int data_direction,
1238 int task_attr,
1239 unsigned char *sense_buffer)
1240 {
1241 INIT_LIST_HEAD(&cmd->se_delayed_node);
1242 INIT_LIST_HEAD(&cmd->se_qf_node);
1243 INIT_LIST_HEAD(&cmd->se_cmd_list);
1244 INIT_LIST_HEAD(&cmd->state_list);
1245 init_completion(&cmd->t_transport_stop_comp);
1246 init_completion(&cmd->cmd_wait_comp);
1247 spin_lock_init(&cmd->t_state_lock);
1248 kref_init(&cmd->cmd_kref);
1249 cmd->transport_state = CMD_T_DEV_ACTIVE;
1250
1251 cmd->se_tfo = tfo;
1252 cmd->se_sess = se_sess;
1253 cmd->data_length = data_length;
1254 cmd->data_direction = data_direction;
1255 cmd->sam_task_attr = task_attr;
1256 cmd->sense_buffer = sense_buffer;
1257
1258 cmd->state_active = false;
1259 }
1260 EXPORT_SYMBOL(transport_init_se_cmd);
1261
1262 static sense_reason_t
1263 transport_check_alloc_task_attr(struct se_cmd *cmd)
1264 {
1265 struct se_device *dev = cmd->se_dev;
1266
1267 /*
1268 * Check if SAM Task Attribute emulation is enabled for this
1269 * struct se_device storage object
1270 */
1271 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1272 return 0;
1273
1274 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1275 pr_debug("SAM Task Attribute ACA"
1276 " emulation is not supported\n");
1277 return TCM_INVALID_CDB_FIELD;
1278 }
1279
1280 return 0;
1281 }
1282
1283 sense_reason_t
1284 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1285 {
1286 struct se_device *dev = cmd->se_dev;
1287 sense_reason_t ret;
1288
1289 /*
1290 * Ensure that the received CDB is less than the max (252 + 8) bytes
1291 * for VARIABLE_LENGTH_CMD
1292 */
1293 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1294 pr_err("Received SCSI CDB with command_size: %d that"
1295 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1296 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1297 return TCM_INVALID_CDB_FIELD;
1298 }
1299 /*
1300 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1301 * allocate the additional extended CDB buffer now.. Otherwise
1302 * setup the pointer from __t_task_cdb to t_task_cdb.
1303 */
1304 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1305 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1306 GFP_KERNEL);
1307 if (!cmd->t_task_cdb) {
1308 pr_err("Unable to allocate cmd->t_task_cdb"
1309 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1310 scsi_command_size(cdb),
1311 (unsigned long)sizeof(cmd->__t_task_cdb));
1312 return TCM_OUT_OF_RESOURCES;
1313 }
1314 } else
1315 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1316 /*
1317 * Copy the original CDB into cmd->
1318 */
1319 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1320
1321 trace_target_sequencer_start(cmd);
1322
1323 ret = dev->transport->parse_cdb(cmd);
1324 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1325 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1326 cmd->se_tfo->get_fabric_name(),
1327 cmd->se_sess->se_node_acl->initiatorname,
1328 cmd->t_task_cdb[0]);
1329 if (ret)
1330 return ret;
1331
1332 ret = transport_check_alloc_task_attr(cmd);
1333 if (ret)
1334 return ret;
1335
1336 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1337 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1338 return 0;
1339 }
1340 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1341
1342 /*
1343 * Used by fabric module frontends to queue tasks directly.
1344 * May only be used from process context.
1345 */
1346 int transport_handle_cdb_direct(
1347 struct se_cmd *cmd)
1348 {
1349 sense_reason_t ret;
1350
1351 if (!cmd->se_lun) {
1352 dump_stack();
1353 pr_err("cmd->se_lun is NULL\n");
1354 return -EINVAL;
1355 }
1356 if (in_interrupt()) {
1357 dump_stack();
1358 pr_err("transport_generic_handle_cdb cannot be called"
1359 " from interrupt context\n");
1360 return -EINVAL;
1361 }
1362 /*
1363 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1364 * outstanding descriptors are handled correctly during shutdown via
1365 * transport_wait_for_tasks()
1366 *
1367 * Also, we don't take cmd->t_state_lock here as we only expect
1368 * this to be called for initial descriptor submission.
1369 */
1370 cmd->t_state = TRANSPORT_NEW_CMD;
1371 cmd->transport_state |= CMD_T_ACTIVE;
1372
1373 /*
1374 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1375 * so follow TRANSPORT_NEW_CMD processing thread context usage
1376 * and call transport_generic_request_failure() if necessary..
1377 */
1378 ret = transport_generic_new_cmd(cmd);
1379 if (ret)
1380 transport_generic_request_failure(cmd, ret);
1381 return 0;
1382 }
1383 EXPORT_SYMBOL(transport_handle_cdb_direct);
1384
1385 sense_reason_t
1386 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1387 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1388 {
1389 if (!sgl || !sgl_count)
1390 return 0;
1391
1392 /*
1393 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1394 * scatterlists already have been set to follow what the fabric
1395 * passes for the original expected data transfer length.
1396 */
1397 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1398 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1399 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1400 return TCM_INVALID_CDB_FIELD;
1401 }
1402
1403 cmd->t_data_sg = sgl;
1404 cmd->t_data_nents = sgl_count;
1405 cmd->t_bidi_data_sg = sgl_bidi;
1406 cmd->t_bidi_data_nents = sgl_bidi_count;
1407
1408 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1409 return 0;
1410 }
1411
1412 /*
1413 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1414 * se_cmd + use pre-allocated SGL memory.
1415 *
1416 * @se_cmd: command descriptor to submit
1417 * @se_sess: associated se_sess for endpoint
1418 * @cdb: pointer to SCSI CDB
1419 * @sense: pointer to SCSI sense buffer
1420 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1421 * @data_length: fabric expected data transfer length
1422 * @task_addr: SAM task attribute
1423 * @data_dir: DMA data direction
1424 * @flags: flags for command submission from target_sc_flags_tables
1425 * @sgl: struct scatterlist memory for unidirectional mapping
1426 * @sgl_count: scatterlist count for unidirectional mapping
1427 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1428 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1429 * @sgl_prot: struct scatterlist memory protection information
1430 * @sgl_prot_count: scatterlist count for protection information
1431 *
1432 * Task tags are supported if the caller has set @se_cmd->tag.
1433 *
1434 * Returns non zero to signal active I/O shutdown failure. All other
1435 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1436 * but still return zero here.
1437 *
1438 * This may only be called from process context, and also currently
1439 * assumes internal allocation of fabric payload buffer by target-core.
1440 */
1441 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1442 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1443 u32 data_length, int task_attr, int data_dir, int flags,
1444 struct scatterlist *sgl, u32 sgl_count,
1445 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1446 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1447 {
1448 struct se_portal_group *se_tpg;
1449 sense_reason_t rc;
1450 int ret;
1451
1452 se_tpg = se_sess->se_tpg;
1453 BUG_ON(!se_tpg);
1454 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1455 BUG_ON(in_interrupt());
1456 /*
1457 * Initialize se_cmd for target operation. From this point
1458 * exceptions are handled by sending exception status via
1459 * target_core_fabric_ops->queue_status() callback
1460 */
1461 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1462 data_length, data_dir, task_attr, sense);
1463
1464 if (flags & TARGET_SCF_USE_CPUID)
1465 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1466 else
1467 se_cmd->cpuid = WORK_CPU_UNBOUND;
1468
1469 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1470 se_cmd->unknown_data_length = 1;
1471 /*
1472 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1473 * se_sess->sess_cmd_list. A second kref_get here is necessary
1474 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1475 * kref_put() to happen during fabric packet acknowledgement.
