]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/target/target_core_transport.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[mirror_ubuntu-zesty-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
243
244 return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
250 {
251 int rc;
252
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
260 }
261 }
262
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
270 }
271
272 return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
279 {
280 struct se_session *se_sess;
281 int rc;
282
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
287 }
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
292 }
293
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
297
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
302 }
303
304 return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307
308 /*
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310 */
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
316 {
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
319
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
322 /*
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324 *
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
327 */
328 if (se_nacl) {
329 /*
330 *
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333 *
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
338 */
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
344 /*
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
347 */
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 }
354
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
356 /*
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
359 */
360 se_nacl->nacl_sess = se_sess;
361
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
365 }
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
378 {
379 unsigned long flags;
380
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
394 {
395 struct se_session *sess;
396
397 /*
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
400 */
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
405
406 if (IS_ERR(sess))
407 return sess;
408
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
414 }
415 /*
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
418 */
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
424 }
425 }
426
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434 struct se_session *se_sess;
435 ssize_t len = 0;
436
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
445
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
449 }
450 spin_unlock_bh(&se_tpg->session_lock);
451
452 return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455
456 static void target_complete_nacl(struct kref *kref)
457 {
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
460
461 complete(&nacl->acl_free_comp);
462 }
463
464 void target_put_nacl(struct se_node_acl *nacl)
465 {
466 kref_put(&nacl->acl_kref, target_complete_nacl);
467 }
468 EXPORT_SYMBOL(target_put_nacl);
469
470 void transport_deregister_session_configfs(struct se_session *se_sess)
471 {
472 struct se_node_acl *se_nacl;
473 unsigned long flags;
474 /*
475 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
476 */
477 se_nacl = se_sess->se_node_acl;
478 if (se_nacl) {
479 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
480 if (!list_empty(&se_sess->sess_acl_list))
481 list_del_init(&se_sess->sess_acl_list);
482 /*
483 * If the session list is empty, then clear the pointer.
484 * Otherwise, set the struct se_session pointer from the tail
485 * element of the per struct se_node_acl active session list.
486 */
487 if (list_empty(&se_nacl->acl_sess_list))
488 se_nacl->nacl_sess = NULL;
489 else {
490 se_nacl->nacl_sess = container_of(
491 se_nacl->acl_sess_list.prev,
492 struct se_session, sess_acl_list);
493 }
494 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
495 }
496 }
497 EXPORT_SYMBOL(transport_deregister_session_configfs);
498
499 void transport_free_session(struct se_session *se_sess)
500 {
501 struct se_node_acl *se_nacl = se_sess->se_node_acl;
502 /*
503 * Drop the se_node_acl->nacl_kref obtained from within
504 * core_tpg_get_initiator_node_acl().
505 */
506 if (se_nacl) {
507 se_sess->se_node_acl = NULL;
508 target_put_nacl(se_nacl);
509 }
510 if (se_sess->sess_cmd_map) {
511 percpu_ida_destroy(&se_sess->sess_tag_pool);
512 kvfree(se_sess->sess_cmd_map);
513 }
514 kmem_cache_free(se_sess_cache, se_sess);
515 }
516 EXPORT_SYMBOL(transport_free_session);
517
518 void transport_deregister_session(struct se_session *se_sess)
519 {
520 struct se_portal_group *se_tpg = se_sess->se_tpg;
521 const struct target_core_fabric_ops *se_tfo;
522 struct se_node_acl *se_nacl;
523 unsigned long flags;
524 bool drop_nacl = false;
525
526 if (!se_tpg) {
527 transport_free_session(se_sess);
528 return;
529 }
530 se_tfo = se_tpg->se_tpg_tfo;
531
532 spin_lock_irqsave(&se_tpg->session_lock, flags);
533 list_del(&se_sess->sess_list);
534 se_sess->se_tpg = NULL;
535 se_sess->fabric_sess_ptr = NULL;
536 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
537
538 /*
539 * Determine if we need to do extra work for this initiator node's
540 * struct se_node_acl if it had been previously dynamically generated.
541 */
542 se_nacl = se_sess->se_node_acl;
543
544 mutex_lock(&se_tpg->acl_node_mutex);
545 if (se_nacl && se_nacl->dynamic_node_acl) {
546 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
547 list_del(&se_nacl->acl_list);
548 drop_nacl = true;
549 }
550 }
551 mutex_unlock(&se_tpg->acl_node_mutex);
552
553 if (drop_nacl) {
554 core_tpg_wait_for_nacl_pr_ref(se_nacl);
555 core_free_device_list_for_node(se_nacl, se_tpg);
556 se_sess->se_node_acl = NULL;
557 kfree(se_nacl);
558 }
559 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
560 se_tpg->se_tpg_tfo->get_fabric_name());
561 /*
562 * If last kref is dropping now for an explicit NodeACL, awake sleeping
563 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
564 * removal context from within transport_free_session() code.
565 */
566
567 transport_free_session(se_sess);
568 }
569 EXPORT_SYMBOL(transport_deregister_session);
570
571 static void target_remove_from_state_list(struct se_cmd *cmd)
572 {
573 struct se_device *dev = cmd->se_dev;
574 unsigned long flags;
575
576 if (!dev)
577 return;
578
579 if (cmd->transport_state & CMD_T_BUSY)
580 return;
581
582 spin_lock_irqsave(&dev->execute_task_lock, flags);
583 if (cmd->state_active) {
584 list_del(&cmd->state_list);
585 cmd->state_active = false;
586 }
587 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
588 }
589
590 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
591 bool write_pending)
592 {
593 unsigned long flags;
594
595 if (remove_from_lists) {
596 target_remove_from_state_list(cmd);
597
598 /*
599 * Clear struct se_cmd->se_lun before the handoff to FE.
600 */
601 cmd->se_lun = NULL;
602 }
603
604 spin_lock_irqsave(&cmd->t_state_lock, flags);
605 if (write_pending)
606 cmd->t_state = TRANSPORT_WRITE_PENDING;
607
608 /*
609 * Determine if frontend context caller is requesting the stopping of
610 * this command for frontend exceptions.
611 */
612 if (cmd->transport_state & CMD_T_STOP) {
613 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
614 __func__, __LINE__, cmd->tag);
615
616 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
617
618 complete_all(&cmd->t_transport_stop_comp);
619 return 1;
620 }
621
622 cmd->transport_state &= ~CMD_T_ACTIVE;
623 if (remove_from_lists) {
624 /*
625 * Some fabric modules like tcm_loop can release
626 * their internally allocated I/O reference now and
627 * struct se_cmd now.
628 *
629 * Fabric modules are expected to return '1' here if the
630 * se_cmd being passed is released at this point,
631 * or zero if not being released.
632 */
633 if (cmd->se_tfo->check_stop_free != NULL) {
634 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
635 return cmd->se_tfo->check_stop_free(cmd);
636 }
637 }
638
639 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
640 return 0;
641 }
642
643 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
644 {
645 return transport_cmd_check_stop(cmd, true, false);
646 }
647
648 static void transport_lun_remove_cmd(struct se_cmd *cmd)
649 {
650 struct se_lun *lun = cmd->se_lun;
651
652 if (!lun)
653 return;
654
655 if (cmpxchg(&cmd->lun_ref_active, true, false))
656 percpu_ref_put(&lun->lun_ref);
657 }
658
659 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
660 {
661 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
662
663 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
664 transport_lun_remove_cmd(cmd);
665 /*
666 * Allow the fabric driver to unmap any resources before
667 * releasing the descriptor via TFO->release_cmd()
668 */
669 if (remove)
670 cmd->se_tfo->aborted_task(cmd);
671
672 if (transport_cmd_check_stop_to_fabric(cmd))
673 return;
674 if (remove && ack_kref)
675 transport_put_cmd(cmd);
676 }
677
678 static void target_complete_failure_work(struct work_struct *work)
679 {
680 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
681
682 transport_generic_request_failure(cmd,
683 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
684 }
685
686 /*
687 * Used when asking transport to copy Sense Data from the underlying
688 * Linux/SCSI struct scsi_cmnd
689 */
690 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
691 {
692 struct se_device *dev = cmd->se_dev;
693
694 WARN_ON(!cmd->se_lun);
695
696 if (!dev)
697 return NULL;
698
699 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
700 return NULL;
701
702 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
703
704 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
705 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
706 return cmd->sense_buffer;
707 }
708
709 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
710 {
711 struct se_device *dev = cmd->se_dev;
712 int success = scsi_status == GOOD;
713 unsigned long flags;
714
715 cmd->scsi_status = scsi_status;
716
717
718 spin_lock_irqsave(&cmd->t_state_lock, flags);
719 cmd->transport_state &= ~CMD_T_BUSY;
720
721 if (dev && dev->transport->transport_complete) {
722 dev->transport->transport_complete(cmd,
723 cmd->t_data_sg,
724 transport_get_sense_buffer(cmd));
725 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
726 success = 1;
727 }
728
729 /*
730 * Check for case where an explicit ABORT_TASK has been received
731 * and transport_wait_for_tasks() will be waiting for completion..
