]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/target/target_core_transport.c
Merge branch 'stable-3.17' of git://git.infradead.org/users/pcmoore/selinux
[mirror_ubuntu-artful-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
83 }
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
90 }
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
98 }
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
106 }
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
114 }
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
122 }
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
132 }
133 t10_alua_lba_map_cache = kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map),
136 __alignof__(struct t10_alua_lba_map), 0, NULL);
137 if (!t10_alua_lba_map_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 "cache failed\n");
140 goto out_free_tg_pt_gp_mem_cache;
141 }
142 t10_alua_lba_map_mem_cache = kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member),
145 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 if (!t10_alua_lba_map_mem_cache) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 "cache failed\n");
149 goto out_free_lba_map_cache;
150 }
151
152 target_completion_wq = alloc_workqueue("target_completion",
153 WQ_MEM_RECLAIM, 0);
154 if (!target_completion_wq)
155 goto out_free_lba_map_mem_cache;
156
157 return 0;
158
159 out_free_lba_map_mem_cache:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 kmem_cache_destroy(se_sess_cache);
177 out:
178 return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183 destroy_workqueue(target_completion_wq);
184 kmem_cache_destroy(se_sess_cache);
185 kmem_cache_destroy(se_ua_cache);
186 kmem_cache_destroy(t10_pr_reg_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_cache);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 kmem_cache_destroy(t10_alua_lba_map_cache);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200 * Allocate a new row index for the entry type specified
201 */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204 u32 new_index;
205
206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208 spin_lock(&scsi_mib_index_lock);
209 new_index = ++scsi_mib_index[type];
210 spin_unlock(&scsi_mib_index_lock);
211
212 return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217 int ret;
218 static int sub_api_initialized;
219
220 if (sub_api_initialized)
221 return;
222
223 ret = request_module("target_core_iblock");
224 if (ret != 0)
225 pr_err("Unable to load target_core_iblock\n");
226
227 ret = request_module("target_core_file");
228 if (ret != 0)
229 pr_err("Unable to load target_core_file\n");
230
231 ret = request_module("target_core_pscsi");
232 if (ret != 0)
233 pr_err("Unable to load target_core_pscsi\n");
234
235 sub_api_initialized = 1;
236 }
237
238 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
239 {
240 struct se_session *se_sess;
241
242 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243 if (!se_sess) {
244 pr_err("Unable to allocate struct se_session from"
245 " se_sess_cache\n");
246 return ERR_PTR(-ENOMEM);
247 }
248 INIT_LIST_HEAD(&se_sess->sess_list);
249 INIT_LIST_HEAD(&se_sess->sess_acl_list);
250 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251 INIT_LIST_HEAD(&se_sess->sess_wait_list);
252 spin_lock_init(&se_sess->sess_cmd_lock);
253 kref_init(&se_sess->sess_kref);
254 se_sess->sup_prot_ops = sup_prot_ops;
255
256 return se_sess;
257 }
258 EXPORT_SYMBOL(transport_init_session);
259
260 int transport_alloc_session_tags(struct se_session *se_sess,
261 unsigned int tag_num, unsigned int tag_size)
262 {
263 int rc;
264
265 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
266 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
267 if (!se_sess->sess_cmd_map) {
268 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
269 if (!se_sess->sess_cmd_map) {
270 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
271 return -ENOMEM;
272 }
273 }
274
275 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
276 if (rc < 0) {
277 pr_err("Unable to init se_sess->sess_tag_pool,"
278 " tag_num: %u\n", tag_num);
279 if (is_vmalloc_addr(se_sess->sess_cmd_map))
280 vfree(se_sess->sess_cmd_map);
281 else
282 kfree(se_sess->sess_cmd_map);
283 se_sess->sess_cmd_map = NULL;
284 return -ENOMEM;
285 }
286
287 return 0;
288 }
289 EXPORT_SYMBOL(transport_alloc_session_tags);
290
291 struct se_session *transport_init_session_tags(unsigned int tag_num,
292 unsigned int tag_size,
293 enum target_prot_op sup_prot_ops)
294 {
295 struct se_session *se_sess;
296 int rc;
297
298 se_sess = transport_init_session(sup_prot_ops);
299 if (IS_ERR(se_sess))
300 return se_sess;
301
302 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
303 if (rc < 0) {
304 transport_free_session(se_sess);
305 return ERR_PTR(-ENOMEM);
306 }
307
308 return se_sess;
309 }
310 EXPORT_SYMBOL(transport_init_session_tags);
311
312 /*
313 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
314 */
315 void __transport_register_session(
316 struct se_portal_group *se_tpg,
317 struct se_node_acl *se_nacl,
318 struct se_session *se_sess,
319 void *fabric_sess_ptr)
320 {
321 unsigned char buf[PR_REG_ISID_LEN];
322
323 se_sess->se_tpg = se_tpg;
324 se_sess->fabric_sess_ptr = fabric_sess_ptr;
325 /*
326 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
327 *
328 * Only set for struct se_session's that will actually be moving I/O.
329 * eg: *NOT* discovery sessions.
330 */
331 if (se_nacl) {
332 /*
333 * If the fabric module supports an ISID based TransportID,
334 * save this value in binary from the fabric I_T Nexus now.
335 */
336 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
337 memset(&buf[0], 0, PR_REG_ISID_LEN);
338 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
339 &buf[0], PR_REG_ISID_LEN);
340 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
341 }
342 kref_get(&se_nacl->acl_kref);
343
344 spin_lock_irq(&se_nacl->nacl_sess_lock);
345 /*
346 * The se_nacl->nacl_sess pointer will be set to the
347 * last active I_T Nexus for each struct se_node_acl.
348 */
349 se_nacl->nacl_sess = se_sess;
350
351 list_add_tail(&se_sess->sess_acl_list,
352 &se_nacl->acl_sess_list);
353 spin_unlock_irq(&se_nacl->nacl_sess_lock);
354 }
355 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
356
357 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
358 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
359 }
360 EXPORT_SYMBOL(__transport_register_session);
361
362 void transport_register_session(
363 struct se_portal_group *se_tpg,
364 struct se_node_acl *se_nacl,
365 struct se_session *se_sess,
366 void *fabric_sess_ptr)
367 {
368 unsigned long flags;
369
370 spin_lock_irqsave(&se_tpg->session_lock, flags);
371 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
372 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
373 }
374 EXPORT_SYMBOL(transport_register_session);
375
376 static void target_release_session(struct kref *kref)
377 {
378 struct se_session *se_sess = container_of(kref,
379 struct se_session, sess_kref);
380 struct se_portal_group *se_tpg = se_sess->se_tpg;
381
382 se_tpg->se_tpg_tfo->close_session(se_sess);
383 }
384
385 void target_get_session(struct se_session *se_sess)
386 {
387 kref_get(&se_sess->sess_kref);
388 }
389 EXPORT_SYMBOL(target_get_session);
390
391 void target_put_session(struct se_session *se_sess)
392 {
393 struct se_portal_group *tpg = se_sess->se_tpg;
394
395 if (tpg->se_tpg_tfo->put_session != NULL) {
396 tpg->se_tpg_tfo->put_session(se_sess);
397 return;
398 }
399 kref_put(&se_sess->sess_kref, target_release_session);
400 }
401 EXPORT_SYMBOL(target_put_session);
402
403 static void target_complete_nacl(struct kref *kref)
404 {
405 struct se_node_acl *nacl = container_of(kref,
406 struct se_node_acl, acl_kref);
407
408 complete(&nacl->acl_free_comp);
409 }
410
411 void target_put_nacl(struct se_node_acl *nacl)
412 {
413 kref_put(&nacl->acl_kref, target_complete_nacl);
414 }
415
416 void transport_deregister_session_configfs(struct se_session *se_sess)
417 {
418 struct se_node_acl *se_nacl;
419 unsigned long flags;
420 /*
421 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
422 */
423 se_nacl = se_sess->se_node_acl;
424 if (se_nacl) {
425 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426 if (se_nacl->acl_stop == 0)
427 list_del(&se_sess->sess_acl_list);
428 /*
429 * If the session list is empty, then clear the pointer.
430 * Otherwise, set the struct se_session pointer from the tail
431 * element of the per struct se_node_acl active session list.
432 */
433 if (list_empty(&se_nacl->acl_sess_list))
434 se_nacl->nacl_sess = NULL;
435 else {
436 se_nacl->nacl_sess = container_of(
437 se_nacl->acl_sess_list.prev,
438 struct se_session, sess_acl_list);
439 }
440 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
441 }
442 }
443 EXPORT_SYMBOL(transport_deregister_session_configfs);
444
445 void transport_free_session(struct se_session *se_sess)
446 {
447 if (se_sess->sess_cmd_map) {
448 percpu_ida_destroy(&se_sess->sess_tag_pool);
449 if (is_vmalloc_addr(se_sess->sess_cmd_map))
450 vfree(se_sess->sess_cmd_map);
451 else
452 kfree(se_sess->sess_cmd_map);
453 }
454 kmem_cache_free(se_sess_cache, se_sess);
455 }
456 EXPORT_SYMBOL(transport_free_session);
457
458 void transport_deregister_session(struct se_session *se_sess)
459 {
460 struct se_portal_group *se_tpg = se_sess->se_tpg;
461 struct target_core_fabric_ops *se_tfo;
462 struct se_node_acl *se_nacl;
463 unsigned long flags;
464 bool comp_nacl = true;
465
466 if (!se_tpg) {
467 transport_free_session(se_sess);
468 return;
469 }
470 se_tfo = se_tpg->se_tpg_tfo;
471
472 spin_lock_irqsave(&se_tpg->session_lock, flags);
473 list_del(&se_sess->sess_list);
474 se_sess->se_tpg = NULL;
475 se_sess->fabric_sess_ptr = NULL;
476 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
477
478 /*
479 * Determine if we need to do extra work for this initiator node's
480 * struct se_node_acl if it had been previously dynamically generated.
481 */
482 se_nacl = se_sess->se_node_acl;
483
484 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
485 if (se_nacl && se_nacl->dynamic_node_acl) {
486 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
487 list_del(&se_nacl->acl_list);
488 se_tpg->num_node_acls--;
489 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
490 core_tpg_wait_for_nacl_pr_ref(se_nacl);
491 core_free_device_list_for_node(se_nacl, se_tpg);
492 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
493
494 comp_nacl = false;
495 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
496 }
497 }
498 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
499
500 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
501 se_tpg->se_tpg_tfo->get_fabric_name());
502 /*
503 * If last kref is dropping now for an explicit NodeACL, awake sleeping
504 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
505 * removal context.