1476 */
1477 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1478 if (ret)
1479 return ret;
1480 /*
1481 * Signal bidirectional data payloads to target-core
1482 */
1483 if (flags & TARGET_SCF_BIDI_OP)
1484 se_cmd->se_cmd_flags |= SCF_BIDI;
1485 /*
1486 * Locate se_lun pointer and attach it to struct se_cmd
1487 */
1488 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1489 if (rc) {
1490 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1491 target_put_sess_cmd(se_cmd);
1492 return 0;
1493 }
1494
1495 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1496 if (rc != 0) {
1497 transport_generic_request_failure(se_cmd, rc);
1498 return 0;
1499 }
1500
1501 /*
1502 * Save pointers for SGLs containing protection information,
1503 * if present.
1504 */
1505 if (sgl_prot_count) {
1506 se_cmd->t_prot_sg = sgl_prot;
1507 se_cmd->t_prot_nents = sgl_prot_count;
1508 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1509 }
1510
1511 /*
1512 * When a non zero sgl_count has been passed perform SGL passthrough
1513 * mapping for pre-allocated fabric memory instead of having target
1514 * core perform an internal SGL allocation..
1515 */
1516 if (sgl_count != 0) {
1517 BUG_ON(!sgl);
1518
1519 /*
1520 * A work-around for tcm_loop as some userspace code via
1521 * scsi-generic do not memset their associated read buffers,
1522 * so go ahead and do that here for type non-data CDBs. Also
1523 * note that this is currently guaranteed to be a single SGL
1524 * for this case by target core in target_setup_cmd_from_cdb()
1525 * -> transport_generic_cmd_sequencer().
1526 */
1527 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1528 se_cmd->data_direction == DMA_FROM_DEVICE) {
1529 unsigned char *buf = NULL;
1530
1531 if (sgl)
1532 buf = kmap(sg_page(sgl)) + sgl->offset;
1533
1534 if (buf) {
1535 memset(buf, 0, sgl->length);
1536 kunmap(sg_page(sgl));
1537 }
1538 }
1539
1540 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1541 sgl_bidi, sgl_bidi_count);
1542 if (rc != 0) {
1543 transport_generic_request_failure(se_cmd, rc);
1544 return 0;
1545 }
1546 }
1547
1548 /*
1549 * Check if we need to delay processing because of ALUA
1550 * Active/NonOptimized primary access state..
1551 */
1552 core_alua_check_nonop_delay(se_cmd);
1553
1554 transport_handle_cdb_direct(se_cmd);
1555 return 0;
1556 }
1557 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1558
1559 /*
1560 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1561 *
1562 * @se_cmd: command descriptor to submit
1563 * @se_sess: associated se_sess for endpoint
1564 * @cdb: pointer to SCSI CDB
1565 * @sense: pointer to SCSI sense buffer
1566 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1567 * @data_length: fabric expected data transfer length
1568 * @task_addr: SAM task attribute
1569 * @data_dir: DMA data direction
1570 * @flags: flags for command submission from target_sc_flags_tables
1571 *
1572 * Task tags are supported if the caller has set @se_cmd->tag.
1573 *
1574 * Returns non zero to signal active I/O shutdown failure. All other
1575 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1576 * but still return zero here.
1577 *
1578 * This may only be called from process context, and also currently
1579 * assumes internal allocation of fabric payload buffer by target-core.
1580 *
1581 * It also assumes interal target core SGL memory allocation.
1582 */
1583 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1584 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1585 u32 data_length, int task_attr, int data_dir, int flags)
1586 {
1587 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1588 unpacked_lun, data_length, task_attr, data_dir,
1589 flags, NULL, 0, NULL, 0, NULL, 0);
1590 }
1591 EXPORT_SYMBOL(target_submit_cmd);
1592
1593 static void target_complete_tmr_failure(struct work_struct *work)
1594 {
1595 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1596
1597 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1598 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1599
1600 transport_cmd_check_stop_to_fabric(se_cmd);
1601 }
1602
1603 /**
1604 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1605 * for TMR CDBs
1606 *
1607 * @se_cmd: command descriptor to submit
1608 * @se_sess: associated se_sess for endpoint
1609 * @sense: pointer to SCSI sense buffer
1610 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1611 * @fabric_context: fabric context for TMR req
1612 * @tm_type: Type of TM request
1613 * @gfp: gfp type for caller
1614 * @tag: referenced task tag for TMR_ABORT_TASK
1615 * @flags: submit cmd flags
1616 *
1617 * Callable from all contexts.
1618 **/
1619
1620 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1621 unsigned char *sense, u64 unpacked_lun,
1622 void *fabric_tmr_ptr, unsigned char tm_type,
1623 gfp_t gfp, u64 tag, int flags)
1624 {
1625 struct se_portal_group *se_tpg;
1626 int ret;
1627
1628 se_tpg = se_sess->se_tpg;
1629 BUG_ON(!se_tpg);
1630
1631 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1632 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1633 /*
1634 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1635 * allocation failure.
1636 */
1637 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1638 if (ret < 0)
1639 return -ENOMEM;
1640
1641 if (tm_type == TMR_ABORT_TASK)
1642 se_cmd->se_tmr_req->ref_task_tag = tag;
1643
1644 /* See target_submit_cmd for commentary */
1645 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1646 if (ret) {
1647 core_tmr_release_req(se_cmd->se_tmr_req);
1648 return ret;
1649 }
1650
1651 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1652 if (ret) {
1653 /*
1654 * For callback during failure handling, push this work off
1655 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1656 */
1657 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1658 schedule_work(&se_cmd->work);
1659 return 0;
1660 }
1661 transport_generic_handle_tmr(se_cmd);
1662 return 0;
1663 }
1664 EXPORT_SYMBOL(target_submit_tmr);
1665
1666 /*
1667 * Handle SAM-esque emulation for generic transport request failures.
1668 */
1669 void transport_generic_request_failure(struct se_cmd *cmd,
1670 sense_reason_t sense_reason)
1671 {
1672 int ret = 0, post_ret = 0;
1673
1674 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1675 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1676 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1677 cmd->se_tfo->get_cmd_state(cmd),
1678 cmd->t_state, sense_reason);
1679 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1680 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1681 (cmd->transport_state & CMD_T_STOP) != 0,
1682 (cmd->transport_state & CMD_T_SENT) != 0);
1683
1684 /*
1685 * For SAM Task Attribute emulation for failed struct se_cmd
1686 */
1687 transport_complete_task_attr(cmd);
1688 /*
1689 * Handle special case for COMPARE_AND_WRITE failure, where the
1690 * callback is expected to drop the per device ->caw_sem.