732 */
733 if (cmd->transport_state & CMD_T_ABORTED ||
734 cmd->transport_state & CMD_T_STOP) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 complete_all(&cmd->t_transport_stop_comp);
737 return;
738 } else if (!success) {
739 INIT_WORK(&cmd->work, target_complete_failure_work);
740 } else {
741 INIT_WORK(&cmd->work, target_complete_ok_work);
742 }
743
744 cmd->t_state = TRANSPORT_COMPLETE;
745 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
746 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
747
748 if (cmd->se_cmd_flags & SCF_USE_CPUID)
749 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
750 else
751 queue_work(target_completion_wq, &cmd->work);
752 }
753 EXPORT_SYMBOL(target_complete_cmd);
754
755 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
756 {
757 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
758 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
759 cmd->residual_count += cmd->data_length - length;
760 } else {
761 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
762 cmd->residual_count = cmd->data_length - length;
763 }
764
765 cmd->data_length = length;
766 }
767
768 target_complete_cmd(cmd, scsi_status);
769 }
770 EXPORT_SYMBOL(target_complete_cmd_with_length);
771
772 static void target_add_to_state_list(struct se_cmd *cmd)
773 {
774 struct se_device *dev = cmd->se_dev;
775 unsigned long flags;
776
777 spin_lock_irqsave(&dev->execute_task_lock, flags);
778 if (!cmd->state_active) {
779 list_add_tail(&cmd->state_list, &dev->state_list);
780 cmd->state_active = true;
781 }
782 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
783 }
784
785 /*
786 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
787 */
788 static void transport_write_pending_qf(struct se_cmd *cmd);
789 static void transport_complete_qf(struct se_cmd *cmd);
790
791 void target_qf_do_work(struct work_struct *work)
792 {
793 struct se_device *dev = container_of(work, struct se_device,
794 qf_work_queue);
795 LIST_HEAD(qf_cmd_list);
796 struct se_cmd *cmd, *cmd_tmp;
797
798 spin_lock_irq(&dev->qf_cmd_lock);
799 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
800 spin_unlock_irq(&dev->qf_cmd_lock);
801
802 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
803 list_del(&cmd->se_qf_node);
804 atomic_dec_mb(&dev->dev_qf_count);
805
806 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
807 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
808 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
809 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
810 : "UNKNOWN");
811
812 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
813 transport_write_pending_qf(cmd);
814 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
815 transport_complete_qf(cmd);
816 }
817 }
818
819 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
820 {
821 switch (cmd->data_direction) {
822 case DMA_NONE:
823 return "NONE";
824 case DMA_FROM_DEVICE:
825 return "READ";
826 case DMA_TO_DEVICE:
827 return "WRITE";
828 case DMA_BIDIRECTIONAL:
829 return "BIDI";
830 default:
831 break;
832 }
833
834 return "UNKNOWN";
835 }
836
837 void transport_dump_dev_state(
838 struct se_device *dev,
839 char *b,
840 int *bl)
841 {
842 *bl += sprintf(b + *bl, "Status: ");
843 if (dev->export_count)
844 *bl += sprintf(b + *bl, "ACTIVATED");
845 else
846 *bl += sprintf(b + *bl, "DEACTIVATED");
847
848 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
849 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
850 dev->dev_attrib.block_size,
851 dev->dev_attrib.hw_max_sectors);
852 *bl += sprintf(b + *bl, " ");
853 }
854
855 void transport_dump_vpd_proto_id(
856 struct t10_vpd *vpd,
857 unsigned char *p_buf,
858 int p_buf_len)
859 {
860 unsigned char buf[VPD_TMP_BUF_SIZE];
861 int len;
862
863 memset(buf, 0, VPD_TMP_BUF_SIZE);
864 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
865
866 switch (vpd->protocol_identifier) {
867 case 0x00:
868 sprintf(buf+len, "Fibre Channel\n");
869 break;
870 case 0x10:
871 sprintf(buf+len, "Parallel SCSI\n");
872 break;
873 case 0x20:
874 sprintf(buf+len, "SSA\n");
875 break;
876 case 0x30:
877 sprintf(buf+len, "IEEE 1394\n");
878 break;
879 case 0x40:
880 sprintf(buf+len, "SCSI Remote Direct Memory Access"
881 " Protocol\n");
882 break;
883 case 0x50:
884 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
885 break;
886 case 0x60:
887 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
888 break;
889 case 0x70:
890 sprintf(buf+len, "Automation/Drive Interface Transport"
891 " Protocol\n");
892 break;
893 case 0x80:
894 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
895 break;
896 default:
897 sprintf(buf+len, "Unknown 0x%02x\n",
898 vpd->protocol_identifier);
899 break;
900 }
901
902 if (p_buf)
903 strncpy(p_buf, buf, p_buf_len);
904 else
905 pr_debug("%s", buf);
906 }
907
908 void
909 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
910 {
911 /*
912 * Check if the Protocol Identifier Valid (PIV) bit is set..
913 *
914 * from spc3r23.pdf section 7.5.1
915 */
916 if (page_83[1] & 0x80) {
917 vpd->protocol_identifier = (page_83[0] & 0xf0);
918 vpd->protocol_identifier_set = 1;
919 transport_dump_vpd_proto_id(vpd, NULL, 0);
920 }
921 }
922 EXPORT_SYMBOL(transport_set_vpd_proto_id);
923
924 int transport_dump_vpd_assoc(
925 struct t10_vpd *vpd,
926 unsigned char *p_buf,
927 int p_buf_len)
928 {
929 unsigned char buf[VPD_TMP_BUF_SIZE];
930 int ret = 0;
931 int len;
932
933 memset(buf, 0, VPD_TMP_BUF_SIZE);
934 len = sprintf(buf, "T10 VPD Identifier Association: ");
935
936 switch (vpd->association) {
937 case 0x00:
938 sprintf(buf+len, "addressed logical unit\n");
939 break;
940 case 0x10:
941 sprintf(buf+len, "target port\n");
942 break;
943 case 0x20:
944 sprintf(buf+len, "SCSI target device\n");
945 break;
946 default:
947 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
948 ret = -EINVAL;
949 break;
950 }
951
952 if (p_buf)
953 strncpy(p_buf, buf, p_buf_len);
954 else
955 pr_debug("%s", buf);
956
957 return ret;
958 }
959
960 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
961 {
962 /*
963 * The VPD identification association..
964 *
965 * from spc3r23.pdf Section 7.6.3.1 Table 297
966 */
967 vpd->association = (page_83[1] & 0x30);
968 return transport_dump_vpd_assoc(vpd, NULL, 0);
969 }
970 EXPORT_SYMBOL(transport_set_vpd_assoc);
971
972 int transport_dump_vpd_ident_type(
973 struct t10_vpd *vpd,
974 unsigned char *p_buf,
975 int p_buf_len)
976 {
977 unsigned char buf[VPD_TMP_BUF_SIZE];
978 int ret = 0;
979 int len;
980
981 memset(buf, 0, VPD_TMP_BUF_SIZE);
982 len = sprintf(buf, "T10 VPD Identifier Type: ");
983
984 switch (vpd->device_identifier_type) {
985 case 0x00:
986 sprintf(buf+len, "Vendor specific\n");
987 break;
988 case 0x01:
989 sprintf(buf+len, "T10 Vendor ID based\n");
990 break;
991 case 0x02:
992 sprintf(buf+len, "EUI-64 based\n");
993 break;
994 case 0x03:
995 sprintf(buf+len, "NAA\n");
996 break;
997 case 0x04:
998 sprintf(buf+len, "Relative target port identifier\n");
999 break;
1000 case 0x08:
1001 sprintf(buf+len, "SCSI name string\n");
1002 break;
1003 default:
1004 sprintf(buf+len, "Unsupported: 0x%02x\n",
1005 vpd->device_identifier_type);
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 if (p_buf) {
1011 if (p_buf_len < strlen(buf)+1)
1012 return -EINVAL;
1013 strncpy(p_buf, buf, p_buf_len);
1014 } else {
1015 pr_debug("%s", buf);
1016 }
1017
1018 return ret;
1019 }
1020
1021 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1022 {
1023 /*
1024 * The VPD identifier type..
1025 *
1026 * from spc3r23.pdf Section 7.6.3.1 Table 298
1027 */
1028 vpd->device_identifier_type = (page_83[1] & 0x0f);
1029 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1030 }
1031 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1032
1033 int transport_dump_vpd_ident(
1034 struct t10_vpd *vpd,
1035 unsigned char *p_buf,
1036 int p_buf_len)
1037 {
1038 unsigned char buf[VPD_TMP_BUF_SIZE];
1039 int ret = 0;
1040
1041 memset(buf, 0, VPD_TMP_BUF_SIZE);
1042
1043 switch (vpd->device_identifier_code_set) {
1044 case 0x01: /* Binary */
1045 snprintf(buf, sizeof(buf),
1046 "T10 VPD Binary Device Identifier: %s\n",
1047 &vpd->device_identifier[0]);
1048 break;
1049 case 0x02: /* ASCII */
1050 snprintf(buf, sizeof(buf),
1051 "T10 VPD ASCII Device Identifier: %s\n",
1052 &vpd->device_identifier[0]);
1053 break;
1054 case 0x03: /* UTF-8 */
1055 snprintf(buf, sizeof(buf),
1056 "T10 VPD UTF-8 Device Identifier: %s\n",
1057 &vpd->device_identifier[0]);
1058 break;
1059 default:
1060 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1061 " 0x%02x", vpd->device_identifier_code_set);
1062 ret = -EINVAL;
1063 break;
1064 }
1065
1066 if (p_buf)
1067 strncpy(p_buf, buf, p_buf_len);
1068 else
1069 pr_debug("%s", buf);
1070
1071 return ret;
1072 }
1073
1074 int
1075 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1076 {
1077 static const char hex_str[] = "0123456789abcdef";
1078 int j = 0, i = 4; /* offset to start of the identifier */
1079
1080 /*
1081 * The VPD Code Set (encoding)
1082 *
1083 * from spc3r23.pdf Section 7.6.3.1 Table 296
1084 */
1085 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1086 switch (vpd->device_identifier_code_set) {
1087 case 0x01: /* Binary */
1088 vpd->device_identifier[j++] =
1089 hex_str[vpd->device_identifier_type];
1090 while (i < (4 + page_83[3])) {
1091 vpd->device_identifier[j++] =
1092 hex_str[(page_83[i] & 0xf0) >> 4];
1093 vpd->device_identifier[j++] =
1094 hex_str[page_83[i] & 0x0f];
1095 i++;
1096 }
1097 break;
1098 case 0x02: /* ASCII */
1099 case 0x03: /* UTF-8 */
1100 while (i < (4 + page_83[3]))
1101 vpd->device_identifier[j++] = page_83[i++];
1102 break;
1103 default:
1104 break;
1105 }
1106
1107 return transport_dump_vpd_ident(vpd, NULL, 0);
1108 }
1109 EXPORT_SYMBOL(transport_set_vpd_ident);
1110
1111 static sense_reason_t
1112 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1113 unsigned int size)
1114 {
1115 u32 mtl;
1116
1117 if (!cmd->se_tfo->max_data_sg_nents)
1118 return TCM_NO_SENSE;
1119 /*
1120 * Check if fabric enforced maximum SGL entries per I/O descriptor
1121 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1122 * residual_count and reduce original cmd->data_length to maximum
1123 * length based on single PAGE_SIZE entry scatter-lists.
