]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/target/target_core_transport.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_lba_map_cache = kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map),
125 __alignof__(struct t10_alua_lba_map), 0, NULL);
126 if (!t10_alua_lba_map_cache) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 "cache failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_mem_cache = kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member),
134 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 if (!t10_alua_lba_map_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 "cache failed\n");
138 goto out_free_lba_map_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_lba_map_mem_cache;
145
146 return 0;
147
148 out_free_lba_map_mem_cache:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 kmem_cache_destroy(se_sess_cache);
164 out:
165 return -ENOMEM;
166 }
167
168 void release_se_kmem_caches(void)
169 {
170 destroy_workqueue(target_completion_wq);
171 kmem_cache_destroy(se_sess_cache);
172 kmem_cache_destroy(se_ua_cache);
173 kmem_cache_destroy(t10_pr_reg_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 kmem_cache_destroy(t10_alua_lba_map_cache);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186 * Allocate a new row index for the entry type specified
187 */
188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 u32 new_index;
191
192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194 spin_lock(&scsi_mib_index_lock);
195 new_index = ++scsi_mib_index[type];
196 spin_unlock(&scsi_mib_index_lock);
197
198 return new_index;
199 }
200
201 void transport_subsystem_check_init(void)
202 {
203 int ret;
204 static int sub_api_initialized;
205
206 if (sub_api_initialized)
207 return;
208
209 ret = request_module("target_core_iblock");
210 if (ret != 0)
211 pr_err("Unable to load target_core_iblock\n");
212
213 ret = request_module("target_core_file");
214 if (ret != 0)
215 pr_err("Unable to load target_core_file\n");
216
217 ret = request_module("target_core_pscsi");
218 if (ret != 0)
219 pr_err("Unable to load target_core_pscsi\n");
220
221 ret = request_module("target_core_user");
222 if (ret != 0)
223 pr_err("Unable to load target_core_user\n");
224
225 sub_api_initialized = 1;
226 }
227
228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 struct se_session *se_sess;
231
232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 if (!se_sess) {
234 pr_err("Unable to allocate struct se_session from"
235 " se_sess_cache\n");
236 return ERR_PTR(-ENOMEM);
237 }
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 spin_lock_init(&se_sess->sess_cmd_lock);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
288 }
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
293 }
294
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
298
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 */
312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
317 {
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
320
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 /*
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 *
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
328 */
329 if (se_nacl) {
330 /*
331 *
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 *
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
339 */
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
345 /*
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
348 */
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
354 }
355
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 /*
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
360 */
361 se_nacl->nacl_sess = se_sess;
362
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 }
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
395 {
396 struct se_session *sess;
397
398 /*
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
401 */
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
406
407 if (IS_ERR(sess))
408 return sess;
409
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
415 }
416 /*
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
419 */
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
425 }
426 }
427
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
430 }
431 EXPORT_SYMBOL(target_alloc_session);
432
433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 {
435 struct se_session *se_sess;
436 ssize_t len = 0;
437
438 spin_lock_bh(&se_tpg->session_lock);
439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
440 if (!se_sess->se_node_acl)
441 continue;
442 if (!se_sess->se_node_acl->dynamic_node_acl)
443 continue;
444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
445 break;
446
447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
448 se_sess->se_node_acl->initiatorname);
449 len += 1; /* Include NULL terminator */
450 }
451 spin_unlock_bh(&se_tpg->session_lock);
452
453 return len;
454 }
455 EXPORT_SYMBOL(target_show_dynamic_sessions);
456
457 static void target_complete_nacl(struct kref *kref)
458 {
459 struct se_node_acl *nacl = container_of(kref,
460 struct se_node_acl, acl_kref);
461 struct se_portal_group *se_tpg = nacl->se_tpg;
462
463 if (!nacl->dynamic_stop) {
464 complete(&nacl->acl_free_comp);
465 return;
466 }
467
468 mutex_lock(&se_tpg->acl_node_mutex);
469 list_del(&nacl->acl_list);
470 mutex_unlock(&se_tpg->acl_node_mutex);
471
472 core_tpg_wait_for_nacl_pr_ref(nacl);
473 core_free_device_list_for_node(nacl, se_tpg);
474 kfree(nacl);
475 }
476
477 void target_put_nacl(struct se_node_acl *nacl)
478 {
479 kref_put(&nacl->acl_kref, target_complete_nacl);
480 }
481 EXPORT_SYMBOL(target_put_nacl);
482
483 void transport_deregister_session_configfs(struct se_session *se_sess)
484 {
485 struct se_node_acl *se_nacl;
486 unsigned long flags;
487 /*
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 */
490 se_nacl = se_sess->se_node_acl;
491 if (se_nacl) {
492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
493 if (!list_empty(&se_sess->sess_acl_list))
494 list_del_init(&se_sess->sess_acl_list);
495 /*
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
499 */
500 if (list_empty(&se_nacl->acl_sess_list))
501 se_nacl->nacl_sess = NULL;
502 else {
503 se_nacl->nacl_sess = container_of(
504 se_nacl->acl_sess_list.prev,
505 struct se_session, sess_acl_list);
506 }
507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 }
509 }
510 EXPORT_SYMBOL(transport_deregister_session_configfs);
511
512 void transport_free_session(struct se_session *se_sess)
513 {
514 struct se_node_acl *se_nacl = se_sess->se_node_acl;
515
516 /*
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
519 */
520 if (se_nacl) {
521 struct se_portal_group *se_tpg = se_nacl->se_tpg;
522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
523 unsigned long flags;
524
525 se_sess->se_node_acl = NULL;
526
527 /*
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
531 */
532 mutex_lock(&se_tpg->acl_node_mutex);
533 if (se_nacl->dynamic_node_acl &&
534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
536 if (list_empty(&se_nacl->acl_sess_list))
537 se_nacl->dynamic_stop = true;
538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539
540 if (se_nacl->dynamic_stop)
541 list_del(&se_nacl->acl_list);
542 }
543 mutex_unlock(&se_tpg->acl_node_mutex);
544
545 if (se_nacl->dynamic_stop)
546 target_put_nacl(se_nacl);
547
548 target_put_nacl(se_nacl);
549 }
550 if (se_sess->sess_cmd_map) {
551 percpu_ida_destroy(&se_sess->sess_tag_pool);
552 kvfree(se_sess->sess_cmd_map);
553 }
554 kmem_cache_free(se_sess_cache, se_sess);
555 }
556 EXPORT_SYMBOL(transport_free_session);
557
558 void transport_deregister_session(struct se_session *se_sess)
559 {
560 struct se_portal_group *se_tpg = se_sess->se_tpg;
561 unsigned long flags;
562
563 if (!se_tpg) {
564 transport_free_session(se_sess);
565 return;
566 }
567
568 spin_lock_irqsave(&se_tpg->session_lock, flags);
569 list_del(&se_sess->sess_list);
570 se_sess->se_tpg = NULL;
571 se_sess->fabric_sess_ptr = NULL;
572 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg->se_tpg_tfo->get_fabric_name());
576 /*
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
580 *
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
583 */
584
585 transport_free_session(se_sess);
586 }
587 EXPORT_SYMBOL(transport_deregister_session);
588
589 static void target_remove_from_state_list(struct se_cmd *cmd)
590 {
591 struct se_device *dev = cmd->se_dev;
592 unsigned long flags;
593
594 if (!dev)
595 return;
596
597 spin_lock_irqsave(&dev->execute_task_lock, flags);
598 if (cmd->state_active) {
599 list_del(&cmd->state_list);
600 cmd->state_active = false;
601 }
602 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
603 }
604
605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 {
607 unsigned long flags;
608
609 target_remove_from_state_list(cmd);
610
611 /*
612 * Clear struct se_cmd->se_lun before the handoff to FE.
613 */
614 cmd->se_lun = NULL;
615
616 spin_lock_irqsave(&cmd->t_state_lock, flags);
617 /*
618 * Determine if frontend context caller is requesting the stopping of
619 * this command for frontend exceptions.
620 */
621 if (cmd->transport_state & CMD_T_STOP) {
622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
623 __func__, __LINE__, cmd->tag);
624
625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626
627 complete_all(&cmd->t_transport_stop_comp);
628 return 1;
629 }
630 cmd->transport_state &= ~CMD_T_ACTIVE;
631 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632
633 /*
634 * Some fabric modules like tcm_loop can release their internally
635 * allocated I/O reference and struct se_cmd now.
636 *
637 * Fabric modules are expected to return '1' here if the se_cmd being
638 * passed is released at this point, or zero if not being released.
639 */
640 return cmd->se_tfo->check_stop_free(cmd);
641 }
642
643 static void transport_lun_remove_cmd(struct se_cmd *cmd)
644 {
645 struct se_lun *lun = cmd->se_lun;
646
647 if (!lun)
648 return;
649
650 if (cmpxchg(&cmd->lun_ref_active, true, false))
651 percpu_ref_put(&lun->lun_ref);
652 }
653
654 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655 {
656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657 int ret = 0;
658
659 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
660 transport_lun_remove_cmd(cmd);
661 /*
662 * Allow the fabric driver to unmap any resources before
663 * releasing the descriptor via TFO->release_cmd()
664 */
665 if (remove)
666 cmd->se_tfo->aborted_task(cmd);
667
668 if (transport_cmd_check_stop_to_fabric(cmd))
669 return 1;
670 if (remove && ack_kref)
671 ret = transport_put_cmd(cmd);
672
673 return ret;
674 }
675
676 static void target_complete_failure_work(struct work_struct *work)
677 {
678 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
679
680 transport_generic_request_failure(cmd,
681 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
682 }
683
684 /*
685 * Used when asking transport to copy Sense Data from the underlying
686 * Linux/SCSI struct scsi_cmnd
687 */
688 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
689 {
690 struct se_device *dev = cmd->se_dev;
691
692 WARN_ON(!cmd->se_lun);
693
694 if (!dev)
695 return NULL;
696
697 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
698 return NULL;
699
700 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
701
702 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
703 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
704 return cmd->sense_buffer;
705 }
706
707 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
708 {
709 unsigned char *cmd_sense_buf;
710 unsigned long flags;
711
712 spin_lock_irqsave(&cmd->t_state_lock, flags);
713 cmd_sense_buf = transport_get_sense_buffer(cmd);
714 if (!cmd_sense_buf) {
715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716 return;
717 }
718
719 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
720 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722 }
723 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
724
725 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
726 {
727 struct se_device *dev = cmd->se_dev;
728 int success;
729 unsigned long flags;
730
731 cmd->scsi_status = scsi_status;
732
733 spin_lock_irqsave(&cmd->t_state_lock, flags);
734 switch (cmd->scsi_status) {
735 case SAM_STAT_CHECK_CONDITION:
736 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
737 success = 1;
738 else
739 success = 0;
740 break;
741 default:
742 success = 1;
743 break;
744 }
745
746 /*
747 * Check for case where an explicit ABORT_TASK has been received
748 * and transport_wait_for_tasks() will be waiting for completion..
749 */
750 if (cmd->transport_state & CMD_T_ABORTED ||
751 cmd->transport_state & CMD_T_STOP) {
752 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
753 /*
754 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
755 * release se_device->caw_sem obtained by sbc_compare_and_write()
756 * since target_complete_ok_work() or target_complete_failure_work()
757 * won't be called to invoke the normal CAW completion callbacks.