506 */
507 if (se_nacl && comp_nacl)
508 target_put_nacl(se_nacl);
509
510 transport_free_session(se_sess);
511 }
512 EXPORT_SYMBOL(transport_deregister_session);
513
514 /*
515 * Called with cmd->t_state_lock held.
516 */
517 static void target_remove_from_state_list(struct se_cmd *cmd)
518 {
519 struct se_device *dev = cmd->se_dev;
520 unsigned long flags;
521
522 if (!dev)
523 return;
524
525 if (cmd->transport_state & CMD_T_BUSY)
526 return;
527
528 spin_lock_irqsave(&dev->execute_task_lock, flags);
529 if (cmd->state_active) {
530 list_del(&cmd->state_list);
531 cmd->state_active = false;
532 }
533 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
534 }
535
536 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
537 bool write_pending)
538 {
539 unsigned long flags;
540
541 spin_lock_irqsave(&cmd->t_state_lock, flags);
542 if (write_pending)
543 cmd->t_state = TRANSPORT_WRITE_PENDING;
544
545 if (remove_from_lists) {
546 target_remove_from_state_list(cmd);
547
548 /*
549 * Clear struct se_cmd->se_lun before the handoff to FE.
550 */
551 cmd->se_lun = NULL;
552 }
553
554 /*
555 * Determine if frontend context caller is requesting the stopping of
556 * this command for frontend exceptions.
557 */
558 if (cmd->transport_state & CMD_T_STOP) {
559 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
560 __func__, __LINE__,
561 cmd->se_tfo->get_task_tag(cmd));
562
563 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
564
565 complete_all(&cmd->t_transport_stop_comp);
566 return 1;
567 }
568
569 cmd->transport_state &= ~CMD_T_ACTIVE;
570 if (remove_from_lists) {
571 /*
572 * Some fabric modules like tcm_loop can release
573 * their internally allocated I/O reference now and
574 * struct se_cmd now.
575 *
576 * Fabric modules are expected to return '1' here if the
577 * se_cmd being passed is released at this point,
578 * or zero if not being released.
579 */
580 if (cmd->se_tfo->check_stop_free != NULL) {
581 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582 return cmd->se_tfo->check_stop_free(cmd);
583 }
584 }
585
586 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
587 return 0;
588 }
589
590 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
591 {
592 return transport_cmd_check_stop(cmd, true, false);
593 }
594
595 static void transport_lun_remove_cmd(struct se_cmd *cmd)
596 {
597 struct se_lun *lun = cmd->se_lun;
598
599 if (!lun)
600 return;
601
602 if (cmpxchg(&cmd->lun_ref_active, true, false))
603 percpu_ref_put(&lun->lun_ref);
604 }
605
606 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
607 {
608 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
609 transport_lun_remove_cmd(cmd);
610 /*
611 * Allow the fabric driver to unmap any resources before
612 * releasing the descriptor via TFO->release_cmd()
613 */
614 if (remove)
615 cmd->se_tfo->aborted_task(cmd);
616
617 if (transport_cmd_check_stop_to_fabric(cmd))
618 return;
619 if (remove)
620 transport_put_cmd(cmd);
621 }
622
623 static void target_complete_failure_work(struct work_struct *work)
624 {
625 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
626
627 transport_generic_request_failure(cmd,
628 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
629 }
630
631 /*
632 * Used when asking transport to copy Sense Data from the underlying
633 * Linux/SCSI struct scsi_cmnd
634 */
635 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
636 {
637 struct se_device *dev = cmd->se_dev;
638
639 WARN_ON(!cmd->se_lun);
640
641 if (!dev)
642 return NULL;
643
644 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
645 return NULL;
646
647 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
648
649 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
650 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
651 return cmd->sense_buffer;
652 }
653
654 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
655 {
656 struct se_device *dev = cmd->se_dev;
657 int success = scsi_status == GOOD;
658 unsigned long flags;
659
660 cmd->scsi_status = scsi_status;
661
662
663 spin_lock_irqsave(&cmd->t_state_lock, flags);
664 cmd->transport_state &= ~CMD_T_BUSY;
665
666 if (dev && dev->transport->transport_complete) {
667 dev->transport->transport_complete(cmd,
668 cmd->t_data_sg,
669 transport_get_sense_buffer(cmd));
670 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
671 success = 1;
672 }
673
674 /*
675 * See if we are waiting to complete for an exception condition.
676 */
677 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
678 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679 complete(&cmd->task_stop_comp);
680 return;
681 }
682
683 /*
684 * Check for case where an explicit ABORT_TASK has been received
685 * and transport_wait_for_tasks() will be waiting for completion..
686 */
687 if (cmd->transport_state & CMD_T_ABORTED &&
688 cmd->transport_state & CMD_T_STOP) {
689 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690 complete_all(&cmd->t_transport_stop_comp);
691 return;
692 } else if (!success) {
693 INIT_WORK(&cmd->work, target_complete_failure_work);
694 } else {
695 INIT_WORK(&cmd->work, target_complete_ok_work);
696 }
697
698 cmd->t_state = TRANSPORT_COMPLETE;
699 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701
702 queue_work(target_completion_wq, &cmd->work);
703 }
704 EXPORT_SYMBOL(target_complete_cmd);
705
706 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
707 {
708 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
709 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
710 cmd->residual_count += cmd->data_length - length;
711 } else {
712 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
713 cmd->residual_count = cmd->data_length - length;
714 }
715
716 cmd->data_length = length;
717 }
718
719 target_complete_cmd(cmd, scsi_status);
720 }
721 EXPORT_SYMBOL(target_complete_cmd_with_length);
722
723 static void target_add_to_state_list(struct se_cmd *cmd)
724 {
725 struct se_device *dev = cmd->se_dev;
726 unsigned long flags;
727
728 spin_lock_irqsave(&dev->execute_task_lock, flags);
729 if (!cmd->state_active) {
730 list_add_tail(&cmd->state_list, &dev->state_list);
731 cmd->state_active = true;
732 }
733 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
734 }
735
736 /*
737 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
738 */
739 static void transport_write_pending_qf(struct se_cmd *cmd);
740 static void transport_complete_qf(struct se_cmd *cmd);
741
742 void target_qf_do_work(struct work_struct *work)
743 {
744 struct se_device *dev = container_of(work, struct se_device,
745 qf_work_queue);
746 LIST_HEAD(qf_cmd_list);
747 struct se_cmd *cmd, *cmd_tmp;
748
749 spin_lock_irq(&dev->qf_cmd_lock);
750 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
751 spin_unlock_irq(&dev->qf_cmd_lock);
752
753 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
754 list_del(&cmd->se_qf_node);
755 atomic_dec(&dev->dev_qf_count);
756 smp_mb__after_atomic();
757
758 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
759 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
760 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
761 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
762 : "UNKNOWN");
763
764 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
765 transport_write_pending_qf(cmd);
766 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
767 transport_complete_qf(cmd);
768 }
769 }
770
771 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
772 {
773 switch (cmd->data_direction) {
774 case DMA_NONE:
775 return "NONE";
776 case DMA_FROM_DEVICE:
777 return "READ";
778 case DMA_TO_DEVICE:
779 return "WRITE";
780 case DMA_BIDIRECTIONAL:
781 return "BIDI";
782 default:
783 break;
784 }
785
786 return "UNKNOWN";
787 }
788
789 void transport_dump_dev_state(
790 struct se_device *dev,
791 char *b,
792 int *bl)
793 {
794 *bl += sprintf(b + *bl, "Status: ");
795 if (dev->export_count)
796 *bl += sprintf(b + *bl, "ACTIVATED");
797 else
798 *bl += sprintf(b + *bl, "DEACTIVATED");
799
800 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
801 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
802 dev->dev_attrib.block_size,
803 dev->dev_attrib.hw_max_sectors);
804 *bl += sprintf(b + *bl, " ");
805 }
806
807 void transport_dump_vpd_proto_id(
808 struct t10_vpd *vpd,
809 unsigned char *p_buf,
810 int p_buf_len)
811 {
812 unsigned char buf[VPD_TMP_BUF_SIZE];
813 int len;
814
815 memset(buf, 0, VPD_TMP_BUF_SIZE);
816 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
817
818 switch (vpd->protocol_identifier) {
819 case 0x00:
820 sprintf(buf+len, "Fibre Channel\n");
821 break;
822 case 0x10:
823 sprintf(buf+len, "Parallel SCSI\n");
824 break;
825 case 0x20:
826 sprintf(buf+len, "SSA\n");
827 break;
828 case 0x30:
829 sprintf(buf+len, "IEEE 1394\n");
830 break;
831 case 0x40:
832 sprintf(buf+len, "SCSI Remote Direct Memory Access"
833 " Protocol\n");
834 break;
835 case 0x50:
836 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
837 break;
838 case 0x60:
839 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
840 break;
841 case 0x70:
842 sprintf(buf+len, "Automation/Drive Interface Transport"
843 " Protocol\n");
844 break;
845 case 0x80:
846 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
847 break;
848 default:
849 sprintf(buf+len, "Unknown 0x%02x\n",
850 vpd->protocol_identifier);
851 break;
852 }
853
854 if (p_buf)
855 strncpy(p_buf, buf, p_buf_len);
856 else
857 pr_debug("%s", buf);
858 }
859
860 void
861 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
862 {
863 /*
864 * Check if the Protocol Identifier Valid (PIV) bit is set..
865 *
866 * from spc3r23.pdf section 7.5.1
867 */
868 if (page_83[1] & 0x80) {
869 vpd->protocol_identifier = (page_83[0] & 0xf0);
870 vpd->protocol_identifier_set = 1;
871 transport_dump_vpd_proto_id(vpd, NULL, 0);
872 }
873 }
874 EXPORT_SYMBOL(transport_set_vpd_proto_id);
875
876 int transport_dump_vpd_assoc(
877 struct t10_vpd *vpd,
878 unsigned char *p_buf,
879 int p_buf_len)
880 {
881 unsigned char buf[VPD_TMP_BUF_SIZE];
882 int ret = 0;
883 int len;
884
885 memset(buf, 0, VPD_TMP_BUF_SIZE);
886 len = sprintf(buf, "T10 VPD Identifier Association: ");
887
888 switch (vpd->association) {
889 case 0x00:
890 sprintf(buf+len, "addressed logical unit\n");
891 break;
892 case 0x10:
893 sprintf(buf+len, "target port\n");
894 break;
895 case 0x20:
896 sprintf(buf+len, "SCSI target device\n");
897 break;
898 default:
899 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
900 ret = -EINVAL;
901 break;
902 }
903
904 if (p_buf)
905 strncpy(p_buf, buf, p_buf_len);
906 else
907 pr_debug("%s", buf);
908
909 return ret;
910 }
911
912 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
913 {
914 /*
915 * The VPD identification association..
