]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/target/target_core_transport.c
Merge branches 'no-rebases', 'arch-avr32', 'arch-blackfin', 'arch-cris', 'arch-h8300...
[mirror_ubuntu-bionic-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static struct workqueue_struct *target_completion_wq;
59 static struct kmem_cache *se_sess_cache;
60 struct kmem_cache *se_ua_cache;
61 struct kmem_cache *t10_pr_reg_cache;
62 struct kmem_cache *t10_alua_lu_gp_cache;
63 struct kmem_cache *t10_alua_lu_gp_mem_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_cache;
65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
66
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev);
70 static int transport_generic_get_mem(struct se_cmd *cmd);
71 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool);
72 static void transport_put_cmd(struct se_cmd *cmd);
73 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
74 static void target_complete_ok_work(struct work_struct *work);
75
76 int init_se_kmem_caches(void)
77 {
78 se_sess_cache = kmem_cache_create("se_sess_cache",
79 sizeof(struct se_session), __alignof__(struct se_session),
80 0, NULL);
81 if (!se_sess_cache) {
82 pr_err("kmem_cache_create() for struct se_session"
83 " failed\n");
84 goto out;
85 }
86 se_ua_cache = kmem_cache_create("se_ua_cache",
87 sizeof(struct se_ua), __alignof__(struct se_ua),
88 0, NULL);
89 if (!se_ua_cache) {
90 pr_err("kmem_cache_create() for struct se_ua failed\n");
91 goto out_free_sess_cache;
92 }
93 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
94 sizeof(struct t10_pr_registration),
95 __alignof__(struct t10_pr_registration), 0, NULL);
96 if (!t10_pr_reg_cache) {
97 pr_err("kmem_cache_create() for struct t10_pr_registration"
98 " failed\n");
99 goto out_free_ua_cache;
100 }
101 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
102 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
103 0, NULL);
104 if (!t10_alua_lu_gp_cache) {
105 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
106 " failed\n");
107 goto out_free_pr_reg_cache;
108 }
109 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
110 sizeof(struct t10_alua_lu_gp_member),
111 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
112 if (!t10_alua_lu_gp_mem_cache) {
113 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
114 "cache failed\n");
115 goto out_free_lu_gp_cache;
116 }
117 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
118 sizeof(struct t10_alua_tg_pt_gp),
119 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
120 if (!t10_alua_tg_pt_gp_cache) {
121 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
122 "cache failed\n");
123 goto out_free_lu_gp_mem_cache;
124 }
125 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
126 "t10_alua_tg_pt_gp_mem_cache",
127 sizeof(struct t10_alua_tg_pt_gp_member),
128 __alignof__(struct t10_alua_tg_pt_gp_member),
129 0, NULL);
130 if (!t10_alua_tg_pt_gp_mem_cache) {
131 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
132 "mem_t failed\n");
133 goto out_free_tg_pt_gp_cache;
134 }
135
136 target_completion_wq = alloc_workqueue("target_completion",
137 WQ_MEM_RECLAIM, 0);
138 if (!target_completion_wq)
139 goto out_free_tg_pt_gp_mem_cache;
140
141 return 0;
142
143 out_free_tg_pt_gp_mem_cache:
144 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
145 out_free_tg_pt_gp_cache:
146 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
147 out_free_lu_gp_mem_cache:
148 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
149 out_free_lu_gp_cache:
150 kmem_cache_destroy(t10_alua_lu_gp_cache);
151 out_free_pr_reg_cache:
152 kmem_cache_destroy(t10_pr_reg_cache);
153 out_free_ua_cache:
154 kmem_cache_destroy(se_ua_cache);
155 out_free_sess_cache:
156 kmem_cache_destroy(se_sess_cache);
157 out:
158 return -ENOMEM;
159 }
160
161 void release_se_kmem_caches(void)
162 {
163 destroy_workqueue(target_completion_wq);
164 kmem_cache_destroy(se_sess_cache);
165 kmem_cache_destroy(se_ua_cache);
166 kmem_cache_destroy(t10_pr_reg_cache);
167 kmem_cache_destroy(t10_alua_lu_gp_cache);
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
170 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
171 }
172
173 /* This code ensures unique mib indexes are handed out. */
174 static DEFINE_SPINLOCK(scsi_mib_index_lock);
175 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
176
177 /*
178 * Allocate a new row index for the entry type specified
179 */
180 u32 scsi_get_new_index(scsi_index_t type)
181 {
182 u32 new_index;
183
184 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
185
186 spin_lock(&scsi_mib_index_lock);
187 new_index = ++scsi_mib_index[type];
188 spin_unlock(&scsi_mib_index_lock);
189
190 return new_index;
191 }
192
193 void transport_subsystem_check_init(void)
194 {
195 int ret;
196 static int sub_api_initialized;
197
198 if (sub_api_initialized)
199 return;
200
201 ret = request_module("target_core_iblock");
202 if (ret != 0)
203 pr_err("Unable to load target_core_iblock\n");
204
205 ret = request_module("target_core_file");
206 if (ret != 0)
207 pr_err("Unable to load target_core_file\n");
208
209 ret = request_module("target_core_pscsi");
210 if (ret != 0)
211 pr_err("Unable to load target_core_pscsi\n");
212
213 sub_api_initialized = 1;
214 }
215
216 struct se_session *transport_init_session(void)
217 {
218 struct se_session *se_sess;
219
220 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
221 if (!se_sess) {
222 pr_err("Unable to allocate struct se_session from"
223 " se_sess_cache\n");
224 return ERR_PTR(-ENOMEM);
225 }
226 INIT_LIST_HEAD(&se_sess->sess_list);
227 INIT_LIST_HEAD(&se_sess->sess_acl_list);
228 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
229 spin_lock_init(&se_sess->sess_cmd_lock);
230 kref_init(&se_sess->sess_kref);
231
232 return se_sess;
233 }
234 EXPORT_SYMBOL(transport_init_session);
235
236 /*
237 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
238 */
239 void __transport_register_session(
240 struct se_portal_group *se_tpg,
241 struct se_node_acl *se_nacl,
242 struct se_session *se_sess,
243 void *fabric_sess_ptr)
244 {
245 unsigned char buf[PR_REG_ISID_LEN];
246
247 se_sess->se_tpg = se_tpg;
248 se_sess->fabric_sess_ptr = fabric_sess_ptr;
249 /*
250 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
251 *
252 * Only set for struct se_session's that will actually be moving I/O.
253 * eg: *NOT* discovery sessions.
254 */
255 if (se_nacl) {
256 /*
257 * If the fabric module supports an ISID based TransportID,
258 * save this value in binary from the fabric I_T Nexus now.
259 */
260 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
261 memset(&buf[0], 0, PR_REG_ISID_LEN);
262 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
263 &buf[0], PR_REG_ISID_LEN);
264 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
265 }
266 kref_get(&se_nacl->acl_kref);
267
268 spin_lock_irq(&se_nacl->nacl_sess_lock);
269 /*
270 * The se_nacl->nacl_sess pointer will be set to the
271 * last active I_T Nexus for each struct se_node_acl.
272 */
273 se_nacl->nacl_sess = se_sess;
274
275 list_add_tail(&se_sess->sess_acl_list,
276 &se_nacl->acl_sess_list);
277 spin_unlock_irq(&se_nacl->nacl_sess_lock);
278 }
279 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
280
281 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
282 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
283 }
284 EXPORT_SYMBOL(__transport_register_session);
285
286 void transport_register_session(
287 struct se_portal_group *se_tpg,
288 struct se_node_acl *se_nacl,
289 struct se_session *se_sess,
290 void *fabric_sess_ptr)
291 {
292 unsigned long flags;
293
294 spin_lock_irqsave(&se_tpg->session_lock, flags);
295 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
296 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
297 }
298 EXPORT_SYMBOL(transport_register_session);
299
300 void target_release_session(struct kref *kref)
301 {
302 struct se_session *se_sess = container_of(kref,
303 struct se_session, sess_kref);
304 struct se_portal_group *se_tpg = se_sess->se_tpg;
305
306 se_tpg->se_tpg_tfo->close_session(se_sess);
307 }
308
309 void target_get_session(struct se_session *se_sess)
310 {
311 kref_get(&se_sess->sess_kref);
312 }
313 EXPORT_SYMBOL(target_get_session);
314
315 void target_put_session(struct se_session *se_sess)
316 {
317 struct se_portal_group *tpg = se_sess->se_tpg;
318
319 if (tpg->se_tpg_tfo->put_session != NULL) {
320 tpg->se_tpg_tfo->put_session(se_sess);
321 return;
322 }
323 kref_put(&se_sess->sess_kref, target_release_session);
324 }
325 EXPORT_SYMBOL(target_put_session);
326
327 static void target_complete_nacl(struct kref *kref)
328 {
329 struct se_node_acl *nacl = container_of(kref,
330 struct se_node_acl, acl_kref);
331
332 complete(&nacl->acl_free_comp);
333 }
334
335 void target_put_nacl(struct se_node_acl *nacl)
336 {
337 kref_put(&nacl->acl_kref, target_complete_nacl);
338 }
339
340 void transport_deregister_session_configfs(struct se_session *se_sess)
341 {
342 struct se_node_acl *se_nacl;
343 unsigned long flags;
344 /*
345 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
346 */
347 se_nacl = se_sess->se_node_acl;
348 if (se_nacl) {
349 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
350 if (se_nacl->acl_stop == 0)
351 list_del(&se_sess->sess_acl_list);
352 /*
353 * If the session list is empty, then clear the pointer.
354 * Otherwise, set the struct se_session pointer from the tail
355 * element of the per struct se_node_acl active session list.
356 */
357 if (list_empty(&se_nacl->acl_sess_list))
358 se_nacl->nacl_sess = NULL;
359 else {
360 se_nacl->nacl_sess = container_of(
361 se_nacl->acl_sess_list.prev,
362 struct se_session, sess_acl_list);
363 }
364 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
365 }
366 }
367 EXPORT_SYMBOL(transport_deregister_session_configfs);
368
369 void transport_free_session(struct se_session *se_sess)
370 {
371 kmem_cache_free(se_sess_cache, se_sess);
372 }
373 EXPORT_SYMBOL(transport_free_session);
374
375 void transport_deregister_session(struct se_session *se_sess)
376 {
377 struct se_portal_group *se_tpg = se_sess->se_tpg;
378 struct target_core_fabric_ops *se_tfo;
379 struct se_node_acl *se_nacl;
380 unsigned long flags;
381 bool comp_nacl = true;
382
383 if (!se_tpg) {
384 transport_free_session(se_sess);
385 return;
386 }
387 se_tfo = se_tpg->se_tpg_tfo;
388
389 spin_lock_irqsave(&se_tpg->session_lock, flags);
390 list_del(&se_sess->sess_list);
391 se_sess->se_tpg = NULL;
392 se_sess->fabric_sess_ptr = NULL;
393 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
394
395 /*
396 * Determine if we need to do extra work for this initiator node's
397 * struct se_node_acl if it had been previously dynamically generated.
398 */
399 se_nacl = se_sess->se_node_acl;
400
401 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
402 if (se_nacl && se_nacl->dynamic_node_acl) {
403 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
404 list_del(&se_nacl->acl_list);
405 se_tpg->num_node_acls--;
406 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
407 core_tpg_wait_for_nacl_pr_ref(se_nacl);
408 core_free_device_list_for_node(se_nacl, se_tpg);
409 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
410
411 comp_nacl = false;
412 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
413 }
414 }
415 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
416
417 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
418 se_tpg->se_tpg_tfo->get_fabric_name());
419 /*
420 * If last kref is dropping now for an explict NodeACL, awake sleeping
421 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
422 * removal context.