758 */
759 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
760 up(&dev->caw_sem);
761 }
762 complete_all(&cmd->t_transport_stop_comp);
763 return;
764 } else if (!success) {
765 INIT_WORK(&cmd->work, target_complete_failure_work);
766 } else {
767 INIT_WORK(&cmd->work, target_complete_ok_work);
768 }
769
770 cmd->t_state = TRANSPORT_COMPLETE;
771 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
772 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
773
774 if (cmd->se_cmd_flags & SCF_USE_CPUID)
775 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
776 else
777 queue_work(target_completion_wq, &cmd->work);
778 }
779 EXPORT_SYMBOL(target_complete_cmd);
780
781 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
782 {
783 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
784 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
785 cmd->residual_count += cmd->data_length - length;
786 } else {
787 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
788 cmd->residual_count = cmd->data_length - length;
789 }
790
791 cmd->data_length = length;
792 }
793
794 target_complete_cmd(cmd, scsi_status);
795 }
796 EXPORT_SYMBOL(target_complete_cmd_with_length);
797
798 static void target_add_to_state_list(struct se_cmd *cmd)
799 {
800 struct se_device *dev = cmd->se_dev;
801 unsigned long flags;
802
803 spin_lock_irqsave(&dev->execute_task_lock, flags);
804 if (!cmd->state_active) {
805 list_add_tail(&cmd->state_list, &dev->state_list);
806 cmd->state_active = true;
807 }
808 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
809 }
810
811 /*
812 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
813 */
814 static void transport_write_pending_qf(struct se_cmd *cmd);
815 static void transport_complete_qf(struct se_cmd *cmd);
816
817 void target_qf_do_work(struct work_struct *work)
818 {
819 struct se_device *dev = container_of(work, struct se_device,
820 qf_work_queue);
821 LIST_HEAD(qf_cmd_list);
822 struct se_cmd *cmd, *cmd_tmp;
823
824 spin_lock_irq(&dev->qf_cmd_lock);
825 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
826 spin_unlock_irq(&dev->qf_cmd_lock);
827
828 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
829 list_del(&cmd->se_qf_node);
830 atomic_dec_mb(&dev->dev_qf_count);
831
832 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
833 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
834 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
835 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
836 : "UNKNOWN");
837
838 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
839 transport_write_pending_qf(cmd);
840 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
841 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
842 transport_complete_qf(cmd);
843 }
844 }
845
846 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
847 {
848 switch (cmd->data_direction) {
849 case DMA_NONE:
850 return "NONE";
851 case DMA_FROM_DEVICE:
852 return "READ";
853 case DMA_TO_DEVICE:
854 return "WRITE";
855 case DMA_BIDIRECTIONAL:
856 return "BIDI";
857 default:
858 break;
859 }
860
861 return "UNKNOWN";
862 }
863
864 void transport_dump_dev_state(
865 struct se_device *dev,
866 char *b,
867 int *bl)
868 {
869 *bl += sprintf(b + *bl, "Status: ");
870 if (dev->export_count)
871 *bl += sprintf(b + *bl, "ACTIVATED");
872 else
873 *bl += sprintf(b + *bl, "DEACTIVATED");
874
875 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
876 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
877 dev->dev_attrib.block_size,
878 dev->dev_attrib.hw_max_sectors);
879 *bl += sprintf(b + *bl, " ");
880 }
881
882 void transport_dump_vpd_proto_id(
883 struct t10_vpd *vpd,
884 unsigned char *p_buf,
885 int p_buf_len)
886 {
887 unsigned char buf[VPD_TMP_BUF_SIZE];
888 int len;
889
890 memset(buf, 0, VPD_TMP_BUF_SIZE);
891 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
892
893 switch (vpd->protocol_identifier) {
894 case 0x00:
895 sprintf(buf+len, "Fibre Channel\n");
896 break;
897 case 0x10:
898 sprintf(buf+len, "Parallel SCSI\n");
899 break;
900 case 0x20:
901 sprintf(buf+len, "SSA\n");
902 break;
903 case 0x30:
904 sprintf(buf+len, "IEEE 1394\n");
905 break;
906 case 0x40:
907 sprintf(buf+len, "SCSI Remote Direct Memory Access"
908 " Protocol\n");
909 break;
910 case 0x50:
911 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
912 break;
913 case 0x60:
914 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
915 break;
916 case 0x70:
917 sprintf(buf+len, "Automation/Drive Interface Transport"
918 " Protocol\n");
919 break;
920 case 0x80:
921 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
922 break;
923 default:
924 sprintf(buf+len, "Unknown 0x%02x\n",
925 vpd->protocol_identifier);
926 break;
927 }
928
929 if (p_buf)
930 strncpy(p_buf, buf, p_buf_len);
931 else
932 pr_debug("%s", buf);
933 }
934
935 void
936 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
937 {
938 /*
939 * Check if the Protocol Identifier Valid (PIV) bit is set..
940 *
941 * from spc3r23.pdf section 7.5.1
942 */
943 if (page_83[1] & 0x80) {
944 vpd->protocol_identifier = (page_83[0] & 0xf0);
945 vpd->protocol_identifier_set = 1;
946 transport_dump_vpd_proto_id(vpd, NULL, 0);
947 }
948 }
949 EXPORT_SYMBOL(transport_set_vpd_proto_id);
950
951 int transport_dump_vpd_assoc(
952 struct t10_vpd *vpd,
953 unsigned char *p_buf,
954 int p_buf_len)
955 {
956 unsigned char buf[VPD_TMP_BUF_SIZE];
957 int ret = 0;
958 int len;
959
960 memset(buf, 0, VPD_TMP_BUF_SIZE);
961 len = sprintf(buf, "T10 VPD Identifier Association: ");
962
963 switch (vpd->association) {
964 case 0x00:
965 sprintf(buf+len, "addressed logical unit\n");
966 break;
967 case 0x10:
968 sprintf(buf+len, "target port\n");
969 break;
970 case 0x20:
971 sprintf(buf+len, "SCSI target device\n");
972 break;
973 default:
974 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
975 ret = -EINVAL;
976 break;
977 }
978
979 if (p_buf)
980 strncpy(p_buf, buf, p_buf_len);
981 else
982 pr_debug("%s", buf);
983
984 return ret;
985 }
986
987 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
988 {
989 /*
990 * The VPD identification association..
991 *
992 * from spc3r23.pdf Section 7.6.3.1 Table 297
993 */
994 vpd->association = (page_83[1] & 0x30);
995 return transport_dump_vpd_assoc(vpd, NULL, 0);
996 }
997 EXPORT_SYMBOL(transport_set_vpd_assoc);
998
999 int transport_dump_vpd_ident_type(
1000 struct t10_vpd *vpd,
1001 unsigned char *p_buf,
1002 int p_buf_len)
1003 {
1004 unsigned char buf[VPD_TMP_BUF_SIZE];
1005 int ret = 0;
1006 int len;
1007
1008 memset(buf, 0, VPD_TMP_BUF_SIZE);
1009 len = sprintf(buf, "T10 VPD Identifier Type: ");
1010
1011 switch (vpd->device_identifier_type) {
1012 case 0x00:
1013 sprintf(buf+len, "Vendor specific\n");
1014 break;
1015 case 0x01:
1016 sprintf(buf+len, "T10 Vendor ID based\n");
1017 break;
1018 case 0x02:
1019 sprintf(buf+len, "EUI-64 based\n");
1020 break;
1021 case 0x03:
1022 sprintf(buf+len, "NAA\n");
1023 break;
1024 case 0x04:
1025 sprintf(buf+len, "Relative target port identifier\n");
1026 break;
1027 case 0x08:
1028 sprintf(buf+len, "SCSI name string\n");
1029 break;
1030 default:
1031 sprintf(buf+len, "Unsupported: 0x%02x\n",
1032 vpd->device_identifier_type);
1033 ret = -EINVAL;
1034 break;
1035 }
1036
1037 if (p_buf) {
1038 if (p_buf_len < strlen(buf)+1)
1039 return -EINVAL;
1040 strncpy(p_buf, buf, p_buf_len);
1041 } else {
1042 pr_debug("%s", buf);
1043 }
1044
1045 return ret;
1046 }
1047
1048 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1049 {
1050 /*
1051 * The VPD identifier type..
1052 *
1053 * from spc3r23.pdf Section 7.6.3.1 Table 298
1054 */
1055 vpd->device_identifier_type = (page_83[1] & 0x0f);
1056 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1057 }
1058 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1059
1060 int transport_dump_vpd_ident(
1061 struct t10_vpd *vpd,
1062 unsigned char *p_buf,
1063 int p_buf_len)
1064 {
1065 unsigned char buf[VPD_TMP_BUF_SIZE];
1066 int ret = 0;
1067
1068 memset(buf, 0, VPD_TMP_BUF_SIZE);
1069
1070 switch (vpd->device_identifier_code_set) {
1071 case 0x01: /* Binary */
1072 snprintf(buf, sizeof(buf),
1073 "T10 VPD Binary Device Identifier: %s\n",
1074 &vpd->device_identifier[0]);
1075 break;
1076 case 0x02: /* ASCII */
1077 snprintf(buf, sizeof(buf),
1078 "T10 VPD ASCII Device Identifier: %s\n",
1079 &vpd->device_identifier[0]);
1080 break;
1081 case 0x03: /* UTF-8 */
1082 snprintf(buf, sizeof(buf),
1083 "T10 VPD UTF-8 Device Identifier: %s\n",
1084 &vpd->device_identifier[0]);
1085 break;
1086 default:
1087 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1088 " 0x%02x", vpd->device_identifier_code_set);
1089 ret = -EINVAL;
1090 break;
1091 }
1092
1093 if (p_buf)
1094 strncpy(p_buf, buf, p_buf_len);
1095 else
1096 pr_debug("%s", buf);
1097
1098 return ret;
1099 }
1100
1101 int
1102 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1103 {
1104 static const char hex_str[] = "0123456789abcdef";
1105 int j = 0, i = 4; /* offset to start of the identifier */
1106
1107 /*
1108 * The VPD Code Set (encoding)
1109 *
1110 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111 */
1112 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1113 switch (vpd->device_identifier_code_set) {
1114 case 0x01: /* Binary */
1115 vpd->device_identifier[j++] =
1116 hex_str[vpd->device_identifier_type];
1117 while (i < (4 + page_83[3])) {
1118 vpd->device_identifier[j++] =
1119 hex_str[(page_83[i] & 0xf0) >> 4];
1120 vpd->device_identifier[j++] =
1121 hex_str[page_83[i] & 0x0f];
1122 i++;
1123 }
1124 break;
1125 case 0x02: /* ASCII */
1126 case 0x03: /* UTF-8 */
1127 while (i < (4 + page_83[3]))
1128 vpd->device_identifier[j++] = page_83[i++];
1129 break;
1130 default:
1131 break;
1132 }
1133
1134 return transport_dump_vpd_ident(vpd, NULL, 0);
1135 }
1136 EXPORT_SYMBOL(transport_set_vpd_ident);
1137
1138 static sense_reason_t
1139 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1140 unsigned int size)
1141 {
1142 u32 mtl;
1143
1144 if (!cmd->se_tfo->max_data_sg_nents)
1145 return TCM_NO_SENSE;
1146 /*
1147 * Check if fabric enforced maximum SGL entries per I/O descriptor
1148 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1149 * residual_count and reduce original cmd->data_length to maximum
1150 * length based on single PAGE_SIZE entry scatter-lists.