1691 */
1692 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1693 cmd->transport_complete_callback)
1694 cmd->transport_complete_callback(cmd, false, &post_ret);
1695
1696 switch (sense_reason) {
1697 case TCM_NON_EXISTENT_LUN:
1698 case TCM_UNSUPPORTED_SCSI_OPCODE:
1699 case TCM_INVALID_CDB_FIELD:
1700 case TCM_INVALID_PARAMETER_LIST:
1701 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1702 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1703 case TCM_UNKNOWN_MODE_PAGE:
1704 case TCM_WRITE_PROTECTED:
1705 case TCM_ADDRESS_OUT_OF_RANGE:
1706 case TCM_CHECK_CONDITION_ABORT_CMD:
1707 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1708 case TCM_CHECK_CONDITION_NOT_READY:
1709 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1710 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1711 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1712 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1713 case TCM_TOO_MANY_TARGET_DESCS:
1714 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1715 case TCM_TOO_MANY_SEGMENT_DESCS:
1716 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1717 break;
1718 case TCM_OUT_OF_RESOURCES:
1719 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1720 break;
1721 case TCM_RESERVATION_CONFLICT:
1722 /*
1723 * No SENSE Data payload for this case, set SCSI Status
1724 * and queue the response to $FABRIC_MOD.
1725 *
1726 * Uses linux/include/scsi/scsi.h SAM status codes defs
1727 */
1728 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1729 /*
1730 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1731 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1732 * CONFLICT STATUS.
1733 *
1734 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1735 */
1736 if (cmd->se_sess &&
1737 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1738 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1739 cmd->orig_fe_lun, 0x2C,
1740 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1741 }
1742 trace_target_cmd_complete(cmd);
1743 ret = cmd->se_tfo->queue_status(cmd);
1744 if (ret == -EAGAIN || ret == -ENOMEM)
1745 goto queue_full;
1746 goto check_stop;
1747 default:
1748 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1749 cmd->t_task_cdb[0], sense_reason);
1750 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1751 break;
1752 }
1753
1754 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1755 if (ret == -EAGAIN || ret == -ENOMEM)
1756 goto queue_full;
1757
1758 check_stop:
1759 transport_lun_remove_cmd(cmd);
1760 transport_cmd_check_stop_to_fabric(cmd);
1761 return;
1762
1763 queue_full:
1764 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1765 transport_handle_queue_full(cmd, cmd->se_dev);
1766 }
1767 EXPORT_SYMBOL(transport_generic_request_failure);
1768
1769 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1770 {
1771 sense_reason_t ret;
1772
1773 if (!cmd->execute_cmd) {
1774 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1775 goto err;
1776 }
1777 if (do_checks) {
1778 /*
1779 * Check for an existing UNIT ATTENTION condition after
1780 * target_handle_task_attr() has done SAM task attr
1781 * checking, and possibly have already defered execution
1782 * out to target_restart_delayed_cmds() context.
1783 */
1784 ret = target_scsi3_ua_check(cmd);
1785 if (ret)
1786 goto err;
1787
1788 ret = target_alua_state_check(cmd);
1789 if (ret)
1790 goto err;
1791
1792 ret = target_check_reservation(cmd);
1793 if (ret) {
1794 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1795 goto err;
1796 }
1797 }
1798
1799 ret = cmd->execute_cmd(cmd);
1800 if (!ret)
1801 return;
1802 err:
1803 spin_lock_irq(&cmd->t_state_lock);
1804 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1805 spin_unlock_irq(&cmd->t_state_lock);
1806
1807 transport_generic_request_failure(cmd, ret);
1808 }
1809
1810 static int target_write_prot_action(struct se_cmd *cmd)
1811 {
1812 u32 sectors;
1813 /*
1814 * Perform WRITE_INSERT of PI using software emulation when backend
1815 * device has PI enabled, if the transport has not already generated
1816 * PI using hardware WRITE_INSERT offload.
1817 */
1818 switch (cmd->prot_op) {
1819 case TARGET_PROT_DOUT_INSERT:
1820 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1821 sbc_dif_generate(cmd);
1822 break;
1823 case TARGET_PROT_DOUT_STRIP:
1824 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1825 break;
1826
1827 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1828 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1829 sectors, 0, cmd->t_prot_sg, 0);
1830 if (unlikely(cmd->pi_err)) {
1831 spin_lock_irq(&cmd->t_state_lock);
1832 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1833 spin_unlock_irq(&cmd->t_state_lock);
1834 transport_generic_request_failure(cmd, cmd->pi_err);
1835 return -1;
1836 }
1837 break;
1838 default:
1839 break;
1840 }
1841
1842 return 0;
1843 }
1844
1845 static bool target_handle_task_attr(struct se_cmd *cmd)
1846 {
1847 struct se_device *dev = cmd->se_dev;
1848
1849 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1850 return false;
1851
1852 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1853
1854 /*
1855 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1856 * to allow the passed struct se_cmd list of tasks to the front of the list.
1857 */
1858 switch (cmd->sam_task_attr) {
1859 case TCM_HEAD_TAG:
1860 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1861 cmd->t_task_cdb[0]);
1862 return false;
1863 case TCM_ORDERED_TAG:
1864 atomic_inc_mb(&dev->dev_ordered_sync);
1865
1866 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1867 cmd->t_task_cdb[0]);
1868
1869 /*
1870 * Execute an ORDERED command if no other older commands
1871 * exist that need to be completed first.
1872 */
1873 if (!atomic_read(&dev->simple_cmds))
1874 return false;
1875 break;
1876 default:
1877 /*
1878 * For SIMPLE and UNTAGGED Task Attribute commands
1879 */
1880 atomic_inc_mb(&dev->simple_cmds);
1881 break;
1882 }
1883
1884 if (atomic_read(&dev->dev_ordered_sync) == 0)
1885 return false;
1886
1887 spin_lock(&dev->delayed_cmd_lock);
1888 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1889 spin_unlock(&dev->delayed_cmd_lock);
1890
1891 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1892 cmd->t_task_cdb[0], cmd->sam_task_attr);
1893 return true;
1894 }
1895
1896 static int __transport_check_aborted_status(struct se_cmd *, int);
1897
1898 void target_execute_cmd(struct se_cmd *cmd)
1899 {
1900 /*
1901 * Determine if frontend context caller is requesting the stopping of
1902 * this command for frontend exceptions.
1903 *
1904 * If the received CDB has aleady been aborted stop processing it here.
1905 */
1906 spin_lock_irq(&cmd->t_state_lock);
1907 if (__transport_check_aborted_status(cmd, 1)) {
1908 spin_unlock_irq(&cmd->t_state_lock);
1909 return;
1910 }
1911 if (cmd->transport_state & CMD_T_STOP) {
1912 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1913 __func__, __LINE__, cmd->tag);
1914
1915 spin_unlock_irq(&cmd->t_state_lock);
1916 complete_all(&cmd->t_transport_stop_comp);
1917 return;
1918 }
1919
1920 cmd->t_state = TRANSPORT_PROCESSING;
1921 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1922 spin_unlock_irq(&cmd->t_state_lock);
1923
1924 if (target_write_prot_action(cmd))
1925 return;
1926
1927 if (target_handle_task_attr(cmd)) {
1928 spin_lock_irq(&cmd->t_state_lock);
1929 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1930 spin_unlock_irq(&cmd->t_state_lock);
1931 return;
1932 }
1933
1934 __target_execute_cmd(cmd, true);
1935 }
1936 EXPORT_SYMBOL(target_execute_cmd);
1937
1938 /*
1939 * Process all commands up to the last received ORDERED task attribute which
1940 * requires another blocking boundary
1941 */
1942 static void target_restart_delayed_cmds(struct se_device *dev)
1943 {
1944 for (;;) {
1945 struct se_cmd *cmd;
1946
1947 spin_lock(&dev->delayed_cmd_lock);
1948 if (list_empty(&dev->delayed_cmd_list)) {
1949 spin_unlock(&dev->delayed_cmd_lock);
1950 break;
1951 }
1952
1953 cmd = list_entry(dev->delayed_cmd_list.next,
1954 struct se_cmd, se_delayed_node);
1955 list_del(&cmd->se_delayed_node);
1956 spin_unlock(&dev->delayed_cmd_lock);
1957
1958 __target_execute_cmd(cmd, true);
1959
1960 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1961 break;
1962 }
1963 }
1964
1965 /*
1966 * Called from I/O completion to determine which dormant/delayed
1967 * and ordered cmds need to have their tasks added to the execution queue.