423 */
424 if (se_nacl && comp_nacl == true)
425 target_put_nacl(se_nacl);
426
427 transport_free_session(se_sess);
428 }
429 EXPORT_SYMBOL(transport_deregister_session);
430
431 /*
432 * Called with cmd->t_state_lock held.
433 */
434 static void target_remove_from_state_list(struct se_cmd *cmd)
435 {
436 struct se_device *dev = cmd->se_dev;
437 unsigned long flags;
438
439 if (!dev)
440 return;
441
442 if (cmd->transport_state & CMD_T_BUSY)
443 return;
444
445 spin_lock_irqsave(&dev->execute_task_lock, flags);
446 if (cmd->state_active) {
447 list_del(&cmd->state_list);
448 cmd->state_active = false;
449 }
450 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
451 }
452
453 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
454 {
455 unsigned long flags;
456
457 spin_lock_irqsave(&cmd->t_state_lock, flags);
458 /*
459 * Determine if IOCTL context caller in requesting the stopping of this
460 * command for LUN shutdown purposes.
461 */
462 if (cmd->transport_state & CMD_T_LUN_STOP) {
463 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
464 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
465
466 cmd->transport_state &= ~CMD_T_ACTIVE;
467 if (remove_from_lists)
468 target_remove_from_state_list(cmd);
469 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
470
471 complete(&cmd->transport_lun_stop_comp);
472 return 1;
473 }
474
475 if (remove_from_lists) {
476 target_remove_from_state_list(cmd);
477
478 /*
479 * Clear struct se_cmd->se_lun before the handoff to FE.
480 */
481 cmd->se_lun = NULL;
482 }
483
484 /*
485 * Determine if frontend context caller is requesting the stopping of
486 * this command for frontend exceptions.
487 */
488 if (cmd->transport_state & CMD_T_STOP) {
489 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
490 __func__, __LINE__,
491 cmd->se_tfo->get_task_tag(cmd));
492
493 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
494
495 complete(&cmd->t_transport_stop_comp);
496 return 1;
497 }
498
499 cmd->transport_state &= ~CMD_T_ACTIVE;
500 if (remove_from_lists) {
501 /*
502 * Some fabric modules like tcm_loop can release
503 * their internally allocated I/O reference now and
504 * struct se_cmd now.
505 *
506 * Fabric modules are expected to return '1' here if the
507 * se_cmd being passed is released at this point,
508 * or zero if not being released.
509 */
510 if (cmd->se_tfo->check_stop_free != NULL) {
511 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
512 return cmd->se_tfo->check_stop_free(cmd);
513 }
514 }
515
516 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
517 return 0;
518 }
519
520 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
521 {
522 return transport_cmd_check_stop(cmd, true);
523 }
524
525 static void transport_lun_remove_cmd(struct se_cmd *cmd)
526 {
527 struct se_lun *lun = cmd->se_lun;
528 unsigned long flags;
529
530 if (!lun)
531 return;
532
533 spin_lock_irqsave(&cmd->t_state_lock, flags);
534 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
535 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
536 target_remove_from_state_list(cmd);
537 }
538 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
539
540 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
541 if (!list_empty(&cmd->se_lun_node))
542 list_del_init(&cmd->se_lun_node);
543 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
544 }
545
546 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
547 {
548 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
549 transport_lun_remove_cmd(cmd);
550
551 if (transport_cmd_check_stop_to_fabric(cmd))
552 return;
553 if (remove)
554 transport_put_cmd(cmd);
555 }
556
557 static void target_complete_failure_work(struct work_struct *work)
558 {
559 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
560
561 transport_generic_request_failure(cmd);
562 }
563
564 /*
565 * Used when asking transport to copy Sense Data from the underlying
566 * Linux/SCSI struct scsi_cmnd
567 */
568 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
569 {
570 struct se_device *dev = cmd->se_dev;
571
572 WARN_ON(!cmd->se_lun);
573
574 if (!dev)
575 return NULL;
576
577 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
578 return NULL;
579
580 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
581
582 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
583 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
584 return cmd->sense_buffer;
585 }
586
587 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
588 {
589 struct se_device *dev = cmd->se_dev;
590 int success = scsi_status == GOOD;
591 unsigned long flags;
592
593 cmd->scsi_status = scsi_status;
594
595
596 spin_lock_irqsave(&cmd->t_state_lock, flags);
597 cmd->transport_state &= ~CMD_T_BUSY;
598
599 if (dev && dev->transport->transport_complete) {
600 dev->transport->transport_complete(cmd,
601 cmd->t_data_sg,
602 transport_get_sense_buffer(cmd));
603 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
604 success = 1;
605 }
606
607 /*
608 * See if we are waiting to complete for an exception condition.
609 */
610 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
611 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
612 complete(&cmd->task_stop_comp);
613 return;
614 }
615
616 if (!success)
617 cmd->transport_state |= CMD_T_FAILED;
618
619 /*
620 * Check for case where an explict ABORT_TASK has been received
621 * and transport_wait_for_tasks() will be waiting for completion..
622 */
623 if (cmd->transport_state & CMD_T_ABORTED &&
624 cmd->transport_state & CMD_T_STOP) {
625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626 complete(&cmd->t_transport_stop_comp);
627 return;
628 } else if (cmd->transport_state & CMD_T_FAILED) {
629 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
630 INIT_WORK(&cmd->work, target_complete_failure_work);
631 } else {
632 INIT_WORK(&cmd->work, target_complete_ok_work);
633 }
634
635 cmd->t_state = TRANSPORT_COMPLETE;
636 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
637 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
638
639 queue_work(target_completion_wq, &cmd->work);
640 }
641 EXPORT_SYMBOL(target_complete_cmd);
642
643 static void target_add_to_state_list(struct se_cmd *cmd)
644 {
645 struct se_device *dev = cmd->se_dev;
646 unsigned long flags;
647
648 spin_lock_irqsave(&dev->execute_task_lock, flags);
649 if (!cmd->state_active) {
650 list_add_tail(&cmd->state_list, &dev->state_list);
651 cmd->state_active = true;
652 }
653 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
654 }
655
656 /*
657 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
658 */
659 static void transport_write_pending_qf(struct se_cmd *cmd);
660 static void transport_complete_qf(struct se_cmd *cmd);
661
662 static void target_qf_do_work(struct work_struct *work)
663 {
664 struct se_device *dev = container_of(work, struct se_device,
665 qf_work_queue);
666 LIST_HEAD(qf_cmd_list);
667 struct se_cmd *cmd, *cmd_tmp;
668
669 spin_lock_irq(&dev->qf_cmd_lock);
670 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
671 spin_unlock_irq(&dev->qf_cmd_lock);
672
673 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
674 list_del(&cmd->se_qf_node);
675 atomic_dec(&dev->dev_qf_count);
676 smp_mb__after_atomic_dec();
677
678 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
679 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
680 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
681 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
682 : "UNKNOWN");
683
684 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
685 transport_write_pending_qf(cmd);
686 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
687 transport_complete_qf(cmd);
688 }
689 }
690
691 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
692 {
693 switch (cmd->data_direction) {
694 case DMA_NONE:
695 return "NONE";
696 case DMA_FROM_DEVICE:
697 return "READ";
698 case DMA_TO_DEVICE:
699 return "WRITE";
700 case DMA_BIDIRECTIONAL:
701 return "BIDI";
702 default:
703 break;
704 }
705
706 return "UNKNOWN";
707 }
708
709 void transport_dump_dev_state(
710 struct se_device *dev,
711 char *b,
712 int *bl)
713 {
714 *bl += sprintf(b + *bl, "Status: ");
715 switch (dev->dev_status) {
716 case TRANSPORT_DEVICE_ACTIVATED:
717 *bl += sprintf(b + *bl, "ACTIVATED");
718 break;
719 case TRANSPORT_DEVICE_DEACTIVATED:
720 *bl += sprintf(b + *bl, "DEACTIVATED");
721 break;
722 case TRANSPORT_DEVICE_SHUTDOWN:
723 *bl += sprintf(b + *bl, "SHUTDOWN");
724 break;
725 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
726 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
727 *bl += sprintf(b + *bl, "OFFLINE");
728 break;
729 default:
730 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
731 break;
732 }
733
734 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
735 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
736 dev->se_sub_dev->se_dev_attrib.block_size,
737 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
738 *bl += sprintf(b + *bl, " ");
739 }
740
741 void transport_dump_vpd_proto_id(
742 struct t10_vpd *vpd,
743 unsigned char *p_buf,
744 int p_buf_len)
745 {
746 unsigned char buf[VPD_TMP_BUF_SIZE];
747 int len;
748
749 memset(buf, 0, VPD_TMP_BUF_SIZE);
750 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
751
752 switch (vpd->protocol_identifier) {
753 case 0x00:
754 sprintf(buf+len, "Fibre Channel\n");
755 break;
756 case 0x10:
757 sprintf(buf+len, "Parallel SCSI\n");
758 break;
759 case 0x20:
760 sprintf(buf+len, "SSA\n");
761 break;
762 case 0x30:
763 sprintf(buf+len, "IEEE 1394\n");
764 break;
765 case 0x40:
766 sprintf(buf+len, "SCSI Remote Direct Memory Access"
767 " Protocol\n");
768 break;
769 case 0x50:
770 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
771 break;
772 case 0x60:
773 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
774 break;
775 case 0x70:
776 sprintf(buf+len, "Automation/Drive Interface Transport"
777 " Protocol\n");
778 break;
779 case 0x80:
780 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
781 break;
782 default:
783 sprintf(buf+len, "Unknown 0x%02x\n",
784 vpd->protocol_identifier);
785 break;
786 }
787
788 if (p_buf)
789 strncpy(p_buf, buf, p_buf_len);
790 else
791 pr_debug("%s", buf);
792 }
793
794 void
795 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
796 {
797 /*
798 * Check if the Protocol Identifier Valid (PIV) bit is set..
799 *
800 * from spc3r23.pdf section 7.5.1
801 */
802 if (page_83[1] & 0x80) {
803 vpd->protocol_identifier = (page_83[0] & 0xf0);
804 vpd->protocol_identifier_set = 1;
805 transport_dump_vpd_proto_id(vpd, NULL, 0);
806 }
807 }
808 EXPORT_SYMBOL(transport_set_vpd_proto_id);
809
810 int transport_dump_vpd_assoc(
811 struct t10_vpd *vpd,
812 unsigned char *p_buf,
813 int p_buf_len)
814 {
815 unsigned char buf[VPD_TMP_BUF_SIZE];
816 int ret = 0;
817 int len;
818
819 memset(buf, 0, VPD_TMP_BUF_SIZE);
820 len = sprintf(buf, "T10 VPD Identifier Association: ");
821
822 switch (vpd->association) {
823 case 0x00:
824 sprintf(buf+len, "addressed logical unit\n");
825 break;
826 case 0x10:
827 sprintf(buf+len, "target port\n");
828 break;
829 case 0x20:
830 sprintf(buf+len, "SCSI target device\n");
831 break;
832 default:
833 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
834 ret = -EINVAL;
835 break;
836 }
837
838 if (p_buf)
839 strncpy(p_buf, buf, p_buf_len);
840 else
841 pr_debug("%s", buf);
842
843 return ret;
844 }
845
846 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
847 {
848 /*
849 * The VPD identification association..