916 *
917 * from spc3r23.pdf Section 7.6.3.1 Table 297
918 */
919 vpd->association = (page_83[1] & 0x30);
920 return transport_dump_vpd_assoc(vpd, NULL, 0);
921 }
922 EXPORT_SYMBOL(transport_set_vpd_assoc);
923
924 int transport_dump_vpd_ident_type(
925 struct t10_vpd *vpd,
926 unsigned char *p_buf,
927 int p_buf_len)
928 {
929 unsigned char buf[VPD_TMP_BUF_SIZE];
930 int ret = 0;
931 int len;
932
933 memset(buf, 0, VPD_TMP_BUF_SIZE);
934 len = sprintf(buf, "T10 VPD Identifier Type: ");
935
936 switch (vpd->device_identifier_type) {
937 case 0x00:
938 sprintf(buf+len, "Vendor specific\n");
939 break;
940 case 0x01:
941 sprintf(buf+len, "T10 Vendor ID based\n");
942 break;
943 case 0x02:
944 sprintf(buf+len, "EUI-64 based\n");
945 break;
946 case 0x03:
947 sprintf(buf+len, "NAA\n");
948 break;
949 case 0x04:
950 sprintf(buf+len, "Relative target port identifier\n");
951 break;
952 case 0x08:
953 sprintf(buf+len, "SCSI name string\n");
954 break;
955 default:
956 sprintf(buf+len, "Unsupported: 0x%02x\n",
957 vpd->device_identifier_type);
958 ret = -EINVAL;
959 break;
960 }
961
962 if (p_buf) {
963 if (p_buf_len < strlen(buf)+1)
964 return -EINVAL;
965 strncpy(p_buf, buf, p_buf_len);
966 } else {
967 pr_debug("%s", buf);
968 }
969
970 return ret;
971 }
972
973 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
974 {
975 /*
976 * The VPD identifier type..
977 *
978 * from spc3r23.pdf Section 7.6.3.1 Table 298
979 */
980 vpd->device_identifier_type = (page_83[1] & 0x0f);
981 return transport_dump_vpd_ident_type(vpd, NULL, 0);
982 }
983 EXPORT_SYMBOL(transport_set_vpd_ident_type);
984
985 int transport_dump_vpd_ident(
986 struct t10_vpd *vpd,
987 unsigned char *p_buf,
988 int p_buf_len)
989 {
990 unsigned char buf[VPD_TMP_BUF_SIZE];
991 int ret = 0;
992
993 memset(buf, 0, VPD_TMP_BUF_SIZE);
994
995 switch (vpd->device_identifier_code_set) {
996 case 0x01: /* Binary */
997 snprintf(buf, sizeof(buf),
998 "T10 VPD Binary Device Identifier: %s\n",
999 &vpd->device_identifier[0]);
1000 break;
1001 case 0x02: /* ASCII */
1002 snprintf(buf, sizeof(buf),
1003 "T10 VPD ASCII Device Identifier: %s\n",
1004 &vpd->device_identifier[0]);
1005 break;
1006 case 0x03: /* UTF-8 */
1007 snprintf(buf, sizeof(buf),
1008 "T10 VPD UTF-8 Device Identifier: %s\n",
1009 &vpd->device_identifier[0]);
1010 break;
1011 default:
1012 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1013 " 0x%02x", vpd->device_identifier_code_set);
1014 ret = -EINVAL;
1015 break;
1016 }
1017
1018 if (p_buf)
1019 strncpy(p_buf, buf, p_buf_len);
1020 else
1021 pr_debug("%s", buf);
1022
1023 return ret;
1024 }
1025
1026 int
1027 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1028 {
1029 static const char hex_str[] = "0123456789abcdef";
1030 int j = 0, i = 4; /* offset to start of the identifier */
1031
1032 /*
1033 * The VPD Code Set (encoding)
1034 *
1035 * from spc3r23.pdf Section 7.6.3.1 Table 296
1036 */
1037 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1038 switch (vpd->device_identifier_code_set) {
1039 case 0x01: /* Binary */
1040 vpd->device_identifier[j++] =
1041 hex_str[vpd->device_identifier_type];
1042 while (i < (4 + page_83[3])) {
1043 vpd->device_identifier[j++] =
1044 hex_str[(page_83[i] & 0xf0) >> 4];
1045 vpd->device_identifier[j++] =
1046 hex_str[page_83[i] & 0x0f];
1047 i++;
1048 }
1049 break;
1050 case 0x02: /* ASCII */
1051 case 0x03: /* UTF-8 */
1052 while (i < (4 + page_83[3]))
1053 vpd->device_identifier[j++] = page_83[i++];
1054 break;
1055 default:
1056 break;
1057 }
1058
1059 return transport_dump_vpd_ident(vpd, NULL, 0);
1060 }
1061 EXPORT_SYMBOL(transport_set_vpd_ident);
1062
1063 sense_reason_t
1064 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1065 {
1066 struct se_device *dev = cmd->se_dev;
1067
1068 if (cmd->unknown_data_length) {
1069 cmd->data_length = size;
1070 } else if (size != cmd->data_length) {
1071 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1072 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1073 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1074 cmd->data_length, size, cmd->t_task_cdb[0]);
1075
1076 if (cmd->data_direction == DMA_TO_DEVICE) {
1077 pr_err("Rejecting underflow/overflow"
1078 " WRITE data\n");
1079 return TCM_INVALID_CDB_FIELD;
1080 }
1081 /*
1082 * Reject READ_* or WRITE_* with overflow/underflow for
1083 * type SCF_SCSI_DATA_CDB.
1084 */
1085 if (dev->dev_attrib.block_size != 512) {
1086 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1087 " CDB on non 512-byte sector setup subsystem"
1088 " plugin: %s\n", dev->transport->name);
1089 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1090 return TCM_INVALID_CDB_FIELD;
1091 }
1092 /*
1093 * For the overflow case keep the existing fabric provided
1094 * ->data_length. Otherwise for the underflow case, reset
1095 * ->data_length to the smaller SCSI expected data transfer
1096 * length.
1097 */
1098 if (size > cmd->data_length) {
1099 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1100 cmd->residual_count = (size - cmd->data_length);
1101 } else {
1102 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1103 cmd->residual_count = (cmd->data_length - size);
1104 cmd->data_length = size;
1105 }
1106 }
1107
1108 return 0;
1109
1110 }
1111
1112 /*
1113 * Used by fabric modules containing a local struct se_cmd within their
1114 * fabric dependent per I/O descriptor.
1115 */
1116 void transport_init_se_cmd(
1117 struct se_cmd *cmd,
1118 struct target_core_fabric_ops *tfo,
1119 struct se_session *se_sess,
1120 u32 data_length,
1121 int data_direction,
1122 int task_attr,
1123 unsigned char *sense_buffer)
1124 {
1125 INIT_LIST_HEAD(&cmd->se_delayed_node);
1126 INIT_LIST_HEAD(&cmd->se_qf_node);
1127 INIT_LIST_HEAD(&cmd->se_cmd_list);
1128 INIT_LIST_HEAD(&cmd->state_list);
1129 init_completion(&cmd->t_transport_stop_comp);
1130 init_completion(&cmd->cmd_wait_comp);
1131 init_completion(&cmd->task_stop_comp);
1132 spin_lock_init(&cmd->t_state_lock);
1133 kref_init(&cmd->cmd_kref);
1134 cmd->transport_state = CMD_T_DEV_ACTIVE;
1135
1136 cmd->se_tfo = tfo;
1137 cmd->se_sess = se_sess;
1138 cmd->data_length = data_length;
1139 cmd->data_direction = data_direction;
1140 cmd->sam_task_attr = task_attr;
1141 cmd->sense_buffer = sense_buffer;
1142
1143 cmd->state_active = false;
1144 }
1145 EXPORT_SYMBOL(transport_init_se_cmd);
1146
1147 static sense_reason_t
1148 transport_check_alloc_task_attr(struct se_cmd *cmd)
1149 {
1150 struct se_device *dev = cmd->se_dev;
1151
1152 /*
1153 * Check if SAM Task Attribute emulation is enabled for this
1154 * struct se_device storage object
1155 */
1156 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1157 return 0;
1158
1159 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1160 pr_debug("SAM Task Attribute ACA"
1161 " emulation is not supported\n");
1162 return TCM_INVALID_CDB_FIELD;
1163 }
1164 /*
1165 * Used to determine when ORDERED commands should go from
1166 * Dormant to Active status.
1167 */
1168 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1169 smp_mb__after_atomic();
1170 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1171 cmd->se_ordered_id, cmd->sam_task_attr,
1172 dev->transport->name);
1173 return 0;
1174 }
1175
1176 sense_reason_t
1177 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1178 {
1179 struct se_device *dev = cmd->se_dev;
1180 sense_reason_t ret;
1181
1182 /*
1183 * Ensure that the received CDB is less than the max (252 + 8) bytes
1184 * for VARIABLE_LENGTH_CMD
1185 */
1186 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1187 pr_err("Received SCSI CDB with command_size: %d that"
1188 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1189 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1190 return TCM_INVALID_CDB_FIELD;
1191 }
1192 /*
1193 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1194 * allocate the additional extended CDB buffer now.. Otherwise
1195 * setup the pointer from __t_task_cdb to t_task_cdb.