1124 */
1125 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1126 if (cmd->data_length > mtl) {
1127 /*
1128 * If an existing CDB overflow is present, calculate new residual
1129 * based on CDB size minus fabric maximum transfer length.
1130 *
1131 * If an existing CDB underflow is present, calculate new residual
1132 * based on original cmd->data_length minus fabric maximum transfer
1133 * length.
1134 *
1135 * Otherwise, set the underflow residual based on cmd->data_length
1136 * minus fabric maximum transfer length.
1137 */
1138 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1139 cmd->residual_count = (size - mtl);
1140 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1141 u32 orig_dl = size + cmd->residual_count;
1142 cmd->residual_count = (orig_dl - mtl);
1143 } else {
1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1145 cmd->residual_count = (cmd->data_length - mtl);
1146 }
1147 cmd->data_length = mtl;
1148 /*
1149 * Reset sbc_check_prot() calculated protection payload
1150 * length based upon the new smaller MTL.
1151 */
1152 if (cmd->prot_length) {
1153 u32 sectors = (mtl / dev->dev_attrib.block_size);
1154 cmd->prot_length = dev->prot_length * sectors;
1155 }
1156 }
1157 return TCM_NO_SENSE;
1158 }
1159
1160 sense_reason_t
1161 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1162 {
1163 struct se_device *dev = cmd->se_dev;
1164
1165 if (cmd->unknown_data_length) {
1166 cmd->data_length = size;
1167 } else if (size != cmd->data_length) {
1168 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1169 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1170 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1171 cmd->data_length, size, cmd->t_task_cdb[0]);
1172
1173 if (cmd->data_direction == DMA_TO_DEVICE &&
1174 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1175 pr_err("Rejecting underflow/overflow WRITE data\n");
1176 return TCM_INVALID_CDB_FIELD;
1177 }
1178 /*
1179 * Reject READ_* or WRITE_* with overflow/underflow for
1180 * type SCF_SCSI_DATA_CDB.
1181 */
1182 if (dev->dev_attrib.block_size != 512) {
1183 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1184 " CDB on non 512-byte sector setup subsystem"
1185 " plugin: %s\n", dev->transport->name);
1186 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1187 return TCM_INVALID_CDB_FIELD;
1188 }
1189 /*
1190 * For the overflow case keep the existing fabric provided
1191 * ->data_length. Otherwise for the underflow case, reset
1192 * ->data_length to the smaller SCSI expected data transfer
1193 * length.
1194 */
1195 if (size > cmd->data_length) {
1196 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1197 cmd->residual_count = (size - cmd->data_length);
1198 } else {
1199 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1200 cmd->residual_count = (cmd->data_length - size);
1201 cmd->data_length = size;
1202 }
1203 }
1204
1205 return target_check_max_data_sg_nents(cmd, dev, size);
1206
1207 }
1208
1209 /*
1210 * Used by fabric modules containing a local struct se_cmd within their
1211 * fabric dependent per I/O descriptor.
1212 *
1213 * Preserves the value of @cmd->tag.
1214 */
1215 void transport_init_se_cmd(
1216 struct se_cmd *cmd,
1217 const struct target_core_fabric_ops *tfo,
1218 struct se_session *se_sess,
1219 u32 data_length,
1220 int data_direction,
1221 int task_attr,
1222 unsigned char *sense_buffer)
1223 {
1224 INIT_LIST_HEAD(&cmd->se_delayed_node);
1225 INIT_LIST_HEAD(&cmd->se_qf_node);
1226 INIT_LIST_HEAD(&cmd->se_cmd_list);
1227 INIT_LIST_HEAD(&cmd->state_list);
1228 init_completion(&cmd->t_transport_stop_comp);
1229 init_completion(&cmd->cmd_wait_comp);
1230 spin_lock_init(&cmd->t_state_lock);
1231 kref_init(&cmd->cmd_kref);
1232 cmd->transport_state = CMD_T_DEV_ACTIVE;
1233
1234 cmd->se_tfo = tfo;
1235 cmd->se_sess = se_sess;
1236 cmd->data_length = data_length;
1237 cmd->data_direction = data_direction;
1238 cmd->sam_task_attr = task_attr;
1239 cmd->sense_buffer = sense_buffer;
1240
1241 cmd->state_active = false;
1242 }
1243 EXPORT_SYMBOL(transport_init_se_cmd);
1244
1245 static sense_reason_t
1246 transport_check_alloc_task_attr(struct se_cmd *cmd)
1247 {
1248 struct se_device *dev = cmd->se_dev;
1249
1250 /*
1251 * Check if SAM Task Attribute emulation is enabled for this
1252 * struct se_device storage object
1253 */
1254 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1255 return 0;
1256
1257 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1258 pr_debug("SAM Task Attribute ACA"
1259 " emulation is not supported\n");
1260 return TCM_INVALID_CDB_FIELD;
1261 }
1262
1263 return 0;
1264 }
1265
1266 sense_reason_t
1267 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1268 {
1269 struct se_device *dev = cmd->se_dev;
1270 sense_reason_t ret;
1271
1272 /*
1273 * Ensure that the received CDB is less than the max (252 + 8) bytes
1274 * for VARIABLE_LENGTH_CMD
1275 */
1276 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1277 pr_err("Received SCSI CDB with command_size: %d that"
1278 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1279 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1280 return TCM_INVALID_CDB_FIELD;
1281 }
1282 /*
1283 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1284 * allocate the additional extended CDB buffer now.. Otherwise
1285 * setup the pointer from __t_task_cdb to t_task_cdb.
1286 */
1287 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1288 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1289 GFP_KERNEL);
1290 if (!cmd->t_task_cdb) {
1291 pr_err("Unable to allocate cmd->t_task_cdb"
1292 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1293 scsi_command_size(cdb),
1294 (unsigned long)sizeof(cmd->__t_task_cdb));
1295 return TCM_OUT_OF_RESOURCES;
1296 }
1297 } else
1298 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1299 /*
1300 * Copy the original CDB into cmd->
1301 */
1302 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1303
1304 trace_target_sequencer_start(cmd);
1305
1306 /*
1307 * Check for an existing UNIT ATTENTION condition
1308 */
1309 ret = target_scsi3_ua_check(cmd);
1310 if (ret)
1311 return ret;
1312
1313 ret = target_alua_state_check(cmd);
1314 if (ret)
1315 return ret;
1316
1317 ret = target_check_reservation(cmd);
1318 if (ret) {
1319 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1320 return ret;
1321 }
1322
1323 ret = dev->transport->parse_cdb(cmd);
1324 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1325 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1326 cmd->se_tfo->get_fabric_name(),
1327 cmd->se_sess->se_node_acl->initiatorname,
1328 cmd->t_task_cdb[0]);
1329 if (ret)
1330 return ret;
1331
1332 ret = transport_check_alloc_task_attr(cmd);
1333 if (ret)
1334 return ret;
1335
1336 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1337 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1338 return 0;
1339 }
1340 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1341
1342 /*
1343 * Used by fabric module frontends to queue tasks directly.
1344 * May only be used from process context.
1345 */
1346 int transport_handle_cdb_direct(
1347 struct se_cmd *cmd)
1348 {
1349 sense_reason_t ret;
1350
1351 if (!cmd->se_lun) {
1352 dump_stack();
1353 pr_err("cmd->se_lun is NULL\n");
1354 return -EINVAL;
1355 }
1356 if (in_interrupt()) {
1357 dump_stack();
1358 pr_err("transport_generic_handle_cdb cannot be called"
1359 " from interrupt context\n");
1360 return -EINVAL;
1361 }
1362 /*
1363 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1364 * outstanding descriptors are handled correctly during shutdown via
1365 * transport_wait_for_tasks()
1366 *
1367 * Also, we don't take cmd->t_state_lock here as we only expect
1368 * this to be called for initial descriptor submission.
1369 */
1370 cmd->t_state = TRANSPORT_NEW_CMD;
1371 cmd->transport_state |= CMD_T_ACTIVE;
1372
1373 /*
1374 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1375 * so follow TRANSPORT_NEW_CMD processing thread context usage
1376 * and call transport_generic_request_failure() if necessary..
1377 */
1378 ret = transport_generic_new_cmd(cmd);
1379 if (ret)
1380 transport_generic_request_failure(cmd, ret);
1381 return 0;
1382 }
1383 EXPORT_SYMBOL(transport_handle_cdb_direct);
1384
1385 sense_reason_t
1386 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1387 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1388 {
1389 if (!sgl || !sgl_count)
1390 return 0;
1391
1392 /*
1393 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1394 * scatterlists already have been set to follow what the fabric
1395 * passes for the original expected data transfer length.
1396 */
1397 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1398 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1399 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1400 return TCM_INVALID_CDB_FIELD;
1401 }
1402
1403 cmd->t_data_sg = sgl;
1404 cmd->t_data_nents = sgl_count;
1405 cmd->t_bidi_data_sg = sgl_bidi;
1406 cmd->t_bidi_data_nents = sgl_bidi_count;
1407
1408 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1409 return 0;
1410 }
1411
1412 /*
1413 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1414 * se_cmd + use pre-allocated SGL memory.
1415 *
1416 * @se_cmd: command descriptor to submit
1417 * @se_sess: associated se_sess for endpoint
1418 * @cdb: pointer to SCSI CDB
1419 * @sense: pointer to SCSI sense buffer
1420 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1421 * @data_length: fabric expected data transfer length
1422 * @task_addr: SAM task attribute
1423 * @data_dir: DMA data direction
1424 * @flags: flags for command submission from target_sc_flags_tables
1425 * @sgl: struct scatterlist memory for unidirectional mapping
1426 * @sgl_count: scatterlist count for unidirectional mapping
1427 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1428 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1429 * @sgl_prot: struct scatterlist memory protection information
1430 * @sgl_prot_count: scatterlist count for protection information
1431 *
1432 * Task tags are supported if the caller has set @se_cmd->tag.