850 *
851 * from spc3r23.pdf Section 7.6.3.1 Table 297
852 */
853 vpd->association = (page_83[1] & 0x30);
854 return transport_dump_vpd_assoc(vpd, NULL, 0);
855 }
856 EXPORT_SYMBOL(transport_set_vpd_assoc);
857
858 int transport_dump_vpd_ident_type(
859 struct t10_vpd *vpd,
860 unsigned char *p_buf,
861 int p_buf_len)
862 {
863 unsigned char buf[VPD_TMP_BUF_SIZE];
864 int ret = 0;
865 int len;
866
867 memset(buf, 0, VPD_TMP_BUF_SIZE);
868 len = sprintf(buf, "T10 VPD Identifier Type: ");
869
870 switch (vpd->device_identifier_type) {
871 case 0x00:
872 sprintf(buf+len, "Vendor specific\n");
873 break;
874 case 0x01:
875 sprintf(buf+len, "T10 Vendor ID based\n");
876 break;
877 case 0x02:
878 sprintf(buf+len, "EUI-64 based\n");
879 break;
880 case 0x03:
881 sprintf(buf+len, "NAA\n");
882 break;
883 case 0x04:
884 sprintf(buf+len, "Relative target port identifier\n");
885 break;
886 case 0x08:
887 sprintf(buf+len, "SCSI name string\n");
888 break;
889 default:
890 sprintf(buf+len, "Unsupported: 0x%02x\n",
891 vpd->device_identifier_type);
892 ret = -EINVAL;
893 break;
894 }
895
896 if (p_buf) {
897 if (p_buf_len < strlen(buf)+1)
898 return -EINVAL;
899 strncpy(p_buf, buf, p_buf_len);
900 } else {
901 pr_debug("%s", buf);
902 }
903
904 return ret;
905 }
906
907 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
908 {
909 /*
910 * The VPD identifier type..
911 *
912 * from spc3r23.pdf Section 7.6.3.1 Table 298
913 */
914 vpd->device_identifier_type = (page_83[1] & 0x0f);
915 return transport_dump_vpd_ident_type(vpd, NULL, 0);
916 }
917 EXPORT_SYMBOL(transport_set_vpd_ident_type);
918
919 int transport_dump_vpd_ident(
920 struct t10_vpd *vpd,
921 unsigned char *p_buf,
922 int p_buf_len)
923 {
924 unsigned char buf[VPD_TMP_BUF_SIZE];
925 int ret = 0;
926
927 memset(buf, 0, VPD_TMP_BUF_SIZE);
928
929 switch (vpd->device_identifier_code_set) {
930 case 0x01: /* Binary */
931 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
932 &vpd->device_identifier[0]);
933 break;
934 case 0x02: /* ASCII */
935 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
936 &vpd->device_identifier[0]);
937 break;
938 case 0x03: /* UTF-8 */
939 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
940 &vpd->device_identifier[0]);
941 break;
942 default:
943 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
944 " 0x%02x", vpd->device_identifier_code_set);
945 ret = -EINVAL;
946 break;
947 }
948
949 if (p_buf)
950 strncpy(p_buf, buf, p_buf_len);
951 else
952 pr_debug("%s", buf);
953
954 return ret;
955 }
956
957 int
958 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
959 {
960 static const char hex_str[] = "0123456789abcdef";
961 int j = 0, i = 4; /* offset to start of the identifier */
962
963 /*
964 * The VPD Code Set (encoding)
965 *
966 * from spc3r23.pdf Section 7.6.3.1 Table 296
967 */
968 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
969 switch (vpd->device_identifier_code_set) {
970 case 0x01: /* Binary */
971 vpd->device_identifier[j++] =
972 hex_str[vpd->device_identifier_type];
973 while (i < (4 + page_83[3])) {
974 vpd->device_identifier[j++] =
975 hex_str[(page_83[i] & 0xf0) >> 4];
976 vpd->device_identifier[j++] =
977 hex_str[page_83[i] & 0x0f];
978 i++;
979 }
980 break;
981 case 0x02: /* ASCII */
982 case 0x03: /* UTF-8 */
983 while (i < (4 + page_83[3]))
984 vpd->device_identifier[j++] = page_83[i++];
985 break;
986 default:
987 break;
988 }
989
990 return transport_dump_vpd_ident(vpd, NULL, 0);
991 }
992 EXPORT_SYMBOL(transport_set_vpd_ident);
993
994 static void core_setup_task_attr_emulation(struct se_device *dev)
995 {
996 /*
997 * If this device is from Target_Core_Mod/pSCSI, disable the
998 * SAM Task Attribute emulation.
999 *
1000 * This is currently not available in upsream Linux/SCSI Target
1001 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1002 */
1003 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1004 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1005 return;
1006 }
1007
1008 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1009 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1010 " device\n", dev->transport->name,
1011 dev->transport->get_device_rev(dev));
1012 }
1013
1014 static void scsi_dump_inquiry(struct se_device *dev)
1015 {
1016 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1017 char buf[17];
1018 int i, device_type;
1019 /*
1020 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1021 */
1022 for (i = 0; i < 8; i++)
1023 if (wwn->vendor[i] >= 0x20)
1024 buf[i] = wwn->vendor[i];
1025 else
1026 buf[i] = ' ';
1027 buf[i] = '\0';
1028 pr_debug(" Vendor: %s\n", buf);
1029
1030 for (i = 0; i < 16; i++)
1031 if (wwn->model[i] >= 0x20)
1032 buf[i] = wwn->model[i];
1033 else
1034 buf[i] = ' ';
1035 buf[i] = '\0';
1036 pr_debug(" Model: %s\n", buf);
1037
1038 for (i = 0; i < 4; i++)
1039 if (wwn->revision[i] >= 0x20)
1040 buf[i] = wwn->revision[i];
1041 else
1042 buf[i] = ' ';
1043 buf[i] = '\0';
1044 pr_debug(" Revision: %s\n", buf);
1045
1046 device_type = dev->transport->get_device_type(dev);
1047 pr_debug(" Type: %s ", scsi_device_type(device_type));
1048 pr_debug(" ANSI SCSI revision: %02x\n",
1049 dev->transport->get_device_rev(dev));
1050 }
1051
1052 struct se_device *transport_add_device_to_core_hba(
1053 struct se_hba *hba,
1054 struct se_subsystem_api *transport,
1055 struct se_subsystem_dev *se_dev,
1056 u32 device_flags,
1057 void *transport_dev,
1058 struct se_dev_limits *dev_limits,
1059 const char *inquiry_prod,
1060 const char *inquiry_rev)
1061 {
1062 int force_pt;
1063 struct se_device *dev;
1064
1065 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1066 if (!dev) {
1067 pr_err("Unable to allocate memory for se_dev_t\n");
1068 return NULL;
1069 }
1070
1071 dev->dev_flags = device_flags;
1072 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1073 dev->dev_ptr = transport_dev;
1074 dev->se_hba = hba;
1075 dev->se_sub_dev = se_dev;
1076 dev->transport = transport;
1077 INIT_LIST_HEAD(&dev->dev_list);
1078 INIT_LIST_HEAD(&dev->dev_sep_list);
1079 INIT_LIST_HEAD(&dev->dev_tmr_list);
1080 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1081 INIT_LIST_HEAD(&dev->state_list);
1082 INIT_LIST_HEAD(&dev->qf_cmd_list);
1083 spin_lock_init(&dev->execute_task_lock);
1084 spin_lock_init(&dev->delayed_cmd_lock);
1085 spin_lock_init(&dev->dev_reservation_lock);
1086 spin_lock_init(&dev->dev_status_lock);
1087 spin_lock_init(&dev->se_port_lock);
1088 spin_lock_init(&dev->se_tmr_lock);
1089 spin_lock_init(&dev->qf_cmd_lock);
1090 atomic_set(&dev->dev_ordered_id, 0);
1091
1092 se_dev_set_default_attribs(dev, dev_limits);
1093
1094 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1095 dev->creation_time = get_jiffies_64();
1096 spin_lock_init(&dev->stats_lock);
1097
1098 spin_lock(&hba->device_lock);
1099 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1100 hba->dev_count++;
1101 spin_unlock(&hba->device_lock);
1102 /*
1103 * Setup the SAM Task Attribute emulation for struct se_device
1104 */
1105 core_setup_task_attr_emulation(dev);
1106 /*
1107 * Force PR and ALUA passthrough emulation with internal object use.
1108 */
1109 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1110 /*
1111 * Setup the Reservations infrastructure for struct se_device
1112 */
1113 core_setup_reservations(dev, force_pt);
1114 /*
1115 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1116 */
1117 if (core_setup_alua(dev, force_pt) < 0)
1118 goto err_dev_list;
1119
1120 /*
1121 * Startup the struct se_device processing thread
1122 */
1123 dev->tmr_wq = alloc_workqueue("tmr-%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 1,
1124 dev->transport->name);
1125 if (!dev->tmr_wq) {
1126 pr_err("Unable to create tmr workqueue for %s\n",
1127 dev->transport->name);
1128 goto err_dev_list;
1129 }
1130 /*
1131 * Setup work_queue for QUEUE_FULL
1132 */
1133 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1134 /*
1135 * Preload the initial INQUIRY const values if we are doing
1136 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1137 * passthrough because this is being provided by the backend LLD.
1138 * This is required so that transport_get_inquiry() copies these
1139 * originals once back into DEV_T10_WWN(dev) for the virtual device
1140 * setup.
1141 */
1142 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1143 if (!inquiry_prod || !inquiry_rev) {
1144 pr_err("All non TCM/pSCSI plugins require"
1145 " INQUIRY consts\n");
1146 goto err_wq;
1147 }
1148
1149 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1150 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1151 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1152 }
1153 scsi_dump_inquiry(dev);
1154
1155 return dev;
1156
1157 err_wq:
1158 destroy_workqueue(dev->tmr_wq);
1159 err_dev_list:
1160 spin_lock(&hba->device_lock);
1161 list_del(&dev->dev_list);
1162 hba->dev_count--;
1163 spin_unlock(&hba->device_lock);
1164
1165 se_release_vpd_for_dev(dev);
1166
1167 kfree(dev);
1168
1169 return NULL;
1170 }
1171 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1172
1173 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1174 {
1175 struct se_device *dev = cmd->se_dev;
1176
1177 if (cmd->unknown_data_length) {
1178 cmd->data_length = size;
1179 } else if (size != cmd->data_length) {
1180 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1181 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1182 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1183 cmd->data_length, size, cmd->t_task_cdb[0]);
1184
1185 if (cmd->data_direction == DMA_TO_DEVICE) {
1186 pr_err("Rejecting underflow/overflow"
1187 " WRITE data\n");
1188 goto out_invalid_cdb_field;
1189 }
1190 /*
1191 * Reject READ_* or WRITE_* with overflow/underflow for
1192 * type SCF_SCSI_DATA_CDB.
1193 */
1194 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) {
1195 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1196 " CDB on non 512-byte sector setup subsystem"
1197 " plugin: %s\n", dev->transport->name);
1198 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1199 goto out_invalid_cdb_field;
1200 }
1201 /*
1202 * For the overflow case keep the existing fabric provided
1203 * ->data_length. Otherwise for the underflow case, reset
1204 * ->data_length to the smaller SCSI expected data transfer
1205 * length.
1206 */
1207 if (size > cmd->data_length) {
1208 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1209 cmd->residual_count = (size - cmd->data_length);
1210 } else {
1211 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1212 cmd->residual_count = (cmd->data_length - size);
1213 cmd->data_length = size;
1214 }
1215 }
1216
1217 return 0;
1218
1219 out_invalid_cdb_field:
1220 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1221 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1222 return -EINVAL;
1223 }
1224
1225 /*
1226 * Used by fabric modules containing a local struct se_cmd within their
1227 * fabric dependent per I/O descriptor.