1968 */
1969 static void transport_complete_task_attr(struct se_cmd *cmd)
1970 {
1971 struct se_device *dev = cmd->se_dev;
1972
1973 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1974 return;
1975
1976 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1977 goto restart;
1978
1979 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1980 atomic_dec_mb(&dev->simple_cmds);
1981 dev->dev_cur_ordered_id++;
1982 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1983 dev->dev_cur_ordered_id);
1984 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1985 dev->dev_cur_ordered_id++;
1986 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1987 dev->dev_cur_ordered_id);
1988 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1989 atomic_dec_mb(&dev->dev_ordered_sync);
1990
1991 dev->dev_cur_ordered_id++;
1992 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1993 dev->dev_cur_ordered_id);
1994 }
1995 restart:
1996 target_restart_delayed_cmds(dev);
1997 }
1998
1999 static void transport_complete_qf(struct se_cmd *cmd)
2000 {
2001 int ret = 0;
2002
2003 transport_complete_task_attr(cmd);
2004
2005 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2006 trace_target_cmd_complete(cmd);
2007 ret = cmd->se_tfo->queue_status(cmd);
2008 goto out;
2009 }
2010
2011 switch (cmd->data_direction) {
2012 case DMA_FROM_DEVICE:
2013 if (cmd->scsi_status)
2014 goto queue_status;
2015
2016 trace_target_cmd_complete(cmd);
2017 ret = cmd->se_tfo->queue_data_in(cmd);
2018 break;
2019 case DMA_TO_DEVICE:
2020 if (cmd->se_cmd_flags & SCF_BIDI) {
2021 ret = cmd->se_tfo->queue_data_in(cmd);
2022 break;
2023 }
2024 /* Fall through for DMA_TO_DEVICE */
2025 case DMA_NONE:
2026 queue_status:
2027 trace_target_cmd_complete(cmd);
2028 ret = cmd->se_tfo->queue_status(cmd);
2029 break;
2030 default:
2031 break;
2032 }
2033
2034 out:
2035 if (ret < 0) {
2036 transport_handle_queue_full(cmd, cmd->se_dev);
2037 return;
2038 }
2039 transport_lun_remove_cmd(cmd);
2040 transport_cmd_check_stop_to_fabric(cmd);
2041 }
2042
2043 static void transport_handle_queue_full(
2044 struct se_cmd *cmd,
2045 struct se_device *dev)
2046 {
2047 spin_lock_irq(&dev->qf_cmd_lock);
2048 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2049 atomic_inc_mb(&dev->dev_qf_count);
2050 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2051
2052 schedule_work(&cmd->se_dev->qf_work_queue);
2053 }
2054
2055 static bool target_read_prot_action(struct se_cmd *cmd)
2056 {
2057 switch (cmd->prot_op) {
2058 case TARGET_PROT_DIN_STRIP:
2059 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2060 u32 sectors = cmd->data_length >>
2061 ilog2(cmd->se_dev->dev_attrib.block_size);
2062
2063 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2064 sectors, 0, cmd->t_prot_sg,
2065 0);
2066 if (cmd->pi_err)
2067 return true;
2068 }
2069 break;
2070 case TARGET_PROT_DIN_INSERT:
2071 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2072 break;
2073
2074 sbc_dif_generate(cmd);
2075 break;
2076 default:
2077 break;
2078 }
2079
2080 return false;
2081 }
2082
2083 static void target_complete_ok_work(struct work_struct *work)
2084 {
2085 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2086 int ret;
2087
2088 /*
2089 * Check if we need to move delayed/dormant tasks from cmds on the
2090 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2091 * Attribute.
2092 */
2093 transport_complete_task_attr(cmd);
2094
2095 /*
2096 * Check to schedule QUEUE_FULL work, or execute an existing
2097 * cmd->transport_qf_callback()
2098 */
2099 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2100 schedule_work(&cmd->se_dev->qf_work_queue);
2101
2102 /*
2103 * Check if we need to send a sense buffer from
2104 * the struct se_cmd in question.
2105 */
2106 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2107 WARN_ON(!cmd->scsi_status);
2108 ret = transport_send_check_condition_and_sense(
2109 cmd, 0, 1);
2110 if (ret == -EAGAIN || ret == -ENOMEM)
2111 goto queue_full;
2112
2113 transport_lun_remove_cmd(cmd);
2114 transport_cmd_check_stop_to_fabric(cmd);
2115 return;
2116 }
2117 /*
2118 * Check for a callback, used by amongst other things
2119 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2120 */
2121 if (cmd->transport_complete_callback) {
2122 sense_reason_t rc;
2123 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2124 bool zero_dl = !(cmd->data_length);
2125 int post_ret = 0;
2126
2127 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2128 if (!rc && !post_ret) {
2129 if (caw && zero_dl)
2130 goto queue_rsp;
2131
2132 return;
2133 } else if (rc) {
2134 ret = transport_send_check_condition_and_sense(cmd,
2135 rc, 0);
2136 if (ret == -EAGAIN || ret == -ENOMEM)
2137 goto queue_full;
2138
2139 transport_lun_remove_cmd(cmd);
2140 transport_cmd_check_stop_to_fabric(cmd);
2141 return;
2142 }
2143 }
2144
2145 queue_rsp:
2146 switch (cmd->data_direction) {
2147 case DMA_FROM_DEVICE:
2148 if (cmd->scsi_status)
2149 goto queue_status;
2150
2151 atomic_long_add(cmd->data_length,
2152 &cmd->se_lun->lun_stats.tx_data_octets);
2153 /*
2154 * Perform READ_STRIP of PI using software emulation when
2155 * backend had PI enabled, if the transport will not be
2156 * performing hardware READ_STRIP offload.