1196 */
1197 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1198 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1199 GFP_KERNEL);
1200 if (!cmd->t_task_cdb) {
1201 pr_err("Unable to allocate cmd->t_task_cdb"
1202 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1203 scsi_command_size(cdb),
1204 (unsigned long)sizeof(cmd->__t_task_cdb));
1205 return TCM_OUT_OF_RESOURCES;
1206 }
1207 } else
1208 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1209 /*
1210 * Copy the original CDB into cmd->
1211 */
1212 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1213
1214 trace_target_sequencer_start(cmd);
1215
1216 /*
1217 * Check for an existing UNIT ATTENTION condition
1218 */
1219 ret = target_scsi3_ua_check(cmd);
1220 if (ret)
1221 return ret;
1222
1223 ret = target_alua_state_check(cmd);
1224 if (ret)
1225 return ret;
1226
1227 ret = target_check_reservation(cmd);
1228 if (ret) {
1229 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1230 return ret;
1231 }
1232
1233 ret = dev->transport->parse_cdb(cmd);
1234 if (ret)
1235 return ret;
1236
1237 ret = transport_check_alloc_task_attr(cmd);
1238 if (ret)
1239 return ret;
1240
1241 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1242
1243 spin_lock(&cmd->se_lun->lun_sep_lock);
1244 if (cmd->se_lun->lun_sep)
1245 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1246 spin_unlock(&cmd->se_lun->lun_sep_lock);
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1250
1251 /*
1252 * Used by fabric module frontends to queue tasks directly.
1253 * Many only be used from process context only
1254 */
1255 int transport_handle_cdb_direct(
1256 struct se_cmd *cmd)
1257 {
1258 sense_reason_t ret;
1259
1260 if (!cmd->se_lun) {
1261 dump_stack();
1262 pr_err("cmd->se_lun is NULL\n");
1263 return -EINVAL;
1264 }
1265 if (in_interrupt()) {
1266 dump_stack();
1267 pr_err("transport_generic_handle_cdb cannot be called"
1268 " from interrupt context\n");
1269 return -EINVAL;
1270 }
1271 /*
1272 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1273 * outstanding descriptors are handled correctly during shutdown via
1274 * transport_wait_for_tasks()
1275 *
1276 * Also, we don't take cmd->t_state_lock here as we only expect
1277 * this to be called for initial descriptor submission.
1278 */
1279 cmd->t_state = TRANSPORT_NEW_CMD;
1280 cmd->transport_state |= CMD_T_ACTIVE;
1281
1282 /*
1283 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1284 * so follow TRANSPORT_NEW_CMD processing thread context usage
1285 * and call transport_generic_request_failure() if necessary..
1286 */
1287 ret = transport_generic_new_cmd(cmd);
1288 if (ret)
1289 transport_generic_request_failure(cmd, ret);
1290 return 0;
1291 }
1292 EXPORT_SYMBOL(transport_handle_cdb_direct);
1293
1294 sense_reason_t
1295 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1296 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1297 {
1298 if (!sgl || !sgl_count)
1299 return 0;
1300
1301 /*
1302 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1303 * scatterlists already have been set to follow what the fabric
1304 * passes for the original expected data transfer length.
1305 */
1306 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1307 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1308 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1309 return TCM_INVALID_CDB_FIELD;
1310 }
1311
1312 cmd->t_data_sg = sgl;
1313 cmd->t_data_nents = sgl_count;
1314
1315 if (sgl_bidi && sgl_bidi_count) {
1316 cmd->t_bidi_data_sg = sgl_bidi;
1317 cmd->t_bidi_data_nents = sgl_bidi_count;
1318 }
1319 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1320 return 0;
1321 }
1322
1323 /*
1324 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1325 * se_cmd + use pre-allocated SGL memory.
1326 *
1327 * @se_cmd: command descriptor to submit
1328 * @se_sess: associated se_sess for endpoint
1329 * @cdb: pointer to SCSI CDB
1330 * @sense: pointer to SCSI sense buffer
1331 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1332 * @data_length: fabric expected data transfer length
1333 * @task_addr: SAM task attribute
1334 * @data_dir: DMA data direction
1335 * @flags: flags for command submission from target_sc_flags_tables
1336 * @sgl: struct scatterlist memory for unidirectional mapping
1337 * @sgl_count: scatterlist count for unidirectional mapping
1338 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1339 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1340 * @sgl_prot: struct scatterlist memory protection information
1341 * @sgl_prot_count: scatterlist count for protection information
1342 *
1343 * Returns non zero to signal active I/O shutdown failure. All other
1344 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1345 * but still return zero here.
1346 *
1347 * This may only be called from process context, and also currently
1348 * assumes internal allocation of fabric payload buffer by target-core.
1349 */
1350 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1351 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1352 u32 data_length, int task_attr, int data_dir, int flags,
1353 struct scatterlist *sgl, u32 sgl_count,
1354 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1355 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1356 {
1357 struct se_portal_group *se_tpg;
1358 sense_reason_t rc;
1359 int ret;
1360
1361 se_tpg = se_sess->se_tpg;
1362 BUG_ON(!se_tpg);
1363 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1364 BUG_ON(in_interrupt());
1365 /*
1366 * Initialize se_cmd for target operation. From this point
1367 * exceptions are handled by sending exception status via
1368 * target_core_fabric_ops->queue_status() callback
1369 */
1370 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1371 data_length, data_dir, task_attr, sense);
1372 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1373 se_cmd->unknown_data_length = 1;
1374 /*
1375 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1376 * se_sess->sess_cmd_list. A second kref_get here is necessary
1377 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1378 * kref_put() to happen during fabric packet acknowledgement.
1379 */
1380 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1381 if (ret)
1382 return ret;
1383 /*
1384 * Signal bidirectional data payloads to target-core
1385 */
1386 if (flags & TARGET_SCF_BIDI_OP)
1387 se_cmd->se_cmd_flags |= SCF_BIDI;
1388 /*
1389 * Locate se_lun pointer and attach it to struct se_cmd
1390 */
1391 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1392 if (rc) {
1393 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1394 target_put_sess_cmd(se_sess, se_cmd);
1395 return 0;
1396 }
1397
1398 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1399 if (rc != 0) {
1400 transport_generic_request_failure(se_cmd, rc);
1401 return 0;
1402 }
1403
1404 /*
1405 * Save pointers for SGLs containing protection information,
1406 * if present.
1407 */
1408 if (sgl_prot_count) {
1409 se_cmd->t_prot_sg = sgl_prot;
1410 se_cmd->t_prot_nents = sgl_prot_count;
1411 }
1412
1413 /*
1414 * When a non zero sgl_count has been passed perform SGL passthrough
1415 * mapping for pre-allocated fabric memory instead of having target
1416 * core perform an internal SGL allocation..
1417 */
1418 if (sgl_count != 0) {
1419 BUG_ON(!sgl);
1420
1421 /*
1422 * A work-around for tcm_loop as some userspace code via
1423 * scsi-generic do not memset their associated read buffers,
1424 * so go ahead and do that here for type non-data CDBs. Also
1425 * note that this is currently guaranteed to be a single SGL
1426 * for this case by target core in target_setup_cmd_from_cdb()
1427 * -> transport_generic_cmd_sequencer().
1428 */
1429 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1430 se_cmd->data_direction == DMA_FROM_DEVICE) {
1431 unsigned char *buf = NULL;
1432
1433 if (sgl)
1434 buf = kmap(sg_page(sgl)) + sgl->offset;
1435
1436 if (buf) {
1437 memset(buf, 0, sgl->length);
1438 kunmap(sg_page(sgl));
1439 }
1440 }
1441
1442 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1443 sgl_bidi, sgl_bidi_count);
1444 if (rc != 0) {
1445 transport_generic_request_failure(se_cmd, rc);
1446 return 0;
1447 }
1448 }
1449
1450 /*
1451 * Check if we need to delay processing because of ALUA
1452 * Active/NonOptimized primary access state..
1453 */
1454 core_alua_check_nonop_delay(se_cmd);
1455
1456 transport_handle_cdb_direct(se_cmd);
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1460
1461 /*
1462 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1463 *
1464 * @se_cmd: command descriptor to submit
1465 * @se_sess: associated se_sess for endpoint
1466 * @cdb: pointer to SCSI CDB
1467 * @sense: pointer to SCSI sense buffer
1468 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1469 * @data_length: fabric expected data transfer length
1470 * @task_addr: SAM task attribute
1471 * @data_dir: DMA data direction
1472 * @flags: flags for command submission from target_sc_flags_tables
1473 *
1474 * Returns non zero to signal active I/O shutdown failure. All other
1475 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1476 * but still return zero here.
1477 *
1478 * This may only be called from process context, and also currently
1479 * assumes internal allocation of fabric payload buffer by target-core.
1480 *
1481 * It also assumes interal target core SGL memory allocation.
1482 */
1483 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1484 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1485 u32 data_length, int task_attr, int data_dir, int flags)
1486 {
1487 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1488 unpacked_lun, data_length, task_attr, data_dir,
1489 flags, NULL, 0, NULL, 0, NULL, 0);
1490 }
1491 EXPORT_SYMBOL(target_submit_cmd);
1492
1493 static void target_complete_tmr_failure(struct work_struct *work)
1494 {
1495 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1496
1497 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1498 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1499
1500 transport_cmd_check_stop_to_fabric(se_cmd);
1501 }
1502
1503 /**
1504 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1505 * for TMR CDBs
1506 *
1507 * @se_cmd: command descriptor to submit
1508 * @se_sess: associated se_sess for endpoint
1509 * @sense: pointer to SCSI sense buffer
1510 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1511 * @fabric_context: fabric context for TMR req
1512 * @tm_type: Type of TM request
1513 * @gfp: gfp type for caller
1514 * @tag: referenced task tag for TMR_ABORT_TASK
1515 * @flags: submit cmd flags
1516 *
1517 * Callable from all contexts.
1518 **/
1519
1520 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1521 unsigned char *sense, u32 unpacked_lun,
1522 void *fabric_tmr_ptr, unsigned char tm_type,
1523 gfp_t gfp, unsigned int tag, int flags)
1524 {
1525 struct se_portal_group *se_tpg;
1526 int ret;
1527
1528 se_tpg = se_sess->se_tpg;
1529 BUG_ON(!se_tpg);
1530
1531 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1532 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1533 /*
1534 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1535 * allocation failure.
1536 */
1537 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1538 if (ret < 0)
1539 return -ENOMEM;
1540
1541 if (tm_type == TMR_ABORT_TASK)
1542 se_cmd->se_tmr_req->ref_task_tag = tag;
1543
1544 /* See target_submit_cmd for commentary */
1545 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1546 if (ret) {
1547 core_tmr_release_req(se_cmd->se_tmr_req);
1548 return ret;
1549 }
1550
1551 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1552 if (ret) {
1553 /*
1554 * For callback during failure handling, push this work off
1555 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1556 */
1557 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1558 schedule_work(&se_cmd->work);
1559 return 0;
1560 }
1561 transport_generic_handle_tmr(se_cmd);
1562 return 0;
1563 }
1564 EXPORT_SYMBOL(target_submit_tmr);
1565
1566 /*
1567 * If the cmd is active, request it to be stopped and sleep until it
1568 * has completed.