1228 */
1229 void transport_init_se_cmd(
1230 struct se_cmd *cmd,
1231 struct target_core_fabric_ops *tfo,
1232 struct se_session *se_sess,
1233 u32 data_length,
1234 int data_direction,
1235 int task_attr,
1236 unsigned char *sense_buffer)
1237 {
1238 INIT_LIST_HEAD(&cmd->se_lun_node);
1239 INIT_LIST_HEAD(&cmd->se_delayed_node);
1240 INIT_LIST_HEAD(&cmd->se_qf_node);
1241 INIT_LIST_HEAD(&cmd->se_cmd_list);
1242 INIT_LIST_HEAD(&cmd->state_list);
1243 init_completion(&cmd->transport_lun_fe_stop_comp);
1244 init_completion(&cmd->transport_lun_stop_comp);
1245 init_completion(&cmd->t_transport_stop_comp);
1246 init_completion(&cmd->cmd_wait_comp);
1247 init_completion(&cmd->task_stop_comp);
1248 spin_lock_init(&cmd->t_state_lock);
1249 cmd->transport_state = CMD_T_DEV_ACTIVE;
1250
1251 cmd->se_tfo = tfo;
1252 cmd->se_sess = se_sess;
1253 cmd->data_length = data_length;
1254 cmd->data_direction = data_direction;
1255 cmd->sam_task_attr = task_attr;
1256 cmd->sense_buffer = sense_buffer;
1257
1258 cmd->state_active = false;
1259 }
1260 EXPORT_SYMBOL(transport_init_se_cmd);
1261
1262 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1263 {
1264 /*
1265 * Check if SAM Task Attribute emulation is enabled for this
1266 * struct se_device storage object
1267 */
1268 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1269 return 0;
1270
1271 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1272 pr_debug("SAM Task Attribute ACA"
1273 " emulation is not supported\n");
1274 return -EINVAL;
1275 }
1276 /*
1277 * Used to determine when ORDERED commands should go from
1278 * Dormant to Active status.
1279 */
1280 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1281 smp_mb__after_atomic_inc();
1282 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1283 cmd->se_ordered_id, cmd->sam_task_attr,
1284 cmd->se_dev->transport->name);
1285 return 0;
1286 }
1287
1288 /* target_setup_cmd_from_cdb():
1289 *
1290 * Called from fabric RX Thread.
1291 */
1292 int target_setup_cmd_from_cdb(
1293 struct se_cmd *cmd,
1294 unsigned char *cdb)
1295 {
1296 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev;
1297 u32 pr_reg_type = 0;
1298 u8 alua_ascq = 0;
1299 unsigned long flags;
1300 int ret;
1301
1302 /*
1303 * Ensure that the received CDB is less than the max (252 + 8) bytes
1304 * for VARIABLE_LENGTH_CMD
1305 */
1306 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1307 pr_err("Received SCSI CDB with command_size: %d that"
1308 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1309 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1310 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1311 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1312 return -EINVAL;
1313 }
1314 /*
1315 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1316 * allocate the additional extended CDB buffer now.. Otherwise
1317 * setup the pointer from __t_task_cdb to t_task_cdb.
1318 */
1319 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1320 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1321 GFP_KERNEL);
1322 if (!cmd->t_task_cdb) {
1323 pr_err("Unable to allocate cmd->t_task_cdb"
1324 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1325 scsi_command_size(cdb),
1326 (unsigned long)sizeof(cmd->__t_task_cdb));
1327 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1328 cmd->scsi_sense_reason =
1329 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1330 return -ENOMEM;
1331 }
1332 } else
1333 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1334 /*
1335 * Copy the original CDB into cmd->
1336 */
1337 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1338
1339 /*
1340 * Check for an existing UNIT ATTENTION condition
1341 */
1342 if (core_scsi3_ua_check(cmd, cdb) < 0) {
1343 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1344 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
1345 return -EINVAL;
1346 }
1347
1348 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
1349 if (ret != 0) {
1350 /*
1351 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
1352 * The ALUA additional sense code qualifier (ASCQ) is determined
1353 * by the ALUA primary or secondary access state..
1354 */
1355 if (ret > 0) {
1356 pr_debug("[%s]: ALUA TG Port not available, "
1357 "SenseKey: NOT_READY, ASC/ASCQ: "
1358 "0x04/0x%02x\n",
1359 cmd->se_tfo->get_fabric_name(), alua_ascq);
1360
1361 transport_set_sense_codes(cmd, 0x04, alua_ascq);
1362 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1363 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
1364 return -EINVAL;
1365 }
1366 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1367 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1368 return -EINVAL;
1369 }
1370
1371 /*
1372 * Check status for SPC-3 Persistent Reservations
1373 */
1374 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) {
1375 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
1376 cmd, cdb, pr_reg_type) != 0) {
1377 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1378 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
1379 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1380 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
1381 return -EBUSY;
1382 }
1383 /*
1384 * This means the CDB is allowed for the SCSI Initiator port
1385 * when said port is *NOT* holding the legacy SPC-2 or
1386 * SPC-3 Persistent Reservation.
1387 */
1388 }
1389
1390 ret = cmd->se_dev->transport->parse_cdb(cmd);
1391 if (ret < 0)
1392 return ret;
1393
1394 spin_lock_irqsave(&cmd->t_state_lock, flags);
1395 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1396 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1397
1398 /*
1399 * Check for SAM Task Attribute Emulation
1400 */
1401 if (transport_check_alloc_task_attr(cmd) < 0) {
1402 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1403 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1404 return -EINVAL;
1405 }
1406 spin_lock(&cmd->se_lun->lun_sep_lock);
1407 if (cmd->se_lun->lun_sep)
1408 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1409 spin_unlock(&cmd->se_lun->lun_sep_lock);
1410 return 0;
1411 }
1412 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1413
1414 /*
1415 * Used by fabric module frontends to queue tasks directly.
1416 * Many only be used from process context only
1417 */
1418 int transport_handle_cdb_direct(
1419 struct se_cmd *cmd)
1420 {
1421 int ret;
1422
1423 if (!cmd->se_lun) {
1424 dump_stack();
1425 pr_err("cmd->se_lun is NULL\n");
1426 return -EINVAL;
1427 }
1428 if (in_interrupt()) {
1429 dump_stack();
1430 pr_err("transport_generic_handle_cdb cannot be called"
1431 " from interrupt context\n");
1432 return -EINVAL;
1433 }
1434 /*
1435 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1436 * outstanding descriptors are handled correctly during shutdown via
1437 * transport_wait_for_tasks()
1438 *
1439 * Also, we don't take cmd->t_state_lock here as we only expect
1440 * this to be called for initial descriptor submission.
1441 */
1442 cmd->t_state = TRANSPORT_NEW_CMD;
1443 cmd->transport_state |= CMD_T_ACTIVE;
1444
1445 /*
1446 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1447 * so follow TRANSPORT_NEW_CMD processing thread context usage
1448 * and call transport_generic_request_failure() if necessary..
1449 */
1450 ret = transport_generic_new_cmd(cmd);
1451 if (ret < 0)
1452 transport_generic_request_failure(cmd);
1453
1454 return 0;
1455 }
1456 EXPORT_SYMBOL(transport_handle_cdb_direct);
1457
1458 /*
1459 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1460 * se_cmd + use pre-allocated SGL memory.
1461 *
1462 * @se_cmd: command descriptor to submit
1463 * @se_sess: associated se_sess for endpoint
1464 * @cdb: pointer to SCSI CDB
1465 * @sense: pointer to SCSI sense buffer
1466 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1467 * @data_length: fabric expected data transfer length
1468 * @task_addr: SAM task attribute
1469 * @data_dir: DMA data direction
1470 * @flags: flags for command submission from target_sc_flags_tables
1471 * @sgl: struct scatterlist memory for unidirectional mapping
1472 * @sgl_count: scatterlist count for unidirectional mapping
1473 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1474 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1475 *
1476 * Returns non zero to signal active I/O shutdown failure. All other
1477 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1478 * but still return zero here.
1479 *
1480 * This may only be called from process context, and also currently
1481 * assumes internal allocation of fabric payload buffer by target-core.
1482 */
1483 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1484 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1485 u32 data_length, int task_attr, int data_dir, int flags,
1486 struct scatterlist *sgl, u32 sgl_count,
1487 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1488 {
1489 struct se_portal_group *se_tpg;
1490 int rc;
1491
1492 se_tpg = se_sess->se_tpg;
1493 BUG_ON(!se_tpg);
1494 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1495 BUG_ON(in_interrupt());
1496 /*
1497 * Initialize se_cmd for target operation. From this point
1498 * exceptions are handled by sending exception status via
1499 * target_core_fabric_ops->queue_status() callback
1500 */
1501 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1502 data_length, data_dir, task_attr, sense);
1503 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1504 se_cmd->unknown_data_length = 1;
1505 /*
1506 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1507 * se_sess->sess_cmd_list. A second kref_get here is necessary
1508 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1509 * kref_put() to happen during fabric packet acknowledgement.
1510 */
1511 rc = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1512 if (rc)
1513 return rc;
1514 /*
1515 * Signal bidirectional data payloads to target-core
1516 */
1517 if (flags & TARGET_SCF_BIDI_OP)
1518 se_cmd->se_cmd_flags |= SCF_BIDI;
1519 /*
1520 * Locate se_lun pointer and attach it to struct se_cmd
1521 */
1522 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1523 transport_send_check_condition_and_sense(se_cmd,
1524 se_cmd->scsi_sense_reason, 0);
1525 target_put_sess_cmd(se_sess, se_cmd);
1526 return 0;
1527 }
1528
1529 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1530 if (rc != 0) {
1531 transport_generic_request_failure(se_cmd);
1532 return 0;
1533 }
1534 /*
1535 * When a non zero sgl_count has been passed perform SGL passthrough
1536 * mapping for pre-allocated fabric memory instead of having target
1537 * core perform an internal SGL allocation..
1538 */
1539 if (sgl_count != 0) {
1540 BUG_ON(!sgl);
1541
1542 /*
1543 * A work-around for tcm_loop as some userspace code via
1544 * scsi-generic do not memset their associated read buffers,
1545 * so go ahead and do that here for type non-data CDBs. Also
1546 * note that this is currently guaranteed to be a single SGL
1547 * for this case by target core in target_setup_cmd_from_cdb()
1548 * -> transport_generic_cmd_sequencer().
1549 */
1550 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1551 se_cmd->data_direction == DMA_FROM_DEVICE) {
1552 unsigned char *buf = NULL;
1553
1554 if (sgl)
1555 buf = kmap(sg_page(sgl)) + sgl->offset;
1556
1557 if (buf) {
1558 memset(buf, 0, sgl->length);
1559 kunmap(sg_page(sgl));
1560 }
1561 }
1562
1563 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1564 sgl_bidi, sgl_bidi_count);
1565 if (rc != 0) {
1566 transport_generic_request_failure(se_cmd);
1567 return 0;
1568 }
1569 }
1570 /*
1571 * Check if we need to delay processing because of ALUA
1572 * Active/NonOptimized primary access state..
1573 */
1574 core_alua_check_nonop_delay(se_cmd);
1575
1576 transport_handle_cdb_direct(se_cmd);
1577 return 0;
1578 }
1579 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1580
1581 /*
1582 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1583 *
1584 * @se_cmd: command descriptor to submit
1585 * @se_sess: associated se_sess for endpoint
1586 * @cdb: pointer to SCSI CDB
1587 * @sense: pointer to SCSI sense buffer
1588 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1589 * @data_length: fabric expected data transfer length
1590 * @task_addr: SAM task attribute
1591 * @data_dir: DMA data direction
1592 * @flags: flags for command submission from target_sc_flags_tables
1593 *
1594 * Returns non zero to signal active I/O shutdown failure. All other
1595 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1596 * but still return zero here.
