]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/target/target_core_transport.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_lba_map_cache = kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map),
125 __alignof__(struct t10_alua_lba_map), 0, NULL);
126 if (!t10_alua_lba_map_cache) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 "cache failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_mem_cache = kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member),
134 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 if (!t10_alua_lba_map_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 "cache failed\n");
138 goto out_free_lba_map_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_lba_map_mem_cache;
145
146 return 0;
147
148 out_free_lba_map_mem_cache:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 kmem_cache_destroy(se_sess_cache);
164 out:
165 return -ENOMEM;
166 }
167
168 void release_se_kmem_caches(void)
169 {
170 destroy_workqueue(target_completion_wq);
171 kmem_cache_destroy(se_sess_cache);
172 kmem_cache_destroy(se_ua_cache);
173 kmem_cache_destroy(t10_pr_reg_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 kmem_cache_destroy(t10_alua_lba_map_cache);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186 * Allocate a new row index for the entry type specified
187 */
188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 u32 new_index;
191
192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194 spin_lock(&scsi_mib_index_lock);
195 new_index = ++scsi_mib_index[type];
196 spin_unlock(&scsi_mib_index_lock);
197
198 return new_index;
199 }
200
201 void transport_subsystem_check_init(void)
202 {
203 int ret;
204 static int sub_api_initialized;
205
206 if (sub_api_initialized)
207 return;
208
209 ret = request_module("target_core_iblock");
210 if (ret != 0)
211 pr_err("Unable to load target_core_iblock\n");
212
213 ret = request_module("target_core_file");
214 if (ret != 0)
215 pr_err("Unable to load target_core_file\n");
216
217 ret = request_module("target_core_pscsi");
218 if (ret != 0)
219 pr_err("Unable to load target_core_pscsi\n");
220
221 ret = request_module("target_core_user");
222 if (ret != 0)
223 pr_err("Unable to load target_core_user\n");
224
225 sub_api_initialized = 1;
226 }
227
228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 struct se_session *se_sess;
231
232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 if (!se_sess) {
234 pr_err("Unable to allocate struct se_session from"
235 " se_sess_cache\n");
236 return ERR_PTR(-ENOMEM);
237 }
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 spin_lock_init(&se_sess->sess_cmd_lock);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
288 }
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
293 }
294
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
298
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 */
312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
317 {
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
320
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 /*
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 *
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
328 */
329 if (se_nacl) {
330 /*
331 *
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 *
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
339 */
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
345 /*
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
348 */
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
354 }
355
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 /*
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
360 */
361 se_nacl->nacl_sess = se_sess;
362
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 }
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
395 {
396 struct se_session *sess;
397
398 /*
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
401 */
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
406
407 if (IS_ERR(sess))
408 return sess;
409
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
415 }
416 /*
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
419 */
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
425 }
426 }
427
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
430 }
431 EXPORT_SYMBOL(target_alloc_session);
432
433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 {
435 struct se_session *se_sess;
436 ssize_t len = 0;
437
438 spin_lock_bh(&se_tpg->session_lock);
439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
440 if (!se_sess->se_node_acl)
441 continue;
442 if (!se_sess->se_node_acl->dynamic_node_acl)
443 continue;
444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
445 break;
446
447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
448 se_sess->se_node_acl->initiatorname);
449 len += 1; /* Include NULL terminator */
450 }
451 spin_unlock_bh(&se_tpg->session_lock);
452
453 return len;
454 }
455 EXPORT_SYMBOL(target_show_dynamic_sessions);
456
457 static void target_complete_nacl(struct kref *kref)
458 {
459 struct se_node_acl *nacl = container_of(kref,
460 struct se_node_acl, acl_kref);
461 struct se_portal_group *se_tpg = nacl->se_tpg;
462
463 if (!nacl->dynamic_stop) {
464 complete(&nacl->acl_free_comp);
465 return;
466 }
467
468 mutex_lock(&se_tpg->acl_node_mutex);
469 list_del(&nacl->acl_list);
470 mutex_unlock(&se_tpg->acl_node_mutex);
471
472 core_tpg_wait_for_nacl_pr_ref(nacl);
473 core_free_device_list_for_node(nacl, se_tpg);
474 kfree(nacl);
475 }
476
477 void target_put_nacl(struct se_node_acl *nacl)
478 {
479 kref_put(&nacl->acl_kref, target_complete_nacl);
480 }
481 EXPORT_SYMBOL(target_put_nacl);
482
483 void transport_deregister_session_configfs(struct se_session *se_sess)
484 {
485 struct se_node_acl *se_nacl;
486 unsigned long flags;
487 /*
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 */
490 se_nacl = se_sess->se_node_acl;
491 if (se_nacl) {
492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
493 if (!list_empty(&se_sess->sess_acl_list))
494 list_del_init(&se_sess->sess_acl_list);