1151 */
1152 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1153 if (cmd->data_length > mtl) {
1154 /*
1155 * If an existing CDB overflow is present, calculate new residual
1156 * based on CDB size minus fabric maximum transfer length.
1157 *
1158 * If an existing CDB underflow is present, calculate new residual
1159 * based on original cmd->data_length minus fabric maximum transfer
1160 * length.
1161 *
1162 * Otherwise, set the underflow residual based on cmd->data_length
1163 * minus fabric maximum transfer length.
1164 */
1165 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1166 cmd->residual_count = (size - mtl);
1167 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1168 u32 orig_dl = size + cmd->residual_count;
1169 cmd->residual_count = (orig_dl - mtl);
1170 } else {
1171 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1172 cmd->residual_count = (cmd->data_length - mtl);
1173 }
1174 cmd->data_length = mtl;
1175 /*
1176 * Reset sbc_check_prot() calculated protection payload
1177 * length based upon the new smaller MTL.
1178 */
1179 if (cmd->prot_length) {
1180 u32 sectors = (mtl / dev->dev_attrib.block_size);
1181 cmd->prot_length = dev->prot_length * sectors;
1182 }
1183 }
1184 return TCM_NO_SENSE;
1185 }
1186
1187 sense_reason_t
1188 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1189 {
1190 struct se_device *dev = cmd->se_dev;
1191
1192 if (cmd->unknown_data_length) {
1193 cmd->data_length = size;
1194 } else if (size != cmd->data_length) {
1195 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1196 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1197 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1198 cmd->data_length, size, cmd->t_task_cdb[0]);
1199
1200 if (cmd->data_direction == DMA_TO_DEVICE) {
1201 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1202 pr_err_ratelimited("Rejecting underflow/overflow"
1203 " for WRITE data CDB\n");
1204 return TCM_INVALID_CDB_FIELD;
1205 }
1206 /*
1207 * Some fabric drivers like iscsi-target still expect to
1208 * always reject overflow writes. Reject this case until
1209 * full fabric driver level support for overflow writes
1210 * is introduced tree-wide.
1211 */
1212 if (size > cmd->data_length) {
1213 pr_err_ratelimited("Rejecting overflow for"
1214 " WRITE control CDB\n");
1215 return TCM_INVALID_CDB_FIELD;
1216 }
1217 }
1218 /*
1219 * Reject READ_* or WRITE_* with overflow/underflow for
1220 * type SCF_SCSI_DATA_CDB.
1221 */
1222 if (dev->dev_attrib.block_size != 512) {
1223 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1224 " CDB on non 512-byte sector setup subsystem"
1225 " plugin: %s\n", dev->transport->name);
1226 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1227 return TCM_INVALID_CDB_FIELD;
1228 }
1229 /*
1230 * For the overflow case keep the existing fabric provided
1231 * ->data_length. Otherwise for the underflow case, reset
1232 * ->data_length to the smaller SCSI expected data transfer
1233 * length.
1234 */
1235 if (size > cmd->data_length) {
1236 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1237 cmd->residual_count = (size - cmd->data_length);
1238 } else {
1239 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1240 cmd->residual_count = (cmd->data_length - size);
1241 cmd->data_length = size;
1242 }
1243 }
1244
1245 return target_check_max_data_sg_nents(cmd, dev, size);
1246
1247 }
1248
1249 /*
1250 * Used by fabric modules containing a local struct se_cmd within their
1251 * fabric dependent per I/O descriptor.
1252 *
1253 * Preserves the value of @cmd->tag.
1254 */
1255 void transport_init_se_cmd(
1256 struct se_cmd *cmd,
1257 const struct target_core_fabric_ops *tfo,
1258 struct se_session *se_sess,
1259 u32 data_length,
1260 int data_direction,
1261 int task_attr,
1262 unsigned char *sense_buffer)
1263 {
1264 INIT_LIST_HEAD(&cmd->se_delayed_node);
1265 INIT_LIST_HEAD(&cmd->se_qf_node);
1266 INIT_LIST_HEAD(&cmd->se_cmd_list);
1267 INIT_LIST_HEAD(&cmd->state_list);
1268 init_completion(&cmd->t_transport_stop_comp);
1269 init_completion(&cmd->cmd_wait_comp);
1270 spin_lock_init(&cmd->t_state_lock);
1271 INIT_WORK(&cmd->work, NULL);
1272 kref_init(&cmd->cmd_kref);
1273
1274 cmd->se_tfo = tfo;
1275 cmd->se_sess = se_sess;
1276 cmd->data_length = data_length;
1277 cmd->data_direction = data_direction;
1278 cmd->sam_task_attr = task_attr;
1279 cmd->sense_buffer = sense_buffer;
1280
1281 cmd->state_active = false;
1282 }
1283 EXPORT_SYMBOL(transport_init_se_cmd);
1284
1285 static sense_reason_t
1286 transport_check_alloc_task_attr(struct se_cmd *cmd)
1287 {
1288 struct se_device *dev = cmd->se_dev;
1289
1290 /*
1291 * Check if SAM Task Attribute emulation is enabled for this
1292 * struct se_device storage object
1293 */
1294 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1295 return 0;
1296
1297 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1298 pr_debug("SAM Task Attribute ACA"
1299 " emulation is not supported\n");
1300 return TCM_INVALID_CDB_FIELD;
1301 }
1302
1303 return 0;
1304 }
1305
1306 sense_reason_t
1307 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1308 {
1309 struct se_device *dev = cmd->se_dev;
1310 sense_reason_t ret;
1311
1312 /*
1313 * Ensure that the received CDB is less than the max (252 + 8) bytes
1314 * for VARIABLE_LENGTH_CMD
1315 */
1316 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1317 pr_err("Received SCSI CDB with command_size: %d that"
1318 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1319 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1320 return TCM_INVALID_CDB_FIELD;
1321 }
1322 /*
1323 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1324 * allocate the additional extended CDB buffer now.. Otherwise
1325 * setup the pointer from __t_task_cdb to t_task_cdb.
1326 */
1327 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1328 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1329 GFP_KERNEL);
1330 if (!cmd->t_task_cdb) {
1331 pr_err("Unable to allocate cmd->t_task_cdb"
1332 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1333 scsi_command_size(cdb),
1334 (unsigned long)sizeof(cmd->__t_task_cdb));
1335 return TCM_OUT_OF_RESOURCES;
1336 }
1337 } else
1338 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1339 /*
1340 * Copy the original CDB into cmd->
1341 */
1342 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1343
1344 trace_target_sequencer_start(cmd);
1345
1346 ret = dev->transport->parse_cdb(cmd);
1347 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1348 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1349 cmd->se_tfo->get_fabric_name(),
1350 cmd->se_sess->se_node_acl->initiatorname,
1351 cmd->t_task_cdb[0]);
1352 if (ret)
1353 return ret;
1354
1355 ret = transport_check_alloc_task_attr(cmd);
1356 if (ret)
1357 return ret;
1358
1359 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1360 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1361 return 0;
1362 }
1363 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1364
1365 /*
1366 * Used by fabric module frontends to queue tasks directly.
1367 * May only be used from process context.
1368 */
1369 int transport_handle_cdb_direct(
1370 struct se_cmd *cmd)
1371 {
1372 sense_reason_t ret;
1373
1374 if (!cmd->se_lun) {
1375 dump_stack();
1376 pr_err("cmd->se_lun is NULL\n");
1377 return -EINVAL;
1378 }
1379 if (in_interrupt()) {
1380 dump_stack();
1381 pr_err("transport_generic_handle_cdb cannot be called"
1382 " from interrupt context\n");
1383 return -EINVAL;
1384 }
1385 /*
1386 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1387 * outstanding descriptors are handled correctly during shutdown via
1388 * transport_wait_for_tasks()
1389 *
1390 * Also, we don't take cmd->t_state_lock here as we only expect
1391 * this to be called for initial descriptor submission.
1392 */
1393 cmd->t_state = TRANSPORT_NEW_CMD;
1394 cmd->transport_state |= CMD_T_ACTIVE;
1395
1396 /*
1397 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1398 * so follow TRANSPORT_NEW_CMD processing thread context usage
1399 * and call transport_generic_request_failure() if necessary..
1400 */
1401 ret = transport_generic_new_cmd(cmd);
1402 if (ret)
1403 transport_generic_request_failure(cmd, ret);
1404 return 0;
1405 }
1406 EXPORT_SYMBOL(transport_handle_cdb_direct);
1407
1408 sense_reason_t
1409 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1410 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1411 {
1412 if (!sgl || !sgl_count)
1413 return 0;
1414
1415 /*
1416 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1417 * scatterlists already have been set to follow what the fabric
1418 * passes for the original expected data transfer length.
1419 */
1420 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1421 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1422 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1423 return TCM_INVALID_CDB_FIELD;
1424 }
1425
1426 cmd->t_data_sg = sgl;
1427 cmd->t_data_nents = sgl_count;
1428 cmd->t_bidi_data_sg = sgl_bidi;
1429 cmd->t_bidi_data_nents = sgl_bidi_count;
1430
1431 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1432 return 0;
1433 }
1434
1435 /*
1436 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1437 * se_cmd + use pre-allocated SGL memory.
1438 *
1439 * @se_cmd: command descriptor to submit
1440 * @se_sess: associated se_sess for endpoint
1441 * @cdb: pointer to SCSI CDB
1442 * @sense: pointer to SCSI sense buffer
1443 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1444 * @data_length: fabric expected data transfer length
1445 * @task_addr: SAM task attribute
1446 * @data_dir: DMA data direction
1447 * @flags: flags for command submission from target_sc_flags_tables
1448 * @sgl: struct scatterlist memory for unidirectional mapping
1449 * @sgl_count: scatterlist count for unidirectional mapping
1450 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1451 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1452 * @sgl_prot: struct scatterlist memory protection information
1453 * @sgl_prot_count: scatterlist count for protection information
1454 *
1455 * Task tags are supported if the caller has set @se_cmd->tag.
1456 *
1457 * Returns non zero to signal active I/O shutdown failure. All other
1458 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1459 * but still return zero here.
1460 *
1461 * This may only be called from process context, and also currently
1462 * assumes internal allocation of fabric payload buffer by target-core.
1463 */
1464 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1465 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1466 u32 data_length, int task_attr, int data_dir, int flags,
1467 struct scatterlist *sgl, u32 sgl_count,
1468 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1469 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1470 {
1471 struct se_portal_group *se_tpg;
1472 sense_reason_t rc;
1473 int ret;
1474
1475 se_tpg = se_sess->se_tpg;
1476 BUG_ON(!se_tpg);
1477 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1478 BUG_ON(in_interrupt());
1479 /*
1480 * Initialize se_cmd for target operation. From this point
1481 * exceptions are handled by sending exception status via
1482 * target_core_fabric_ops->queue_status() callback
1483 */
1484 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1485 data_length, data_dir, task_attr, sense);
1486
1487 if (flags & TARGET_SCF_USE_CPUID)
1488 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1489 else
1490 se_cmd->cpuid = WORK_CPU_UNBOUND;
1491
1492 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1493 se_cmd->unknown_data_length = 1;
1494 /*
1495 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1496 * se_sess->sess_cmd_list. A second kref_get here is necessary
1497 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1498 * kref_put() to happen during fabric packet acknowledgement.