1597 *
1598 * This may only be called from process context, and also currently
1599 * assumes internal allocation of fabric payload buffer by target-core.
1600 *
1601 * It also assumes interal target core SGL memory allocation.
1602 */
1603 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1604 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1605 u32 data_length, int task_attr, int data_dir, int flags)
1606 {
1607 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1608 unpacked_lun, data_length, task_attr, data_dir,
1609 flags, NULL, 0, NULL, 0);
1610 }
1611 EXPORT_SYMBOL(target_submit_cmd);
1612
1613 static void target_complete_tmr_failure(struct work_struct *work)
1614 {
1615 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1616
1617 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1618 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1619 }
1620
1621 /**
1622 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1623 * for TMR CDBs
1624 *
1625 * @se_cmd: command descriptor to submit
1626 * @se_sess: associated se_sess for endpoint
1627 * @sense: pointer to SCSI sense buffer
1628 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1629 * @fabric_context: fabric context for TMR req
1630 * @tm_type: Type of TM request
1631 * @gfp: gfp type for caller
1632 * @tag: referenced task tag for TMR_ABORT_TASK
1633 * @flags: submit cmd flags
1634 *
1635 * Callable from all contexts.
1636 **/
1637
1638 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1639 unsigned char *sense, u32 unpacked_lun,
1640 void *fabric_tmr_ptr, unsigned char tm_type,
1641 gfp_t gfp, unsigned int tag, int flags)
1642 {
1643 struct se_portal_group *se_tpg;
1644 int ret;
1645
1646 se_tpg = se_sess->se_tpg;
1647 BUG_ON(!se_tpg);
1648
1649 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1650 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1651 /*
1652 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1653 * allocation failure.
1654 */
1655 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1656 if (ret < 0)
1657 return -ENOMEM;
1658
1659 if (tm_type == TMR_ABORT_TASK)
1660 se_cmd->se_tmr_req->ref_task_tag = tag;
1661
1662 /* See target_submit_cmd for commentary */
1663 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1664 if (ret) {
1665 core_tmr_release_req(se_cmd->se_tmr_req);
1666 return ret;
1667 }
1668
1669 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1670 if (ret) {
1671 /*
1672 * For callback during failure handling, push this work off
1673 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1674 */
1675 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1676 schedule_work(&se_cmd->work);
1677 return 0;
1678 }
1679 transport_generic_handle_tmr(se_cmd);
1680 return 0;
1681 }
1682 EXPORT_SYMBOL(target_submit_tmr);
1683
1684 /*
1685 * If the cmd is active, request it to be stopped and sleep until it
1686 * has completed.
1687 */
1688 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1689 {
1690 bool was_active = false;
1691
1692 if (cmd->transport_state & CMD_T_BUSY) {
1693 cmd->transport_state |= CMD_T_REQUEST_STOP;
1694 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1695
1696 pr_debug("cmd %p waiting to complete\n", cmd);
1697 wait_for_completion(&cmd->task_stop_comp);
1698 pr_debug("cmd %p stopped successfully\n", cmd);
1699
1700 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1701 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1702 cmd->transport_state &= ~CMD_T_BUSY;
1703 was_active = true;
1704 }
1705
1706 return was_active;
1707 }
1708
1709 /*
1710 * Handle SAM-esque emulation for generic transport request failures.
1711 */
1712 void transport_generic_request_failure(struct se_cmd *cmd)
1713 {
1714 int ret = 0;
1715
1716 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1717 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1718 cmd->t_task_cdb[0]);
1719 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1720 cmd->se_tfo->get_cmd_state(cmd),
1721 cmd->t_state, cmd->scsi_sense_reason);
1722 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1723 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1724 (cmd->transport_state & CMD_T_STOP) != 0,
1725 (cmd->transport_state & CMD_T_SENT) != 0);
1726
1727 /*
1728 * For SAM Task Attribute emulation for failed struct se_cmd
1729 */
1730 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1731 transport_complete_task_attr(cmd);
1732
1733 switch (cmd->scsi_sense_reason) {
1734 case TCM_NON_EXISTENT_LUN:
1735 case TCM_UNSUPPORTED_SCSI_OPCODE:
1736 case TCM_INVALID_CDB_FIELD:
1737 case TCM_INVALID_PARAMETER_LIST:
1738 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1739 case TCM_UNKNOWN_MODE_PAGE:
1740 case TCM_WRITE_PROTECTED:
1741 case TCM_ADDRESS_OUT_OF_RANGE:
1742 case TCM_CHECK_CONDITION_ABORT_CMD:
1743 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1744 case TCM_CHECK_CONDITION_NOT_READY:
1745 break;
1746 case TCM_RESERVATION_CONFLICT:
1747 /*
1748 * No SENSE Data payload for this case, set SCSI Status
1749 * and queue the response to $FABRIC_MOD.
1750 *
1751 * Uses linux/include/scsi/scsi.h SAM status codes defs
1752 */
1753 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1754 /*
1755 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1756 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1757 * CONFLICT STATUS.
1758 *
1759 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1760 */
1761 if (cmd->se_sess &&
1762 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1763 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1764 cmd->orig_fe_lun, 0x2C,
1765 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1766
1767 ret = cmd->se_tfo->queue_status(cmd);
1768 if (ret == -EAGAIN || ret == -ENOMEM)
1769 goto queue_full;
1770 goto check_stop;
1771 default:
1772 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1773 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1774 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1775 break;
1776 }
1777
1778 ret = transport_send_check_condition_and_sense(cmd,
1779 cmd->scsi_sense_reason, 0);
1780 if (ret == -EAGAIN || ret == -ENOMEM)
1781 goto queue_full;
1782
1783 check_stop:
1784 transport_lun_remove_cmd(cmd);
1785 if (!transport_cmd_check_stop_to_fabric(cmd))
1786 ;
1787 return;
1788
1789 queue_full:
1790 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1791 transport_handle_queue_full(cmd, cmd->se_dev);
1792 }
1793 EXPORT_SYMBOL(transport_generic_request_failure);
1794
1795 static void __target_execute_cmd(struct se_cmd *cmd)
1796 {
1797 int error = 0;
1798
1799 spin_lock_irq(&cmd->t_state_lock);
1800 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1801 spin_unlock_irq(&cmd->t_state_lock);
1802
1803 if (cmd->execute_cmd)
1804 error = cmd->execute_cmd(cmd);
1805
1806 if (error) {
1807 spin_lock_irq(&cmd->t_state_lock);
1808 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1809 spin_unlock_irq(&cmd->t_state_lock);
1810
1811 transport_generic_request_failure(cmd);
1812 }
1813 }
1814
1815 void target_execute_cmd(struct se_cmd *cmd)
1816 {
1817 struct se_device *dev = cmd->se_dev;
1818
1819 /*
1820 * If the received CDB has aleady been aborted stop processing it here.
1821 */
1822 if (transport_check_aborted_status(cmd, 1))
1823 return;
1824
1825 /*
1826 * Determine if IOCTL context caller in requesting the stopping of this
1827 * command for LUN shutdown purposes.
1828 */
1829 spin_lock_irq(&cmd->t_state_lock);
1830 if (cmd->transport_state & CMD_T_LUN_STOP) {
1831 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1832 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1833
1834 cmd->transport_state &= ~CMD_T_ACTIVE;
1835 spin_unlock_irq(&cmd->t_state_lock);
1836 complete(&cmd->transport_lun_stop_comp);
1837 return;
1838 }
1839 /*
1840 * Determine if frontend context caller is requesting the stopping of
1841 * this command for frontend exceptions.
1842 */
1843 if (cmd->transport_state & CMD_T_STOP) {
1844 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1845 __func__, __LINE__,
1846 cmd->se_tfo->get_task_tag(cmd));
1847
1848 spin_unlock_irq(&cmd->t_state_lock);
1849 complete(&cmd->t_transport_stop_comp);
1850 return;
1851 }
1852
1853 cmd->t_state = TRANSPORT_PROCESSING;
1854 spin_unlock_irq(&cmd->t_state_lock);
1855
1856 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1857 goto execute;
1858
1859 /*
1860 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1861 * to allow the passed struct se_cmd list of tasks to the front of the list.
1862 */
1863 switch (cmd->sam_task_attr) {
1864 case MSG_HEAD_TAG:
1865 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1866 "se_ordered_id: %u\n",
1867 cmd->t_task_cdb[0], cmd->se_ordered_id);
1868 goto execute;
1869 case MSG_ORDERED_TAG:
1870 atomic_inc(&dev->dev_ordered_sync);
1871 smp_mb__after_atomic_inc();
1872
1873 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1874 " se_ordered_id: %u\n",
1875 cmd->t_task_cdb[0], cmd->se_ordered_id);
1876
1877 /*
1878 * Execute an ORDERED command if no other older commands
1879 * exist that need to be completed first.
1880 */
1881 if (!atomic_read(&dev->simple_cmds))
1882 goto execute;
1883 break;
1884 default:
1885 /*
1886 * For SIMPLE and UNTAGGED Task Attribute commands
1887 */
1888 atomic_inc(&dev->simple_cmds);
1889 smp_mb__after_atomic_inc();
1890 break;
1891 }
1892
1893 if (atomic_read(&dev->dev_ordered_sync) != 0) {
1894 spin_lock(&dev->delayed_cmd_lock);
1895 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1896 spin_unlock(&dev->delayed_cmd_lock);
1897
1898 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1899 " delayed CMD list, se_ordered_id: %u\n",
1900 cmd->t_task_cdb[0], cmd->sam_task_attr,
1901 cmd->se_ordered_id);
1902 return;
1903 }
1904
1905 execute:
1906 /*
1907 * Otherwise, no ORDERED task attributes exist..
1908 */
1909 __target_execute_cmd(cmd);
1910 }
1911 EXPORT_SYMBOL(target_execute_cmd);
1912
1913 /*
1914 * Process all commands up to the last received ORDERED task attribute which
1915 * requires another blocking boundary
1916 */
1917 static void target_restart_delayed_cmds(struct se_device *dev)
1918 {
1919 for (;;) {
1920 struct se_cmd *cmd;
1921
1922 spin_lock(&dev->delayed_cmd_lock);
1923 if (list_empty(&dev->delayed_cmd_list)) {
1924 spin_unlock(&dev->delayed_cmd_lock);
1925 break;
1926 }
1927
1928 cmd = list_entry(dev->delayed_cmd_list.next,
1929 struct se_cmd, se_delayed_node);
1930 list_del(&cmd->se_delayed_node);
1931 spin_unlock(&dev->delayed_cmd_lock);
1932
1933 __target_execute_cmd(cmd);
1934
1935 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1936 break;
1937 }
1938 }
1939
1940 /*
1941 * Called from I/O completion to determine which dormant/delayed
1942 * and ordered cmds need to have their tasks added to the execution queue.