495 /*
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
499 */
500 if (list_empty(&se_nacl->acl_sess_list))
501 se_nacl->nacl_sess = NULL;
502 else {
503 se_nacl->nacl_sess = container_of(
504 se_nacl->acl_sess_list.prev,
505 struct se_session, sess_acl_list);
506 }
507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 }
509 }
510 EXPORT_SYMBOL(transport_deregister_session_configfs);
511
512 void transport_free_session(struct se_session *se_sess)
513 {
514 struct se_node_acl *se_nacl = se_sess->se_node_acl;
515
516 /*
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
519 */
520 if (se_nacl) {
521 struct se_portal_group *se_tpg = se_nacl->se_tpg;
522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
523 unsigned long flags;
524
525 se_sess->se_node_acl = NULL;
526
527 /*
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
531 */
532 mutex_lock(&se_tpg->acl_node_mutex);
533 if (se_nacl->dynamic_node_acl &&
534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
536 if (list_empty(&se_nacl->acl_sess_list))
537 se_nacl->dynamic_stop = true;
538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539
540 if (se_nacl->dynamic_stop)
541 list_del(&se_nacl->acl_list);
542 }
543 mutex_unlock(&se_tpg->acl_node_mutex);
544
545 if (se_nacl->dynamic_stop)
546 target_put_nacl(se_nacl);
547
548 target_put_nacl(se_nacl);
549 }
550 if (se_sess->sess_cmd_map) {
551 percpu_ida_destroy(&se_sess->sess_tag_pool);
552 kvfree(se_sess->sess_cmd_map);
553 }
554 kmem_cache_free(se_sess_cache, se_sess);
555 }
556 EXPORT_SYMBOL(transport_free_session);
557
558 void transport_deregister_session(struct se_session *se_sess)
559 {
560 struct se_portal_group *se_tpg = se_sess->se_tpg;
561 unsigned long flags;
562
563 if (!se_tpg) {
564 transport_free_session(se_sess);
565 return;
566 }
567
568 spin_lock_irqsave(&se_tpg->session_lock, flags);
569 list_del(&se_sess->sess_list);
570 se_sess->se_tpg = NULL;
571 se_sess->fabric_sess_ptr = NULL;
572 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg->se_tpg_tfo->get_fabric_name());
576 /*
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
580 *
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
583 */
584
585 transport_free_session(se_sess);
586 }
587 EXPORT_SYMBOL(transport_deregister_session);
588
589 static void target_remove_from_state_list(struct se_cmd *cmd)
590 {
591 struct se_device *dev = cmd->se_dev;
592 unsigned long flags;
593
594 if (!dev)
595 return;
596
597 spin_lock_irqsave(&dev->execute_task_lock, flags);
598 if (cmd->state_active) {
599 list_del(&cmd->state_list);
600 cmd->state_active = false;
601 }
602 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
603 }
604
605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 {
607 unsigned long flags;
608
609 target_remove_from_state_list(cmd);
610
611 /*
612 * Clear struct se_cmd->se_lun before the handoff to FE.
613 */
614 cmd->se_lun = NULL;
615
616 spin_lock_irqsave(&cmd->t_state_lock, flags);
617 /*
618 * Determine if frontend context caller is requesting the stopping of
619 * this command for frontend exceptions.
620 */
621 if (cmd->transport_state & CMD_T_STOP) {
622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
623 __func__, __LINE__, cmd->tag);
624
625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626
627 complete_all(&cmd->t_transport_stop_comp);
628 return 1;
629 }
630 cmd->transport_state &= ~CMD_T_ACTIVE;
631 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632
633 /*
634 * Some fabric modules like tcm_loop can release their internally
635 * allocated I/O reference and struct se_cmd now.
636 *
637 * Fabric modules are expected to return '1' here if the se_cmd being
638 * passed is released at this point, or zero if not being released.
639 */
640 return cmd->se_tfo->check_stop_free(cmd);
641 }
642
643 static void transport_lun_remove_cmd(struct se_cmd *cmd)
644 {
645 struct se_lun *lun = cmd->se_lun;
646
647 if (!lun)
648 return;
649
650 if (cmpxchg(&cmd->lun_ref_active, true, false))
651 percpu_ref_put(&lun->lun_ref);
652 }
653
654 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655 {
656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657
658 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
659 transport_lun_remove_cmd(cmd);
660 /*
661 * Allow the fabric driver to unmap any resources before
662 * releasing the descriptor via TFO->release_cmd()
663 */
664 if (remove)
665 cmd->se_tfo->aborted_task(cmd);
666
667 if (transport_cmd_check_stop_to_fabric(cmd))
668 return;
669 if (remove && ack_kref)
670 transport_put_cmd(cmd);
671 }
672
673 static void target_complete_failure_work(struct work_struct *work)
674 {
675 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
676
677 transport_generic_request_failure(cmd,
678 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
679 }
680
681 /*
682 * Used when asking transport to copy Sense Data from the underlying
683 * Linux/SCSI struct scsi_cmnd
684 */
685 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
686 {
687 struct se_device *dev = cmd->se_dev;
688
689 WARN_ON(!cmd->se_lun);
690
691 if (!dev)
692 return NULL;
693
694 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
695 return NULL;
696
697 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
698
699 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
700 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
701 return cmd->sense_buffer;
702 }
703
704 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
705 {
706 struct se_device *dev = cmd->se_dev;
707 int success = scsi_status == GOOD;
708 unsigned long flags;
709
710 cmd->scsi_status = scsi_status;
711
712
713 spin_lock_irqsave(&cmd->t_state_lock, flags);
714
715 if (dev && dev->transport->transport_complete) {
716 dev->transport->transport_complete(cmd,
717 cmd->t_data_sg,
718 transport_get_sense_buffer(cmd));
719 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
720 success = 1;
721 }
722
723 /*
724 * Check for case where an explicit ABORT_TASK has been received
725 * and transport_wait_for_tasks() will be waiting for completion..