1499 */
1500 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1501 if (ret)
1502 return ret;
1503 /*
1504 * Signal bidirectional data payloads to target-core
1505 */
1506 if (flags & TARGET_SCF_BIDI_OP)
1507 se_cmd->se_cmd_flags |= SCF_BIDI;
1508 /*
1509 * Locate se_lun pointer and attach it to struct se_cmd
1510 */
1511 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1512 if (rc) {
1513 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1514 target_put_sess_cmd(se_cmd);
1515 return 0;
1516 }
1517
1518 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1519 if (rc != 0) {
1520 transport_generic_request_failure(se_cmd, rc);
1521 return 0;
1522 }
1523
1524 /*
1525 * Save pointers for SGLs containing protection information,
1526 * if present.
1527 */
1528 if (sgl_prot_count) {
1529 se_cmd->t_prot_sg = sgl_prot;
1530 se_cmd->t_prot_nents = sgl_prot_count;
1531 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1532 }
1533
1534 /*
1535 * When a non zero sgl_count has been passed perform SGL passthrough
1536 * mapping for pre-allocated fabric memory instead of having target
1537 * core perform an internal SGL allocation..
1538 */
1539 if (sgl_count != 0) {
1540 BUG_ON(!sgl);
1541
1542 /*
1543 * A work-around for tcm_loop as some userspace code via
1544 * scsi-generic do not memset their associated read buffers,
1545 * so go ahead and do that here for type non-data CDBs. Also
1546 * note that this is currently guaranteed to be a single SGL
1547 * for this case by target core in target_setup_cmd_from_cdb()
1548 * -> transport_generic_cmd_sequencer().
1549 */
1550 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1551 se_cmd->data_direction == DMA_FROM_DEVICE) {
1552 unsigned char *buf = NULL;
1553
1554 if (sgl)
1555 buf = kmap(sg_page(sgl)) + sgl->offset;
1556
1557 if (buf) {
1558 memset(buf, 0, sgl->length);
1559 kunmap(sg_page(sgl));
1560 }
1561 }
1562
1563 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1564 sgl_bidi, sgl_bidi_count);
1565 if (rc != 0) {
1566 transport_generic_request_failure(se_cmd, rc);
1567 return 0;
1568 }
1569 }
1570
1571 /*
1572 * Check if we need to delay processing because of ALUA
1573 * Active/NonOptimized primary access state..
1574 */
1575 core_alua_check_nonop_delay(se_cmd);
1576
1577 transport_handle_cdb_direct(se_cmd);
1578 return 0;
1579 }
1580 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1581
1582 /*
1583 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1584 *
1585 * @se_cmd: command descriptor to submit
1586 * @se_sess: associated se_sess for endpoint
1587 * @cdb: pointer to SCSI CDB
1588 * @sense: pointer to SCSI sense buffer
1589 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1590 * @data_length: fabric expected data transfer length
1591 * @task_addr: SAM task attribute
1592 * @data_dir: DMA data direction
1593 * @flags: flags for command submission from target_sc_flags_tables
1594 *
1595 * Task tags are supported if the caller has set @se_cmd->tag.
1596 *
1597 * Returns non zero to signal active I/O shutdown failure. All other
1598 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1599 * but still return zero here.
1600 *
1601 * This may only be called from process context, and also currently
1602 * assumes internal allocation of fabric payload buffer by target-core.
1603 *
1604 * It also assumes interal target core SGL memory allocation.
1605 */
1606 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1607 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1608 u32 data_length, int task_attr, int data_dir, int flags)
1609 {
1610 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1611 unpacked_lun, data_length, task_attr, data_dir,
1612 flags, NULL, 0, NULL, 0, NULL, 0);
1613 }
1614 EXPORT_SYMBOL(target_submit_cmd);
1615
1616 static void target_complete_tmr_failure(struct work_struct *work)
1617 {
1618 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1619
1620 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1621 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1622
1623 transport_lun_remove_cmd(se_cmd);
1624 transport_cmd_check_stop_to_fabric(se_cmd);
1625 }
1626
1627 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1628 u64 *unpacked_lun)
1629 {
1630 struct se_cmd *se_cmd;
1631 unsigned long flags;
1632 bool ret = false;
1633
1634 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1635 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1636 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1637 continue;
1638
1639 if (se_cmd->tag == tag) {
1640 *unpacked_lun = se_cmd->orig_fe_lun;
1641 ret = true;
1642 break;
1643 }
1644 }
1645 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1646
1647 return ret;
1648 }
1649
1650 /**
1651 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1652 * for TMR CDBs
1653 *
1654 * @se_cmd: command descriptor to submit
1655 * @se_sess: associated se_sess for endpoint
1656 * @sense: pointer to SCSI sense buffer
1657 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1658 * @fabric_context: fabric context for TMR req
1659 * @tm_type: Type of TM request
1660 * @gfp: gfp type for caller
1661 * @tag: referenced task tag for TMR_ABORT_TASK
1662 * @flags: submit cmd flags
1663 *
1664 * Callable from all contexts.
1665 **/
1666
1667 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1668 unsigned char *sense, u64 unpacked_lun,
1669 void *fabric_tmr_ptr, unsigned char tm_type,
1670 gfp_t gfp, u64 tag, int flags)
1671 {
1672 struct se_portal_group *se_tpg;
1673 int ret;
1674
1675 se_tpg = se_sess->se_tpg;
1676 BUG_ON(!se_tpg);
1677
1678 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1679 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1680 /*
1681 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1682 * allocation failure.
1683 */
1684 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1685 if (ret < 0)
1686 return -ENOMEM;
1687
1688 if (tm_type == TMR_ABORT_TASK)
1689 se_cmd->se_tmr_req->ref_task_tag = tag;
1690
1691 /* See target_submit_cmd for commentary */
1692 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1693 if (ret) {
1694 core_tmr_release_req(se_cmd->se_tmr_req);
1695 return ret;
1696 }
1697 /*
1698 * If this is ABORT_TASK with no explicit fabric provided LUN,
1699 * go ahead and search active session tags for a match to figure
1700 * out unpacked_lun for the original se_cmd.
1701 */
1702 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1703 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1704 goto failure;
1705 }
1706
1707 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1708 if (ret)
1709 goto failure;
1710
1711 transport_generic_handle_tmr(se_cmd);
1712 return 0;
1713
1714 /*
1715 * For callback during failure handling, push this work off
1716 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1717 */
1718 failure:
1719 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1720 schedule_work(&se_cmd->work);
1721 return 0;
1722 }
1723 EXPORT_SYMBOL(target_submit_tmr);
1724
1725 /*
1726 * Handle SAM-esque emulation for generic transport request failures.
1727 */
1728 void transport_generic_request_failure(struct se_cmd *cmd,
1729 sense_reason_t sense_reason)
1730 {
1731 int ret = 0, post_ret = 0;
1732
1733 if (transport_check_aborted_status(cmd, 1))
1734 return;
1735
1736 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1737 sense_reason);
1738 target_show_cmd("-----[ ", cmd);
1739
1740 /*
1741 * For SAM Task Attribute emulation for failed struct se_cmd
1742 */
1743 transport_complete_task_attr(cmd);
1744 /*
1745 * Handle special case for COMPARE_AND_WRITE failure, where the
1746 * callback is expected to drop the per device ->caw_sem.
1747 */
1748 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1749 cmd->transport_complete_callback)
1750 cmd->transport_complete_callback(cmd, false, &post_ret);
1751
1752 switch (sense_reason) {
1753 case TCM_NON_EXISTENT_LUN:
1754 case TCM_UNSUPPORTED_SCSI_OPCODE:
1755 case TCM_INVALID_CDB_FIELD:
1756 case TCM_INVALID_PARAMETER_LIST:
1757 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1758 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1759 case TCM_UNKNOWN_MODE_PAGE:
1760 case TCM_WRITE_PROTECTED:
1761 case TCM_ADDRESS_OUT_OF_RANGE:
1762 case TCM_CHECK_CONDITION_ABORT_CMD:
1763 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1764 case TCM_CHECK_CONDITION_NOT_READY:
1765 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1766 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1767 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1768 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1769 case TCM_TOO_MANY_TARGET_DESCS:
1770 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1771 case TCM_TOO_MANY_SEGMENT_DESCS:
1772 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1773 break;
1774 case TCM_OUT_OF_RESOURCES:
1775 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1776 break;
1777 case TCM_RESERVATION_CONFLICT:
1778 /*
1779 * No SENSE Data payload for this case, set SCSI Status
1780 * and queue the response to $FABRIC_MOD.
1781 *
1782 * Uses linux/include/scsi/scsi.h SAM status codes defs
1783 */
1784 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1785 /*
1786 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1787 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1788 * CONFLICT STATUS.
1789 *
1790 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1791 */
1792 if (cmd->se_sess &&
1793 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1794 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1795 cmd->orig_fe_lun, 0x2C,
1796 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1797 }
1798 trace_target_cmd_complete(cmd);
1799 ret = cmd->se_tfo->queue_status(cmd);
1800 if (ret)
1801 goto queue_full;
1802 goto check_stop;
1803 default:
1804 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1805 cmd->t_task_cdb[0], sense_reason);
1806 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1807 break;
1808 }
1809
1810 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1811 if (ret)
1812 goto queue_full;
1813
1814 check_stop:
1815 transport_lun_remove_cmd(cmd);
1816 transport_cmd_check_stop_to_fabric(cmd);
1817 return;
1818
1819 queue_full:
1820 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1821 }
1822 EXPORT_SYMBOL(transport_generic_request_failure);
1823
1824 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1825 {
1826 sense_reason_t ret;
1827
1828 if (!cmd->execute_cmd) {
1829 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1830 goto err;
1831 }
1832 if (do_checks) {
1833 /*
1834 * Check for an existing UNIT ATTENTION condition after
1835 * target_handle_task_attr() has done SAM task attr
1836 * checking, and possibly have already defered execution
1837 * out to target_restart_delayed_cmds() context.
1838 */
1839 ret = target_scsi3_ua_check(cmd);
1840 if (ret)
1841 goto err;
1842
1843 ret = target_alua_state_check(cmd);
1844 if (ret)
1845 goto err;
1846
1847 ret = target_check_reservation(cmd);
1848 if (ret) {
1849 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1850 goto err;
1851 }
1852 }
1853
1854 ret = cmd->execute_cmd(cmd);
1855 if (!ret)
1856 return;
1857 err:
1858 spin_lock_irq(&cmd->t_state_lock);
1859 cmd->transport_state &= ~CMD_T_SENT;
1860 spin_unlock_irq(&cmd->t_state_lock);
1861
1862 transport_generic_request_failure(cmd, ret);
1863 }
1864
1865 static int target_write_prot_action(struct se_cmd *cmd)
1866 {
1867 u32 sectors;
1868 /*
1869 * Perform WRITE_INSERT of PI using software emulation when backend
1870 * device has PI enabled, if the transport has not already generated
1871 * PI using hardware WRITE_INSERT offload.