1569 */
1570 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1571 {
1572 bool was_active = false;
1573
1574 if (cmd->transport_state & CMD_T_BUSY) {
1575 cmd->transport_state |= CMD_T_REQUEST_STOP;
1576 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1577
1578 pr_debug("cmd %p waiting to complete\n", cmd);
1579 wait_for_completion(&cmd->task_stop_comp);
1580 pr_debug("cmd %p stopped successfully\n", cmd);
1581
1582 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1583 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1584 cmd->transport_state &= ~CMD_T_BUSY;
1585 was_active = true;
1586 }
1587
1588 return was_active;
1589 }
1590
1591 /*
1592 * Handle SAM-esque emulation for generic transport request failures.
1593 */
1594 void transport_generic_request_failure(struct se_cmd *cmd,
1595 sense_reason_t sense_reason)
1596 {
1597 int ret = 0;
1598
1599 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1600 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1601 cmd->t_task_cdb[0]);
1602 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1603 cmd->se_tfo->get_cmd_state(cmd),
1604 cmd->t_state, sense_reason);
1605 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1606 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1607 (cmd->transport_state & CMD_T_STOP) != 0,
1608 (cmd->transport_state & CMD_T_SENT) != 0);
1609
1610 /*
1611 * For SAM Task Attribute emulation for failed struct se_cmd
1612 */
1613 transport_complete_task_attr(cmd);
1614 /*
1615 * Handle special case for COMPARE_AND_WRITE failure, where the
1616 * callback is expected to drop the per device ->caw_mutex.
1617 */
1618 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1619 cmd->transport_complete_callback)
1620 cmd->transport_complete_callback(cmd);
1621
1622 switch (sense_reason) {
1623 case TCM_NON_EXISTENT_LUN:
1624 case TCM_UNSUPPORTED_SCSI_OPCODE:
1625 case TCM_INVALID_CDB_FIELD:
1626 case TCM_INVALID_PARAMETER_LIST:
1627 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1628 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1629 case TCM_UNKNOWN_MODE_PAGE:
1630 case TCM_WRITE_PROTECTED:
1631 case TCM_ADDRESS_OUT_OF_RANGE:
1632 case TCM_CHECK_CONDITION_ABORT_CMD:
1633 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1634 case TCM_CHECK_CONDITION_NOT_READY:
1635 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1636 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1637 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1638 break;
1639 case TCM_OUT_OF_RESOURCES:
1640 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1641 break;
1642 case TCM_RESERVATION_CONFLICT:
1643 /*
1644 * No SENSE Data payload for this case, set SCSI Status
1645 * and queue the response to $FABRIC_MOD.
1646 *
1647 * Uses linux/include/scsi/scsi.h SAM status codes defs
1648 */
1649 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1650 /*
1651 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1652 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1653 * CONFLICT STATUS.
1654 *
1655 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1656 */
1657 if (cmd->se_sess &&
1658 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1659 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1660 cmd->orig_fe_lun, 0x2C,
1661 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1662
1663 trace_target_cmd_complete(cmd);
1664 ret = cmd->se_tfo-> queue_status(cmd);
1665 if (ret == -EAGAIN || ret == -ENOMEM)
1666 goto queue_full;
1667 goto check_stop;
1668 default:
1669 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1670 cmd->t_task_cdb[0], sense_reason);
1671 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1672 break;
1673 }
1674
1675 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1676 if (ret == -EAGAIN || ret == -ENOMEM)
1677 goto queue_full;
1678
1679 check_stop:
1680 transport_lun_remove_cmd(cmd);
1681 if (!transport_cmd_check_stop_to_fabric(cmd))
1682 ;
1683 return;
1684
1685 queue_full:
1686 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1687 transport_handle_queue_full(cmd, cmd->se_dev);
1688 }
1689 EXPORT_SYMBOL(transport_generic_request_failure);
1690
1691 void __target_execute_cmd(struct se_cmd *cmd)
1692 {
1693 sense_reason_t ret;
1694
1695 if (cmd->execute_cmd) {
1696 ret = cmd->execute_cmd(cmd);
1697 if (ret) {
1698 spin_lock_irq(&cmd->t_state_lock);
1699 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1700 spin_unlock_irq(&cmd->t_state_lock);
1701
1702 transport_generic_request_failure(cmd, ret);
1703 }
1704 }
1705 }
1706
1707 static bool target_handle_task_attr(struct se_cmd *cmd)
1708 {
1709 struct se_device *dev = cmd->se_dev;
1710
1711 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1712 return false;
1713
1714 /*
1715 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1716 * to allow the passed struct se_cmd list of tasks to the front of the list.
1717 */
1718 switch (cmd->sam_task_attr) {
1719 case MSG_HEAD_TAG:
1720 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1721 "se_ordered_id: %u\n",
1722 cmd->t_task_cdb[0], cmd->se_ordered_id);
1723 return false;
1724 case MSG_ORDERED_TAG:
1725 atomic_inc(&dev->dev_ordered_sync);
1726 smp_mb__after_atomic();
1727
1728 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1729 " se_ordered_id: %u\n",
1730 cmd->t_task_cdb[0], cmd->se_ordered_id);
1731
1732 /*
1733 * Execute an ORDERED command if no other older commands
1734 * exist that need to be completed first.
1735 */
1736 if (!atomic_read(&dev->simple_cmds))
1737 return false;
1738 break;
1739 default:
1740 /*
1741 * For SIMPLE and UNTAGGED Task Attribute commands
1742 */
1743 atomic_inc(&dev->simple_cmds);
1744 smp_mb__after_atomic();
1745 break;
1746 }
1747
1748 if (atomic_read(&dev->dev_ordered_sync) == 0)
1749 return false;
1750
1751 spin_lock(&dev->delayed_cmd_lock);
1752 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1753 spin_unlock(&dev->delayed_cmd_lock);
1754
1755 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1756 " delayed CMD list, se_ordered_id: %u\n",
1757 cmd->t_task_cdb[0], cmd->sam_task_attr,
1758 cmd->se_ordered_id);
1759 return true;
1760 }
1761
1762 void target_execute_cmd(struct se_cmd *cmd)
1763 {
1764 /*
1765 * If the received CDB has aleady been aborted stop processing it here.
1766 */
1767 if (transport_check_aborted_status(cmd, 1))
1768 return;
1769
1770 /*
1771 * Determine if frontend context caller is requesting the stopping of
1772 * this command for frontend exceptions.
1773 */
1774 spin_lock_irq(&cmd->t_state_lock);
1775 if (cmd->transport_state & CMD_T_STOP) {
1776 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1777 __func__, __LINE__,
1778 cmd->se_tfo->get_task_tag(cmd));
1779
1780 spin_unlock_irq(&cmd->t_state_lock);
1781 complete_all(&cmd->t_transport_stop_comp);
1782 return;
1783 }
1784
1785 cmd->t_state = TRANSPORT_PROCESSING;
1786 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1787 spin_unlock_irq(&cmd->t_state_lock);
1788 /*
1789 * Perform WRITE_INSERT of PI using software emulation when backend
1790 * device has PI enabled, if the transport has not already generated
1791 * PI using hardware WRITE_INSERT offload.
1792 */
1793 if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) {
1794 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1795 sbc_dif_generate(cmd);
1796 }
1797
1798 if (target_handle_task_attr(cmd)) {
1799 spin_lock_irq(&cmd->t_state_lock);
1800 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1801 spin_unlock_irq(&cmd->t_state_lock);
1802 return;
1803 }
1804
1805 __target_execute_cmd(cmd);
1806 }
1807 EXPORT_SYMBOL(target_execute_cmd);
1808
1809 /*
1810 * Process all commands up to the last received ORDERED task attribute which
1811 * requires another blocking boundary
1812 */
1813 static void target_restart_delayed_cmds(struct se_device *dev)
1814 {
1815 for (;;) {
1816 struct se_cmd *cmd;
1817
1818 spin_lock(&dev->delayed_cmd_lock);
1819 if (list_empty(&dev->delayed_cmd_list)) {
1820 spin_unlock(&dev->delayed_cmd_lock);
1821 break;
1822 }
1823
1824 cmd = list_entry(dev->delayed_cmd_list.next,
1825 struct se_cmd, se_delayed_node);
1826 list_del(&cmd->se_delayed_node);
1827 spin_unlock(&dev->delayed_cmd_lock);
1828
1829 __target_execute_cmd(cmd);
1830
1831 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1832 break;
1833 }
1834 }
1835
1836 /*
1837 * Called from I/O completion to determine which dormant/delayed
1838 * and ordered cmds need to have their tasks added to the execution queue.