1433 *
1434 * Returns non zero to signal active I/O shutdown failure. All other
1435 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1436 * but still return zero here.
1437 *
1438 * This may only be called from process context, and also currently
1439 * assumes internal allocation of fabric payload buffer by target-core.
1440 */
1441 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1442 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1443 u32 data_length, int task_attr, int data_dir, int flags,
1444 struct scatterlist *sgl, u32 sgl_count,
1445 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1446 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1447 {
1448 struct se_portal_group *se_tpg;
1449 sense_reason_t rc;
1450 int ret;
1451
1452 se_tpg = se_sess->se_tpg;
1453 BUG_ON(!se_tpg);
1454 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1455 BUG_ON(in_interrupt());
1456 /*
1457 * Initialize se_cmd for target operation. From this point
1458 * exceptions are handled by sending exception status via
1459 * target_core_fabric_ops->queue_status() callback
1460 */
1461 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1462 data_length, data_dir, task_attr, sense);
1463
1464 if (flags & TARGET_SCF_USE_CPUID)
1465 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1466 else
1467 se_cmd->cpuid = WORK_CPU_UNBOUND;
1468
1469 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1470 se_cmd->unknown_data_length = 1;
1471 /*
1472 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1473 * se_sess->sess_cmd_list. A second kref_get here is necessary
1474 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1475 * kref_put() to happen during fabric packet acknowledgement.
1476 */
1477 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1478 if (ret)
1479 return ret;
1480 /*
1481 * Signal bidirectional data payloads to target-core
1482 */
1483 if (flags & TARGET_SCF_BIDI_OP)
1484 se_cmd->se_cmd_flags |= SCF_BIDI;
1485 /*
1486 * Locate se_lun pointer and attach it to struct se_cmd
1487 */
1488 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1489 if (rc) {
1490 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1491 target_put_sess_cmd(se_cmd);
1492 return 0;
1493 }
1494
1495 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1496 if (rc != 0) {
1497 transport_generic_request_failure(se_cmd, rc);
1498 return 0;
1499 }
1500
1501 /*
1502 * Save pointers for SGLs containing protection information,
1503 * if present.
1504 */
1505 if (sgl_prot_count) {
1506 se_cmd->t_prot_sg = sgl_prot;
1507 se_cmd->t_prot_nents = sgl_prot_count;
1508 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1509 }
1510
1511 /*
1512 * When a non zero sgl_count has been passed perform SGL passthrough
1513 * mapping for pre-allocated fabric memory instead of having target
1514 * core perform an internal SGL allocation..
1515 */
1516 if (sgl_count != 0) {
1517 BUG_ON(!sgl);
1518
1519 /*
1520 * A work-around for tcm_loop as some userspace code via
1521 * scsi-generic do not memset their associated read buffers,
1522 * so go ahead and do that here for type non-data CDBs. Also
1523 * note that this is currently guaranteed to be a single SGL
1524 * for this case by target core in target_setup_cmd_from_cdb()
1525 * -> transport_generic_cmd_sequencer().
1526 */
1527 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1528 se_cmd->data_direction == DMA_FROM_DEVICE) {
1529 unsigned char *buf = NULL;
1530
1531 if (sgl)
1532 buf = kmap(sg_page(sgl)) + sgl->offset;
1533
1534 if (buf) {
1535 memset(buf, 0, sgl->length);
1536 kunmap(sg_page(sgl));
1537 }
1538 }
1539
1540 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1541 sgl_bidi, sgl_bidi_count);
1542 if (rc != 0) {
1543 transport_generic_request_failure(se_cmd, rc);
1544 return 0;
1545 }
1546 }
1547
1548 /*
1549 * Check if we need to delay processing because of ALUA
1550 * Active/NonOptimized primary access state..
1551 */
1552 core_alua_check_nonop_delay(se_cmd);
1553
1554 transport_handle_cdb_direct(se_cmd);
1555 return 0;
1556 }
1557 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1558
1559 /*
1560 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1561 *
1562 * @se_cmd: command descriptor to submit
1563 * @se_sess: associated se_sess for endpoint
1564 * @cdb: pointer to SCSI CDB
1565 * @sense: pointer to SCSI sense buffer
1566 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1567 * @data_length: fabric expected data transfer length
1568 * @task_addr: SAM task attribute
1569 * @data_dir: DMA data direction
1570 * @flags: flags for command submission from target_sc_flags_tables
1571 *
1572 * Task tags are supported if the caller has set @se_cmd->tag.
1573 *
1574 * Returns non zero to signal active I/O shutdown failure. All other
1575 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1576 * but still return zero here.
1577 *
1578 * This may only be called from process context, and also currently
1579 * assumes internal allocation of fabric payload buffer by target-core.
1580 *
1581 * It also assumes interal target core SGL memory allocation.
1582 */
1583 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1584 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1585 u32 data_length, int task_attr, int data_dir, int flags)
1586 {
1587 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1588 unpacked_lun, data_length, task_attr, data_dir,
1589 flags, NULL, 0, NULL, 0, NULL, 0);
1590 }
1591 EXPORT_SYMBOL(target_submit_cmd);
1592
1593 static void target_complete_tmr_failure(struct work_struct *work)
1594 {
1595 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1596
1597 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1598 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1599
1600 transport_cmd_check_stop_to_fabric(se_cmd);
1601 }
1602
1603 /**
1604 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1605 * for TMR CDBs
1606 *
1607 * @se_cmd: command descriptor to submit
1608 * @se_sess: associated se_sess for endpoint
1609 * @sense: pointer to SCSI sense buffer
1610 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1611 * @fabric_context: fabric context for TMR req
1612 * @tm_type: Type of TM request
1613 * @gfp: gfp type for caller
1614 * @tag: referenced task tag for TMR_ABORT_TASK
1615 * @flags: submit cmd flags
1616 *
1617 * Callable from all contexts.
1618 **/
1619
1620 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1621 unsigned char *sense, u64 unpacked_lun,
1622 void *fabric_tmr_ptr, unsigned char tm_type,
1623 gfp_t gfp, u64 tag, int flags)
1624 {
1625 struct se_portal_group *se_tpg;
1626 int ret;
1627
1628 se_tpg = se_sess->se_tpg;
1629 BUG_ON(!se_tpg);
1630
1631 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1632 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1633 /*
1634 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1635 * allocation failure.
1636 */
1637 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1638 if (ret < 0)
1639 return -ENOMEM;
1640
1641 if (tm_type == TMR_ABORT_TASK)
1642 se_cmd->se_tmr_req->ref_task_tag = tag;
1643
1644 /* See target_submit_cmd for commentary */
1645 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1646 if (ret) {
1647 core_tmr_release_req(se_cmd->se_tmr_req);
1648 return ret;
1649 }
1650
1651 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1652 if (ret) {
1653 /*
1654 * For callback during failure handling, push this work off
1655 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1656 */
1657 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1658 schedule_work(&se_cmd->work);
1659 return 0;
1660 }
1661 transport_generic_handle_tmr(se_cmd);
1662 return 0;
1663 }
1664 EXPORT_SYMBOL(target_submit_tmr);
1665
1666 /*
1667 * Handle SAM-esque emulation for generic transport request failures.
1668 */
1669 void transport_generic_request_failure(struct se_cmd *cmd,
1670 sense_reason_t sense_reason)
1671 {
1672 int ret = 0, post_ret = 0;
1673
1674 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1675 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1676 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1677 cmd->se_tfo->get_cmd_state(cmd),
1678 cmd->t_state, sense_reason);
1679 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1680 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1681 (cmd->transport_state & CMD_T_STOP) != 0,
1682 (cmd->transport_state & CMD_T_SENT) != 0);
1683
1684 /*
1685 * For SAM Task Attribute emulation for failed struct se_cmd
1686 */
1687 transport_complete_task_attr(cmd);
1688 /*
1689 * Handle special case for COMPARE_AND_WRITE failure, where the
1690 * callback is expected to drop the per device ->caw_sem.
1691 */
1692 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1693 cmd->transport_complete_callback)
1694 cmd->transport_complete_callback(cmd, false, &post_ret);
1695
1696 switch (sense_reason) {
1697 case TCM_NON_EXISTENT_LUN:
1698 case TCM_UNSUPPORTED_SCSI_OPCODE:
1699 case TCM_INVALID_CDB_FIELD:
1700 case TCM_INVALID_PARAMETER_LIST:
1701 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1702 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1703 case TCM_UNKNOWN_MODE_PAGE:
1704 case TCM_WRITE_PROTECTED:
1705 case TCM_ADDRESS_OUT_OF_RANGE:
1706 case TCM_CHECK_CONDITION_ABORT_CMD:
1707 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1708 case TCM_CHECK_CONDITION_NOT_READY:
1709 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1710 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1711 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1712 break;
1713 case TCM_OUT_OF_RESOURCES:
1714 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1715 break;
1716 case TCM_RESERVATION_CONFLICT:
1717 /*
1718 * No SENSE Data payload for this case, set SCSI Status
1719 * and queue the response to $FABRIC_MOD.
1720 *
1721 * Uses linux/include/scsi/scsi.h SAM status codes defs
1722 */
1723 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1724 /*
1725 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1726 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1727 * CONFLICT STATUS.