726 */
727 if (cmd->transport_state & CMD_T_ABORTED ||
728 cmd->transport_state & CMD_T_STOP) {
729 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
730 complete_all(&cmd->t_transport_stop_comp);
731 return;
732 } else if (!success) {
733 INIT_WORK(&cmd->work, target_complete_failure_work);
734 } else {
735 INIT_WORK(&cmd->work, target_complete_ok_work);
736 }
737
738 cmd->t_state = TRANSPORT_COMPLETE;
739 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
740 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
741
742 if (cmd->se_cmd_flags & SCF_USE_CPUID)
743 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
744 else
745 queue_work(target_completion_wq, &cmd->work);
746 }
747 EXPORT_SYMBOL(target_complete_cmd);
748
749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
750 {
751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
753 cmd->residual_count += cmd->data_length - length;
754 } else {
755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
756 cmd->residual_count = cmd->data_length - length;
757 }
758
759 cmd->data_length = length;
760 }
761
762 target_complete_cmd(cmd, scsi_status);
763 }
764 EXPORT_SYMBOL(target_complete_cmd_with_length);
765
766 static void target_add_to_state_list(struct se_cmd *cmd)
767 {
768 struct se_device *dev = cmd->se_dev;
769 unsigned long flags;
770
771 spin_lock_irqsave(&dev->execute_task_lock, flags);
772 if (!cmd->state_active) {
773 list_add_tail(&cmd->state_list, &dev->state_list);
774 cmd->state_active = true;
775 }
776 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
777 }
778
779 /*
780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
781 */
782 static void transport_write_pending_qf(struct se_cmd *cmd);
783 static void transport_complete_qf(struct se_cmd *cmd);
784
785 void target_qf_do_work(struct work_struct *work)
786 {
787 struct se_device *dev = container_of(work, struct se_device,
788 qf_work_queue);
789 LIST_HEAD(qf_cmd_list);
790 struct se_cmd *cmd, *cmd_tmp;
791
792 spin_lock_irq(&dev->qf_cmd_lock);
793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
794 spin_unlock_irq(&dev->qf_cmd_lock);
795
796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
797 list_del(&cmd->se_qf_node);
798 atomic_dec_mb(&dev->dev_qf_count);
799
800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
804 : "UNKNOWN");
805
806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
807 transport_write_pending_qf(cmd);
808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
809 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
810 transport_complete_qf(cmd);
811 }
812 }
813
814 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
815 {
816 switch (cmd->data_direction) {
817 case DMA_NONE:
818 return "NONE";
819 case DMA_FROM_DEVICE:
820 return "READ";
821 case DMA_TO_DEVICE:
822 return "WRITE";
823 case DMA_BIDIRECTIONAL:
824 return "BIDI";
825 default:
826 break;
827 }
828
829 return "UNKNOWN";
830 }
831
832 void transport_dump_dev_state(
833 struct se_device *dev,
834 char *b,
835 int *bl)
836 {
837 *bl += sprintf(b + *bl, "Status: ");
838 if (dev->export_count)
839 *bl += sprintf(b + *bl, "ACTIVATED");
840 else
841 *bl += sprintf(b + *bl, "DEACTIVATED");
842
843 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
844 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
845 dev->dev_attrib.block_size,
846 dev->dev_attrib.hw_max_sectors);
847 *bl += sprintf(b + *bl, " ");
848 }
849
850 void transport_dump_vpd_proto_id(
851 struct t10_vpd *vpd,
852 unsigned char *p_buf,
853 int p_buf_len)
854 {
855 unsigned char buf[VPD_TMP_BUF_SIZE];
856 int len;
857
858 memset(buf, 0, VPD_TMP_BUF_SIZE);
859 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
860
861 switch (vpd->protocol_identifier) {
862 case 0x00:
863 sprintf(buf+len, "Fibre Channel\n");
864 break;
865 case 0x10:
866 sprintf(buf+len, "Parallel SCSI\n");
867 break;
868 case 0x20:
869 sprintf(buf+len, "SSA\n");
870 break;
871 case 0x30:
872 sprintf(buf+len, "IEEE 1394\n");
873 break;
874 case 0x40:
875 sprintf(buf+len, "SCSI Remote Direct Memory Access"
876 " Protocol\n");
877 break;
878 case 0x50:
879 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
880 break;
881 case 0x60:
882 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
883 break;
884 case 0x70:
885 sprintf(buf+len, "Automation/Drive Interface Transport"
886 " Protocol\n");
887 break;
888 case 0x80:
889 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
890 break;
891 default:
892 sprintf(buf+len, "Unknown 0x%02x\n",
893 vpd->protocol_identifier);
894 break;
895 }
896
897 if (p_buf)
898 strncpy(p_buf, buf, p_buf_len);
899 else
900 pr_debug("%s", buf);
901 }
902
903 void
904 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
905 {
906 /*
907 * Check if the Protocol Identifier Valid (PIV) bit is set..