1872 */
1873 switch (cmd->prot_op) {
1874 case TARGET_PROT_DOUT_INSERT:
1875 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1876 sbc_dif_generate(cmd);
1877 break;
1878 case TARGET_PROT_DOUT_STRIP:
1879 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1880 break;
1881
1882 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1883 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1884 sectors, 0, cmd->t_prot_sg, 0);
1885 if (unlikely(cmd->pi_err)) {
1886 spin_lock_irq(&cmd->t_state_lock);
1887 cmd->transport_state &= ~CMD_T_SENT;
1888 spin_unlock_irq(&cmd->t_state_lock);
1889 transport_generic_request_failure(cmd, cmd->pi_err);
1890 return -1;
1891 }
1892 break;
1893 default:
1894 break;
1895 }
1896
1897 return 0;
1898 }
1899
1900 static bool target_handle_task_attr(struct se_cmd *cmd)
1901 {
1902 struct se_device *dev = cmd->se_dev;
1903
1904 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1905 return false;
1906
1907 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1908
1909 /*
1910 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1911 * to allow the passed struct se_cmd list of tasks to the front of the list.
1912 */
1913 switch (cmd->sam_task_attr) {
1914 case TCM_HEAD_TAG:
1915 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1916 cmd->t_task_cdb[0]);
1917 return false;
1918 case TCM_ORDERED_TAG:
1919 atomic_inc_mb(&dev->dev_ordered_sync);
1920
1921 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1922 cmd->t_task_cdb[0]);
1923
1924 /*
1925 * Execute an ORDERED command if no other older commands
1926 * exist that need to be completed first.
1927 */
1928 if (!atomic_read(&dev->simple_cmds))
1929 return false;
1930 break;
1931 default:
1932 /*
1933 * For SIMPLE and UNTAGGED Task Attribute commands
1934 */
1935 atomic_inc_mb(&dev->simple_cmds);
1936 break;
1937 }
1938
1939 if (atomic_read(&dev->dev_ordered_sync) == 0)
1940 return false;
1941
1942 spin_lock(&dev->delayed_cmd_lock);
1943 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1944 spin_unlock(&dev->delayed_cmd_lock);
1945
1946 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1947 cmd->t_task_cdb[0], cmd->sam_task_attr);
1948 return true;
1949 }
1950
1951 static int __transport_check_aborted_status(struct se_cmd *, int);
1952
1953 void target_execute_cmd(struct se_cmd *cmd)
1954 {
1955 /*
1956 * Determine if frontend context caller is requesting the stopping of
1957 * this command for frontend exceptions.
1958 *
1959 * If the received CDB has aleady been aborted stop processing it here.
1960 */
1961 spin_lock_irq(&cmd->t_state_lock);
1962 if (__transport_check_aborted_status(cmd, 1)) {
1963 spin_unlock_irq(&cmd->t_state_lock);
1964 return;
1965 }
1966 if (cmd->transport_state & CMD_T_STOP) {
1967 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1968 __func__, __LINE__, cmd->tag);
1969
1970 spin_unlock_irq(&cmd->t_state_lock);
1971 complete_all(&cmd->t_transport_stop_comp);
1972 return;
1973 }
1974
1975 cmd->t_state = TRANSPORT_PROCESSING;
1976 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1977 spin_unlock_irq(&cmd->t_state_lock);
1978
1979 if (target_write_prot_action(cmd))
1980 return;
1981
1982 if (target_handle_task_attr(cmd)) {
1983 spin_lock_irq(&cmd->t_state_lock);
1984 cmd->transport_state &= ~CMD_T_SENT;
1985 spin_unlock_irq(&cmd->t_state_lock);
1986 return;
1987 }
1988
1989 __target_execute_cmd(cmd, true);
1990 }
1991 EXPORT_SYMBOL(target_execute_cmd);
1992
1993 /*
1994 * Process all commands up to the last received ORDERED task attribute which
1995 * requires another blocking boundary
1996 */
1997 static void target_restart_delayed_cmds(struct se_device *dev)
1998 {
1999 for (;;) {
2000 struct se_cmd *cmd;
2001
2002 spin_lock(&dev->delayed_cmd_lock);
2003 if (list_empty(&dev->delayed_cmd_list)) {
2004 spin_unlock(&dev->delayed_cmd_lock);
2005 break;
2006 }
2007
2008 cmd = list_entry(dev->delayed_cmd_list.next,
2009 struct se_cmd, se_delayed_node);
2010 list_del(&cmd->se_delayed_node);
2011 spin_unlock(&dev->delayed_cmd_lock);
2012
2013 __target_execute_cmd(cmd, true);
2014
2015 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2016 break;
2017 }
2018 }
2019
2020 /*
2021 * Called from I/O completion to determine which dormant/delayed
2022 * and ordered cmds need to have their tasks added to the execution queue.
2023 */
2024 static void transport_complete_task_attr(struct se_cmd *cmd)
2025 {
2026 struct se_device *dev = cmd->se_dev;
2027
2028 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2029 return;
2030
2031 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2032 goto restart;
2033
2034 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2035 atomic_dec_mb(&dev->simple_cmds);
2036 dev->dev_cur_ordered_id++;
2037 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2038 dev->dev_cur_ordered_id++;
2039 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2040 dev->dev_cur_ordered_id);
2041 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2042 atomic_dec_mb(&dev->dev_ordered_sync);
2043
2044 dev->dev_cur_ordered_id++;
2045 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2046 dev->dev_cur_ordered_id);
2047 }
2048 restart:
2049 target_restart_delayed_cmds(dev);
2050 }
2051
2052 static void transport_complete_qf(struct se_cmd *cmd)
2053 {
2054 int ret = 0;
2055
2056 transport_complete_task_attr(cmd);
2057 /*
2058 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2059 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2060 * the same callbacks should not be retried. Return CHECK_CONDITION
2061 * if a scsi_status is not already set.
2062 *
2063 * If a fabric driver ->queue_status() has returned non zero, always
2064 * keep retrying no matter what..
2065 */
2066 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2067 if (cmd->scsi_status)
2068 goto queue_status;
2069
2070 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2071 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2072 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2073 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2074 goto queue_status;
2075 }
2076
2077 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2078 goto queue_status;
2079
2080 switch (cmd->data_direction) {
2081 case DMA_FROM_DEVICE:
2082 if (cmd->scsi_status)
2083 goto queue_status;
2084
2085 trace_target_cmd_complete(cmd);
2086 ret = cmd->se_tfo->queue_data_in(cmd);
2087 break;
2088 case DMA_TO_DEVICE:
2089 if (cmd->se_cmd_flags & SCF_BIDI) {
2090 ret = cmd->se_tfo->queue_data_in(cmd);
2091 break;
2092 }
2093 /* Fall through for DMA_TO_DEVICE */
2094 case DMA_NONE:
2095 queue_status:
2096 trace_target_cmd_complete(cmd);
2097 ret = cmd->se_tfo->queue_status(cmd);
2098 break;
2099 default:
2100 break;
2101 }
2102
2103 if (ret < 0) {
2104 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2105 return;
2106 }
2107 transport_lun_remove_cmd(cmd);
2108 transport_cmd_check_stop_to_fabric(cmd);
2109 }
2110
2111 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2112 int err, bool write_pending)
2113 {
2114 /*
2115 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2116 * ->queue_data_in() callbacks from new process context.
2117 *
2118 * Otherwise for other errors, transport_complete_qf() will send
2119 * CHECK_CONDITION via ->queue_status() instead of attempting to
2120 * retry associated fabric driver data-transfer callbacks.
2121 */
2122 if (err == -EAGAIN || err == -ENOMEM) {
2123 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2124 TRANSPORT_COMPLETE_QF_OK;
2125 } else {
2126 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2127 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2128 }
2129
2130 spin_lock_irq(&dev->qf_cmd_lock);
2131 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2132 atomic_inc_mb(&dev->dev_qf_count);
2133 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2134
2135 schedule_work(&cmd->se_dev->qf_work_queue);
2136 }
2137
2138 static bool target_read_prot_action(struct se_cmd *cmd)
2139 {
2140 switch (cmd->prot_op) {
2141 case TARGET_PROT_DIN_STRIP:
2142 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2143 u32 sectors = cmd->data_length >>
2144 ilog2(cmd->se_dev->dev_attrib.block_size);
2145
2146 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2147 sectors, 0, cmd->t_prot_sg,
2148 0);
2149 if (cmd->pi_err)
2150 return true;
2151 }
2152 break;
2153 case TARGET_PROT_DIN_INSERT:
2154 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2155 break;
2156
2157 sbc_dif_generate(cmd);
2158 break;
2159 default:
2160 break;
2161 }
2162
2163 return false;
2164 }
2165
2166 static void target_complete_ok_work(struct work_struct *work)
2167 {
2168 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2169 int ret;
2170
2171 /*
2172 * Check if we need to move delayed/dormant tasks from cmds on the
2173 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2174 * Attribute.
2175 */
2176 transport_complete_task_attr(cmd);
2177
2178 /*
2179 * Check to schedule QUEUE_FULL work, or execute an existing
2180 * cmd->transport_qf_callback()
2181 */
2182 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2183 schedule_work(&cmd->se_dev->qf_work_queue);
2184
2185 /*
2186 * Check if we need to send a sense buffer from
2187 * the struct se_cmd in question.
2188 */
2189 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2190 WARN_ON(!cmd->scsi_status);
2191 ret = transport_send_check_condition_and_sense(
2192 cmd, 0, 1);
2193 if (ret)
2194 goto queue_full;
2195
2196 transport_lun_remove_cmd(cmd);
2197 transport_cmd_check_stop_to_fabric(cmd);
2198 return;
2199 }
2200 /*
2201 * Check for a callback, used by amongst other things
2202 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2203 */
2204 if (cmd->transport_complete_callback) {
2205 sense_reason_t rc;
2206 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2207 bool zero_dl = !(cmd->data_length);
2208 int post_ret = 0;
2209
2210 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2211 if (!rc && !post_ret) {
2212 if (caw && zero_dl)
2213 goto queue_rsp;
2214
2215 return;
2216 } else if (rc) {
2217 ret = transport_send_check_condition_and_sense(cmd,
2218 rc, 0);
2219 if (ret)
2220 goto queue_full;
2221
2222 transport_lun_remove_cmd(cmd);
2223 transport_cmd_check_stop_to_fabric(cmd);
2224 return;
2225 }
2226 }
2227
2228 queue_rsp:
2229 switch (cmd->data_direction) {
2230 case DMA_FROM_DEVICE:
2231 if (cmd->scsi_status)
2232 goto queue_status;
2233
2234 atomic_long_add(cmd->data_length,
2235 &cmd->se_lun->lun_stats.tx_data_octets);
2236 /*
2237 * Perform READ_STRIP of PI using software emulation when
2238 * backend had PI enabled, if the transport will not be
2239 * performing hardware READ_STRIP offload.