2157 */
2158 if (target_read_prot_action(cmd)) {
2159 ret = transport_send_check_condition_and_sense(cmd,
2160 cmd->pi_err, 0);
2161 if (ret == -EAGAIN || ret == -ENOMEM)
2162 goto queue_full;
2163
2164 transport_lun_remove_cmd(cmd);
2165 transport_cmd_check_stop_to_fabric(cmd);
2166 return;
2167 }
2168
2169 trace_target_cmd_complete(cmd);
2170 ret = cmd->se_tfo->queue_data_in(cmd);
2171 if (ret == -EAGAIN || ret == -ENOMEM)
2172 goto queue_full;
2173 break;
2174 case DMA_TO_DEVICE:
2175 atomic_long_add(cmd->data_length,
2176 &cmd->se_lun->lun_stats.rx_data_octets);
2177 /*
2178 * Check if we need to send READ payload for BIDI-COMMAND
2179 */
2180 if (cmd->se_cmd_flags & SCF_BIDI) {
2181 atomic_long_add(cmd->data_length,
2182 &cmd->se_lun->lun_stats.tx_data_octets);
2183 ret = cmd->se_tfo->queue_data_in(cmd);
2184 if (ret == -EAGAIN || ret == -ENOMEM)
2185 goto queue_full;
2186 break;
2187 }
2188 /* Fall through for DMA_TO_DEVICE */
2189 case DMA_NONE:
2190 queue_status:
2191 trace_target_cmd_complete(cmd);
2192 ret = cmd->se_tfo->queue_status(cmd);
2193 if (ret == -EAGAIN || ret == -ENOMEM)
2194 goto queue_full;
2195 break;
2196 default:
2197 break;
2198 }
2199
2200 transport_lun_remove_cmd(cmd);
2201 transport_cmd_check_stop_to_fabric(cmd);
2202 return;
2203
2204 queue_full:
2205 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2206 " data_direction: %d\n", cmd, cmd->data_direction);
2207 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2208 transport_handle_queue_full(cmd, cmd->se_dev);
2209 }
2210
2211 void target_free_sgl(struct scatterlist *sgl, int nents)
2212 {
2213 struct scatterlist *sg;
2214 int count;
2215
2216 for_each_sg(sgl, sg, nents, count)
2217 __free_page(sg_page(sg));
2218
2219 kfree(sgl);
2220 }
2221 EXPORT_SYMBOL(target_free_sgl);
2222
2223 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2224 {
2225 /*
2226 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2227 * emulation, and free + reset pointers if necessary..
2228 */
2229 if (!cmd->t_data_sg_orig)
2230 return;
2231
2232 kfree(cmd->t_data_sg);
2233 cmd->t_data_sg = cmd->t_data_sg_orig;
2234 cmd->t_data_sg_orig = NULL;
2235 cmd->t_data_nents = cmd->t_data_nents_orig;
2236 cmd->t_data_nents_orig = 0;
2237 }
2238
2239 static inline void transport_free_pages(struct se_cmd *cmd)
2240 {
2241 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2242 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2243 cmd->t_prot_sg = NULL;
2244 cmd->t_prot_nents = 0;
2245 }
2246
2247 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2248 /*
2249 * Release special case READ buffer payload required for
2250 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2251 */
2252 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2253 target_free_sgl(cmd->t_bidi_data_sg,
2254 cmd->t_bidi_data_nents);
2255 cmd->t_bidi_data_sg = NULL;
2256 cmd->t_bidi_data_nents = 0;
2257 }
2258 transport_reset_sgl_orig(cmd);
2259 return;
2260 }
2261 transport_reset_sgl_orig(cmd);
2262
2263 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2264 cmd->t_data_sg = NULL;
2265 cmd->t_data_nents = 0;
2266
2267 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2268 cmd->t_bidi_data_sg = NULL;
2269 cmd->t_bidi_data_nents = 0;
2270 }
2271
2272 /**
2273 * transport_put_cmd - release a reference to a command
2274 * @cmd: command to release
2275 *
2276 * This routine releases our reference to the command and frees it if possible.
2277 */
2278 static int transport_put_cmd(struct se_cmd *cmd)
2279 {
2280 BUG_ON(!cmd->se_tfo);
2281 /*
2282 * If this cmd has been setup with target_get_sess_cmd(), drop
2283 * the kref and call ->release_cmd() in kref callback.
2284 */
2285 return target_put_sess_cmd(cmd);
2286 }
2287
2288 void *transport_kmap_data_sg(struct se_cmd *cmd)
2289 {
2290 struct scatterlist *sg = cmd->t_data_sg;
2291 struct page **pages;
2292 int i;
2293
2294 /*
2295 * We need to take into account a possible offset here for fabrics like
2296 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2297 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2298 */
2299 if (!cmd->t_data_nents)
2300 return NULL;
2301
2302 BUG_ON(!sg);
2303 if (cmd->t_data_nents == 1)
2304 return kmap(sg_page(sg)) + sg->offset;
2305
2306 /* >1 page. use vmap */
2307 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2308 if (!pages)
2309 return NULL;
2310
2311 /* convert sg[] to pages[] */
2312 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2313 pages[i] = sg_page(sg);
2314 }
2315
2316 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2317 kfree(pages);
2318 if (!cmd->t_data_vmap)
2319 return NULL;
2320
2321 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2322 }
2323 EXPORT_SYMBOL(transport_kmap_data_sg);
2324
2325 void transport_kunmap_data_sg(struct se_cmd *cmd)
2326 {
2327 if (!cmd->t_data_nents) {
2328 return;
2329 } else if (cmd->t_data_nents == 1) {
2330 kunmap(sg_page(cmd->t_data_sg));
2331 return;
2332 }
2333
2334 vunmap(cmd->t_data_vmap);
2335 cmd->t_data_vmap = NULL;
2336 }
2337 EXPORT_SYMBOL(transport_kunmap_data_sg);
2338
2339 int
2340 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2341 bool zero_page, bool chainable)
2342 {
2343 struct scatterlist *sg;
2344 struct page *page;
2345 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2346 unsigned int nalloc, nent;
2347 int i = 0;
2348
2349 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2350 if (chainable)
2351 nalloc++;
2352 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2353 if (!sg)
2354 return -ENOMEM;
2355
2356 sg_init_table(sg, nalloc);
2357
2358 while (length) {
2359 u32 page_len = min_t(u32, length, PAGE_SIZE);
2360 page = alloc_page(GFP_KERNEL | zero_flag);
2361 if (!page)
2362 goto out;
2363
2364 sg_set_page(&sg[i], page, page_len, 0);
2365 length -= page_len;
2366 i++;
2367 }
2368 *sgl = sg;
2369 *nents = nent;
2370 return 0;
2371
2372 out:
2373 while (i > 0) {
2374 i--;
2375 __free_page(sg_page(&sg[i]));
2376 }
2377 kfree(sg);
2378 return -ENOMEM;
2379 }
2380 EXPORT_SYMBOL(target_alloc_sgl);
2381
2382 /*
2383 * Allocate any required resources to execute the command. For writes we
2384 * might not have the payload yet, so notify the fabric via a call to
2385 * ->write_pending instead. Otherwise place it on the execution queue.
2386 */
2387 sense_reason_t
2388 transport_generic_new_cmd(struct se_cmd *cmd)
2389 {
2390 int ret = 0;
2391 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2392
2393 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2394 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2395 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2396 cmd->prot_length, true, false);
2397 if (ret < 0)
2398 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2399 }
2400
2401 /*
2402 * Determine is the TCM fabric module has already allocated physical
2403 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2404 * beforehand.