908 *
909 * from spc3r23.pdf section 7.5.1
910 */
911 if (page_83[1] & 0x80) {
912 vpd->protocol_identifier = (page_83[0] & 0xf0);
913 vpd->protocol_identifier_set = 1;
914 transport_dump_vpd_proto_id(vpd, NULL, 0);
915 }
916 }
917 EXPORT_SYMBOL(transport_set_vpd_proto_id);
918
919 int transport_dump_vpd_assoc(
920 struct t10_vpd *vpd,
921 unsigned char *p_buf,
922 int p_buf_len)
923 {
924 unsigned char buf[VPD_TMP_BUF_SIZE];
925 int ret = 0;
926 int len;
927
928 memset(buf, 0, VPD_TMP_BUF_SIZE);
929 len = sprintf(buf, "T10 VPD Identifier Association: ");
930
931 switch (vpd->association) {
932 case 0x00:
933 sprintf(buf+len, "addressed logical unit\n");
934 break;
935 case 0x10:
936 sprintf(buf+len, "target port\n");
937 break;
938 case 0x20:
939 sprintf(buf+len, "SCSI target device\n");
940 break;
941 default:
942 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
943 ret = -EINVAL;
944 break;
945 }
946
947 if (p_buf)
948 strncpy(p_buf, buf, p_buf_len);
949 else
950 pr_debug("%s", buf);
951
952 return ret;
953 }
954
955 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
956 {
957 /*
958 * The VPD identification association..
959 *
960 * from spc3r23.pdf Section 7.6.3.1 Table 297
961 */
962 vpd->association = (page_83[1] & 0x30);
963 return transport_dump_vpd_assoc(vpd, NULL, 0);
964 }
965 EXPORT_SYMBOL(transport_set_vpd_assoc);
966
967 int transport_dump_vpd_ident_type(
968 struct t10_vpd *vpd,
969 unsigned char *p_buf,
970 int p_buf_len)
971 {
972 unsigned char buf[VPD_TMP_BUF_SIZE];
973 int ret = 0;
974 int len;
975
976 memset(buf, 0, VPD_TMP_BUF_SIZE);
977 len = sprintf(buf, "T10 VPD Identifier Type: ");
978
979 switch (vpd->device_identifier_type) {
980 case 0x00:
981 sprintf(buf+len, "Vendor specific\n");
982 break;
983 case 0x01:
984 sprintf(buf+len, "T10 Vendor ID based\n");
985 break;
986 case 0x02:
987 sprintf(buf+len, "EUI-64 based\n");
988 break;
989 case 0x03:
990 sprintf(buf+len, "NAA\n");
991 break;
992 case 0x04:
993 sprintf(buf+len, "Relative target port identifier\n");
994 break;
995 case 0x08:
996 sprintf(buf+len, "SCSI name string\n");
997 break;
998 default:
999 sprintf(buf+len, "Unsupported: 0x%02x\n",
1000 vpd->device_identifier_type);
1001 ret = -EINVAL;
1002 break;
1003 }
1004
1005 if (p_buf) {
1006 if (p_buf_len < strlen(buf)+1)
1007 return -EINVAL;
1008 strncpy(p_buf, buf, p_buf_len);
1009 } else {
1010 pr_debug("%s", buf);
1011 }
1012
1013 return ret;
1014 }
1015
1016 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1017 {
1018 /*
1019 * The VPD identifier type..
1020 *
1021 * from spc3r23.pdf Section 7.6.3.1 Table 298
1022 */
1023 vpd->device_identifier_type = (page_83[1] & 0x0f);
1024 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1025 }
1026 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1027
1028 int transport_dump_vpd_ident(
1029 struct t10_vpd *vpd,
1030 unsigned char *p_buf,
1031 int p_buf_len)
1032 {
1033 unsigned char buf[VPD_TMP_BUF_SIZE];
1034 int ret = 0;
1035
1036 memset(buf, 0, VPD_TMP_BUF_SIZE);
1037
1038 switch (vpd->device_identifier_code_set) {
1039 case 0x01: /* Binary */
1040 snprintf(buf, sizeof(buf),
1041 "T10 VPD Binary Device Identifier: %s\n",
1042 &vpd->device_identifier[0]);
1043 break;
1044 case 0x02: /* ASCII */
1045 snprintf(buf, sizeof(buf),
1046 "T10 VPD ASCII Device Identifier: %s\n",
1047 &vpd->device_identifier[0]);
1048 break;
1049 case 0x03: /* UTF-8 */
1050 snprintf(buf, sizeof(buf),
1051 "T10 VPD UTF-8 Device Identifier: %s\n",
1052 &vpd->device_identifier[0]);
1053 break;
1054 default:
1055 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1056 " 0x%02x", vpd->device_identifier_code_set);
1057 ret = -EINVAL;
1058 break;
1059 }
1060
1061 if (p_buf)
1062 strncpy(p_buf, buf, p_buf_len);
1063 else
1064 pr_debug("%s", buf);
1065
1066 return ret;
1067 }
1068
1069 int
1070 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1071 {
1072 static const char hex_str[] = "0123456789abcdef";
1073 int j = 0, i = 4; /* offset to start of the identifier */
1074
1075 /*
1076 * The VPD Code Set (encoding)
1077 *
1078 * from spc3r23.pdf Section 7.6.3.1 Table 296
1079 */
1080 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1081 switch (vpd->device_identifier_code_set) {
1082 case 0x01: /* Binary */
1083 vpd->device_identifier[j++] =
1084 hex_str[vpd->device_identifier_type];
1085 while (i < (4 + page_83[3])) {
1086 vpd->device_identifier[j++] =
1087 hex_str[(page_83[i] & 0xf0) >> 4];
1088 vpd->device_identifier[j++] =
1089 hex_str[page_83[i] & 0x0f];
1090 i++;
1091 }
1092 break;
1093 case 0x02: /* ASCII */
1094 case 0x03: /* UTF-8 */
1095 while (i < (4 + page_83[3]))
1096 vpd->device_identifier[j++] = page_83[i++];
1097 break;
1098 default:
1099 break;
1100 }
1101
1102 return transport_dump_vpd_ident(vpd, NULL, 0);
1103 }
1104 EXPORT_SYMBOL(transport_set_vpd_ident);
1105
1106 static sense_reason_t
1107 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1108 unsigned int size)
1109 {
1110 u32 mtl;
1111
1112 if (!cmd->se_tfo->max_data_sg_nents)
1113 return TCM_NO_SENSE;
1114 /*
1115 * Check if fabric enforced maximum SGL entries per I/O descriptor
1116 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1117 * residual_count and reduce original cmd->data_length to maximum
1118 * length based on single PAGE_SIZE entry scatter-lists.