1839 */
1840 static void transport_complete_task_attr(struct se_cmd *cmd)
1841 {
1842 struct se_device *dev = cmd->se_dev;
1843
1844 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1845 return;
1846
1847 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1848 atomic_dec(&dev->simple_cmds);
1849 smp_mb__after_atomic();
1850 dev->dev_cur_ordered_id++;
1851 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1852 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1853 cmd->se_ordered_id);
1854 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1855 dev->dev_cur_ordered_id++;
1856 pr_debug("Incremented dev_cur_ordered_id: %u for"
1857 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1858 cmd->se_ordered_id);
1859 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1860 atomic_dec(&dev->dev_ordered_sync);
1861 smp_mb__after_atomic();
1862
1863 dev->dev_cur_ordered_id++;
1864 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1865 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1866 }
1867
1868 target_restart_delayed_cmds(dev);
1869 }
1870
1871 static void transport_complete_qf(struct se_cmd *cmd)
1872 {
1873 int ret = 0;
1874
1875 transport_complete_task_attr(cmd);
1876
1877 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1878 trace_target_cmd_complete(cmd);
1879 ret = cmd->se_tfo->queue_status(cmd);
1880 if (ret)
1881 goto out;
1882 }
1883
1884 switch (cmd->data_direction) {
1885 case DMA_FROM_DEVICE:
1886 trace_target_cmd_complete(cmd);
1887 ret = cmd->se_tfo->queue_data_in(cmd);
1888 break;
1889 case DMA_TO_DEVICE:
1890 if (cmd->se_cmd_flags & SCF_BIDI) {
1891 ret = cmd->se_tfo->queue_data_in(cmd);
1892 if (ret < 0)
1893 break;
1894 }
1895 /* Fall through for DMA_TO_DEVICE */
1896 case DMA_NONE:
1897 trace_target_cmd_complete(cmd);
1898 ret = cmd->se_tfo->queue_status(cmd);
1899 break;
1900 default:
1901 break;
1902 }
1903
1904 out:
1905 if (ret < 0) {
1906 transport_handle_queue_full(cmd, cmd->se_dev);
1907 return;
1908 }
1909 transport_lun_remove_cmd(cmd);
1910 transport_cmd_check_stop_to_fabric(cmd);
1911 }
1912
1913 static void transport_handle_queue_full(
1914 struct se_cmd *cmd,
1915 struct se_device *dev)
1916 {
1917 spin_lock_irq(&dev->qf_cmd_lock);
1918 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1919 atomic_inc(&dev->dev_qf_count);
1920 smp_mb__after_atomic();
1921 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1922
1923 schedule_work(&cmd->se_dev->qf_work_queue);
1924 }
1925
1926 static bool target_check_read_strip(struct se_cmd *cmd)
1927 {
1928 sense_reason_t rc;
1929
1930 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1931 rc = sbc_dif_read_strip(cmd);
1932 if (rc) {
1933 cmd->pi_err = rc;
1934 return true;
1935 }
1936 }
1937
1938 return false;
1939 }
1940
1941 static void target_complete_ok_work(struct work_struct *work)
1942 {
1943 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1944 int ret;
1945
1946 /*
1947 * Check if we need to move delayed/dormant tasks from cmds on the
1948 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1949 * Attribute.
1950 */
1951 transport_complete_task_attr(cmd);
1952
1953 /*
1954 * Check to schedule QUEUE_FULL work, or execute an existing
1955 * cmd->transport_qf_callback()
1956 */
1957 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1958 schedule_work(&cmd->se_dev->qf_work_queue);
1959
1960 /*
1961 * Check if we need to send a sense buffer from
1962 * the struct se_cmd in question.
1963 */
1964 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1965 WARN_ON(!cmd->scsi_status);
1966 ret = transport_send_check_condition_and_sense(
1967 cmd, 0, 1);
1968 if (ret == -EAGAIN || ret == -ENOMEM)
1969 goto queue_full;
1970
1971 transport_lun_remove_cmd(cmd);
1972 transport_cmd_check_stop_to_fabric(cmd);
1973 return;
1974 }
1975 /*
1976 * Check for a callback, used by amongst other things
1977 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1978 */
1979 if (cmd->transport_complete_callback) {
1980 sense_reason_t rc;
1981
1982 rc = cmd->transport_complete_callback(cmd);
1983 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1984 return;
1985 } else if (rc) {
1986 ret = transport_send_check_condition_and_sense(cmd,
1987 rc, 0);
1988 if (ret == -EAGAIN || ret == -ENOMEM)
1989 goto queue_full;
1990
1991 transport_lun_remove_cmd(cmd);
1992 transport_cmd_check_stop_to_fabric(cmd);
1993 return;
1994 }
1995 }
1996
1997 switch (cmd->data_direction) {
1998 case DMA_FROM_DEVICE:
1999 spin_lock(&cmd->se_lun->lun_sep_lock);
2000 if (cmd->se_lun->lun_sep) {
2001 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2002 cmd->data_length;
2003 }
2004 spin_unlock(&cmd->se_lun->lun_sep_lock);
2005 /*
2006 * Perform READ_STRIP of PI using software emulation when
2007 * backend had PI enabled, if the transport will not be
2008 * performing hardware READ_STRIP offload.
2009 */
2010 if (cmd->prot_op == TARGET_PROT_DIN_STRIP &&
2011 target_check_read_strip(cmd)) {
2012 ret = transport_send_check_condition_and_sense(cmd,
2013 cmd->pi_err, 0);
2014 if (ret == -EAGAIN || ret == -ENOMEM)
2015 goto queue_full;
2016
2017 transport_lun_remove_cmd(cmd);
2018 transport_cmd_check_stop_to_fabric(cmd);
2019 return;
2020 }
2021
2022 trace_target_cmd_complete(cmd);
2023 ret = cmd->se_tfo->queue_data_in(cmd);
2024 if (ret == -EAGAIN || ret == -ENOMEM)
2025 goto queue_full;
2026 break;
2027 case DMA_TO_DEVICE:
2028 spin_lock(&cmd->se_lun->lun_sep_lock);
2029 if (cmd->se_lun->lun_sep) {
2030 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2031 cmd->data_length;
2032 }
2033 spin_unlock(&cmd->se_lun->lun_sep_lock);
2034 /*
2035 * Check if we need to send READ payload for BIDI-COMMAND
2036 */
2037 if (cmd->se_cmd_flags & SCF_BIDI) {
2038 spin_lock(&cmd->se_lun->lun_sep_lock);
2039 if (cmd->se_lun->lun_sep) {
2040 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2041 cmd->data_length;
2042 }
2043 spin_unlock(&cmd->se_lun->lun_sep_lock);
2044 ret = cmd->se_tfo->queue_data_in(cmd);
2045 if (ret == -EAGAIN || ret == -ENOMEM)
2046 goto queue_full;
2047 break;
2048 }
2049 /* Fall through for DMA_TO_DEVICE */
2050 case DMA_NONE:
2051 trace_target_cmd_complete(cmd);
2052 ret = cmd->se_tfo->queue_status(cmd);
2053 if (ret == -EAGAIN || ret == -ENOMEM)
2054 goto queue_full;
2055 break;
2056 default:
2057 break;
2058 }
2059
2060 transport_lun_remove_cmd(cmd);
2061 transport_cmd_check_stop_to_fabric(cmd);
2062 return;
2063
2064 queue_full:
2065 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2066 " data_direction: %d\n", cmd, cmd->data_direction);
2067 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2068 transport_handle_queue_full(cmd, cmd->se_dev);
2069 }
2070
2071 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2072 {
2073 struct scatterlist *sg;
2074 int count;
2075
2076 for_each_sg(sgl, sg, nents, count)
2077 __free_page(sg_page(sg));
2078
2079 kfree(sgl);
2080 }
2081
2082 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2083 {
2084 /*
2085 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2086 * emulation, and free + reset pointers if necessary..
2087 */
2088 if (!cmd->t_data_sg_orig)
2089 return;
2090
2091 kfree(cmd->t_data_sg);
2092 cmd->t_data_sg = cmd->t_data_sg_orig;
2093 cmd->t_data_sg_orig = NULL;
2094 cmd->t_data_nents = cmd->t_data_nents_orig;
2095 cmd->t_data_nents_orig = 0;
2096 }
2097
2098 static inline void transport_free_pages(struct se_cmd *cmd)
2099 {
2100 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2101 transport_reset_sgl_orig(cmd);
2102 return;
2103 }
2104 transport_reset_sgl_orig(cmd);
2105
2106 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2107 cmd->t_data_sg = NULL;
2108 cmd->t_data_nents = 0;
2109
2110 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2111 cmd->t_bidi_data_sg = NULL;
2112 cmd->t_bidi_data_nents = 0;
2113
2114 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2115 cmd->t_prot_sg = NULL;
2116 cmd->t_prot_nents = 0;
2117 }
2118
2119 /**
2120 * transport_release_cmd - free a command
2121 * @cmd: command to free
2122 *
2123 * This routine unconditionally frees a command, and reference counting
2124 * or list removal must be done in the caller.
2125 */
2126 static int transport_release_cmd(struct se_cmd *cmd)
2127 {
2128 BUG_ON(!cmd->se_tfo);
2129
2130 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2131 core_tmr_release_req(cmd->se_tmr_req);
2132 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2133 kfree(cmd->t_task_cdb);
2134 /*
2135 * If this cmd has been setup with target_get_sess_cmd(), drop
2136 * the kref and call ->release_cmd() in kref callback.
2137 */
2138 return target_put_sess_cmd(cmd->se_sess, cmd);
2139 }
2140
2141 /**
2142 * transport_put_cmd - release a reference to a command
2143 * @cmd: command to release
2144 *
2145 * This routine releases our reference to the command and frees it if possible.
2146 */
2147 static int transport_put_cmd(struct se_cmd *cmd)
2148 {
2149 transport_free_pages(cmd);
2150 return transport_release_cmd(cmd);
2151 }
2152
2153 void *transport_kmap_data_sg(struct se_cmd *cmd)
2154 {
2155 struct scatterlist *sg = cmd->t_data_sg;
2156 struct page **pages;
2157 int i;
2158
2159 /*
2160 * We need to take into account a possible offset here for fabrics like
2161 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2162 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2163 */
2164 if (!cmd->t_data_nents)
2165 return NULL;
2166
2167 BUG_ON(!sg);
2168 if (cmd->t_data_nents == 1)
2169 return kmap(sg_page(sg)) + sg->offset;
2170
2171 /* >1 page. use vmap */
2172 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2173 if (!pages)
2174 return NULL;
2175
2176 /* convert sg[] to pages[] */
2177 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2178 pages[i] = sg_page(sg);
2179 }
2180
2181 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2182 kfree(pages);
2183 if (!cmd->t_data_vmap)
2184 return NULL;
2185
2186 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2187 }
2188 EXPORT_SYMBOL(transport_kmap_data_sg);
2189
2190 void transport_kunmap_data_sg(struct se_cmd *cmd)
2191 {
2192 if (!cmd->t_data_nents) {
2193 return;
2194 } else if (cmd->t_data_nents == 1) {
2195 kunmap(sg_page(cmd->t_data_sg));
2196 return;
2197 }
2198
2199 vunmap(cmd->t_data_vmap);
2200 cmd->t_data_vmap = NULL;
2201 }
2202 EXPORT_SYMBOL(transport_kunmap_data_sg);
2203
2204 int
2205 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2206 bool zero_page)
2207 {
2208 struct scatterlist *sg;
2209 struct page *page;
2210 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2211 unsigned int nent;
2212 int i = 0;
2213
2214 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2215 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2216 if (!sg)
2217 return -ENOMEM;
2218
2219 sg_init_table(sg, nent);
2220
2221 while (length) {
2222 u32 page_len = min_t(u32, length, PAGE_SIZE);
2223 page = alloc_page(GFP_KERNEL | zero_flag);
2224 if (!page)
2225 goto out;
2226
2227 sg_set_page(&sg[i], page, page_len, 0);
2228 length -= page_len;
2229 i++;
2230 }
2231 *sgl = sg;
2232 *nents = nent;
2233 return 0;
2234
2235 out:
2236 while (i > 0) {
2237 i--;
2238 __free_page(sg_page(&sg[i]));
2239 }
2240 kfree(sg);
2241 return -ENOMEM;
2242 }
2243
2244 /*
2245 * Allocate any required resources to execute the command. For writes we
2246 * might not have the payload yet, so notify the fabric via a call to
2247 * ->write_pending instead. Otherwise place it on the execution queue.