2405 */
2406 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2407 cmd->data_length) {
2408
2409 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2410 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2411 u32 bidi_length;
2412
2413 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2414 bidi_length = cmd->t_task_nolb *
2415 cmd->se_dev->dev_attrib.block_size;
2416 else
2417 bidi_length = cmd->data_length;
2418
2419 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2420 &cmd->t_bidi_data_nents,
2421 bidi_length, zero_flag, false);
2422 if (ret < 0)
2423 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2424 }
2425
2426 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2427 cmd->data_length, zero_flag, false);
2428 if (ret < 0)
2429 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2430 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2431 cmd->data_length) {
2432 /*
2433 * Special case for COMPARE_AND_WRITE with fabrics
2434 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2435 */
2436 u32 caw_length = cmd->t_task_nolb *
2437 cmd->se_dev->dev_attrib.block_size;
2438
2439 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2440 &cmd->t_bidi_data_nents,
2441 caw_length, zero_flag, false);
2442 if (ret < 0)
2443 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2444 }
2445 /*
2446 * If this command is not a write we can execute it right here,
2447 * for write buffers we need to notify the fabric driver first
2448 * and let it call back once the write buffers are ready.
2449 */
2450 target_add_to_state_list(cmd);
2451 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2452 target_execute_cmd(cmd);
2453 return 0;
2454 }
2455 transport_cmd_check_stop(cmd, false, true);
2456
2457 ret = cmd->se_tfo->write_pending(cmd);
2458 if (ret == -EAGAIN || ret == -ENOMEM)
2459 goto queue_full;
2460
2461 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2462 WARN_ON(ret);
2463
2464 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2465
2466 queue_full:
2467 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2468 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2469 transport_handle_queue_full(cmd, cmd->se_dev);
2470 return 0;
2471 }
2472 EXPORT_SYMBOL(transport_generic_new_cmd);
2473
2474 static void transport_write_pending_qf(struct se_cmd *cmd)
2475 {
2476 int ret;
2477
2478 ret = cmd->se_tfo->write_pending(cmd);
2479 if (ret == -EAGAIN || ret == -ENOMEM) {
2480 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2481 cmd);
2482 transport_handle_queue_full(cmd, cmd->se_dev);
2483 }
2484 }
2485
2486 static bool
2487 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2488 unsigned long *flags);
2489
2490 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2491 {
2492 unsigned long flags;
2493
2494 spin_lock_irqsave(&cmd->t_state_lock, flags);
2495 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2497 }
2498
2499 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2500 {
2501 int ret = 0;
2502 bool aborted = false, tas = false;
2503
2504 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2505 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2506 target_wait_free_cmd(cmd, &aborted, &tas);
2507
2508 if (!aborted || tas)
2509 ret = transport_put_cmd(cmd);
2510 } else {
2511 if (wait_for_tasks)
2512 target_wait_free_cmd(cmd, &aborted, &tas);
2513 /*
2514 * Handle WRITE failure case where transport_generic_new_cmd()
2515 * has already added se_cmd to state_list, but fabric has
2516 * failed command before I/O submission.
2517 */
2518 if (cmd->state_active)
2519 target_remove_from_state_list(cmd);
2520
2521 if (cmd->se_lun)
2522 transport_lun_remove_cmd(cmd);
2523
2524 if (!aborted || tas)
2525 ret = transport_put_cmd(cmd);
2526 }
2527 /*
2528 * If the task has been internally aborted due to TMR ABORT_TASK
2529 * or LUN_RESET, target_core_tmr.c is responsible for performing
2530 * the remaining calls to target_put_sess_cmd(), and not the
2531 * callers of this function.
2532 */
2533 if (aborted) {
2534 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2535 wait_for_completion(&cmd->cmd_wait_comp);
2536 cmd->se_tfo->release_cmd(cmd);
2537 ret = 1;
2538 }
2539 return ret;
2540 }
2541 EXPORT_SYMBOL(transport_generic_free_cmd);
2542
2543 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2544 * @se_cmd: command descriptor to add
2545 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2546 */
2547 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2548 {
2549 struct se_session *se_sess = se_cmd->se_sess;
2550 unsigned long flags;
2551 int ret = 0;
2552
2553 /*
2554 * Add a second kref if the fabric caller is expecting to handle
2555 * fabric acknowledgement that requires two target_put_sess_cmd()
2556 * invocations before se_cmd descriptor release.
2557 */
2558 if (ack_kref) {
2559 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2560 return -EINVAL;
2561
2562 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2563 }
2564
2565 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2566 if (se_sess->sess_tearing_down) {
2567 ret = -ESHUTDOWN;
2568 goto out;
2569 }
2570 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2571 out:
2572 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2573
2574 if (ret && ack_kref)
2575 target_put_sess_cmd(se_cmd);
2576
2577 return ret;
2578 }
2579 EXPORT_SYMBOL(target_get_sess_cmd);
2580
2581 static void target_free_cmd_mem(struct se_cmd *cmd)
2582 {
2583 transport_free_pages(cmd);
2584
2585 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2586 core_tmr_release_req(cmd->se_tmr_req);
2587 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2588 kfree(cmd->t_task_cdb);
2589 }
2590
2591 static void target_release_cmd_kref(struct kref *kref)
2592 {
2593 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2594 struct se_session *se_sess = se_cmd->se_sess;
2595 unsigned long flags;
2596 bool fabric_stop;
2597
2598 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2599
2600 spin_lock(&se_cmd->t_state_lock);
2601 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2602 (se_cmd->transport_state & CMD_T_ABORTED);
2603 spin_unlock(&se_cmd->t_state_lock);
2604
2605 if (se_cmd->cmd_wait_set || fabric_stop) {
2606 list_del_init(&se_cmd->se_cmd_list);
2607 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2608 target_free_cmd_mem(se_cmd);
2609 complete(&se_cmd->cmd_wait_comp);
2610 return;
2611 }
2612 list_del_init(&se_cmd->se_cmd_list);
2613 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2614
2615 target_free_cmd_mem(se_cmd);
2616 se_cmd->se_tfo->release_cmd(se_cmd);
2617 }
2618
2619 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2620 * @se_cmd: command descriptor to drop
2621 */
2622 int target_put_sess_cmd(struct se_cmd *se_cmd)
2623 {
2624 struct se_session *se_sess = se_cmd->se_sess;
2625
2626 if (!se_sess) {
2627 target_free_cmd_mem(se_cmd);
2628 se_cmd->se_tfo->release_cmd(se_cmd);
2629 return 1;
2630 }
2631 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2632 }
2633 EXPORT_SYMBOL(target_put_sess_cmd);
2634
2635 /* target_sess_cmd_list_set_waiting - Flag all commands in
2636 * sess_cmd_list to complete cmd_wait_comp. Set
2637 * sess_tearing_down so no more commands are queued.