1943 */
1944 static void transport_complete_task_attr(struct se_cmd *cmd)
1945 {
1946 struct se_device *dev = cmd->se_dev;
1947
1948 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1949 atomic_dec(&dev->simple_cmds);
1950 smp_mb__after_atomic_dec();
1951 dev->dev_cur_ordered_id++;
1952 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1953 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1954 cmd->se_ordered_id);
1955 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1956 dev->dev_cur_ordered_id++;
1957 pr_debug("Incremented dev_cur_ordered_id: %u for"
1958 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1959 cmd->se_ordered_id);
1960 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1961 atomic_dec(&dev->dev_ordered_sync);
1962 smp_mb__after_atomic_dec();
1963
1964 dev->dev_cur_ordered_id++;
1965 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1966 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1967 }
1968
1969 target_restart_delayed_cmds(dev);
1970 }
1971
1972 static void transport_complete_qf(struct se_cmd *cmd)
1973 {
1974 int ret = 0;
1975
1976 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1977 transport_complete_task_attr(cmd);
1978
1979 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1980 ret = cmd->se_tfo->queue_status(cmd);
1981 if (ret)
1982 goto out;
1983 }
1984
1985 switch (cmd->data_direction) {
1986 case DMA_FROM_DEVICE:
1987 ret = cmd->se_tfo->queue_data_in(cmd);
1988 break;
1989 case DMA_TO_DEVICE:
1990 if (cmd->t_bidi_data_sg) {
1991 ret = cmd->se_tfo->queue_data_in(cmd);
1992 if (ret < 0)
1993 break;
1994 }
1995 /* Fall through for DMA_TO_DEVICE */
1996 case DMA_NONE:
1997 ret = cmd->se_tfo->queue_status(cmd);
1998 break;
1999 default:
2000 break;
2001 }
2002
2003 out:
2004 if (ret < 0) {
2005 transport_handle_queue_full(cmd, cmd->se_dev);
2006 return;
2007 }
2008 transport_lun_remove_cmd(cmd);
2009 transport_cmd_check_stop_to_fabric(cmd);
2010 }
2011
2012 static void transport_handle_queue_full(
2013 struct se_cmd *cmd,
2014 struct se_device *dev)
2015 {
2016 spin_lock_irq(&dev->qf_cmd_lock);
2017 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2018 atomic_inc(&dev->dev_qf_count);
2019 smp_mb__after_atomic_inc();
2020 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2021
2022 schedule_work(&cmd->se_dev->qf_work_queue);
2023 }
2024
2025 static void target_complete_ok_work(struct work_struct *work)
2026 {
2027 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2028 int ret;
2029
2030 /*
2031 * Check if we need to move delayed/dormant tasks from cmds on the
2032 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2033 * Attribute.
2034 */
2035 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2036 transport_complete_task_attr(cmd);
2037 /*
2038 * Check to schedule QUEUE_FULL work, or execute an existing
2039 * cmd->transport_qf_callback()
2040 */
2041 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2042 schedule_work(&cmd->se_dev->qf_work_queue);
2043
2044 /*
2045 * Check if we need to send a sense buffer from
2046 * the struct se_cmd in question.
2047 */
2048 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2049 WARN_ON(!cmd->scsi_status);
2050 ret = transport_send_check_condition_and_sense(
2051 cmd, 0, 1);
2052 if (ret == -EAGAIN || ret == -ENOMEM)
2053 goto queue_full;
2054
2055 transport_lun_remove_cmd(cmd);
2056 transport_cmd_check_stop_to_fabric(cmd);
2057 return;
2058 }
2059 /*
2060 * Check for a callback, used by amongst other things
2061 * XDWRITE_READ_10 emulation.
2062 */
2063 if (cmd->transport_complete_callback)
2064 cmd->transport_complete_callback(cmd);
2065
2066 switch (cmd->data_direction) {
2067 case DMA_FROM_DEVICE:
2068 spin_lock(&cmd->se_lun->lun_sep_lock);
2069 if (cmd->se_lun->lun_sep) {
2070 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2071 cmd->data_length;
2072 }
2073 spin_unlock(&cmd->se_lun->lun_sep_lock);
2074
2075 ret = cmd->se_tfo->queue_data_in(cmd);
2076 if (ret == -EAGAIN || ret == -ENOMEM)
2077 goto queue_full;
2078 break;
2079 case DMA_TO_DEVICE:
2080 spin_lock(&cmd->se_lun->lun_sep_lock);
2081 if (cmd->se_lun->lun_sep) {
2082 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2083 cmd->data_length;
2084 }
2085 spin_unlock(&cmd->se_lun->lun_sep_lock);
2086 /*
2087 * Check if we need to send READ payload for BIDI-COMMAND
2088 */
2089 if (cmd->t_bidi_data_sg) {
2090 spin_lock(&cmd->se_lun->lun_sep_lock);
2091 if (cmd->se_lun->lun_sep) {
2092 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2093 cmd->data_length;
2094 }
2095 spin_unlock(&cmd->se_lun->lun_sep_lock);
2096 ret = cmd->se_tfo->queue_data_in(cmd);
2097 if (ret == -EAGAIN || ret == -ENOMEM)
2098 goto queue_full;
2099 break;
2100 }
2101 /* Fall through for DMA_TO_DEVICE */
2102 case DMA_NONE:
2103 ret = cmd->se_tfo->queue_status(cmd);
2104 if (ret == -EAGAIN || ret == -ENOMEM)
2105 goto queue_full;
2106 break;
2107 default:
2108 break;
2109 }
2110
2111 transport_lun_remove_cmd(cmd);
2112 transport_cmd_check_stop_to_fabric(cmd);
2113 return;
2114
2115 queue_full:
2116 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2117 " data_direction: %d\n", cmd, cmd->data_direction);
2118 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2119 transport_handle_queue_full(cmd, cmd->se_dev);
2120 }
2121
2122 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2123 {
2124 struct scatterlist *sg;
2125 int count;
2126
2127 for_each_sg(sgl, sg, nents, count)
2128 __free_page(sg_page(sg));
2129
2130 kfree(sgl);
2131 }
2132
2133 static inline void transport_free_pages(struct se_cmd *cmd)
2134 {
2135 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
2136 return;
2137
2138 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2139 cmd->t_data_sg = NULL;
2140 cmd->t_data_nents = 0;
2141
2142 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2143 cmd->t_bidi_data_sg = NULL;
2144 cmd->t_bidi_data_nents = 0;
2145 }
2146
2147 /**
2148 * transport_release_cmd - free a command
2149 * @cmd: command to free
2150 *
2151 * This routine unconditionally frees a command, and reference counting
2152 * or list removal must be done in the caller.
2153 */
2154 static void transport_release_cmd(struct se_cmd *cmd)
2155 {
2156 BUG_ON(!cmd->se_tfo);
2157
2158 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2159 core_tmr_release_req(cmd->se_tmr_req);
2160 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2161 kfree(cmd->t_task_cdb);
2162 /*
2163 * If this cmd has been setup with target_get_sess_cmd(), drop
2164 * the kref and call ->release_cmd() in kref callback.
2165 */
2166 if (cmd->check_release != 0) {
2167 target_put_sess_cmd(cmd->se_sess, cmd);
2168 return;
2169 }
2170 cmd->se_tfo->release_cmd(cmd);
2171 }
2172
2173 /**
2174 * transport_put_cmd - release a reference to a command
2175 * @cmd: command to release
2176 *
2177 * This routine releases our reference to the command and frees it if possible.
2178 */
2179 static void transport_put_cmd(struct se_cmd *cmd)
2180 {
2181 unsigned long flags;
2182
2183 spin_lock_irqsave(&cmd->t_state_lock, flags);
2184 if (atomic_read(&cmd->t_fe_count)) {
2185 if (!atomic_dec_and_test(&cmd->t_fe_count))
2186 goto out_busy;
2187 }
2188
2189 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
2190 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2191 target_remove_from_state_list(cmd);
2192 }
2193 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2194
2195 transport_free_pages(cmd);
2196 transport_release_cmd(cmd);
2197 return;
2198 out_busy:
2199 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2200 }
2201
2202 /*
2203 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
2204 * allocating in the core.
2205 * @cmd: Associated se_cmd descriptor
2206 * @mem: SGL style memory for TCM WRITE / READ
2207 * @sg_mem_num: Number of SGL elements
2208 * @mem_bidi_in: SGL style memory for TCM BIDI READ
2209 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
2210 *
2211 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
2212 * of parameters.
2213 */
2214 int transport_generic_map_mem_to_cmd(
2215 struct se_cmd *cmd,
2216 struct scatterlist *sgl,
2217 u32 sgl_count,
2218 struct scatterlist *sgl_bidi,
2219 u32 sgl_bidi_count)
2220 {
2221 if (!sgl || !sgl_count)
2222 return 0;
2223
2224 /*
2225 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
2226 * scatterlists already have been set to follow what the fabric
2227 * passes for the original expected data transfer length.
2228 */
2229 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
2230 pr_warn("Rejecting SCSI DATA overflow for fabric using"
2231 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
2232 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2233 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2234 return -EINVAL;
2235 }
2236
2237 cmd->t_data_sg = sgl;
2238 cmd->t_data_nents = sgl_count;
2239
2240 if (sgl_bidi && sgl_bidi_count) {
2241 cmd->t_bidi_data_sg = sgl_bidi;
2242 cmd->t_bidi_data_nents = sgl_bidi_count;
2243 }
2244 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
2245 return 0;
2246 }
2247 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
2248
2249 void *transport_kmap_data_sg(struct se_cmd *cmd)
2250 {
2251 struct scatterlist *sg = cmd->t_data_sg;
2252 struct page **pages;
2253 int i;
2254
2255 /*
2256 * We need to take into account a possible offset here for fabrics like
2257 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2258 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2259 */
2260 if (!cmd->t_data_nents)
2261 return NULL;
2262
2263 BUG_ON(!sg);
2264 if (cmd->t_data_nents == 1)
2265 return kmap(sg_page(sg)) + sg->offset;
2266
2267 /* >1 page. use vmap */
2268 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2269 if (!pages) {
2270 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2271 return NULL;
2272 }
2273
2274 /* convert sg[] to pages[] */
2275 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2276 pages[i] = sg_page(sg);
2277 }
2278
2279 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2280 kfree(pages);
2281 if (!cmd->t_data_vmap) {
2282 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2283 return NULL;
2284 }
2285
2286 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2287 }
2288 EXPORT_SYMBOL(transport_kmap_data_sg);
2289
2290 void transport_kunmap_data_sg(struct se_cmd *cmd)
2291 {
2292 if (!cmd->t_data_nents) {
2293 return;
2294 } else if (cmd->t_data_nents == 1) {
2295 kunmap(sg_page(cmd->t_data_sg));
2296 return;
2297 }
2298
2299 vunmap(cmd->t_data_vmap);
2300 cmd->t_data_vmap = NULL;
2301 }
2302 EXPORT_SYMBOL(transport_kunmap_data_sg);
2303
2304 static int
2305 transport_generic_get_mem(struct se_cmd *cmd)
2306 {
2307 u32 length = cmd->data_length;
2308 unsigned int nents;
2309 struct page *page;
2310 gfp_t zero_flag;
2311 int i = 0;
2312
2313 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2314 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2315 if (!cmd->t_data_sg)
2316 return -ENOMEM;
2317
2318 cmd->t_data_nents = nents;
2319 sg_init_table(cmd->t_data_sg, nents);
2320
2321 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2322
2323 while (length) {
2324 u32 page_len = min_t(u32, length, PAGE_SIZE);
2325 page = alloc_page(GFP_KERNEL | zero_flag);
2326 if (!page)
2327 goto out;
2328
2329 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2330 length -= page_len;
2331 i++;
2332 }
2333 return 0;
2334
2335 out:
2336 while (i > 0) {
2337 i--;
2338 __free_page(sg_page(&cmd->t_data_sg[i]));
2339 }
2340 kfree(cmd->t_data_sg);
2341 cmd->t_data_sg = NULL;
2342 return -ENOMEM;
2343 }
2344
2345 /*
2346 * Allocate any required resources to execute the command. For writes we
2347 * might not have the payload yet, so notify the fabric via a call to
2348 * ->write_pending instead. Otherwise place it on the execution queue.
2349 */
2350 int transport_generic_new_cmd(struct se_cmd *cmd)
2351 {
2352 int ret = 0;
2353
2354 /*
2355 * Determine is the TCM fabric module has already allocated physical
2356 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2357 * beforehand.