2248 */
2249 sense_reason_t
2250 transport_generic_new_cmd(struct se_cmd *cmd)
2251 {
2252 int ret = 0;
2253
2254 /*
2255 * Determine is the TCM fabric module has already allocated physical
2256 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2257 * beforehand.
2258 */
2259 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2260 cmd->data_length) {
2261 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2262
2263 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2264 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2265 u32 bidi_length;
2266
2267 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2268 bidi_length = cmd->t_task_nolb *
2269 cmd->se_dev->dev_attrib.block_size;
2270 else
2271 bidi_length = cmd->data_length;
2272
2273 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2274 &cmd->t_bidi_data_nents,
2275 bidi_length, zero_flag);
2276 if (ret < 0)
2277 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2278 }
2279
2280 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2281 ret = target_alloc_sgl(&cmd->t_prot_sg,
2282 &cmd->t_prot_nents,
2283 cmd->prot_length, true);
2284 if (ret < 0)
2285 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2286 }
2287
2288 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2289 cmd->data_length, zero_flag);
2290 if (ret < 0)
2291 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2292 }
2293 /*
2294 * If this command is not a write we can execute it right here,
2295 * for write buffers we need to notify the fabric driver first
2296 * and let it call back once the write buffers are ready.
2297 */
2298 target_add_to_state_list(cmd);
2299 if (cmd->data_direction != DMA_TO_DEVICE) {
2300 target_execute_cmd(cmd);
2301 return 0;
2302 }
2303 transport_cmd_check_stop(cmd, false, true);
2304
2305 ret = cmd->se_tfo->write_pending(cmd);
2306 if (ret == -EAGAIN || ret == -ENOMEM)
2307 goto queue_full;
2308
2309 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2310 WARN_ON(ret);
2311
2312 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2313
2314 queue_full:
2315 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2316 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2317 transport_handle_queue_full(cmd, cmd->se_dev);
2318 return 0;
2319 }
2320 EXPORT_SYMBOL(transport_generic_new_cmd);
2321
2322 static void transport_write_pending_qf(struct se_cmd *cmd)
2323 {
2324 int ret;
2325
2326 ret = cmd->se_tfo->write_pending(cmd);
2327 if (ret == -EAGAIN || ret == -ENOMEM) {
2328 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2329 cmd);
2330 transport_handle_queue_full(cmd, cmd->se_dev);
2331 }
2332 }
2333
2334 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2335 {
2336 unsigned long flags;
2337 int ret = 0;
2338
2339 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2340 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2341 transport_wait_for_tasks(cmd);
2342
2343 ret = transport_release_cmd(cmd);
2344 } else {
2345 if (wait_for_tasks)
2346 transport_wait_for_tasks(cmd);
2347 /*
2348 * Handle WRITE failure case where transport_generic_new_cmd()
2349 * has already added se_cmd to state_list, but fabric has
2350 * failed command before I/O submission.
2351 */
2352 if (cmd->state_active) {
2353 spin_lock_irqsave(&cmd->t_state_lock, flags);
2354 target_remove_from_state_list(cmd);
2355 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2356 }
2357
2358 if (cmd->se_lun)
2359 transport_lun_remove_cmd(cmd);
2360
2361 ret = transport_put_cmd(cmd);
2362 }
2363 return ret;
2364 }
2365 EXPORT_SYMBOL(transport_generic_free_cmd);
2366
2367 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2368 * @se_sess: session to reference
2369 * @se_cmd: command descriptor to add
2370 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2371 */
2372 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2373 bool ack_kref)
2374 {
2375 unsigned long flags;
2376 int ret = 0;
2377
2378 /*
2379 * Add a second kref if the fabric caller is expecting to handle
2380 * fabric acknowledgement that requires two target_put_sess_cmd()
2381 * invocations before se_cmd descriptor release.
2382 */
2383 if (ack_kref) {
2384 kref_get(&se_cmd->cmd_kref);
2385 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2386 }
2387
2388 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2389 if (se_sess->sess_tearing_down) {
2390 ret = -ESHUTDOWN;
2391 goto out;
2392 }
2393 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2394 out:
2395 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(target_get_sess_cmd);
2399
2400 static void target_release_cmd_kref(struct kref *kref)
2401 {
2402 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2403 struct se_session *se_sess = se_cmd->se_sess;
2404
2405 if (list_empty(&se_cmd->se_cmd_list)) {
2406 spin_unlock(&se_sess->sess_cmd_lock);
2407 se_cmd->se_tfo->release_cmd(se_cmd);
2408 return;
2409 }
2410 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2411 spin_unlock(&se_sess->sess_cmd_lock);
2412 complete(&se_cmd->cmd_wait_comp);
2413 return;
2414 }
2415 list_del(&se_cmd->se_cmd_list);
2416 spin_unlock(&se_sess->sess_cmd_lock);
2417
2418 se_cmd->se_tfo->release_cmd(se_cmd);
2419 }
2420
2421 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2422 * @se_sess: session to reference
2423 * @se_cmd: command descriptor to drop
2424 */
2425 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2426 {
2427 if (!se_sess) {
2428 se_cmd->se_tfo->release_cmd(se_cmd);
2429 return 1;
2430 }
2431 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2432 &se_sess->sess_cmd_lock);
2433 }
2434 EXPORT_SYMBOL(target_put_sess_cmd);
2435
2436 /* target_sess_cmd_list_set_waiting - Flag all commands in
2437 * sess_cmd_list to complete cmd_wait_comp. Set
2438 * sess_tearing_down so no more commands are queued.
2439 * @se_sess: session to flag
2440 */
2441 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2442 {
2443 struct se_cmd *se_cmd;
2444 unsigned long flags;
2445
2446 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2447 if (se_sess->sess_tearing_down) {
2448 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2449 return;
2450 }
2451 se_sess->sess_tearing_down = 1;
2452 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2453
2454 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2455 se_cmd->cmd_wait_set = 1;
2456
2457 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2458 }
2459 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2460
2461 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2462 * @se_sess: session to wait for active I/O
2463 */
2464 void target_wait_for_sess_cmds(struct se_session *se_sess)
2465 {
2466 struct se_cmd *se_cmd, *tmp_cmd;
2467 unsigned long flags;
2468
2469 list_for_each_entry_safe(se_cmd, tmp_cmd,
2470 &se_sess->sess_wait_list, se_cmd_list) {
2471 list_del(&se_cmd->se_cmd_list);
2472
2473 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2474 " %d\n", se_cmd, se_cmd->t_state,
2475 se_cmd->se_tfo->get_cmd_state(se_cmd));
2476
2477 wait_for_completion(&se_cmd->cmd_wait_comp);
2478 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2479 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2480 se_cmd->se_tfo->get_cmd_state(se_cmd));
2481
2482 se_cmd->se_tfo->release_cmd(se_cmd);
2483 }
2484
2485 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2486 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2487 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2488
2489 }
2490 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2491
2492 static int transport_clear_lun_ref_thread(void *p)
2493 {
2494 struct se_lun *lun = p;
2495
2496 percpu_ref_kill(&lun->lun_ref);
2497
2498 wait_for_completion(&lun->lun_ref_comp);
2499 complete(&lun->lun_shutdown_comp);
2500
2501 return 0;
2502 }
2503
2504 int transport_clear_lun_ref(struct se_lun *lun)
2505 {
2506 struct task_struct *kt;
2507
2508 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2509 "tcm_cl_%u", lun->unpacked_lun);
2510 if (IS_ERR(kt)) {
2511 pr_err("Unable to start clear_lun thread\n");
2512 return PTR_ERR(kt);
2513 }
2514 wait_for_completion(&lun->lun_shutdown_comp);
2515
2516 return 0;
2517 }
2518
2519 /**
2520 * transport_wait_for_tasks - wait for completion to occur
2521 * @cmd: command to wait
2522 *
2523 * Called from frontend fabric context to wait for storage engine
2524 * to pause and/or release frontend generated struct se_cmd.