1119 */
1120 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1121 if (cmd->data_length > mtl) {
1122 /*
1123 * If an existing CDB overflow is present, calculate new residual
1124 * based on CDB size minus fabric maximum transfer length.
1125 *
1126 * If an existing CDB underflow is present, calculate new residual
1127 * based on original cmd->data_length minus fabric maximum transfer
1128 * length.
1129 *
1130 * Otherwise, set the underflow residual based on cmd->data_length
1131 * minus fabric maximum transfer length.
1132 */
1133 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1134 cmd->residual_count = (size - mtl);
1135 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1136 u32 orig_dl = size + cmd->residual_count;
1137 cmd->residual_count = (orig_dl - mtl);
1138 } else {
1139 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1140 cmd->residual_count = (cmd->data_length - mtl);
1141 }
1142 cmd->data_length = mtl;
1143 /*
1144 * Reset sbc_check_prot() calculated protection payload
1145 * length based upon the new smaller MTL.
1146 */
1147 if (cmd->prot_length) {
1148 u32 sectors = (mtl / dev->dev_attrib.block_size);
1149 cmd->prot_length = dev->prot_length * sectors;
1150 }
1151 }
1152 return TCM_NO_SENSE;
1153 }
1154
1155 sense_reason_t
1156 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1157 {
1158 struct se_device *dev = cmd->se_dev;
1159
1160 if (cmd->unknown_data_length) {
1161 cmd->data_length = size;
1162 } else if (size != cmd->data_length) {
1163 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1164 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1165 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1166 cmd->data_length, size, cmd->t_task_cdb[0]);
1167
1168 if (cmd->data_direction == DMA_TO_DEVICE &&
1169 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1170 pr_err("Rejecting underflow/overflow WRITE data\n");
1171 return TCM_INVALID_CDB_FIELD;
1172 }
1173 /*
1174 * Reject READ_* or WRITE_* with overflow/underflow for
1175 * type SCF_SCSI_DATA_CDB.
1176 */
1177 if (dev->dev_attrib.block_size != 512) {
1178 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1179 " CDB on non 512-byte sector setup subsystem"
1180 " plugin: %s\n", dev->transport->name);
1181 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1182 return TCM_INVALID_CDB_FIELD;
1183 }
1184 /*
1185 * For the overflow case keep the existing fabric provided
1186 * ->data_length. Otherwise for the underflow case, reset
1187 * ->data_length to the smaller SCSI expected data transfer
1188 * length.
1189 */
1190 if (size > cmd->data_length) {
1191 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1192 cmd->residual_count = (size - cmd->data_length);
1193 } else {
1194 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1195 cmd->residual_count = (cmd->data_length - size);
1196 cmd->data_length = size;
1197 }
1198 }
1199
1200 return target_check_max_data_sg_nents(cmd, dev, size);
1201
1202 }
1203
1204 /*
1205 * Used by fabric modules containing a local struct se_cmd within their
1206 * fabric dependent per I/O descriptor.
1207 *
1208 * Preserves the value of @cmd->tag.
1209 */
1210 void transport_init_se_cmd(
1211 struct se_cmd *cmd,
1212 const struct target_core_fabric_ops *tfo,
1213 struct se_session *se_sess,
1214 u32 data_length,
1215 int data_direction,
1216 int task_attr,
1217 unsigned char *sense_buffer)
1218 {
1219 INIT_LIST_HEAD(&cmd->se_delayed_node);
1220 INIT_LIST_HEAD(&cmd->se_qf_node);
1221 INIT_LIST_HEAD(&cmd->se_cmd_list);
1222 INIT_LIST_HEAD(&cmd->state_list);
1223 init_completion(&cmd->t_transport_stop_comp);
1224 init_completion(&cmd->cmd_wait_comp);
1225 spin_lock_init(&cmd->t_state_lock);
1226 kref_init(&cmd->cmd_kref);
1227
1228 cmd->se_tfo = tfo;
1229 cmd->se_sess = se_sess;
1230 cmd->data_length = data_length;
1231 cmd->data_direction = data_direction;
1232 cmd->sam_task_attr = task_attr;
1233 cmd->sense_buffer = sense_buffer;
1234
1235 cmd->state_active = false;
1236 }
1237 EXPORT_SYMBOL(transport_init_se_cmd);
1238
1239 static sense_reason_t
1240 transport_check_alloc_task_attr(struct se_cmd *cmd)
1241 {
1242 struct se_device *dev = cmd->se_dev;
1243
1244 /*
1245 * Check if SAM Task Attribute emulation is enabled for this
1246 * struct se_device storage object
1247 */
1248 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1249 return 0;
1250
1251 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1252 pr_debug("SAM Task Attribute ACA"
1253 " emulation is not supported\n");
1254 return TCM_INVALID_CDB_FIELD;
1255 }
1256
1257 return 0;
1258 }
1259
1260 sense_reason_t
1261 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1262 {
1263 struct se_device *dev = cmd->se_dev;
1264 sense_reason_t ret;
1265
1266 /*
1267 * Ensure that the received CDB is less than the max (252 + 8) bytes
1268 * for VARIABLE_LENGTH_CMD
1269 */
1270 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1271 pr_err("Received SCSI CDB with command_size: %d that"
1272 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1273 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1274 return TCM_INVALID_CDB_FIELD;
1275 }
1276 /*
1277 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1278 * allocate the additional extended CDB buffer now.. Otherwise
1279 * setup the pointer from __t_task_cdb to t_task_cdb.