2358 */
2359 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2360 cmd->data_length) {
2361 ret = transport_generic_get_mem(cmd);
2362 if (ret < 0)
2363 goto out_fail;
2364 }
2365
2366 atomic_inc(&cmd->t_fe_count);
2367
2368 /*
2369 * If this command is not a write we can execute it right here,
2370 * for write buffers we need to notify the fabric driver first
2371 * and let it call back once the write buffers are ready.
2372 */
2373 target_add_to_state_list(cmd);
2374 if (cmd->data_direction != DMA_TO_DEVICE) {
2375 target_execute_cmd(cmd);
2376 return 0;
2377 }
2378
2379 spin_lock_irq(&cmd->t_state_lock);
2380 cmd->t_state = TRANSPORT_WRITE_PENDING;
2381 spin_unlock_irq(&cmd->t_state_lock);
2382
2383 transport_cmd_check_stop(cmd, false);
2384
2385 ret = cmd->se_tfo->write_pending(cmd);
2386 if (ret == -EAGAIN || ret == -ENOMEM)
2387 goto queue_full;
2388
2389 if (ret < 0)
2390 return ret;
2391 return 1;
2392
2393 out_fail:
2394 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2395 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2396 return -EINVAL;
2397 queue_full:
2398 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2399 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2400 transport_handle_queue_full(cmd, cmd->se_dev);
2401 return 0;
2402 }
2403 EXPORT_SYMBOL(transport_generic_new_cmd);
2404
2405 static void transport_write_pending_qf(struct se_cmd *cmd)
2406 {
2407 int ret;
2408
2409 ret = cmd->se_tfo->write_pending(cmd);
2410 if (ret == -EAGAIN || ret == -ENOMEM) {
2411 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2412 cmd);
2413 transport_handle_queue_full(cmd, cmd->se_dev);
2414 }
2415 }
2416
2417 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2418 {
2419 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2420 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2421 transport_wait_for_tasks(cmd);
2422
2423 transport_release_cmd(cmd);
2424 } else {
2425 if (wait_for_tasks)
2426 transport_wait_for_tasks(cmd);
2427
2428 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2429
2430 if (cmd->se_lun)
2431 transport_lun_remove_cmd(cmd);
2432
2433 transport_put_cmd(cmd);
2434 }
2435 }
2436 EXPORT_SYMBOL(transport_generic_free_cmd);
2437
2438 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2439 * @se_sess: session to reference
2440 * @se_cmd: command descriptor to add
2441 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2442 */
2443 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2444 bool ack_kref)
2445 {
2446 unsigned long flags;
2447 int ret = 0;
2448
2449 kref_init(&se_cmd->cmd_kref);
2450 /*
2451 * Add a second kref if the fabric caller is expecting to handle
2452 * fabric acknowledgement that requires two target_put_sess_cmd()
2453 * invocations before se_cmd descriptor release.
2454 */
2455 if (ack_kref == true) {
2456 kref_get(&se_cmd->cmd_kref);
2457 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2458 }
2459
2460 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2461 if (se_sess->sess_tearing_down) {
2462 ret = -ESHUTDOWN;
2463 goto out;
2464 }
2465 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2466 se_cmd->check_release = 1;
2467
2468 out:
2469 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2470 return ret;
2471 }
2472
2473 static void target_release_cmd_kref(struct kref *kref)
2474 {
2475 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2476 struct se_session *se_sess = se_cmd->se_sess;
2477 unsigned long flags;
2478
2479 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2480 if (list_empty(&se_cmd->se_cmd_list)) {
2481 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2482 se_cmd->se_tfo->release_cmd(se_cmd);
2483 return;
2484 }
2485 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2486 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2487 complete(&se_cmd->cmd_wait_comp);
2488 return;
2489 }
2490 list_del(&se_cmd->se_cmd_list);
2491 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2492
2493 se_cmd->se_tfo->release_cmd(se_cmd);
2494 }
2495
2496 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2497 * @se_sess: session to reference
2498 * @se_cmd: command descriptor to drop
2499 */
2500 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2501 {
2502 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2503 }
2504 EXPORT_SYMBOL(target_put_sess_cmd);
2505
2506 /* target_sess_cmd_list_set_waiting - Flag all commands in
2507 * sess_cmd_list to complete cmd_wait_comp. Set
2508 * sess_tearing_down so no more commands are queued.
2509 * @se_sess: session to flag
2510 */
2511 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2512 {
2513 struct se_cmd *se_cmd;
2514 unsigned long flags;
2515
2516 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2517
2518 WARN_ON(se_sess->sess_tearing_down);
2519 se_sess->sess_tearing_down = 1;
2520
2521 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list)
2522 se_cmd->cmd_wait_set = 1;
2523
2524 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2525 }
2526 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2527
2528 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2529 * @se_sess: session to wait for active I/O
2530 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2531 */
2532 void target_wait_for_sess_cmds(
2533 struct se_session *se_sess,
2534 int wait_for_tasks)
2535 {
2536 struct se_cmd *se_cmd, *tmp_cmd;
2537 bool rc = false;
2538
2539 list_for_each_entry_safe(se_cmd, tmp_cmd,
2540 &se_sess->sess_cmd_list, se_cmd_list) {
2541 list_del(&se_cmd->se_cmd_list);
2542
2543 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2544 " %d\n", se_cmd, se_cmd->t_state,
2545 se_cmd->se_tfo->get_cmd_state(se_cmd));
2546
2547 if (wait_for_tasks) {
2548 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2549 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2550 se_cmd->se_tfo->get_cmd_state(se_cmd));
2551
2552 rc = transport_wait_for_tasks(se_cmd);
2553
2554 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2555 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2556 se_cmd->se_tfo->get_cmd_state(se_cmd));
2557 }
2558
2559 if (!rc) {
2560 wait_for_completion(&se_cmd->cmd_wait_comp);
2561 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2562 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2563 se_cmd->se_tfo->get_cmd_state(se_cmd));
2564 }
2565
2566 se_cmd->se_tfo->release_cmd(se_cmd);
2567 }
2568 }
2569 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2570
2571 /* transport_lun_wait_for_tasks():
2572 *
2573 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2574 * an struct se_lun to be successfully shutdown.
2575 */
2576 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2577 {
2578 unsigned long flags;
2579 int ret = 0;
2580
2581 /*
2582 * If the frontend has already requested this struct se_cmd to
2583 * be stopped, we can safely ignore this struct se_cmd.
2584 */
2585 spin_lock_irqsave(&cmd->t_state_lock, flags);
2586 if (cmd->transport_state & CMD_T_STOP) {
2587 cmd->transport_state &= ~CMD_T_LUN_STOP;
2588
2589 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2590 cmd->se_tfo->get_task_tag(cmd));
2591 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2592 transport_cmd_check_stop(cmd, false);
2593 return -EPERM;
2594 }
2595 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2596 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2597
2598 // XXX: audit task_flags checks.
2599 spin_lock_irqsave(&cmd->t_state_lock, flags);
2600 if ((cmd->transport_state & CMD_T_BUSY) &&
2601 (cmd->transport_state & CMD_T_SENT)) {
2602 if (!target_stop_cmd(cmd, &flags))
2603 ret++;
2604 }
2605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2606
2607 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2608 " %d\n", cmd, ret);
2609 if (!ret) {
2610 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2611 cmd->se_tfo->get_task_tag(cmd));
2612 wait_for_completion(&cmd->transport_lun_stop_comp);
2613 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2614 cmd->se_tfo->get_task_tag(cmd));
2615 }
2616
2617 return 0;
2618 }
2619
2620 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2621 {
2622 struct se_cmd *cmd = NULL;
2623 unsigned long lun_flags, cmd_flags;
2624 /*
2625 * Do exception processing and return CHECK_CONDITION status to the
2626 * Initiator Port.
2627 */
2628 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2629 while (!list_empty(&lun->lun_cmd_list)) {
2630 cmd = list_first_entry(&lun->lun_cmd_list,
2631 struct se_cmd, se_lun_node);
2632 list_del_init(&cmd->se_lun_node);
2633
2634 spin_lock(&cmd->t_state_lock);
2635 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2636 "_lun_stop for ITT: 0x%08x\n",
2637 cmd->se_lun->unpacked_lun,
2638 cmd->se_tfo->get_task_tag(cmd));
2639 cmd->transport_state |= CMD_T_LUN_STOP;
2640 spin_unlock(&cmd->t_state_lock);
2641
2642 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2643
2644 if (!cmd->se_lun) {
2645 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2646 cmd->se_tfo->get_task_tag(cmd),
2647 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2648 BUG();
2649 }
2650 /*
2651 * If the Storage engine still owns the iscsi_cmd_t, determine
2652 * and/or stop its context.
2653 */
2654 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2655 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2656 cmd->se_tfo->get_task_tag(cmd));
2657
2658 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2659 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2660 continue;
2661 }
2662
2663 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2664 "_wait_for_tasks(): SUCCESS\n",
2665 cmd->se_lun->unpacked_lun,
2666 cmd->se_tfo->get_task_tag(cmd));
2667
2668 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2669 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2670 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2671 goto check_cond;
2672 }
2673 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2674 target_remove_from_state_list(cmd);
2675 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2676
2677 /*
2678 * The Storage engine stopped this struct se_cmd before it was
2679 * send to the fabric frontend for delivery back to the
2680 * Initiator Node. Return this SCSI CDB back with an
2681 * CHECK_CONDITION status.
2682 */
2683 check_cond:
2684 transport_send_check_condition_and_sense(cmd,
2685 TCM_NON_EXISTENT_LUN, 0);
2686 /*
2687 * If the fabric frontend is waiting for this iscsi_cmd_t to
2688 * be released, notify the waiting thread now that LU has
2689 * finished accessing it.
2690 */
2691 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2692 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2693 pr_debug("SE_LUN[%d] - Detected FE stop for"
2694 " struct se_cmd: %p ITT: 0x%08x\n",
2695 lun->unpacked_lun,
2696 cmd, cmd->se_tfo->get_task_tag(cmd));
2697
2698 spin_unlock_irqrestore(&cmd->t_state_lock,
2699 cmd_flags);
2700 transport_cmd_check_stop(cmd, false);
2701 complete(&cmd->transport_lun_fe_stop_comp);
2702 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2703 continue;
2704 }
2705 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2706 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2707
2708 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2709 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2710 }
2711 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2712 }
2713
2714 static int transport_clear_lun_thread(void *p)
2715 {
2716 struct se_lun *lun = p;
2717
2718 __transport_clear_lun_from_sessions(lun);
2719 complete(&lun->lun_shutdown_comp);
2720
2721 return 0;
2722 }
2723
2724 int transport_clear_lun_from_sessions(struct se_lun *lun)
2725 {
2726 struct task_struct *kt;
2727
2728 kt = kthread_run(transport_clear_lun_thread, lun,
2729 "tcm_cl_%u", lun->unpacked_lun);
2730 if (IS_ERR(kt)) {
2731 pr_err("Unable to start clear_lun thread\n");
2732 return PTR_ERR(kt);
2733 }
2734 wait_for_completion(&lun->lun_shutdown_comp);
2735
2736 return 0;
2737 }
2738
2739 /**
2740 * transport_wait_for_tasks - wait for completion to occur
2741 * @cmd: command to wait
2742 *
2743 * Called from frontend fabric context to wait for storage engine
2744 * to pause and/or release frontend generated struct se_cmd.