2525 */
2526 bool transport_wait_for_tasks(struct se_cmd *cmd)
2527 {
2528 unsigned long flags;
2529
2530 spin_lock_irqsave(&cmd->t_state_lock, flags);
2531 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2532 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2533 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2534 return false;
2535 }
2536
2537 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2538 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2539 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2540 return false;
2541 }
2542
2543 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2545 return false;
2546 }
2547
2548 cmd->transport_state |= CMD_T_STOP;
2549
2550 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2551 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2552 cmd, cmd->se_tfo->get_task_tag(cmd),
2553 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2554
2555 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2556
2557 wait_for_completion(&cmd->t_transport_stop_comp);
2558
2559 spin_lock_irqsave(&cmd->t_state_lock, flags);
2560 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2561
2562 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2563 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2564 cmd->se_tfo->get_task_tag(cmd));
2565
2566 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2567
2568 return true;
2569 }
2570 EXPORT_SYMBOL(transport_wait_for_tasks);
2571
2572 static int transport_get_sense_codes(
2573 struct se_cmd *cmd,
2574 u8 *asc,
2575 u8 *ascq)
2576 {
2577 *asc = cmd->scsi_asc;
2578 *ascq = cmd->scsi_ascq;
2579
2580 return 0;
2581 }
2582
2583 static
2584 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2585 {
2586 /* Place failed LBA in sense data information descriptor 0. */
2587 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2588 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2589 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2590 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2591
2592 /* Descriptor Information: failing sector */
2593 put_unaligned_be64(bad_sector, &buffer[12]);
2594 }
2595
2596 int
2597 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2598 sense_reason_t reason, int from_transport)
2599 {
2600 unsigned char *buffer = cmd->sense_buffer;
2601 unsigned long flags;
2602 u8 asc = 0, ascq = 0;
2603
2604 spin_lock_irqsave(&cmd->t_state_lock, flags);
2605 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2606 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2607 return 0;
2608 }
2609 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2610 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2611
2612 if (!reason && from_transport)
2613 goto after_reason;
2614
2615 if (!from_transport)
2616 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2617
2618 /*
2619 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2620 * SENSE KEY values from include/scsi/scsi.h
2621 */
2622 switch (reason) {
2623 case TCM_NO_SENSE:
2624 /* CURRENT ERROR */
2625 buffer[0] = 0x70;
2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2627 /* Not Ready */
2628 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2629 /* NO ADDITIONAL SENSE INFORMATION */
2630 buffer[SPC_ASC_KEY_OFFSET] = 0;
2631 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2632 break;
2633 case TCM_NON_EXISTENT_LUN:
2634 /* CURRENT ERROR */
2635 buffer[0] = 0x70;
2636 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2637 /* ILLEGAL REQUEST */
2638 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2639 /* LOGICAL UNIT NOT SUPPORTED */
2640 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2641 break;
2642 case TCM_UNSUPPORTED_SCSI_OPCODE:
2643 case TCM_SECTOR_COUNT_TOO_MANY:
2644 /* CURRENT ERROR */
2645 buffer[0] = 0x70;
2646 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2647 /* ILLEGAL REQUEST */
2648 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2649 /* INVALID COMMAND OPERATION CODE */
2650 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2651 break;
2652 case TCM_UNKNOWN_MODE_PAGE:
2653 /* CURRENT ERROR */
2654 buffer[0] = 0x70;
2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2656 /* ILLEGAL REQUEST */
2657 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2658 /* INVALID FIELD IN CDB */
2659 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2660 break;
2661 case TCM_CHECK_CONDITION_ABORT_CMD:
2662 /* CURRENT ERROR */
2663 buffer[0] = 0x70;
2664 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2665 /* ABORTED COMMAND */
2666 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2667 /* BUS DEVICE RESET FUNCTION OCCURRED */
2668 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2669 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2670 break;
2671 case TCM_INCORRECT_AMOUNT_OF_DATA:
2672 /* CURRENT ERROR */
2673 buffer[0] = 0x70;
2674 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2675 /* ABORTED COMMAND */
2676 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2677 /* WRITE ERROR */
2678 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2679 /* NOT ENOUGH UNSOLICITED DATA */
2680 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2681 break;
2682 case TCM_INVALID_CDB_FIELD:
2683 /* CURRENT ERROR */
2684 buffer[0] = 0x70;
2685 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2686 /* ILLEGAL REQUEST */
2687 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2688 /* INVALID FIELD IN CDB */
2689 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2690 break;
2691 case TCM_INVALID_PARAMETER_LIST:
2692 /* CURRENT ERROR */
2693 buffer[0] = 0x70;
2694 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2695 /* ILLEGAL REQUEST */
2696 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2697 /* INVALID FIELD IN PARAMETER LIST */
2698 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2699 break;
2700 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2701 /* CURRENT ERROR */
2702 buffer[0] = 0x70;
2703 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2704 /* ILLEGAL REQUEST */
2705 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2706 /* PARAMETER LIST LENGTH ERROR */
2707 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2708 break;
2709 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2710 /* CURRENT ERROR */
2711 buffer[0] = 0x70;
2712 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2713 /* ABORTED COMMAND */
2714 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2715 /* WRITE ERROR */
2716 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2717 /* UNEXPECTED_UNSOLICITED_DATA */
2718 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2719 break;
2720 case TCM_SERVICE_CRC_ERROR:
2721 /* CURRENT ERROR */
2722 buffer[0] = 0x70;
2723 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2724 /* ABORTED COMMAND */
2725 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2726 /* PROTOCOL SERVICE CRC ERROR */
2727 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2728 /* N/A */
2729 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2730 break;
2731 case TCM_SNACK_REJECTED:
2732 /* CURRENT ERROR */
2733 buffer[0] = 0x70;
2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2735 /* ABORTED COMMAND */
2736 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2737 /* READ ERROR */
2738 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2739 /* FAILED RETRANSMISSION REQUEST */
2740 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2741 break;
2742 case TCM_WRITE_PROTECTED:
2743 /* CURRENT ERROR */
2744 buffer[0] = 0x70;
2745 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2746 /* DATA PROTECT */
2747 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2748 /* WRITE PROTECTED */
2749 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2750 break;
2751 case TCM_ADDRESS_OUT_OF_RANGE:
2752 /* CURRENT ERROR */
2753 buffer[0] = 0x70;
2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2755 /* ILLEGAL REQUEST */
2756 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2757 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2758 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2759 break;
2760 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2761 /* CURRENT ERROR */
2762 buffer[0] = 0x70;
2763 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2764 /* UNIT ATTENTION */
2765 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2766 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2767 buffer[SPC_ASC_KEY_OFFSET] = asc;
2768 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2769 break;
2770 case TCM_CHECK_CONDITION_NOT_READY:
2771 /* CURRENT ERROR */
2772 buffer[0] = 0x70;
2773 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2774 /* Not Ready */
2775 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2776 transport_get_sense_codes(cmd, &asc, &ascq);
2777 buffer[SPC_ASC_KEY_OFFSET] = asc;
2778 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2779 break;
2780 case TCM_MISCOMPARE_VERIFY:
2781 /* CURRENT ERROR */
2782 buffer[0] = 0x70;
2783 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2784 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2785 /* MISCOMPARE DURING VERIFY OPERATION */
2786 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2787 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2788 break;
2789 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2790 /* CURRENT ERROR */
2791 buffer[0] = 0x70;
2792 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2793 /* ILLEGAL REQUEST */
2794 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2795 /* LOGICAL BLOCK GUARD CHECK FAILED */
2796 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2797 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2798 transport_err_sector_info(buffer, cmd->bad_sector);
2799 break;
2800 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2801 /* CURRENT ERROR */
2802 buffer[0] = 0x70;
2803 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2804 /* ILLEGAL REQUEST */
2805 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2806 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2807 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2808 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2809 transport_err_sector_info(buffer, cmd->bad_sector);
2810 break;
2811 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2812 /* CURRENT ERROR */
2813 buffer[0] = 0x70;
2814 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2815 /* ILLEGAL REQUEST */
2816 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2817 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2818 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2819 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2820 transport_err_sector_info(buffer, cmd->bad_sector);
2821 break;
2822 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2823 default:
2824 /* CURRENT ERROR */
2825 buffer[0] = 0x70;
2826 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2827 /*
2828 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2829 * Solaris initiators. Returning NOT READY instead means the
2830 * operations will be retried a finite number of times and we
2831 * can survive intermittent errors.
2832 */
2833 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2834 /* LOGICAL UNIT COMMUNICATION FAILURE */
2835 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2836 break;
2837 }
2838 /*
2839 * This code uses linux/include/scsi/scsi.h SAM status codes!
2840 */
2841 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2842 /*
2843 * Automatically padded, this value is encoded in the fabric's
2844 * data_length response PDU containing the SCSI defined sense data.
2845 */
2846 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2847
2848 after_reason:
2849 trace_target_cmd_complete(cmd);
2850 return cmd->se_tfo->queue_status(cmd);
2851 }
2852 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2853
2854 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2855 {
2856 if (!(cmd->transport_state & CMD_T_ABORTED))
2857 return 0;
2858
2859 /*
2860 * If cmd has been aborted but either no status is to be sent or it has
2861 * already been sent, just return
2862 */
2863 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2864 return 1;
2865
2866 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2867 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2868
2869 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2870 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2871 trace_target_cmd_complete(cmd);
2872 cmd->se_tfo->queue_status(cmd);
2873
2874 return 1;
2875 }
2876 EXPORT_SYMBOL(transport_check_aborted_status);
2877
2878 void transport_send_task_abort(struct se_cmd *cmd)
2879 {
2880 unsigned long flags;
2881
2882 spin_lock_irqsave(&cmd->t_state_lock, flags);
2883 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2884 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2885 return;
2886 }
2887 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2888
2889 /*
2890 * If there are still expected incoming fabric WRITEs, we wait
2891 * until until they have completed before sending a TASK_ABORTED
2892 * response. This response with TASK_ABORTED status will be
2893 * queued back to fabric module by transport_check_aborted_status().
2894 */
2895 if (cmd->data_direction == DMA_TO_DEVICE) {
2896 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2897 cmd->transport_state |= CMD_T_ABORTED;
2898 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2899 smp_mb__after_atomic();
2900 return;
2901 }
2902 }
2903 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2904
2905 transport_lun_remove_cmd(cmd);
2906
2907 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2908 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2909 cmd->se_tfo->get_task_tag(cmd));
2910
2911 trace_target_cmd_complete(cmd);
2912 cmd->se_tfo->queue_status(cmd);
2913 }
2914
2915 static void target_tmr_work(struct work_struct *work)
2916 {
2917 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2918 struct se_device *dev = cmd->se_dev;
2919 struct se_tmr_req *tmr = cmd->se_tmr_req;
2920 int ret;
2921
2922 switch (tmr->function) {
2923 case TMR_ABORT_TASK:
2924 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2925 break;
2926 case TMR_ABORT_TASK_SET:
2927 case TMR_CLEAR_ACA:
2928 case TMR_CLEAR_TASK_SET:
2929 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2930 break;
2931 case TMR_LUN_RESET:
2932 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2933 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2934 TMR_FUNCTION_REJECTED;
2935 break;
2936 case TMR_TARGET_WARM_RESET:
2937 tmr->response = TMR_FUNCTION_REJECTED;
2938 break;
2939 case TMR_TARGET_COLD_RESET:
2940 tmr->response = TMR_FUNCTION_REJECTED;
2941 break;
2942 default:
2943 pr_err("Uknown TMR function: 0x%02x.\n",
2944 tmr->function);
2945 tmr->response = TMR_FUNCTION_REJECTED;
2946 break;
2947 }
2948
2949 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2950 cmd->se_tfo->queue_tm_rsp(cmd);
2951
2952 transport_cmd_check_stop_to_fabric(cmd);
2953 }
2954
2955 int transport_generic_handle_tmr(
2956 struct se_cmd *cmd)
2957 {
2958 unsigned long flags;
2959
2960 spin_lock_irqsave(&cmd->t_state_lock, flags);
2961 cmd->transport_state |= CMD_T_ACTIVE;
2962 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2963
2964 INIT_WORK(&cmd->work, target_tmr_work);
2965 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2966 return 0;
2967 }
2968 EXPORT_SYMBOL(transport_generic_handle_tmr);