1280 */
1281 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1282 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1283 GFP_KERNEL);
1284 if (!cmd->t_task_cdb) {
1285 pr_err("Unable to allocate cmd->t_task_cdb"
1286 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1287 scsi_command_size(cdb),
1288 (unsigned long)sizeof(cmd->__t_task_cdb));
1289 return TCM_OUT_OF_RESOURCES;
1290 }
1291 } else
1292 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1293 /*
1294 * Copy the original CDB into cmd->
1295 */
1296 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1297
1298 trace_target_sequencer_start(cmd);
1299
1300 ret = dev->transport->parse_cdb(cmd);
1301 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1302 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1303 cmd->se_tfo->get_fabric_name(),
1304 cmd->se_sess->se_node_acl->initiatorname,
1305 cmd->t_task_cdb[0]);
1306 if (ret)
1307 return ret;
1308
1309 ret = transport_check_alloc_task_attr(cmd);
1310 if (ret)
1311 return ret;
1312
1313 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1314 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1315 return 0;
1316 }
1317 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1318
1319 /*
1320 * Used by fabric module frontends to queue tasks directly.
1321 * May only be used from process context.
1322 */
1323 int transport_handle_cdb_direct(
1324 struct se_cmd *cmd)
1325 {
1326 sense_reason_t ret;
1327
1328 if (!cmd->se_lun) {
1329 dump_stack();
1330 pr_err("cmd->se_lun is NULL\n");
1331 return -EINVAL;
1332 }
1333 if (in_interrupt()) {
1334 dump_stack();
1335 pr_err("transport_generic_handle_cdb cannot be called"
1336 " from interrupt context\n");
1337 return -EINVAL;
1338 }
1339 /*
1340 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1341 * outstanding descriptors are handled correctly during shutdown via
1342 * transport_wait_for_tasks()
1343 *
1344 * Also, we don't take cmd->t_state_lock here as we only expect
1345 * this to be called for initial descriptor submission.
1346 */
1347 cmd->t_state = TRANSPORT_NEW_CMD;
1348 cmd->transport_state |= CMD_T_ACTIVE;
1349
1350 /*
1351 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1352 * so follow TRANSPORT_NEW_CMD processing thread context usage
1353 * and call transport_generic_request_failure() if necessary..
1354 */
1355 ret = transport_generic_new_cmd(cmd);
1356 if (ret)
1357 transport_generic_request_failure(cmd, ret);
1358 return 0;
1359 }
1360 EXPORT_SYMBOL(transport_handle_cdb_direct);
1361
1362 sense_reason_t
1363 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1364 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1365 {
1366 if (!sgl || !sgl_count)
1367 return 0;
1368
1369 /*
1370 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1371 * scatterlists already have been set to follow what the fabric
1372 * passes for the original expected data transfer length.
1373 */
1374 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1375 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1376 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1377 return TCM_INVALID_CDB_FIELD;
1378 }
1379
1380 cmd->t_data_sg = sgl;
1381 cmd->t_data_nents = sgl_count;
1382 cmd->t_bidi_data_sg = sgl_bidi;
1383 cmd->t_bidi_data_nents = sgl_bidi_count;
1384
1385 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1386 return 0;
1387 }
1388
1389 /*
1390 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1391 * se_cmd + use pre-allocated SGL memory.
1392 *
1393 * @se_cmd: command descriptor to submit
1394 * @se_sess: associated se_sess for endpoint
1395 * @cdb: pointer to SCSI CDB
1396 * @sense: pointer to SCSI sense buffer
1397 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1398 * @data_length: fabric expected data transfer length
1399 * @task_addr: SAM task attribute
1400 * @data_dir: DMA data direction
1401 * @flags: flags for command submission from target_sc_flags_tables
1402 * @sgl: struct scatterlist memory for unidirectional mapping
1403 * @sgl_count: scatterlist count for unidirectional mapping
1404 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1405 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1406 * @sgl_prot: struct scatterlist memory protection information
1407 * @sgl_prot_count: scatterlist count for protection information
1408 *
1409 * Task tags are supported if the caller has set @se_cmd->tag.
1410 *
1411 * Returns non zero to signal active I/O shutdown failure. All other
1412 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1413 * but still return zero here.
1414 *
1415 * This may only be called from process context, and also currently
1416 * assumes internal allocation of fabric payload buffer by target-core.