2745 */
2746 bool transport_wait_for_tasks(struct se_cmd *cmd)
2747 {
2748 unsigned long flags;
2749
2750 spin_lock_irqsave(&cmd->t_state_lock, flags);
2751 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2752 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2754 return false;
2755 }
2756
2757 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2758 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2759 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2760 return false;
2761 }
2762 /*
2763 * If we are already stopped due to an external event (ie: LUN shutdown)
2764 * sleep until the connection can have the passed struct se_cmd back.
2765 * The cmd->transport_lun_stopped_sem will be upped by
2766 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2767 * has completed its operation on the struct se_cmd.
2768 */
2769 if (cmd->transport_state & CMD_T_LUN_STOP) {
2770 pr_debug("wait_for_tasks: Stopping"
2771 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2772 "_stop_comp); for ITT: 0x%08x\n",
2773 cmd->se_tfo->get_task_tag(cmd));
2774 /*
2775 * There is a special case for WRITES where a FE exception +
2776 * LUN shutdown means ConfigFS context is still sleeping on
2777 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2778 * We go ahead and up transport_lun_stop_comp just to be sure
2779 * here.
2780 */
2781 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2782 complete(&cmd->transport_lun_stop_comp);
2783 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2784 spin_lock_irqsave(&cmd->t_state_lock, flags);
2785
2786 target_remove_from_state_list(cmd);
2787 /*
2788 * At this point, the frontend who was the originator of this
2789 * struct se_cmd, now owns the structure and can be released through
2790 * normal means below.
2791 */
2792 pr_debug("wait_for_tasks: Stopped"
2793 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2794 "stop_comp); for ITT: 0x%08x\n",
2795 cmd->se_tfo->get_task_tag(cmd));
2796
2797 cmd->transport_state &= ~CMD_T_LUN_STOP;
2798 }
2799
2800 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2801 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2802 return false;
2803 }
2804
2805 cmd->transport_state |= CMD_T_STOP;
2806
2807 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2808 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2809 cmd, cmd->se_tfo->get_task_tag(cmd),
2810 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2811
2812 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2813
2814 wait_for_completion(&cmd->t_transport_stop_comp);
2815
2816 spin_lock_irqsave(&cmd->t_state_lock, flags);
2817 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2818
2819 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2820 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2821 cmd->se_tfo->get_task_tag(cmd));
2822
2823 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2824
2825 return true;
2826 }
2827 EXPORT_SYMBOL(transport_wait_for_tasks);
2828
2829 static int transport_get_sense_codes(
2830 struct se_cmd *cmd,
2831 u8 *asc,
2832 u8 *ascq)
2833 {
2834 *asc = cmd->scsi_asc;
2835 *ascq = cmd->scsi_ascq;
2836
2837 return 0;
2838 }
2839
2840 static int transport_set_sense_codes(
2841 struct se_cmd *cmd,
2842 u8 asc,
2843 u8 ascq)
2844 {
2845 cmd->scsi_asc = asc;
2846 cmd->scsi_ascq = ascq;
2847
2848 return 0;
2849 }
2850
2851 int transport_send_check_condition_and_sense(
2852 struct se_cmd *cmd,
2853 u8 reason,
2854 int from_transport)
2855 {
2856 unsigned char *buffer = cmd->sense_buffer;
2857 unsigned long flags;
2858 u8 asc = 0, ascq = 0;
2859
2860 spin_lock_irqsave(&cmd->t_state_lock, flags);
2861 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2862 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2863 return 0;
2864 }
2865 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2866 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2867
2868 if (!reason && from_transport)
2869 goto after_reason;
2870
2871 if (!from_transport)
2872 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2873
2874 /*
2875 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2876 * SENSE KEY values from include/scsi/scsi.h
2877 */
2878 switch (reason) {
2879 case TCM_NON_EXISTENT_LUN:
2880 /* CURRENT ERROR */
2881 buffer[0] = 0x70;
2882 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2883 /* ILLEGAL REQUEST */
2884 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2885 /* LOGICAL UNIT NOT SUPPORTED */
2886 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2887 break;
2888 case TCM_UNSUPPORTED_SCSI_OPCODE:
2889 case TCM_SECTOR_COUNT_TOO_MANY:
2890 /* CURRENT ERROR */
2891 buffer[0] = 0x70;
2892 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2893 /* ILLEGAL REQUEST */
2894 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2895 /* INVALID COMMAND OPERATION CODE */
2896 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2897 break;
2898 case TCM_UNKNOWN_MODE_PAGE:
2899 /* CURRENT ERROR */
2900 buffer[0] = 0x70;
2901 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2902 /* ILLEGAL REQUEST */
2903 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2904 /* INVALID FIELD IN CDB */
2905 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2906 break;
2907 case TCM_CHECK_CONDITION_ABORT_CMD:
2908 /* CURRENT ERROR */
2909 buffer[0] = 0x70;
2910 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2911 /* ABORTED COMMAND */
2912 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2913 /* BUS DEVICE RESET FUNCTION OCCURRED */
2914 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2915 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2916 break;
2917 case TCM_INCORRECT_AMOUNT_OF_DATA:
2918 /* CURRENT ERROR */
2919 buffer[0] = 0x70;
2920 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2921 /* ABORTED COMMAND */
2922 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2923 /* WRITE ERROR */
2924 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2925 /* NOT ENOUGH UNSOLICITED DATA */
2926 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2927 break;
2928 case TCM_INVALID_CDB_FIELD:
2929 /* CURRENT ERROR */
2930 buffer[0] = 0x70;
2931 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2932 /* ILLEGAL REQUEST */
2933 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2934 /* INVALID FIELD IN CDB */
2935 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2936 break;
2937 case TCM_INVALID_PARAMETER_LIST:
2938 /* CURRENT ERROR */
2939 buffer[0] = 0x70;
2940 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2941 /* ILLEGAL REQUEST */
2942 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2943 /* INVALID FIELD IN PARAMETER LIST */
2944 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2945 break;
2946 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2947 /* CURRENT ERROR */
2948 buffer[0] = 0x70;
2949 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2950 /* ABORTED COMMAND */
2951 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2952 /* WRITE ERROR */
2953 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2954 /* UNEXPECTED_UNSOLICITED_DATA */
2955 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2956 break;
2957 case TCM_SERVICE_CRC_ERROR:
2958 /* CURRENT ERROR */
2959 buffer[0] = 0x70;
2960 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2961 /* ABORTED COMMAND */
2962 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2963 /* PROTOCOL SERVICE CRC ERROR */
2964 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2965 /* N/A */
2966 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2967 break;
2968 case TCM_SNACK_REJECTED:
2969 /* CURRENT ERROR */
2970 buffer[0] = 0x70;
2971 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2972 /* ABORTED COMMAND */
2973 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2974 /* READ ERROR */
2975 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2976 /* FAILED RETRANSMISSION REQUEST */
2977 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2978 break;
2979 case TCM_WRITE_PROTECTED:
2980 /* CURRENT ERROR */
2981 buffer[0] = 0x70;
2982 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2983 /* DATA PROTECT */
2984 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2985 /* WRITE PROTECTED */
2986 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2987 break;
2988 case TCM_ADDRESS_OUT_OF_RANGE:
2989 /* CURRENT ERROR */
2990 buffer[0] = 0x70;
2991 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2992 /* ILLEGAL REQUEST */
2993 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2994 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2995 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2996 break;
2997 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2998 /* CURRENT ERROR */
2999 buffer[0] = 0x70;
3000 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
3001 /* UNIT ATTENTION */
3002 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
3003 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3004 buffer[SPC_ASC_KEY_OFFSET] = asc;
3005 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
3006 break;
3007 case TCM_CHECK_CONDITION_NOT_READY:
3008 /* CURRENT ERROR */
3009 buffer[0] = 0x70;
3010 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
3011 /* Not Ready */
3012 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
3013 transport_get_sense_codes(cmd, &asc, &ascq);
3014 buffer[SPC_ASC_KEY_OFFSET] = asc;
3015 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
3016 break;
3017 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
3018 default:
3019 /* CURRENT ERROR */
3020 buffer[0] = 0x70;
3021 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
3022 /* ILLEGAL REQUEST */
3023 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3024 /* LOGICAL UNIT COMMUNICATION FAILURE */
3025 buffer[SPC_ASC_KEY_OFFSET] = 0x80;
3026 break;
3027 }
3028 /*
3029 * This code uses linux/include/scsi/scsi.h SAM status codes!
3030 */
3031 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3032 /*
3033 * Automatically padded, this value is encoded in the fabric's
3034 * data_length response PDU containing the SCSI defined sense data.
3035 */
3036 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3037
3038 after_reason:
3039 return cmd->se_tfo->queue_status(cmd);
3040 }
3041 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3042
3043 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3044 {
3045 int ret = 0;
3046
3047 if (cmd->transport_state & CMD_T_ABORTED) {
3048 if (!send_status ||
3049 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
3050 return 1;
3051
3052 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
3053 " status for CDB: 0x%02x ITT: 0x%08x\n",
3054 cmd->t_task_cdb[0],
3055 cmd->se_tfo->get_task_tag(cmd));
3056
3057 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
3058 cmd->se_tfo->queue_status(cmd);
3059 ret = 1;
3060 }
3061 return ret;
3062 }
3063 EXPORT_SYMBOL(transport_check_aborted_status);
3064
3065 void transport_send_task_abort(struct se_cmd *cmd)
3066 {
3067 unsigned long flags;
3068
3069 spin_lock_irqsave(&cmd->t_state_lock, flags);
3070 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3071 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3072 return;
3073 }
3074 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3075
3076 /*
3077 * If there are still expected incoming fabric WRITEs, we wait
3078 * until until they have completed before sending a TASK_ABORTED
3079 * response. This response with TASK_ABORTED status will be
3080 * queued back to fabric module by transport_check_aborted_status().
3081 */
3082 if (cmd->data_direction == DMA_TO_DEVICE) {
3083 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3084 cmd->transport_state |= CMD_T_ABORTED;
3085 smp_mb__after_atomic_inc();
3086 }
3087 }
3088 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3089
3090 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3091 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3092 cmd->se_tfo->get_task_tag(cmd));
3093
3094 cmd->se_tfo->queue_status(cmd);
3095 }
3096
3097 static void target_tmr_work(struct work_struct *work)
3098 {
3099 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3100 struct se_device *dev = cmd->se_dev;
3101 struct se_tmr_req *tmr = cmd->se_tmr_req;
3102 int ret;
3103
3104 switch (tmr->function) {
3105 case TMR_ABORT_TASK:
3106 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3107 break;
3108 case TMR_ABORT_TASK_SET:
3109 case TMR_CLEAR_ACA:
3110 case TMR_CLEAR_TASK_SET:
3111 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3112 break;
3113 case TMR_LUN_RESET:
3114 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3115 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3116 TMR_FUNCTION_REJECTED;
3117 break;
3118 case TMR_TARGET_WARM_RESET:
3119 tmr->response = TMR_FUNCTION_REJECTED;
3120 break;
3121 case TMR_TARGET_COLD_RESET:
3122 tmr->response = TMR_FUNCTION_REJECTED;
3123 break;
3124 default:
3125 pr_err("Uknown TMR function: 0x%02x.\n",
3126 tmr->function);
3127 tmr->response = TMR_FUNCTION_REJECTED;
3128 break;
3129 }
3130
3131 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3132 cmd->se_tfo->queue_tm_rsp(cmd);
3133
3134 transport_cmd_check_stop_to_fabric(cmd);
3135 }
3136
3137 int transport_generic_handle_tmr(
3138 struct se_cmd *cmd)
3139 {
3140 INIT_WORK(&cmd->work, target_tmr_work);
3141 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3142 return 0;
3143 }
3144 EXPORT_SYMBOL(transport_generic_handle_tmr);