1728 *
1729 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1730 */
1731 if (cmd->se_sess &&
1732 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1733 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1734 cmd->orig_fe_lun, 0x2C,
1735 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1736 }
1737 trace_target_cmd_complete(cmd);
1738 ret = cmd->se_tfo->queue_status(cmd);
1739 if (ret == -EAGAIN || ret == -ENOMEM)
1740 goto queue_full;
1741 goto check_stop;
1742 default:
1743 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1744 cmd->t_task_cdb[0], sense_reason);
1745 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1746 break;
1747 }
1748
1749 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1750 if (ret == -EAGAIN || ret == -ENOMEM)
1751 goto queue_full;
1752
1753 check_stop:
1754 transport_lun_remove_cmd(cmd);
1755 transport_cmd_check_stop_to_fabric(cmd);
1756 return;
1757
1758 queue_full:
1759 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1760 transport_handle_queue_full(cmd, cmd->se_dev);
1761 }
1762 EXPORT_SYMBOL(transport_generic_request_failure);
1763
1764 void __target_execute_cmd(struct se_cmd *cmd)
1765 {
1766 sense_reason_t ret;
1767
1768 if (cmd->execute_cmd) {
1769 ret = cmd->execute_cmd(cmd);
1770 if (ret) {
1771 spin_lock_irq(&cmd->t_state_lock);
1772 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1773 spin_unlock_irq(&cmd->t_state_lock);
1774
1775 transport_generic_request_failure(cmd, ret);
1776 }
1777 }
1778 }
1779
1780 static int target_write_prot_action(struct se_cmd *cmd)
1781 {
1782 u32 sectors;
1783 /*
1784 * Perform WRITE_INSERT of PI using software emulation when backend
1785 * device has PI enabled, if the transport has not already generated
1786 * PI using hardware WRITE_INSERT offload.
1787 */
1788 switch (cmd->prot_op) {
1789 case TARGET_PROT_DOUT_INSERT:
1790 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1791 sbc_dif_generate(cmd);
1792 break;
1793 case TARGET_PROT_DOUT_STRIP:
1794 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1795 break;
1796
1797 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1798 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1799 sectors, 0, cmd->t_prot_sg, 0);
1800 if (unlikely(cmd->pi_err)) {
1801 spin_lock_irq(&cmd->t_state_lock);
1802 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1803 spin_unlock_irq(&cmd->t_state_lock);
1804 transport_generic_request_failure(cmd, cmd->pi_err);
1805 return -1;
1806 }
1807 break;
1808 default:
1809 break;
1810 }
1811
1812 return 0;
1813 }
1814
1815 static bool target_handle_task_attr(struct se_cmd *cmd)
1816 {
1817 struct se_device *dev = cmd->se_dev;
1818
1819 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1820 return false;
1821
1822 /*
1823 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1824 * to allow the passed struct se_cmd list of tasks to the front of the list.
1825 */
1826 switch (cmd->sam_task_attr) {
1827 case TCM_HEAD_TAG:
1828 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1829 cmd->t_task_cdb[0]);
1830 return false;
1831 case TCM_ORDERED_TAG:
1832 atomic_inc_mb(&dev->dev_ordered_sync);
1833
1834 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1835 cmd->t_task_cdb[0]);
1836
1837 /*
1838 * Execute an ORDERED command if no other older commands
1839 * exist that need to be completed first.
1840 */
1841 if (!atomic_read(&dev->simple_cmds))
1842 return false;
1843 break;
1844 default:
1845 /*
1846 * For SIMPLE and UNTAGGED Task Attribute commands
1847 */
1848 atomic_inc_mb(&dev->simple_cmds);
1849 break;
1850 }
1851
1852 if (atomic_read(&dev->dev_ordered_sync) == 0)
1853 return false;
1854
1855 spin_lock(&dev->delayed_cmd_lock);
1856 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1857 spin_unlock(&dev->delayed_cmd_lock);
1858
1859 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1860 cmd->t_task_cdb[0], cmd->sam_task_attr);
1861 return true;
1862 }
1863
1864 static int __transport_check_aborted_status(struct se_cmd *, int);
1865
1866 void target_execute_cmd(struct se_cmd *cmd)
1867 {
1868 /*
1869 * Determine if frontend context caller is requesting the stopping of
1870 * this command for frontend exceptions.
1871 *
1872 * If the received CDB has aleady been aborted stop processing it here.
1873 */
1874 spin_lock_irq(&cmd->t_state_lock);
1875 if (__transport_check_aborted_status(cmd, 1)) {
1876 spin_unlock_irq(&cmd->t_state_lock);
1877 return;
1878 }
1879 if (cmd->transport_state & CMD_T_STOP) {
1880 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1881 __func__, __LINE__, cmd->tag);
1882
1883 spin_unlock_irq(&cmd->t_state_lock);
1884 complete_all(&cmd->t_transport_stop_comp);
1885 return;
1886 }
1887
1888 cmd->t_state = TRANSPORT_PROCESSING;
1889 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1890 spin_unlock_irq(&cmd->t_state_lock);
1891
1892 if (target_write_prot_action(cmd))
1893 return;
1894
1895 if (target_handle_task_attr(cmd)) {
1896 spin_lock_irq(&cmd->t_state_lock);
1897 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1898 spin_unlock_irq(&cmd->t_state_lock);
1899 return;
1900 }
1901
1902 __target_execute_cmd(cmd);
1903 }
1904 EXPORT_SYMBOL(target_execute_cmd);
1905
1906 /*
1907 * Process all commands up to the last received ORDERED task attribute which
1908 * requires another blocking boundary
1909 */
1910 static void target_restart_delayed_cmds(struct se_device *dev)
1911 {
1912 for (;;) {
1913 struct se_cmd *cmd;
1914
1915 spin_lock(&dev->delayed_cmd_lock);
1916 if (list_empty(&dev->delayed_cmd_list)) {
1917 spin_unlock(&dev->delayed_cmd_lock);
1918 break;
1919 }
1920
1921 cmd = list_entry(dev->delayed_cmd_list.next,
1922 struct se_cmd, se_delayed_node);
1923 list_del(&cmd->se_delayed_node);
1924 spin_unlock(&dev->delayed_cmd_lock);
1925
1926 __target_execute_cmd(cmd);
1927
1928 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1929 break;
1930 }
1931 }
1932
1933 /*
1934 * Called from I/O completion to determine which dormant/delayed
1935 * and ordered cmds need to have their tasks added to the execution queue.
1936 */
1937 static void transport_complete_task_attr(struct se_cmd *cmd)
1938 {
1939 struct se_device *dev = cmd->se_dev;
1940
1941 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1942 return;
1943
1944 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1945 atomic_dec_mb(&dev->simple_cmds);
1946 dev->dev_cur_ordered_id++;
1947 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1948 dev->dev_cur_ordered_id);
1949 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1950 dev->dev_cur_ordered_id++;
1951 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1952 dev->dev_cur_ordered_id);
1953 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1954 atomic_dec_mb(&dev->dev_ordered_sync);
1955
1956 dev->dev_cur_ordered_id++;
1957 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1958 dev->dev_cur_ordered_id);
1959 }
1960
1961 target_restart_delayed_cmds(dev);
1962 }
1963
1964 static void transport_complete_qf(struct se_cmd *cmd)
1965 {
1966 int ret = 0;
1967
1968 transport_complete_task_attr(cmd);
1969
1970 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1971 trace_target_cmd_complete(cmd);
1972 ret = cmd->se_tfo->queue_status(cmd);
1973 goto out;
1974 }
1975
1976 switch (cmd->data_direction) {
1977 case DMA_FROM_DEVICE:
1978 if (cmd->scsi_status)
1979 goto queue_status;
1980
1981 trace_target_cmd_complete(cmd);
1982 ret = cmd->se_tfo->queue_data_in(cmd);
1983 break;
1984 case DMA_TO_DEVICE:
1985 if (cmd->se_cmd_flags & SCF_BIDI) {
1986 ret = cmd->se_tfo->queue_data_in(cmd);
1987 break;
1988 }
1989 /* Fall through for DMA_TO_DEVICE */
1990 case DMA_NONE:
1991 queue_status:
1992 trace_target_cmd_complete(cmd);
1993 ret = cmd->se_tfo->queue_status(cmd);
1994 break;
1995 default:
1996 break;
1997 }
1998
1999 out:
2000 if (ret < 0) {
2001 transport_handle_queue_full(cmd, cmd->se_dev);
2002 return;
2003 }
2004 transport_lun_remove_cmd(cmd);
2005 transport_cmd_check_stop_to_fabric(cmd);
2006 }
2007
2008 static void transport_handle_queue_full(
2009 struct se_cmd *cmd,
2010 struct se_device *dev)
2011 {
2012 spin_lock_irq(&dev->qf_cmd_lock);
2013 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2014 atomic_inc_mb(&dev->dev_qf_count);
2015 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2016
2017 schedule_work(&cmd->se_dev->qf_work_queue);
2018 }
2019
2020 static bool target_read_prot_action(struct se_cmd *cmd)
2021 {
2022 switch (cmd->prot_op) {
2023 case TARGET_PROT_DIN_STRIP:
2024 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2025 u32 sectors = cmd->data_length >>
2026 ilog2(cmd->se_dev->dev_attrib.block_size);
2027
2028 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2029 sectors, 0, cmd->t_prot_sg,
2030 0);
2031 if (cmd->pi_err)
2032 return true;
2033 }
2034 break;
2035 case TARGET_PROT_DIN_INSERT:
2036 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2037 break;
2038
2039 sbc_dif_generate(cmd);
2040 break;
2041 default:
2042 break;
2043 }
2044
2045 return false;
2046 }
2047
2048 static void target_complete_ok_work(struct work_struct *work)
2049 {
2050 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2051 int ret;
2052
2053 /*
2054 * Check if we need to move delayed/dormant tasks from cmds on the
2055 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2056 * Attribute.
2057 */
2058 transport_complete_task_attr(cmd);
2059
2060 /*
2061 * Check to schedule QUEUE_FULL work, or execute an existing
2062 * cmd->transport_qf_callback()
2063 */
2064 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2065 schedule_work(&cmd->se_dev->qf_work_queue);
2066
2067 /*
2068 * Check if we need to send a sense buffer from
2069 * the struct se_cmd in question.