1417 */
1418 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1419 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1420 u32 data_length, int task_attr, int data_dir, int flags,
1421 struct scatterlist *sgl, u32 sgl_count,
1422 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1423 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1424 {
1425 struct se_portal_group *se_tpg;
1426 sense_reason_t rc;
1427 int ret;
1428
1429 se_tpg = se_sess->se_tpg;
1430 BUG_ON(!se_tpg);
1431 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1432 BUG_ON(in_interrupt());
1433 /*
1434 * Initialize se_cmd for target operation. From this point
1435 * exceptions are handled by sending exception status via
1436 * target_core_fabric_ops->queue_status() callback
1437 */
1438 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1439 data_length, data_dir, task_attr, sense);
1440
1441 if (flags & TARGET_SCF_USE_CPUID)
1442 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1443 else
1444 se_cmd->cpuid = WORK_CPU_UNBOUND;
1445
1446 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1447 se_cmd->unknown_data_length = 1;
1448 /*
1449 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1450 * se_sess->sess_cmd_list. A second kref_get here is necessary
1451 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1452 * kref_put() to happen during fabric packet acknowledgement.
1453 */
1454 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1455 if (ret)
1456 return ret;
1457 /*
1458 * Signal bidirectional data payloads to target-core
1459 */
1460 if (flags & TARGET_SCF_BIDI_OP)
1461 se_cmd->se_cmd_flags |= SCF_BIDI;
1462 /*
1463 * Locate se_lun pointer and attach it to struct se_cmd
1464 */
1465 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1466 if (rc) {
1467 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1468 target_put_sess_cmd(se_cmd);
1469 return 0;
1470 }
1471
1472 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1473 if (rc != 0) {
1474 transport_generic_request_failure(se_cmd, rc);
1475 return 0;
1476 }
1477
1478 /*
1479 * Save pointers for SGLs containing protection information,
1480 * if present.
1481 */
1482 if (sgl_prot_count) {
1483 se_cmd->t_prot_sg = sgl_prot;
1484 se_cmd->t_prot_nents = sgl_prot_count;
1485 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1486 }
1487
1488 /*
1489 * When a non zero sgl_count has been passed perform SGL passthrough
1490 * mapping for pre-allocated fabric memory instead of having target
1491 * core perform an internal SGL allocation..
1492 */
1493 if (sgl_count != 0) {
1494 BUG_ON(!sgl);
1495
1496 /*
1497 * A work-around for tcm_loop as some userspace code via
1498 * scsi-generic do not memset their associated read buffers,
1499 * so go ahead and do that here for type non-data CDBs. Also
1500 * note that this is currently guaranteed to be a single SGL
1501 * for this case by target core in target_setup_cmd_from_cdb()
1502 * -> transport_generic_cmd_sequencer().
1503 */
1504 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1505 se_cmd->data_direction == DMA_FROM_DEVICE) {
1506 unsigned char *buf = NULL;
1507
1508 if (sgl)
1509 buf = kmap(sg_page(sgl)) + sgl->offset;
1510
1511 if (buf) {
1512 memset(buf, 0, sgl->length);
1513 kunmap(sg_page(sgl));
1514 }
1515 }
1516
1517 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1518 sgl_bidi, sgl_bidi_count);
1519 if (rc != 0) {
1520 transport_generic_request_failure(se_cmd, rc);
1521 return 0;
1522 }
1523 }
1524
1525 /*
1526 * Check if we need to delay processing because of ALUA
1527 * Active/NonOptimized primary access state..
1528 */
1529 core_alua_check_nonop_delay(se_cmd);
1530
1531 transport_handle_cdb_direct(se_cmd);
1532 return 0;
1533 }
1534 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1535
1536 /*
1537 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1538 *
1539 * @se_cmd: command descriptor to submit
1540 * @se_sess: associated se_sess for endpoint
1541 * @cdb: pointer to SCSI CDB
1542 * @sense: pointer to SCSI sense buffer
1543 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1544 * @data_length: fabric expected data transfer length
1545 * @task_addr: SAM task attribute
1546 * @data_dir: DMA data direction
1547 * @flags: flags for command submission from target_sc_flags_tables
1548 *
1549 * Task tags are supported if the caller has set @se_cmd->tag.
1550 *
1551 * Returns non zero to signal active I/O shutdown failure. All other
1552 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1553 * but still return zero here.
1554 *
1555 * This may only be called from process context, and also currently
1556 * assumes internal allocation of fabric payload buffer by target-core.
1557 *
1558 * It also assumes interal target core SGL memory allocation.
1559 */
1560 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1561 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1562 u32 data_length, int task_attr, int data_dir, int flags)
1563 {
1564 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1565 unpacked_lun, data_length, task_attr, data_dir,
1566 flags, NULL, 0, NULL, 0, NULL, 0);
1567 }
1568 EXPORT_SYMBOL(target_submit_cmd);
1569
1570 static void target_complete_tmr_failure(struct work_struct *work)
1571 {
1572 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1573
1574 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1575 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1576
1577 transport_cmd_check_stop_to_fabric(se_cmd);
1578 }
1579
1580 /**
1581 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1582 * for TMR CDBs
1583 *
1584 * @se_cmd: command descriptor to submit
1585 * @se_sess: associated se_sess for endpoint
1586 * @sense: pointer to SCSI sense buffer
1587 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1588 * @fabric_context: fabric context for TMR req
1589 * @tm_type: Type of TM request
1590 * @gfp: gfp type for caller
1591 * @tag: referenced task tag for TMR_ABORT_TASK
1592 * @flags: submit cmd flags
1593 *
1594 * Callable from all contexts.