2638 * @se_sess: session to flag
2639 */
2640 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2641 {
2642 struct se_cmd *se_cmd, *tmp_cmd;
2643 unsigned long flags;
2644 int rc;
2645
2646 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2647 if (se_sess->sess_tearing_down) {
2648 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2649 return;
2650 }
2651 se_sess->sess_tearing_down = 1;
2652 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2653
2654 list_for_each_entry_safe(se_cmd, tmp_cmd,
2655 &se_sess->sess_wait_list, se_cmd_list) {
2656 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2657 if (rc) {
2658 se_cmd->cmd_wait_set = 1;
2659 spin_lock(&se_cmd->t_state_lock);
2660 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2661 spin_unlock(&se_cmd->t_state_lock);
2662 } else
2663 list_del_init(&se_cmd->se_cmd_list);
2664 }
2665
2666 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2667 }
2668 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2669
2670 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2671 * @se_sess: session to wait for active I/O
2672 */
2673 void target_wait_for_sess_cmds(struct se_session *se_sess)
2674 {
2675 struct se_cmd *se_cmd, *tmp_cmd;
2676 unsigned long flags;
2677 bool tas;
2678
2679 list_for_each_entry_safe(se_cmd, tmp_cmd,
2680 &se_sess->sess_wait_list, se_cmd_list) {
2681 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2682 " %d\n", se_cmd, se_cmd->t_state,
2683 se_cmd->se_tfo->get_cmd_state(se_cmd));
2684
2685 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2686 tas = (se_cmd->transport_state & CMD_T_TAS);
2687 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2688
2689 if (!target_put_sess_cmd(se_cmd)) {
2690 if (tas)
2691 target_put_sess_cmd(se_cmd);
2692 }
2693
2694 wait_for_completion(&se_cmd->cmd_wait_comp);
2695 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2696 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2697 se_cmd->se_tfo->get_cmd_state(se_cmd));
2698
2699 se_cmd->se_tfo->release_cmd(se_cmd);
2700 }
2701
2702 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2703 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2704 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2705
2706 }
2707 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2708
2709 void transport_clear_lun_ref(struct se_lun *lun)
2710 {
2711 percpu_ref_kill(&lun->lun_ref);
2712 wait_for_completion(&lun->lun_ref_comp);
2713 }
2714
2715 static bool
2716 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2717 bool *aborted, bool *tas, unsigned long *flags)
2718 __releases(&cmd->t_state_lock)
2719 __acquires(&cmd->t_state_lock)
2720 {
2721
2722 assert_spin_locked(&cmd->t_state_lock);
2723 WARN_ON_ONCE(!irqs_disabled());
2724
2725 if (fabric_stop)
2726 cmd->transport_state |= CMD_T_FABRIC_STOP;
2727
2728 if (cmd->transport_state & CMD_T_ABORTED)
2729 *aborted = true;
2730
2731 if (cmd->transport_state & CMD_T_TAS)
2732 *tas = true;
2733
2734 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2735 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2736 return false;
2737
2738 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2739 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2740 return false;
2741
2742 if (!(cmd->transport_state & CMD_T_ACTIVE))
2743 return false;
2744
2745 if (fabric_stop && *aborted)
2746 return false;
2747
2748 cmd->transport_state |= CMD_T_STOP;
2749
2750 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2751 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2752 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2753
2754 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2755
2756 wait_for_completion(&cmd->t_transport_stop_comp);
2757
2758 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2759 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2760
2761 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2762 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2763
2764 return true;
2765 }
2766
2767 /**
2768 * transport_wait_for_tasks - wait for completion to occur
2769 * @cmd: command to wait
2770 *
2771 * Called from frontend fabric context to wait for storage engine
2772 * to pause and/or release frontend generated struct se_cmd.
2773 */
2774 bool transport_wait_for_tasks(struct se_cmd *cmd)
2775 {
2776 unsigned long flags;
2777 bool ret, aborted = false, tas = false;
2778
2779 spin_lock_irqsave(&cmd->t_state_lock, flags);
2780 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2781 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2782
2783 return ret;
2784 }
2785 EXPORT_SYMBOL(transport_wait_for_tasks);
2786
2787 struct sense_info {
2788 u8 key;
2789 u8 asc;
2790 u8 ascq;
2791 bool add_sector_info;
2792 };
2793
2794 static const struct sense_info sense_info_table[] = {
2795 [TCM_NO_SENSE] = {
2796 .key = NOT_READY
2797 },
2798 [TCM_NON_EXISTENT_LUN] = {
2799 .key = ILLEGAL_REQUEST,
2800 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2801 },
2802 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2803 .key = ILLEGAL_REQUEST,
2804 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2805 },
2806 [TCM_SECTOR_COUNT_TOO_MANY] = {
2807 .key = ILLEGAL_REQUEST,
2808 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2809 },
2810 [TCM_UNKNOWN_MODE_PAGE] = {
2811 .key = ILLEGAL_REQUEST,
2812 .asc = 0x24, /* INVALID FIELD IN CDB */
2813 },
2814 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2815 .key = ABORTED_COMMAND,
2816 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2817 .ascq = 0x03,
2818 },
2819 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2820 .key = ABORTED_COMMAND,
2821 .asc = 0x0c, /* WRITE ERROR */
2822 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2823 },
2824 [TCM_INVALID_CDB_FIELD] = {
2825 .key = ILLEGAL_REQUEST,
2826 .asc = 0x24, /* INVALID FIELD IN CDB */
2827 },
2828 [TCM_INVALID_PARAMETER_LIST] = {
2829 .key = ILLEGAL_REQUEST,
2830 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2831 },
2832 [TCM_TOO_MANY_TARGET_DESCS] = {
2833 .key = ILLEGAL_REQUEST,
2834 .asc = 0x26,
2835 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2836 },
2837 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2838 .key = ILLEGAL_REQUEST,
2839 .asc = 0x26,
2840 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2841 },
2842 [TCM_TOO_MANY_SEGMENT_DESCS] = {
2843 .key = ILLEGAL_REQUEST,
2844 .asc = 0x26,
2845 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2846 },
2847 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2848 .key = ILLEGAL_REQUEST,
2849 .asc = 0x26,
2850 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2851 },
2852 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2853 .key = ILLEGAL_REQUEST,
2854 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2855 },
2856 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2857 .key = ILLEGAL_REQUEST,
2858 .asc = 0x0c, /* WRITE ERROR */
2859 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2860 },
2861 [TCM_SERVICE_CRC_ERROR] = {
2862 .key = ABORTED_COMMAND,
2863 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2864 .ascq = 0x05, /* N/A */
2865 },
2866 [TCM_SNACK_REJECTED] = {
2867 .key = ABORTED_COMMAND,
2868 .asc = 0x11, /* READ ERROR */
2869 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2870 },
2871 [TCM_WRITE_PROTECTED] = {
2872 .key = DATA_PROTECT,
2873 .asc = 0x27, /* WRITE PROTECTED */
2874 },
2875 [TCM_ADDRESS_OUT_OF_RANGE] = {
2876 .key = ILLEGAL_REQUEST,
2877 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2878 },
2879 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2880 .key = UNIT_ATTENTION,
2881 },
2882 [TCM_CHECK_CONDITION_NOT_READY] = {
2883 .key = NOT_READY,
2884 },
2885 [TCM_MISCOMPARE_VERIFY] = {
2886 .key = MISCOMPARE,
2887 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2888 .ascq = 0x00,
2889 },
2890 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2891 .key = ABORTED_COMMAND,
2892 .asc = 0x10,
2893 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2894 .add_sector_info = true,
2895 },
2896 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2897 .key = ABORTED_COMMAND,
2898 .asc = 0x10,
2899 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2900 .add_sector_info = true,
2901 },
2902 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2903 .key = ABORTED_COMMAND,
2904 .asc = 0x10,
2905 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2906 .add_sector_info = true,
2907 },
2908 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2909 .key = COPY_ABORTED,
2910 .asc = 0x0d,
2911 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2912
2913 },
2914 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2915 /*
2916 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2917 * Solaris initiators. Returning NOT READY instead means the
2918 * operations will be retried a finite number of times and we
2919 * can survive intermittent errors.