2070 */
2071 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2072 WARN_ON(!cmd->scsi_status);
2073 ret = transport_send_check_condition_and_sense(
2074 cmd, 0, 1);
2075 if (ret == -EAGAIN || ret == -ENOMEM)
2076 goto queue_full;
2077
2078 transport_lun_remove_cmd(cmd);
2079 transport_cmd_check_stop_to_fabric(cmd);
2080 return;
2081 }
2082 /*
2083 * Check for a callback, used by amongst other things
2084 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2085 */
2086 if (cmd->transport_complete_callback) {
2087 sense_reason_t rc;
2088 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2089 bool zero_dl = !(cmd->data_length);
2090 int post_ret = 0;
2091
2092 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2093 if (!rc && !post_ret) {
2094 if (caw && zero_dl)
2095 goto queue_rsp;
2096
2097 return;
2098 } else if (rc) {
2099 ret = transport_send_check_condition_and_sense(cmd,
2100 rc, 0);
2101 if (ret == -EAGAIN || ret == -ENOMEM)
2102 goto queue_full;
2103
2104 transport_lun_remove_cmd(cmd);
2105 transport_cmd_check_stop_to_fabric(cmd);
2106 return;
2107 }
2108 }
2109
2110 queue_rsp:
2111 switch (cmd->data_direction) {
2112 case DMA_FROM_DEVICE:
2113 if (cmd->scsi_status)
2114 goto queue_status;
2115
2116 atomic_long_add(cmd->data_length,
2117 &cmd->se_lun->lun_stats.tx_data_octets);
2118 /*
2119 * Perform READ_STRIP of PI using software emulation when
2120 * backend had PI enabled, if the transport will not be
2121 * performing hardware READ_STRIP offload.
2122 */
2123 if (target_read_prot_action(cmd)) {
2124 ret = transport_send_check_condition_and_sense(cmd,
2125 cmd->pi_err, 0);
2126 if (ret == -EAGAIN || ret == -ENOMEM)
2127 goto queue_full;
2128
2129 transport_lun_remove_cmd(cmd);
2130 transport_cmd_check_stop_to_fabric(cmd);
2131 return;
2132 }
2133
2134 trace_target_cmd_complete(cmd);
2135 ret = cmd->se_tfo->queue_data_in(cmd);
2136 if (ret == -EAGAIN || ret == -ENOMEM)
2137 goto queue_full;
2138 break;
2139 case DMA_TO_DEVICE:
2140 atomic_long_add(cmd->data_length,
2141 &cmd->se_lun->lun_stats.rx_data_octets);
2142 /*
2143 * Check if we need to send READ payload for BIDI-COMMAND
2144 */
2145 if (cmd->se_cmd_flags & SCF_BIDI) {
2146 atomic_long_add(cmd->data_length,
2147 &cmd->se_lun->lun_stats.tx_data_octets);
2148 ret = cmd->se_tfo->queue_data_in(cmd);
2149 if (ret == -EAGAIN || ret == -ENOMEM)
2150 goto queue_full;
2151 break;
2152 }
2153 /* Fall through for DMA_TO_DEVICE */
2154 case DMA_NONE:
2155 queue_status:
2156 trace_target_cmd_complete(cmd);
2157 ret = cmd->se_tfo->queue_status(cmd);
2158 if (ret == -EAGAIN || ret == -ENOMEM)
2159 goto queue_full;
2160 break;
2161 default:
2162 break;
2163 }
2164
2165 transport_lun_remove_cmd(cmd);
2166 transport_cmd_check_stop_to_fabric(cmd);
2167 return;
2168
2169 queue_full:
2170 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2171 " data_direction: %d\n", cmd, cmd->data_direction);
2172 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2173 transport_handle_queue_full(cmd, cmd->se_dev);
2174 }
2175
2176 void target_free_sgl(struct scatterlist *sgl, int nents)
2177 {
2178 struct scatterlist *sg;
2179 int count;
2180
2181 for_each_sg(sgl, sg, nents, count)
2182 __free_page(sg_page(sg));
2183
2184 kfree(sgl);
2185 }
2186 EXPORT_SYMBOL(target_free_sgl);
2187
2188 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2189 {
2190 /*
2191 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2192 * emulation, and free + reset pointers if necessary..
2193 */
2194 if (!cmd->t_data_sg_orig)
2195 return;
2196
2197 kfree(cmd->t_data_sg);
2198 cmd->t_data_sg = cmd->t_data_sg_orig;
2199 cmd->t_data_sg_orig = NULL;
2200 cmd->t_data_nents = cmd->t_data_nents_orig;
2201 cmd->t_data_nents_orig = 0;
2202 }
2203
2204 static inline void transport_free_pages(struct se_cmd *cmd)
2205 {
2206 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2207 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2208 cmd->t_prot_sg = NULL;
2209 cmd->t_prot_nents = 0;
2210 }
2211
2212 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2213 /*
2214 * Release special case READ buffer payload required for
2215 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2216 */
2217 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2218 target_free_sgl(cmd->t_bidi_data_sg,
2219 cmd->t_bidi_data_nents);
2220 cmd->t_bidi_data_sg = NULL;
2221 cmd->t_bidi_data_nents = 0;
2222 }
2223 transport_reset_sgl_orig(cmd);
2224 return;
2225 }
2226 transport_reset_sgl_orig(cmd);
2227
2228 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2229 cmd->t_data_sg = NULL;
2230 cmd->t_data_nents = 0;
2231
2232 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2233 cmd->t_bidi_data_sg = NULL;
2234 cmd->t_bidi_data_nents = 0;
2235 }
2236
2237 /**
2238 * transport_put_cmd - release a reference to a command
2239 * @cmd: command to release
2240 *
2241 * This routine releases our reference to the command and frees it if possible.
2242 */
2243 static int transport_put_cmd(struct se_cmd *cmd)
2244 {
2245 BUG_ON(!cmd->se_tfo);
2246 /*
2247 * If this cmd has been setup with target_get_sess_cmd(), drop
2248 * the kref and call ->release_cmd() in kref callback.
2249 */
2250 return target_put_sess_cmd(cmd);
2251 }
2252
2253 void *transport_kmap_data_sg(struct se_cmd *cmd)
2254 {
2255 struct scatterlist *sg = cmd->t_data_sg;
2256 struct page **pages;
2257 int i;
2258
2259 /*
2260 * We need to take into account a possible offset here for fabrics like
2261 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2262 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2263 */
2264 if (!cmd->t_data_nents)
2265 return NULL;
2266
2267 BUG_ON(!sg);
2268 if (cmd->t_data_nents == 1)
2269 return kmap(sg_page(sg)) + sg->offset;
2270
2271 /* >1 page. use vmap */
2272 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2273 if (!pages)
2274 return NULL;
2275
2276 /* convert sg[] to pages[] */
2277 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2278 pages[i] = sg_page(sg);
2279 }
2280
2281 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2282 kfree(pages);
2283 if (!cmd->t_data_vmap)
2284 return NULL;
2285
2286 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2287 }
2288 EXPORT_SYMBOL(transport_kmap_data_sg);
2289
2290 void transport_kunmap_data_sg(struct se_cmd *cmd)
2291 {
2292 if (!cmd->t_data_nents) {
2293 return;
2294 } else if (cmd->t_data_nents == 1) {
2295 kunmap(sg_page(cmd->t_data_sg));
2296 return;
2297 }
2298
2299 vunmap(cmd->t_data_vmap);
2300 cmd->t_data_vmap = NULL;
2301 }
2302 EXPORT_SYMBOL(transport_kunmap_data_sg);
2303
2304 int
2305 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2306 bool zero_page, bool chainable)
2307 {
2308 struct scatterlist *sg;
2309 struct page *page;
2310 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2311 unsigned int nalloc, nent;
2312 int i = 0;
2313
2314 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2315 if (chainable)
2316 nalloc++;
2317 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2318 if (!sg)
2319 return -ENOMEM;
2320
2321 sg_init_table(sg, nalloc);
2322
2323 while (length) {
2324 u32 page_len = min_t(u32, length, PAGE_SIZE);
2325 page = alloc_page(GFP_KERNEL | zero_flag);
2326 if (!page)
2327 goto out;
2328
2329 sg_set_page(&sg[i], page, page_len, 0);
2330 length -= page_len;
2331 i++;
2332 }
2333 *sgl = sg;
2334 *nents = nent;
2335 return 0;
2336
2337 out:
2338 while (i > 0) {
2339 i--;
2340 __free_page(sg_page(&sg[i]));
2341 }
2342 kfree(sg);
2343 return -ENOMEM;
2344 }
2345 EXPORT_SYMBOL(target_alloc_sgl);
2346
2347 /*
2348 * Allocate any required resources to execute the command. For writes we
2349 * might not have the payload yet, so notify the fabric via a call to
2350 * ->write_pending instead. Otherwise place it on the execution queue.
2351 */
2352 sense_reason_t
2353 transport_generic_new_cmd(struct se_cmd *cmd)
2354 {
2355 int ret = 0;
2356 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2357
2358 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2359 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2360 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2361 cmd->prot_length, true, false);
2362 if (ret < 0)
2363 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2364 }
2365
2366 /*
2367 * Determine is the TCM fabric module has already allocated physical
2368 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2369 * beforehand.
2370 */
2371 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2372 cmd->data_length) {
2373
2374 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2375 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2376 u32 bidi_length;
2377
2378 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2379 bidi_length = cmd->t_task_nolb *
2380 cmd->se_dev->dev_attrib.block_size;
2381 else
2382 bidi_length = cmd->data_length;
2383
2384 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2385 &cmd->t_bidi_data_nents,
2386 bidi_length, zero_flag, false);
2387 if (ret < 0)
2388 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2389 }
2390
2391 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2392 cmd->data_length, zero_flag, false);
2393 if (ret < 0)
2394 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2395 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2396 cmd->data_length) {
2397 /*
2398 * Special case for COMPARE_AND_WRITE with fabrics
2399 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2400 */
2401 u32 caw_length = cmd->t_task_nolb *
2402 cmd->se_dev->dev_attrib.block_size;
2403
2404 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2405 &cmd->t_bidi_data_nents,
2406 caw_length, zero_flag, false);
2407 if (ret < 0)
2408 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2409 }
2410 /*
2411 * If this command is not a write we can execute it right here,
2412 * for write buffers we need to notify the fabric driver first
2413 * and let it call back once the write buffers are ready.