2240 */
2241 if (target_read_prot_action(cmd)) {
2242 ret = transport_send_check_condition_and_sense(cmd,
2243 cmd->pi_err, 0);
2244 if (ret)
2245 goto queue_full;
2246
2247 transport_lun_remove_cmd(cmd);
2248 transport_cmd_check_stop_to_fabric(cmd);
2249 return;
2250 }
2251
2252 trace_target_cmd_complete(cmd);
2253 ret = cmd->se_tfo->queue_data_in(cmd);
2254 if (ret)
2255 goto queue_full;
2256 break;
2257 case DMA_TO_DEVICE:
2258 atomic_long_add(cmd->data_length,
2259 &cmd->se_lun->lun_stats.rx_data_octets);
2260 /*
2261 * Check if we need to send READ payload for BIDI-COMMAND
2262 */
2263 if (cmd->se_cmd_flags & SCF_BIDI) {
2264 atomic_long_add(cmd->data_length,
2265 &cmd->se_lun->lun_stats.tx_data_octets);
2266 ret = cmd->se_tfo->queue_data_in(cmd);
2267 if (ret)
2268 goto queue_full;
2269 break;
2270 }
2271 /* Fall through for DMA_TO_DEVICE */
2272 case DMA_NONE:
2273 queue_status:
2274 trace_target_cmd_complete(cmd);
2275 ret = cmd->se_tfo->queue_status(cmd);
2276 if (ret)
2277 goto queue_full;
2278 break;
2279 default:
2280 break;
2281 }
2282
2283 transport_lun_remove_cmd(cmd);
2284 transport_cmd_check_stop_to_fabric(cmd);
2285 return;
2286
2287 queue_full:
2288 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2289 " data_direction: %d\n", cmd, cmd->data_direction);
2290
2291 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2292 }
2293
2294 void target_free_sgl(struct scatterlist *sgl, int nents)
2295 {
2296 struct scatterlist *sg;
2297 int count;
2298
2299 for_each_sg(sgl, sg, nents, count)
2300 __free_page(sg_page(sg));
2301
2302 kfree(sgl);
2303 }
2304 EXPORT_SYMBOL(target_free_sgl);
2305
2306 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2307 {
2308 /*
2309 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2310 * emulation, and free + reset pointers if necessary..
2311 */
2312 if (!cmd->t_data_sg_orig)
2313 return;
2314
2315 kfree(cmd->t_data_sg);
2316 cmd->t_data_sg = cmd->t_data_sg_orig;
2317 cmd->t_data_sg_orig = NULL;
2318 cmd->t_data_nents = cmd->t_data_nents_orig;
2319 cmd->t_data_nents_orig = 0;
2320 }
2321
2322 static inline void transport_free_pages(struct se_cmd *cmd)
2323 {
2324 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2325 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2326 cmd->t_prot_sg = NULL;
2327 cmd->t_prot_nents = 0;
2328 }
2329
2330 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2331 /*
2332 * Release special case READ buffer payload required for
2333 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2334 */
2335 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2336 target_free_sgl(cmd->t_bidi_data_sg,
2337 cmd->t_bidi_data_nents);
2338 cmd->t_bidi_data_sg = NULL;
2339 cmd->t_bidi_data_nents = 0;
2340 }
2341 transport_reset_sgl_orig(cmd);
2342 return;
2343 }
2344 transport_reset_sgl_orig(cmd);
2345
2346 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2347 cmd->t_data_sg = NULL;
2348 cmd->t_data_nents = 0;
2349
2350 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2351 cmd->t_bidi_data_sg = NULL;
2352 cmd->t_bidi_data_nents = 0;
2353 }
2354
2355 /**
2356 * transport_put_cmd - release a reference to a command
2357 * @cmd: command to release
2358 *
2359 * This routine releases our reference to the command and frees it if possible.
2360 */
2361 static int transport_put_cmd(struct se_cmd *cmd)
2362 {
2363 BUG_ON(!cmd->se_tfo);
2364 /*
2365 * If this cmd has been setup with target_get_sess_cmd(), drop
2366 * the kref and call ->release_cmd() in kref callback.
2367 */
2368 return target_put_sess_cmd(cmd);
2369 }
2370
2371 void *transport_kmap_data_sg(struct se_cmd *cmd)
2372 {
2373 struct scatterlist *sg = cmd->t_data_sg;
2374 struct page **pages;
2375 int i;
2376
2377 /*
2378 * We need to take into account a possible offset here for fabrics like
2379 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2380 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2381 */
2382 if (!cmd->t_data_nents)
2383 return NULL;
2384
2385 BUG_ON(!sg);
2386 if (cmd->t_data_nents == 1)
2387 return kmap(sg_page(sg)) + sg->offset;
2388
2389 /* >1 page. use vmap */
2390 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2391 if (!pages)
2392 return NULL;
2393
2394 /* convert sg[] to pages[] */
2395 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2396 pages[i] = sg_page(sg);
2397 }
2398
2399 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2400 kfree(pages);
2401 if (!cmd->t_data_vmap)
2402 return NULL;
2403
2404 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2405 }
2406 EXPORT_SYMBOL(transport_kmap_data_sg);
2407
2408 void transport_kunmap_data_sg(struct se_cmd *cmd)
2409 {
2410 if (!cmd->t_data_nents) {
2411 return;
2412 } else if (cmd->t_data_nents == 1) {
2413 kunmap(sg_page(cmd->t_data_sg));
2414 return;
2415 }
2416
2417 vunmap(cmd->t_data_vmap);
2418 cmd->t_data_vmap = NULL;
2419 }
2420 EXPORT_SYMBOL(transport_kunmap_data_sg);
2421
2422 int
2423 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2424 bool zero_page, bool chainable)
2425 {
2426 struct scatterlist *sg;
2427 struct page *page;
2428 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2429 unsigned int nalloc, nent;
2430 int i = 0;
2431
2432 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2433 if (chainable)
2434 nalloc++;
2435 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2436 if (!sg)
2437 return -ENOMEM;
2438
2439 sg_init_table(sg, nalloc);
2440
2441 while (length) {
2442 u32 page_len = min_t(u32, length, PAGE_SIZE);
2443 page = alloc_page(GFP_KERNEL | zero_flag);
2444 if (!page)
2445 goto out;
2446
2447 sg_set_page(&sg[i], page, page_len, 0);
2448 length -= page_len;
2449 i++;
2450 }
2451 *sgl = sg;
2452 *nents = nent;
2453 return 0;
2454
2455 out:
2456 while (i > 0) {
2457 i--;
2458 __free_page(sg_page(&sg[i]));
2459 }
2460 kfree(sg);
2461 return -ENOMEM;
2462 }
2463 EXPORT_SYMBOL(target_alloc_sgl);
2464
2465 /*
2466 * Allocate any required resources to execute the command. For writes we
2467 * might not have the payload yet, so notify the fabric via a call to
2468 * ->write_pending instead. Otherwise place it on the execution queue.
2469 */
2470 sense_reason_t
2471 transport_generic_new_cmd(struct se_cmd *cmd)
2472 {
2473 unsigned long flags;
2474 int ret = 0;
2475 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2476
2477 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2478 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2479 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2480 cmd->prot_length, true, false);
2481 if (ret < 0)
2482 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2483 }
2484
2485 /*
2486 * Determine is the TCM fabric module has already allocated physical
2487 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2488 * beforehand.
2489 */
2490 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2491 cmd->data_length) {
2492
2493 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2494 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2495 u32 bidi_length;
2496
2497 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2498 bidi_length = cmd->t_task_nolb *
2499 cmd->se_dev->dev_attrib.block_size;
2500 else
2501 bidi_length = cmd->data_length;
2502
2503 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2504 &cmd->t_bidi_data_nents,
2505 bidi_length, zero_flag, false);
2506 if (ret < 0)
2507 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2508 }
2509
2510 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2511 cmd->data_length, zero_flag, false);
2512 if (ret < 0)
2513 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2514 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2515 cmd->data_length) {
2516 /*
2517 * Special case for COMPARE_AND_WRITE with fabrics
2518 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2519 */
2520 u32 caw_length = cmd->t_task_nolb *
2521 cmd->se_dev->dev_attrib.block_size;
2522
2523 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2524 &cmd->t_bidi_data_nents,
2525 caw_length, zero_flag, false);
2526 if (ret < 0)
2527 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2528 }
2529 /*
2530 * If this command is not a write we can execute it right here,
2531 * for write buffers we need to notify the fabric driver first
2532 * and let it call back once the write buffers are ready.
2533 */
2534 target_add_to_state_list(cmd);
2535 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2536 target_execute_cmd(cmd);
2537 return 0;
2538 }
2539
2540 spin_lock_irqsave(&cmd->t_state_lock, flags);
2541 cmd->t_state = TRANSPORT_WRITE_PENDING;
2542 /*
2543 * Determine if frontend context caller is requesting the stopping of
2544 * this command for frontend exceptions.
2545 */
2546 if (cmd->transport_state & CMD_T_STOP) {
2547 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2548 __func__, __LINE__, cmd->tag);
2549
2550 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2551
2552 complete_all(&cmd->t_transport_stop_comp);
2553 return 0;
2554 }
2555 cmd->transport_state &= ~CMD_T_ACTIVE;
2556 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2557
2558 ret = cmd->se_tfo->write_pending(cmd);
2559 if (ret)
2560 goto queue_full;
2561
2562 return 0;
2563
2564 queue_full:
2565 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2566 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2567 return 0;
2568 }
2569 EXPORT_SYMBOL(transport_generic_new_cmd);
2570
2571 static void transport_write_pending_qf(struct se_cmd *cmd)
2572 {
2573 int ret;
2574
2575 ret = cmd->se_tfo->write_pending(cmd);
2576 if (ret) {
2577 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2578 cmd);
2579 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2580 }
2581 }
2582
2583 static bool
2584 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2585 unsigned long *flags);
2586
2587 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2588 {
2589 unsigned long flags;
2590
2591 spin_lock_irqsave(&cmd->t_state_lock, flags);
2592 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2593 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2594 }
2595
2596 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2597 {
2598 int ret = 0;
2599 bool aborted = false, tas = false;
2600
2601 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2602 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2603 target_wait_free_cmd(cmd, &aborted, &tas);
2604
2605 if (!aborted || tas)
2606 ret = transport_put_cmd(cmd);
2607 } else {
2608 if (wait_for_tasks)
2609 target_wait_free_cmd(cmd, &aborted, &tas);
2610 /*
2611 * Handle WRITE failure case where transport_generic_new_cmd()
2612 * has already added se_cmd to state_list, but fabric has
2613 * failed command before I/O submission.
2614 */
2615 if (cmd->state_active)
2616 target_remove_from_state_list(cmd);
2617
2618 if (cmd->se_lun)
2619 transport_lun_remove_cmd(cmd);
2620
2621 if (!aborted || tas)
2622 ret = transport_put_cmd(cmd);
2623 }
2624 /*
2625 * If the task has been internally aborted due to TMR ABORT_TASK
2626 * or LUN_RESET, target_core_tmr.c is responsible for performing
2627 * the remaining calls to target_put_sess_cmd(), and not the
2628 * callers of this function.