2920 */
2921 .key = NOT_READY,
2922 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2923 },
2924 };
2925
2926 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2927 {
2928 const struct sense_info *si;
2929 u8 *buffer = cmd->sense_buffer;
2930 int r = (__force int)reason;
2931 u8 asc, ascq;
2932 bool desc_format = target_sense_desc_format(cmd->se_dev);
2933
2934 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2935 si = &sense_info_table[r];
2936 else
2937 si = &sense_info_table[(__force int)
2938 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2939
2940 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2941 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2942 WARN_ON_ONCE(asc == 0);
2943 } else if (si->asc == 0) {
2944 WARN_ON_ONCE(cmd->scsi_asc == 0);
2945 asc = cmd->scsi_asc;
2946 ascq = cmd->scsi_ascq;
2947 } else {
2948 asc = si->asc;
2949 ascq = si->ascq;
2950 }
2951
2952 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2953 if (si->add_sector_info)
2954 return scsi_set_sense_information(buffer,
2955 cmd->scsi_sense_length,
2956 cmd->bad_sector);
2957
2958 return 0;
2959 }
2960
2961 int
2962 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2963 sense_reason_t reason, int from_transport)
2964 {
2965 unsigned long flags;
2966
2967 spin_lock_irqsave(&cmd->t_state_lock, flags);
2968 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2969 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2970 return 0;
2971 }
2972 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2973 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2974
2975 if (!from_transport) {
2976 int rc;
2977
2978 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2979 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2980 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2981 rc = translate_sense_reason(cmd, reason);
2982 if (rc)
2983 return rc;
2984 }
2985
2986 trace_target_cmd_complete(cmd);
2987 return cmd->se_tfo->queue_status(cmd);
2988 }
2989 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2990
2991 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2992 __releases(&cmd->t_state_lock)
2993 __acquires(&cmd->t_state_lock)
2994 {
2995 assert_spin_locked(&cmd->t_state_lock);
2996 WARN_ON_ONCE(!irqs_disabled());
2997
2998 if (!(cmd->transport_state & CMD_T_ABORTED))
2999 return 0;
3000 /*
3001 * If cmd has been aborted but either no status is to be sent or it has
3002 * already been sent, just return
3003 */
3004 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3005 if (send_status)
3006 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3007 return 1;
3008 }
3009
3010 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3011 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3012
3013 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3014 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3015 trace_target_cmd_complete(cmd);
3016
3017 spin_unlock_irq(&cmd->t_state_lock);
3018 cmd->se_tfo->queue_status(cmd);
3019 spin_lock_irq(&cmd->t_state_lock);
3020
3021 return 1;
3022 }
3023
3024 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3025 {
3026 int ret;
3027
3028 spin_lock_irq(&cmd->t_state_lock);
3029 ret = __transport_check_aborted_status(cmd, send_status);
3030 spin_unlock_irq(&cmd->t_state_lock);
3031
3032 return ret;
3033 }
3034 EXPORT_SYMBOL(transport_check_aborted_status);
3035
3036 void transport_send_task_abort(struct se_cmd *cmd)
3037 {
3038 unsigned long flags;
3039
3040 spin_lock_irqsave(&cmd->t_state_lock, flags);
3041 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3042 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3043 return;
3044 }
3045 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3046
3047 /*
3048 * If there are still expected incoming fabric WRITEs, we wait
3049 * until until they have completed before sending a TASK_ABORTED
3050 * response. This response with TASK_ABORTED status will be
3051 * queued back to fabric module by transport_check_aborted_status().
3052 */
3053 if (cmd->data_direction == DMA_TO_DEVICE) {
3054 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3055 spin_lock_irqsave(&cmd->t_state_lock, flags);
3056 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3057 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3058 goto send_abort;
3059 }
3060 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3061 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3062 return;
3063 }
3064 }
3065 send_abort:
3066 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3067
3068 transport_lun_remove_cmd(cmd);
3069
3070 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3071 cmd->t_task_cdb[0], cmd->tag);
3072
3073 trace_target_cmd_complete(cmd);
3074 cmd->se_tfo->queue_status(cmd);
3075 }
3076
3077 static void target_tmr_work(struct work_struct *work)
3078 {
3079 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3080 struct se_device *dev = cmd->se_dev;
3081 struct se_tmr_req *tmr = cmd->se_tmr_req;
3082 unsigned long flags;
3083 int ret;
3084
3085 spin_lock_irqsave(&cmd->t_state_lock, flags);
3086 if (cmd->transport_state & CMD_T_ABORTED) {
3087 tmr->response = TMR_FUNCTION_REJECTED;
3088 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3089 goto check_stop;
3090 }
3091 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3092
3093 switch (tmr->function) {
3094 case TMR_ABORT_TASK:
3095 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3096 break;
3097 case TMR_ABORT_TASK_SET:
3098 case TMR_CLEAR_ACA:
3099 case TMR_CLEAR_TASK_SET:
3100 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3101 break;
3102 case TMR_LUN_RESET:
3103 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3104 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3105 TMR_FUNCTION_REJECTED;
3106 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3107 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3108 cmd->orig_fe_lun, 0x29,
3109 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3110 }
3111 break;
3112 case TMR_TARGET_WARM_RESET:
3113 tmr->response = TMR_FUNCTION_REJECTED;
3114 break;
3115 case TMR_TARGET_COLD_RESET:
3116 tmr->response = TMR_FUNCTION_REJECTED;
3117 break;
3118 default:
3119 pr_err("Uknown TMR function: 0x%02x.\n",
3120 tmr->function);
3121 tmr->response = TMR_FUNCTION_REJECTED;
3122 break;
3123 }
3124
3125 spin_lock_irqsave(&cmd->t_state_lock, flags);
3126 if (cmd->transport_state & CMD_T_ABORTED) {
3127 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3128 goto check_stop;
3129 }
3130 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3131
3132 cmd->se_tfo->queue_tm_rsp(cmd);
3133
3134 check_stop:
3135 transport_cmd_check_stop_to_fabric(cmd);
3136 }
3137
3138 int transport_generic_handle_tmr(
3139 struct se_cmd *cmd)
3140 {
3141 unsigned long flags;
3142 bool aborted = false;
3143
3144 spin_lock_irqsave(&cmd->t_state_lock, flags);
3145 if (cmd->transport_state & CMD_T_ABORTED) {
3146 aborted = true;
3147 } else {
3148 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3149 cmd->transport_state |= CMD_T_ACTIVE;
3150 }
3151 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3152
3153 if (aborted) {
3154 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3155 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3156 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3157 transport_cmd_check_stop_to_fabric(cmd);
3158 return 0;
3159 }
3160
3161 INIT_WORK(&cmd->work, target_tmr_work);
3162 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3163 return 0;
3164 }
3165 EXPORT_SYMBOL(transport_generic_handle_tmr);
3166
3167 bool
3168 target_check_wce(struct se_device *dev)
3169 {
3170 bool wce = false;
3171
3172 if (dev->transport->get_write_cache)
3173 wce = dev->transport->get_write_cache(dev);
3174 else if (dev->dev_attrib.emulate_write_cache > 0)
3175 wce = true;
3176
3177 return wce;
3178 }
3179
3180 bool
3181 target_check_fua(struct se_device *dev)
3182 {
3183 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3184 }