2414 */
2415 target_add_to_state_list(cmd);
2416 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2417 target_execute_cmd(cmd);
2418 return 0;
2419 }
2420 transport_cmd_check_stop(cmd, false, true);
2421
2422 ret = cmd->se_tfo->write_pending(cmd);
2423 if (ret == -EAGAIN || ret == -ENOMEM)
2424 goto queue_full;
2425
2426 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2427 WARN_ON(ret);
2428
2429 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2430
2431 queue_full:
2432 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2433 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2434 transport_handle_queue_full(cmd, cmd->se_dev);
2435 return 0;
2436 }
2437 EXPORT_SYMBOL(transport_generic_new_cmd);
2438
2439 static void transport_write_pending_qf(struct se_cmd *cmd)
2440 {
2441 int ret;
2442
2443 ret = cmd->se_tfo->write_pending(cmd);
2444 if (ret == -EAGAIN || ret == -ENOMEM) {
2445 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2446 cmd);
2447 transport_handle_queue_full(cmd, cmd->se_dev);
2448 }
2449 }
2450
2451 static bool
2452 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2453 unsigned long *flags);
2454
2455 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2456 {
2457 unsigned long flags;
2458
2459 spin_lock_irqsave(&cmd->t_state_lock, flags);
2460 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2461 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2462 }
2463
2464 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2465 {
2466 int ret = 0;
2467 bool aborted = false, tas = false;
2468
2469 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2470 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2471 target_wait_free_cmd(cmd, &aborted, &tas);
2472
2473 if (!aborted || tas)
2474 ret = transport_put_cmd(cmd);
2475 } else {
2476 if (wait_for_tasks)
2477 target_wait_free_cmd(cmd, &aborted, &tas);
2478 /*
2479 * Handle WRITE failure case where transport_generic_new_cmd()
2480 * has already added se_cmd to state_list, but fabric has
2481 * failed command before I/O submission.
2482 */
2483 if (cmd->state_active)
2484 target_remove_from_state_list(cmd);
2485
2486 if (cmd->se_lun)
2487 transport_lun_remove_cmd(cmd);
2488
2489 if (!aborted || tas)
2490 ret = transport_put_cmd(cmd);
2491 }
2492 /*
2493 * If the task has been internally aborted due to TMR ABORT_TASK
2494 * or LUN_RESET, target_core_tmr.c is responsible for performing
2495 * the remaining calls to target_put_sess_cmd(), and not the
2496 * callers of this function.
2497 */
2498 if (aborted) {
2499 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2500 wait_for_completion(&cmd->cmd_wait_comp);
2501 cmd->se_tfo->release_cmd(cmd);
2502 ret = 1;
2503 }
2504 return ret;
2505 }
2506 EXPORT_SYMBOL(transport_generic_free_cmd);
2507
2508 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2509 * @se_cmd: command descriptor to add
2510 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2511 */
2512 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2513 {
2514 struct se_session *se_sess = se_cmd->se_sess;
2515 unsigned long flags;
2516 int ret = 0;
2517
2518 /*
2519 * Add a second kref if the fabric caller is expecting to handle
2520 * fabric acknowledgement that requires two target_put_sess_cmd()
2521 * invocations before se_cmd descriptor release.
2522 */
2523 if (ack_kref)
2524 kref_get(&se_cmd->cmd_kref);
2525
2526 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2527 if (se_sess->sess_tearing_down) {
2528 ret = -ESHUTDOWN;
2529 goto out;
2530 }
2531 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2532 out:
2533 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2534
2535 if (ret && ack_kref)
2536 target_put_sess_cmd(se_cmd);
2537
2538 return ret;
2539 }
2540 EXPORT_SYMBOL(target_get_sess_cmd);
2541
2542 static void target_free_cmd_mem(struct se_cmd *cmd)
2543 {
2544 transport_free_pages(cmd);
2545
2546 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2547 core_tmr_release_req(cmd->se_tmr_req);
2548 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2549 kfree(cmd->t_task_cdb);
2550 }
2551
2552 static void target_release_cmd_kref(struct kref *kref)
2553 {
2554 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2555 struct se_session *se_sess = se_cmd->se_sess;
2556 unsigned long flags;
2557 bool fabric_stop;
2558
2559 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2560 if (list_empty(&se_cmd->se_cmd_list)) {
2561 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2562 target_free_cmd_mem(se_cmd);
2563 se_cmd->se_tfo->release_cmd(se_cmd);
2564 return;
2565 }
2566
2567 spin_lock(&se_cmd->t_state_lock);
2568 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2569 spin_unlock(&se_cmd->t_state_lock);
2570
2571 if (se_cmd->cmd_wait_set || fabric_stop) {
2572 list_del_init(&se_cmd->se_cmd_list);
2573 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2574 target_free_cmd_mem(se_cmd);
2575 complete(&se_cmd->cmd_wait_comp);
2576 return;
2577 }
2578 list_del_init(&se_cmd->se_cmd_list);
2579 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2580
2581 target_free_cmd_mem(se_cmd);
2582 se_cmd->se_tfo->release_cmd(se_cmd);
2583 }
2584
2585 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2586 * @se_cmd: command descriptor to drop
2587 */
2588 int target_put_sess_cmd(struct se_cmd *se_cmd)
2589 {
2590 struct se_session *se_sess = se_cmd->se_sess;
2591
2592 if (!se_sess) {
2593 target_free_cmd_mem(se_cmd);
2594 se_cmd->se_tfo->release_cmd(se_cmd);
2595 return 1;
2596 }
2597 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2598 }
2599 EXPORT_SYMBOL(target_put_sess_cmd);
2600
2601 /* target_sess_cmd_list_set_waiting - Flag all commands in
2602 * sess_cmd_list to complete cmd_wait_comp. Set
2603 * sess_tearing_down so no more commands are queued.
2604 * @se_sess: session to flag
2605 */
2606 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2607 {
2608 struct se_cmd *se_cmd;
2609 unsigned long flags;
2610 int rc;
2611
2612 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2613 if (se_sess->sess_tearing_down) {
2614 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2615 return;
2616 }
2617 se_sess->sess_tearing_down = 1;
2618 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2619
2620 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2621 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2622 if (rc) {
2623 se_cmd->cmd_wait_set = 1;
2624 spin_lock(&se_cmd->t_state_lock);
2625 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2626 spin_unlock(&se_cmd->t_state_lock);
2627 }
2628 }
2629
2630 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2631 }
2632 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2633
2634 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2635 * @se_sess: session to wait for active I/O
2636 */
2637 void target_wait_for_sess_cmds(struct se_session *se_sess)
2638 {
2639 struct se_cmd *se_cmd, *tmp_cmd;
2640 unsigned long flags;
2641 bool tas;
2642
2643 list_for_each_entry_safe(se_cmd, tmp_cmd,
2644 &se_sess->sess_wait_list, se_cmd_list) {
2645 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2646 " %d\n", se_cmd, se_cmd->t_state,
2647 se_cmd->se_tfo->get_cmd_state(se_cmd));
2648
2649 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2650 tas = (se_cmd->transport_state & CMD_T_TAS);
2651 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2652
2653 if (!target_put_sess_cmd(se_cmd)) {
2654 if (tas)
2655 target_put_sess_cmd(se_cmd);
2656 }
2657
2658 wait_for_completion(&se_cmd->cmd_wait_comp);
2659 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2660 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2661 se_cmd->se_tfo->get_cmd_state(se_cmd));
2662
2663 se_cmd->se_tfo->release_cmd(se_cmd);
2664 }
2665
2666 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2667 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2668 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2669
2670 }
2671 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2672
2673 void transport_clear_lun_ref(struct se_lun *lun)
2674 {
2675 percpu_ref_kill(&lun->lun_ref);
2676 wait_for_completion(&lun->lun_ref_comp);
2677 }
2678
2679 static bool
2680 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2681 bool *aborted, bool *tas, unsigned long *flags)
2682 __releases(&cmd->t_state_lock)
2683 __acquires(&cmd->t_state_lock)
2684 {
2685
2686 assert_spin_locked(&cmd->t_state_lock);
2687 WARN_ON_ONCE(!irqs_disabled());
2688
2689 if (fabric_stop)
2690 cmd->transport_state |= CMD_T_FABRIC_STOP;
2691
2692 if (cmd->transport_state & CMD_T_ABORTED)
2693 *aborted = true;
2694
2695 if (cmd->transport_state & CMD_T_TAS)
2696 *tas = true;
2697
2698 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2699 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2700 return false;
2701
2702 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2703 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2704 return false;
2705
2706 if (!(cmd->transport_state & CMD_T_ACTIVE))
2707 return false;
2708
2709 if (fabric_stop && *aborted)
2710 return false;
2711
2712 cmd->transport_state |= CMD_T_STOP;
2713
2714 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2715 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2716 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2717
2718 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2719
2720 wait_for_completion(&cmd->t_transport_stop_comp);
2721
2722 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2723 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2724
2725 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2726 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2727
2728 return true;
2729 }
2730
2731 /**
2732 * transport_wait_for_tasks - wait for completion to occur
2733 * @cmd: command to wait
2734 *
2735 * Called from frontend fabric context to wait for storage engine
2736 * to pause and/or release frontend generated struct se_cmd.