2629 */
2630 if (aborted) {
2631 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2632 wait_for_completion(&cmd->cmd_wait_comp);
2633 cmd->se_tfo->release_cmd(cmd);
2634 ret = 1;
2635 }
2636 return ret;
2637 }
2638 EXPORT_SYMBOL(transport_generic_free_cmd);
2639
2640 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2641 * @se_cmd: command descriptor to add
2642 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2643 */
2644 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2645 {
2646 struct se_session *se_sess = se_cmd->se_sess;
2647 unsigned long flags;
2648 int ret = 0;
2649
2650 /*
2651 * Add a second kref if the fabric caller is expecting to handle
2652 * fabric acknowledgement that requires two target_put_sess_cmd()
2653 * invocations before se_cmd descriptor release.
2654 */
2655 if (ack_kref) {
2656 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2657 return -EINVAL;
2658
2659 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2660 }
2661
2662 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2663 if (se_sess->sess_tearing_down) {
2664 ret = -ESHUTDOWN;
2665 goto out;
2666 }
2667 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2668 out:
2669 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2670
2671 if (ret && ack_kref)
2672 target_put_sess_cmd(se_cmd);
2673
2674 return ret;
2675 }
2676 EXPORT_SYMBOL(target_get_sess_cmd);
2677
2678 static void target_free_cmd_mem(struct se_cmd *cmd)
2679 {
2680 transport_free_pages(cmd);
2681
2682 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2683 core_tmr_release_req(cmd->se_tmr_req);
2684 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2685 kfree(cmd->t_task_cdb);
2686 }
2687
2688 static void target_release_cmd_kref(struct kref *kref)
2689 {
2690 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2691 struct se_session *se_sess = se_cmd->se_sess;
2692 unsigned long flags;
2693 bool fabric_stop;
2694
2695 if (se_sess) {
2696 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2697
2698 spin_lock(&se_cmd->t_state_lock);
2699 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2700 (se_cmd->transport_state & CMD_T_ABORTED);
2701 spin_unlock(&se_cmd->t_state_lock);
2702
2703 if (se_cmd->cmd_wait_set || fabric_stop) {
2704 list_del_init(&se_cmd->se_cmd_list);
2705 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2706 target_free_cmd_mem(se_cmd);
2707 complete(&se_cmd->cmd_wait_comp);
2708 return;
2709 }
2710 list_del_init(&se_cmd->se_cmd_list);
2711 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2712 }
2713
2714 target_free_cmd_mem(se_cmd);
2715 se_cmd->se_tfo->release_cmd(se_cmd);
2716 }
2717
2718 /**
2719 * target_put_sess_cmd - decrease the command reference count
2720 * @se_cmd: command to drop a reference from
2721 *
2722 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2723 * refcount to drop to zero. Returns zero otherwise.
2724 */
2725 int target_put_sess_cmd(struct se_cmd *se_cmd)
2726 {
2727 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2728 }
2729 EXPORT_SYMBOL(target_put_sess_cmd);
2730
2731 static const char *data_dir_name(enum dma_data_direction d)
2732 {
2733 switch (d) {
2734 case DMA_BIDIRECTIONAL: return "BIDI";
2735 case DMA_TO_DEVICE: return "WRITE";
2736 case DMA_FROM_DEVICE: return "READ";
2737 case DMA_NONE: return "NONE";
2738 }
2739
2740 return "(?)";
2741 }
2742
2743 static const char *cmd_state_name(enum transport_state_table t)
2744 {
2745 switch (t) {
2746 case TRANSPORT_NO_STATE: return "NO_STATE";
2747 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2748 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2749 case TRANSPORT_PROCESSING: return "PROCESSING";
2750 case TRANSPORT_COMPLETE: return "COMPLETE";
2751 case TRANSPORT_ISTATE_PROCESSING:
2752 return "ISTATE_PROCESSING";
2753 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2754 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2755 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2756 }
2757
2758 return "(?)";
2759 }
2760
2761 static void target_append_str(char **str, const char *txt)
2762 {
2763 char *prev = *str;
2764
2765 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2766 kstrdup(txt, GFP_ATOMIC);
2767 kfree(prev);
2768 }
2769
2770 /*
2771 * Convert a transport state bitmask into a string. The caller is
2772 * responsible for freeing the returned pointer.
2773 */
2774 static char *target_ts_to_str(u32 ts)
2775 {
2776 char *str = NULL;
2777
2778 if (ts & CMD_T_ABORTED)
2779 target_append_str(&str, "aborted");
2780 if (ts & CMD_T_ACTIVE)
2781 target_append_str(&str, "active");
2782 if (ts & CMD_T_COMPLETE)
2783 target_append_str(&str, "complete");
2784 if (ts & CMD_T_SENT)
2785 target_append_str(&str, "sent");
2786 if (ts & CMD_T_STOP)
2787 target_append_str(&str, "stop");
2788 if (ts & CMD_T_FABRIC_STOP)
2789 target_append_str(&str, "fabric_stop");
2790
2791 return str;
2792 }
2793
2794 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2795 {
2796 switch (tmf) {
2797 case TMR_ABORT_TASK: return "ABORT_TASK";
2798 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2799 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2800 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2801 case TMR_LUN_RESET: return "LUN_RESET";
2802 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2803 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2804 case TMR_UNKNOWN: break;
2805 }
2806 return "(?)";
2807 }
2808
2809 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2810 {
2811 char *ts_str = target_ts_to_str(cmd->transport_state);
2812 const u8 *cdb = cmd->t_task_cdb;
2813 struct se_tmr_req *tmf = cmd->se_tmr_req;
2814
2815 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2816 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2817 pfx, cdb[0], cdb[1], cmd->tag,
2818 data_dir_name(cmd->data_direction),
2819 cmd->se_tfo->get_cmd_state(cmd),
2820 cmd_state_name(cmd->t_state), cmd->data_length,
2821 kref_read(&cmd->cmd_kref), ts_str);
2822 } else {
2823 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2824 pfx, target_tmf_name(tmf->function), cmd->tag,
2825 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2826 cmd_state_name(cmd->t_state),
2827 kref_read(&cmd->cmd_kref), ts_str);
2828 }
2829 kfree(ts_str);
2830 }
2831 EXPORT_SYMBOL(target_show_cmd);
2832
2833 /* target_sess_cmd_list_set_waiting - Flag all commands in
2834 * sess_cmd_list to complete cmd_wait_comp. Set
2835 * sess_tearing_down so no more commands are queued.
2836 * @se_sess: session to flag
2837 */
2838 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2839 {
2840 struct se_cmd *se_cmd, *tmp_cmd;
2841 unsigned long flags;
2842 int rc;
2843
2844 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2845 if (se_sess->sess_tearing_down) {
2846 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2847 return;
2848 }
2849 se_sess->sess_tearing_down = 1;
2850 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2851
2852 list_for_each_entry_safe(se_cmd, tmp_cmd,
2853 &se_sess->sess_wait_list, se_cmd_list) {
2854 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2855 if (rc) {
2856 se_cmd->cmd_wait_set = 1;
2857 spin_lock(&se_cmd->t_state_lock);
2858 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2859 spin_unlock(&se_cmd->t_state_lock);
2860 } else
2861 list_del_init(&se_cmd->se_cmd_list);
2862 }
2863
2864 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2865 }
2866 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2867
2868 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2869 * @se_sess: session to wait for active I/O
2870 */
2871 void target_wait_for_sess_cmds(struct se_session *se_sess)
2872 {
2873 struct se_cmd *se_cmd, *tmp_cmd;
2874 unsigned long flags;
2875 bool tas;
2876
2877 list_for_each_entry_safe(se_cmd, tmp_cmd,
2878 &se_sess->sess_wait_list, se_cmd_list) {
2879 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2880 " %d\n", se_cmd, se_cmd->t_state,
2881 se_cmd->se_tfo->get_cmd_state(se_cmd));
2882
2883 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2884 tas = (se_cmd->transport_state & CMD_T_TAS);
2885 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2886
2887 if (!target_put_sess_cmd(se_cmd)) {
2888 if (tas)
2889 target_put_sess_cmd(se_cmd);
2890 }
2891
2892 wait_for_completion(&se_cmd->cmd_wait_comp);
2893 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2894 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2895 se_cmd->se_tfo->get_cmd_state(se_cmd));
2896
2897 se_cmd->se_tfo->release_cmd(se_cmd);
2898 }
2899
2900 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2901 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2902 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2903
2904 }
2905 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2906
2907 static void target_lun_confirm(struct percpu_ref *ref)
2908 {
2909 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2910
2911 complete(&lun->lun_ref_comp);
2912 }
2913
2914 void transport_clear_lun_ref(struct se_lun *lun)
2915 {
2916 /*
2917 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2918 * the initial reference and schedule confirm kill to be
2919 * executed after one full RCU grace period has completed.
2920 */
2921 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2922 /*
2923 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2924 * to call target_lun_confirm after lun->lun_ref has been marked
2925 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2926 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2927 * fails for all new incoming I/O.
2928 */
2929 wait_for_completion(&lun->lun_ref_comp);
2930 /*
2931 * The second completion waits for percpu_ref_put_many() to
2932 * invoke ->release() after lun->lun_ref has switched to
2933 * atomic_t mode, and lun->lun_ref.count has reached zero.
2934 *
2935 * At this point all target-core lun->lun_ref references have
2936 * been dropped via transport_lun_remove_cmd(), and it's safe
2937 * to proceed with the remaining LUN shutdown.