2737 */
2738 bool transport_wait_for_tasks(struct se_cmd *cmd)
2739 {
2740 unsigned long flags;
2741 bool ret, aborted = false, tas = false;
2742
2743 spin_lock_irqsave(&cmd->t_state_lock, flags);
2744 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2745 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2746
2747 return ret;
2748 }
2749 EXPORT_SYMBOL(transport_wait_for_tasks);
2750
2751 struct sense_info {
2752 u8 key;
2753 u8 asc;
2754 u8 ascq;
2755 bool add_sector_info;
2756 };
2757
2758 static const struct sense_info sense_info_table[] = {
2759 [TCM_NO_SENSE] = {
2760 .key = NOT_READY
2761 },
2762 [TCM_NON_EXISTENT_LUN] = {
2763 .key = ILLEGAL_REQUEST,
2764 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2765 },
2766 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2767 .key = ILLEGAL_REQUEST,
2768 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2769 },
2770 [TCM_SECTOR_COUNT_TOO_MANY] = {
2771 .key = ILLEGAL_REQUEST,
2772 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2773 },
2774 [TCM_UNKNOWN_MODE_PAGE] = {
2775 .key = ILLEGAL_REQUEST,
2776 .asc = 0x24, /* INVALID FIELD IN CDB */
2777 },
2778 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2779 .key = ABORTED_COMMAND,
2780 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2781 .ascq = 0x03,
2782 },
2783 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2784 .key = ABORTED_COMMAND,
2785 .asc = 0x0c, /* WRITE ERROR */
2786 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2787 },
2788 [TCM_INVALID_CDB_FIELD] = {
2789 .key = ILLEGAL_REQUEST,
2790 .asc = 0x24, /* INVALID FIELD IN CDB */
2791 },
2792 [TCM_INVALID_PARAMETER_LIST] = {
2793 .key = ILLEGAL_REQUEST,
2794 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2795 },
2796 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2797 .key = ILLEGAL_REQUEST,
2798 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2799 },
2800 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2801 .key = ILLEGAL_REQUEST,
2802 .asc = 0x0c, /* WRITE ERROR */
2803 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2804 },
2805 [TCM_SERVICE_CRC_ERROR] = {
2806 .key = ABORTED_COMMAND,
2807 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2808 .ascq = 0x05, /* N/A */
2809 },
2810 [TCM_SNACK_REJECTED] = {
2811 .key = ABORTED_COMMAND,
2812 .asc = 0x11, /* READ ERROR */
2813 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2814 },
2815 [TCM_WRITE_PROTECTED] = {
2816 .key = DATA_PROTECT,
2817 .asc = 0x27, /* WRITE PROTECTED */
2818 },
2819 [TCM_ADDRESS_OUT_OF_RANGE] = {
2820 .key = ILLEGAL_REQUEST,
2821 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2822 },
2823 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2824 .key = UNIT_ATTENTION,
2825 },
2826 [TCM_CHECK_CONDITION_NOT_READY] = {
2827 .key = NOT_READY,
2828 },
2829 [TCM_MISCOMPARE_VERIFY] = {
2830 .key = MISCOMPARE,
2831 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2832 .ascq = 0x00,
2833 },
2834 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2835 .key = ABORTED_COMMAND,
2836 .asc = 0x10,
2837 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2838 .add_sector_info = true,
2839 },
2840 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2841 .key = ABORTED_COMMAND,
2842 .asc = 0x10,
2843 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2844 .add_sector_info = true,
2845 },
2846 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2847 .key = ABORTED_COMMAND,
2848 .asc = 0x10,
2849 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2850 .add_sector_info = true,
2851 },
2852 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2853 /*
2854 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2855 * Solaris initiators. Returning NOT READY instead means the
2856 * operations will be retried a finite number of times and we
2857 * can survive intermittent errors.
2858 */
2859 .key = NOT_READY,
2860 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2861 },
2862 };
2863
2864 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2865 {
2866 const struct sense_info *si;
2867 u8 *buffer = cmd->sense_buffer;
2868 int r = (__force int)reason;
2869 u8 asc, ascq;
2870 bool desc_format = target_sense_desc_format(cmd->se_dev);
2871
2872 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2873 si = &sense_info_table[r];
2874 else
2875 si = &sense_info_table[(__force int)
2876 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2877
2878 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2879 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2880 WARN_ON_ONCE(asc == 0);
2881 } else if (si->asc == 0) {
2882 WARN_ON_ONCE(cmd->scsi_asc == 0);
2883 asc = cmd->scsi_asc;
2884 ascq = cmd->scsi_ascq;
2885 } else {
2886 asc = si->asc;
2887 ascq = si->ascq;
2888 }
2889
2890 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2891 if (si->add_sector_info)
2892 return scsi_set_sense_information(buffer,
2893 cmd->scsi_sense_length,
2894 cmd->bad_sector);
2895
2896 return 0;
2897 }
2898
2899 int
2900 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2901 sense_reason_t reason, int from_transport)
2902 {
2903 unsigned long flags;
2904
2905 spin_lock_irqsave(&cmd->t_state_lock, flags);
2906 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2907 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2908 return 0;
2909 }
2910 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2911 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2912
2913 if (!from_transport) {
2914 int rc;
2915
2916 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2917 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2918 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2919 rc = translate_sense_reason(cmd, reason);
2920 if (rc)
2921 return rc;
2922 }
2923
2924 trace_target_cmd_complete(cmd);
2925 return cmd->se_tfo->queue_status(cmd);
2926 }
2927 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2928
2929 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2930 __releases(&cmd->t_state_lock)
2931 __acquires(&cmd->t_state_lock)
2932 {
2933 assert_spin_locked(&cmd->t_state_lock);
2934 WARN_ON_ONCE(!irqs_disabled());
2935
2936 if (!(cmd->transport_state & CMD_T_ABORTED))
2937 return 0;
2938 /*
2939 * If cmd has been aborted but either no status is to be sent or it has
2940 * already been sent, just return
2941 */
2942 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2943 if (send_status)
2944 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2945 return 1;
2946 }
2947
2948 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2949 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2950
2951 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2952 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2953 trace_target_cmd_complete(cmd);
2954
2955 spin_unlock_irq(&cmd->t_state_lock);
2956 cmd->se_tfo->queue_status(cmd);
2957 spin_lock_irq(&cmd->t_state_lock);
2958
2959 return 1;
2960 }
2961
2962 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2963 {
2964 int ret;
2965
2966 spin_lock_irq(&cmd->t_state_lock);
2967 ret = __transport_check_aborted_status(cmd, send_status);
2968 spin_unlock_irq(&cmd->t_state_lock);
2969
2970 return ret;
2971 }
2972 EXPORT_SYMBOL(transport_check_aborted_status);
2973
2974 void transport_send_task_abort(struct se_cmd *cmd)
2975 {
2976 unsigned long flags;
2977
2978 spin_lock_irqsave(&cmd->t_state_lock, flags);
2979 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2980 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2981 return;
2982 }
2983 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2984
2985 /*
2986 * If there are still expected incoming fabric WRITEs, we wait
2987 * until until they have completed before sending a TASK_ABORTED
2988 * response. This response with TASK_ABORTED status will be
2989 * queued back to fabric module by transport_check_aborted_status().
2990 */
2991 if (cmd->data_direction == DMA_TO_DEVICE) {
2992 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2993 spin_lock_irqsave(&cmd->t_state_lock, flags);
2994 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
2995 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2996 goto send_abort;
2997 }
2998 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2999 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3000 return;
3001 }
3002 }
3003 send_abort:
3004 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3005
3006 transport_lun_remove_cmd(cmd);
3007
3008 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3009 cmd->t_task_cdb[0], cmd->tag);
3010
3011 trace_target_cmd_complete(cmd);
3012 cmd->se_tfo->queue_status(cmd);
3013 }
3014
3015 static void target_tmr_work(struct work_struct *work)
3016 {
3017 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3018 struct se_device *dev = cmd->se_dev;
3019 struct se_tmr_req *tmr = cmd->se_tmr_req;
3020 unsigned long flags;
3021 int ret;
3022
3023 spin_lock_irqsave(&cmd->t_state_lock, flags);
3024 if (cmd->transport_state & CMD_T_ABORTED) {
3025 tmr->response = TMR_FUNCTION_REJECTED;
3026 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3027 goto check_stop;
3028 }
3029 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3030
3031 switch (tmr->function) {
3032 case TMR_ABORT_TASK:
3033 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3034 break;
3035 case TMR_ABORT_TASK_SET:
3036 case TMR_CLEAR_ACA:
3037 case TMR_CLEAR_TASK_SET:
3038 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3039 break;
3040 case TMR_LUN_RESET:
3041 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3042 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3043 TMR_FUNCTION_REJECTED;
3044 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3045 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3046 cmd->orig_fe_lun, 0x29,
3047 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3048 }
3049 break;
3050 case TMR_TARGET_WARM_RESET:
3051 tmr->response = TMR_FUNCTION_REJECTED;
3052 break;
3053 case TMR_TARGET_COLD_RESET:
3054 tmr->response = TMR_FUNCTION_REJECTED;
3055 break;
3056 default:
3057 pr_err("Uknown TMR function: 0x%02x.\n",
3058 tmr->function);
3059 tmr->response = TMR_FUNCTION_REJECTED;
3060 break;
3061 }
3062
3063 spin_lock_irqsave(&cmd->t_state_lock, flags);
3064 if (cmd->transport_state & CMD_T_ABORTED) {
3065 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3066 goto check_stop;
3067 }
3068 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3069 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3070
3071 cmd->se_tfo->queue_tm_rsp(cmd);
3072
3073 check_stop:
3074 transport_cmd_check_stop_to_fabric(cmd);
3075 }
3076
3077 int transport_generic_handle_tmr(
3078 struct se_cmd *cmd)
3079 {
3080 unsigned long flags;
3081
3082 spin_lock_irqsave(&cmd->t_state_lock, flags);
3083 cmd->transport_state |= CMD_T_ACTIVE;
3084 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3085
3086 INIT_WORK(&cmd->work, target_tmr_work);
3087 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3088 return 0;
3089 }
3090 EXPORT_SYMBOL(transport_generic_handle_tmr);
3091
3092 bool
3093 target_check_wce(struct se_device *dev)
3094 {
3095 bool wce = false;
3096
3097 if (dev->transport->get_write_cache)
3098 wce = dev->transport->get_write_cache(dev);
3099 else if (dev->dev_attrib.emulate_write_cache > 0)
3100 wce = true;
3101
3102 return wce;
3103 }
3104
3105 bool
3106 target_check_fua(struct se_device *dev)
3107 {
3108 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3109 }