2938 */
2939 wait_for_completion(&lun->lun_shutdown_comp);
2940 }
2941
2942 static bool
2943 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2944 bool *aborted, bool *tas, unsigned long *flags)
2945 __releases(&cmd->t_state_lock)
2946 __acquires(&cmd->t_state_lock)
2947 {
2948
2949 assert_spin_locked(&cmd->t_state_lock);
2950 WARN_ON_ONCE(!irqs_disabled());
2951
2952 if (fabric_stop)
2953 cmd->transport_state |= CMD_T_FABRIC_STOP;
2954
2955 if (cmd->transport_state & CMD_T_ABORTED)
2956 *aborted = true;
2957
2958 if (cmd->transport_state & CMD_T_TAS)
2959 *tas = true;
2960
2961 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2962 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2963 return false;
2964
2965 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2966 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2967 return false;
2968
2969 if (!(cmd->transport_state & CMD_T_ACTIVE))
2970 return false;
2971
2972 if (fabric_stop && *aborted)
2973 return false;
2974
2975 cmd->transport_state |= CMD_T_STOP;
2976
2977 target_show_cmd("wait_for_tasks: Stopping ", cmd);
2978
2979 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2980
2981 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
2982 180 * HZ))
2983 target_show_cmd("wait for tasks: ", cmd);
2984
2985 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2986 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2987
2988 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2989 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2990
2991 return true;
2992 }
2993
2994 /**
2995 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2996 * @cmd: command to wait on
2997 */
2998 bool transport_wait_for_tasks(struct se_cmd *cmd)
2999 {
3000 unsigned long flags;
3001 bool ret, aborted = false, tas = false;
3002
3003 spin_lock_irqsave(&cmd->t_state_lock, flags);
3004 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3005 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3006
3007 return ret;
3008 }
3009 EXPORT_SYMBOL(transport_wait_for_tasks);
3010
3011 struct sense_info {
3012 u8 key;
3013 u8 asc;
3014 u8 ascq;
3015 bool add_sector_info;
3016 };
3017
3018 static const struct sense_info sense_info_table[] = {
3019 [TCM_NO_SENSE] = {
3020 .key = NOT_READY
3021 },
3022 [TCM_NON_EXISTENT_LUN] = {
3023 .key = ILLEGAL_REQUEST,
3024 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3025 },
3026 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3027 .key = ILLEGAL_REQUEST,
3028 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3029 },
3030 [TCM_SECTOR_COUNT_TOO_MANY] = {
3031 .key = ILLEGAL_REQUEST,
3032 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3033 },
3034 [TCM_UNKNOWN_MODE_PAGE] = {
3035 .key = ILLEGAL_REQUEST,
3036 .asc = 0x24, /* INVALID FIELD IN CDB */
3037 },
3038 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3039 .key = ABORTED_COMMAND,
3040 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3041 .ascq = 0x03,
3042 },
3043 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3044 .key = ABORTED_COMMAND,
3045 .asc = 0x0c, /* WRITE ERROR */
3046 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3047 },
3048 [TCM_INVALID_CDB_FIELD] = {
3049 .key = ILLEGAL_REQUEST,
3050 .asc = 0x24, /* INVALID FIELD IN CDB */
3051 },
3052 [TCM_INVALID_PARAMETER_LIST] = {
3053 .key = ILLEGAL_REQUEST,
3054 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3055 },
3056 [TCM_TOO_MANY_TARGET_DESCS] = {
3057 .key = ILLEGAL_REQUEST,
3058 .asc = 0x26,
3059 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3060 },
3061 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3062 .key = ILLEGAL_REQUEST,
3063 .asc = 0x26,
3064 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3065 },
3066 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3067 .key = ILLEGAL_REQUEST,
3068 .asc = 0x26,
3069 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3070 },
3071 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3072 .key = ILLEGAL_REQUEST,
3073 .asc = 0x26,
3074 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3075 },
3076 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3077 .key = ILLEGAL_REQUEST,
3078 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3079 },
3080 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3081 .key = ILLEGAL_REQUEST,
3082 .asc = 0x0c, /* WRITE ERROR */
3083 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3084 },
3085 [TCM_SERVICE_CRC_ERROR] = {
3086 .key = ABORTED_COMMAND,
3087 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3088 .ascq = 0x05, /* N/A */
3089 },
3090 [TCM_SNACK_REJECTED] = {
3091 .key = ABORTED_COMMAND,
3092 .asc = 0x11, /* READ ERROR */
3093 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3094 },
3095 [TCM_WRITE_PROTECTED] = {
3096 .key = DATA_PROTECT,
3097 .asc = 0x27, /* WRITE PROTECTED */
3098 },
3099 [TCM_ADDRESS_OUT_OF_RANGE] = {
3100 .key = ILLEGAL_REQUEST,
3101 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3102 },
3103 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3104 .key = UNIT_ATTENTION,
3105 },
3106 [TCM_CHECK_CONDITION_NOT_READY] = {
3107 .key = NOT_READY,
3108 },
3109 [TCM_MISCOMPARE_VERIFY] = {
3110 .key = MISCOMPARE,
3111 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3112 .ascq = 0x00,
3113 },
3114 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3115 .key = ABORTED_COMMAND,
3116 .asc = 0x10,
3117 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3118 .add_sector_info = true,
3119 },
3120 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3121 .key = ABORTED_COMMAND,
3122 .asc = 0x10,
3123 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3124 .add_sector_info = true,
3125 },
3126 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3127 .key = ABORTED_COMMAND,
3128 .asc = 0x10,
3129 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3130 .add_sector_info = true,
3131 },
3132 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3133 .key = COPY_ABORTED,
3134 .asc = 0x0d,
3135 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3136
3137 },
3138 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3139 /*
3140 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3141 * Solaris initiators. Returning NOT READY instead means the
3142 * operations will be retried a finite number of times and we
3143 * can survive intermittent errors.
3144 */
3145 .key = NOT_READY,
3146 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3147 },
3148 };
3149
3150 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3151 {
3152 const struct sense_info *si;
3153 u8 *buffer = cmd->sense_buffer;
3154 int r = (__force int)reason;
3155 u8 asc, ascq;
3156 bool desc_format = target_sense_desc_format(cmd->se_dev);
3157
3158 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3159 si = &sense_info_table[r];
3160 else
3161 si = &sense_info_table[(__force int)
3162 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3163
3164 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3165 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3166 WARN_ON_ONCE(asc == 0);
3167 } else if (si->asc == 0) {
3168 WARN_ON_ONCE(cmd->scsi_asc == 0);
3169 asc = cmd->scsi_asc;
3170 ascq = cmd->scsi_ascq;
3171 } else {
3172 asc = si->asc;
3173 ascq = si->ascq;
3174 }
3175
3176 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3177 if (si->add_sector_info)
3178 return scsi_set_sense_information(buffer,
3179 cmd->scsi_sense_length,
3180 cmd->bad_sector);
3181
3182 return 0;
3183 }
3184
3185 int
3186 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3187 sense_reason_t reason, int from_transport)
3188 {
3189 unsigned long flags;
3190
3191 spin_lock_irqsave(&cmd->t_state_lock, flags);
3192 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3193 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3194 return 0;
3195 }
3196 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3197 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3198
3199 if (!from_transport) {
3200 int rc;
3201
3202 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3203 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3204 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3205 rc = translate_sense_reason(cmd, reason);
3206 if (rc)
3207 return rc;
3208 }
3209
3210 trace_target_cmd_complete(cmd);
3211 return cmd->se_tfo->queue_status(cmd);
3212 }
3213 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3214
3215 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3216 __releases(&cmd->t_state_lock)
3217 __acquires(&cmd->t_state_lock)
3218 {
3219 int ret;
3220
3221 assert_spin_locked(&cmd->t_state_lock);
3222 WARN_ON_ONCE(!irqs_disabled());
3223
3224 if (!(cmd->transport_state & CMD_T_ABORTED))
3225 return 0;
3226 /*
3227 * If cmd has been aborted but either no status is to be sent or it has
3228 * already been sent, just return
3229 */
3230 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3231 if (send_status)
3232 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3233 return 1;
3234 }
3235
3236 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3237 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3238
3239 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3240 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3241 trace_target_cmd_complete(cmd);
3242
3243 spin_unlock_irq(&cmd->t_state_lock);
3244 ret = cmd->se_tfo->queue_status(cmd);
3245 if (ret)
3246 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3247 spin_lock_irq(&cmd->t_state_lock);
3248
3249 return 1;
3250 }
3251
3252 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3253 {
3254 int ret;
3255
3256 spin_lock_irq(&cmd->t_state_lock);
3257 ret = __transport_check_aborted_status(cmd, send_status);
3258 spin_unlock_irq(&cmd->t_state_lock);
3259
3260 return ret;
3261 }
3262 EXPORT_SYMBOL(transport_check_aborted_status);
3263
3264 void transport_send_task_abort(struct se_cmd *cmd)
3265 {
3266 unsigned long flags;
3267 int ret;
3268
3269 spin_lock_irqsave(&cmd->t_state_lock, flags);
3270 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3271 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3272 return;
3273 }
3274 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3275
3276 /*
3277 * If there are still expected incoming fabric WRITEs, we wait
3278 * until until they have completed before sending a TASK_ABORTED
3279 * response. This response with TASK_ABORTED status will be
3280 * queued back to fabric module by transport_check_aborted_status().
3281 */
3282 if (cmd->data_direction == DMA_TO_DEVICE) {
3283 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3284 spin_lock_irqsave(&cmd->t_state_lock, flags);
3285 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3286 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3287 goto send_abort;
3288 }
3289 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3290 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3291 return;
3292 }
3293 }
3294 send_abort:
3295 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3296
3297 transport_lun_remove_cmd(cmd);
3298
3299 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3300 cmd->t_task_cdb[0], cmd->tag);
3301
3302 trace_target_cmd_complete(cmd);
3303 ret = cmd->se_tfo->queue_status(cmd);
3304 if (ret)
3305 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3306 }
3307
3308 static void target_tmr_work(struct work_struct *work)
3309 {
3310 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3311 struct se_device *dev = cmd->se_dev;
3312 struct se_tmr_req *tmr = cmd->se_tmr_req;
3313 unsigned long flags;
3314 int ret;
3315
3316 spin_lock_irqsave(&cmd->t_state_lock, flags);
3317 if (cmd->transport_state & CMD_T_ABORTED) {
3318 tmr->response = TMR_FUNCTION_REJECTED;
3319 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3320 goto check_stop;
3321 }
3322 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3323
3324 switch (tmr->function) {
3325 case TMR_ABORT_TASK:
3326 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3327 break;
3328 case TMR_ABORT_TASK_SET:
3329 case TMR_CLEAR_ACA:
3330 case TMR_CLEAR_TASK_SET:
3331 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3332 break;
3333 case TMR_LUN_RESET:
3334 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3335 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3336 TMR_FUNCTION_REJECTED;
3337 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3338 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3339 cmd->orig_fe_lun, 0x29,
3340 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3341 }
3342 break;
3343 case TMR_TARGET_WARM_RESET:
3344 tmr->response = TMR_FUNCTION_REJECTED;
3345 break;
3346 case TMR_TARGET_COLD_RESET:
3347 tmr->response = TMR_FUNCTION_REJECTED;
3348 break;
3349 default:
3350 pr_err("Uknown TMR function: 0x%02x.\n",
3351 tmr->function);
3352 tmr->response = TMR_FUNCTION_REJECTED;
3353 break;
3354 }
3355
3356 spin_lock_irqsave(&cmd->t_state_lock, flags);
3357 if (cmd->transport_state & CMD_T_ABORTED) {
3358 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3359 goto check_stop;
3360 }
3361 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3362
3363 cmd->se_tfo->queue_tm_rsp(cmd);
3364
3365 check_stop:
3366 transport_lun_remove_cmd(cmd);
3367 transport_cmd_check_stop_to_fabric(cmd);
3368 }
3369
3370 int transport_generic_handle_tmr(
3371 struct se_cmd *cmd)
3372 {
3373 unsigned long flags;
3374 bool aborted = false;
3375
3376 spin_lock_irqsave(&cmd->t_state_lock, flags);
3377 if (cmd->transport_state & CMD_T_ABORTED) {
3378 aborted = true;
3379 } else {
3380 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3381 cmd->transport_state |= CMD_T_ACTIVE;
3382 }
3383 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3384
3385 if (aborted) {
3386 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3387 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3388 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3389 transport_lun_remove_cmd(cmd);
3390 transport_cmd_check_stop_to_fabric(cmd);
3391 return 0;
3392 }
3393
3394 INIT_WORK(&cmd->work, target_tmr_work);
3395 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3396 return 0;
3397 }
3398 EXPORT_SYMBOL(transport_generic_handle_tmr);
3399
3400 bool
3401 target_check_wce(struct se_device *dev)
3402 {
3403 bool wce = false;
3404
3405 if (dev->transport->get_write_cache)
3406 wce = dev->transport->get_write_cache(dev);
3407 else if (dev->dev_attrib.emulate_write_cache > 0)
3408 wce = true;
3409
3410 return wce;
3411 }
3412
3413 bool
3414 target_check_fua(struct se_device *dev)
3415 {
3416 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3417 }