1595 **/
1596
1597 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1598 unsigned char *sense, u64 unpacked_lun,
1599 void *fabric_tmr_ptr, unsigned char tm_type,
1600 gfp_t gfp, u64 tag, int flags)
1601 {
1602 struct se_portal_group *se_tpg;
1603 int ret;
1604
1605 se_tpg = se_sess->se_tpg;
1606 BUG_ON(!se_tpg);
1607
1608 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1609 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1610 /*
1611 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1612 * allocation failure.
1613 */
1614 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1615 if (ret < 0)
1616 return -ENOMEM;
1617
1618 if (tm_type == TMR_ABORT_TASK)
1619 se_cmd->se_tmr_req->ref_task_tag = tag;
1620
1621 /* See target_submit_cmd for commentary */
1622 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1623 if (ret) {
1624 core_tmr_release_req(se_cmd->se_tmr_req);
1625 return ret;
1626 }
1627
1628 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1629 if (ret) {
1630 /*
1631 * For callback during failure handling, push this work off
1632 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1633 */
1634 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1635 schedule_work(&se_cmd->work);
1636 return 0;
1637 }
1638 transport_generic_handle_tmr(se_cmd);
1639 return 0;
1640 }
1641 EXPORT_SYMBOL(target_submit_tmr);
1642
1643 /*
1644 * Handle SAM-esque emulation for generic transport request failures.
1645 */
1646 void transport_generic_request_failure(struct se_cmd *cmd,
1647 sense_reason_t sense_reason)
1648 {
1649 int ret = 0, post_ret = 0;
1650
1651 if (transport_check_aborted_status(cmd, 1))
1652 return;
1653
1654 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1655 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1656 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1657 cmd->se_tfo->get_cmd_state(cmd),
1658 cmd->t_state, sense_reason);
1659 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1660 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1661 (cmd->transport_state & CMD_T_STOP) != 0,
1662 (cmd->transport_state & CMD_T_SENT) != 0);
1663
1664 /*
1665 * For SAM Task Attribute emulation for failed struct se_cmd
1666 */
1667 transport_complete_task_attr(cmd);
1668 /*
1669 * Handle special case for COMPARE_AND_WRITE failure, where the
1670 * callback is expected to drop the per device ->caw_sem.
1671 */
1672 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1673 cmd->transport_complete_callback)
1674 cmd->transport_complete_callback(cmd, false, &post_ret);
1675
1676 switch (sense_reason) {
1677 case TCM_NON_EXISTENT_LUN:
1678 case TCM_UNSUPPORTED_SCSI_OPCODE:
1679 case TCM_INVALID_CDB_FIELD:
1680 case TCM_INVALID_PARAMETER_LIST:
1681 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1682 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1683 case TCM_UNKNOWN_MODE_PAGE:
1684 case TCM_WRITE_PROTECTED:
1685 case TCM_ADDRESS_OUT_OF_RANGE:
1686 case TCM_CHECK_CONDITION_ABORT_CMD:
1687 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1688 case TCM_CHECK_CONDITION_NOT_READY:
1689 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1690 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1691 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1692 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1693 case TCM_TOO_MANY_TARGET_DESCS:
1694 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1695 case TCM_TOO_MANY_SEGMENT_DESCS:
1696 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1697 break;
1698 case TCM_OUT_OF_RESOURCES:
1699 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1700 break;
1701 case TCM_RESERVATION_CONFLICT:
1702 /*
1703 * No SENSE Data payload for this case, set SCSI Status
1704 * and queue the response to $FABRIC_MOD.
1705 *
1706 * Uses linux/include/scsi/scsi.h SAM status codes defs
1707 */
1708 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1709 /*
1710 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1711 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1712 * CONFLICT STATUS.
1713 *
1714 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1715 */
1716 if (cmd->se_sess &&
1717 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1718 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1719 cmd->orig_fe_lun, 0x2C,
1720 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1721 }
1722 trace_target_cmd_complete(cmd);
1723 ret = cmd->se_tfo->queue_status(cmd);
1724 if (ret)
1725 goto queue_full;
1726 goto check_stop;
1727 default:
1728 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1729 cmd->t_task_cdb[0], sense_reason);
1730 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1731 break;
1732 }
1733
1734 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1735 if (ret)
1736 goto queue_full;
1737
1738 check_stop:
1739 transport_lun_remove_cmd(cmd);
1740 transport_cmd_check_stop_to_fabric(cmd);
1741 return;
1742
1743 queue_full:
1744 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1745 }
1746 EXPORT_SYMBOL(transport_generic_request_failure);
1747
1748 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1749 {
1750 sense_reason_t ret;
1751
1752 if (!cmd->execute_cmd) {
1753 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1754 goto err;
1755 }
1756 if (do_checks) {
1757 /*
1758 * Check for an existing UNIT ATTENTION condition after
1759 * target_handle_task_attr() has done SAM task attr
1760 * checking, and possibly have already defered execution
1761 * out to target_restart_delayed_cmds() context.
1762 */
1763 ret = target_scsi3_ua_check(cmd);
1764 if (ret)
1765 goto err;
1766
1767 ret = target_alua_state_check(cmd);
1768 if (ret)
1769 goto err;
1770
1771 ret = target_check_reservation(cmd);
1772 if (ret) {
1773 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1774 goto err;
1775 }
1776 }
1777
1778 ret = cmd->execute_cmd(cmd);
1779 if (!ret)
1780 return;
1781 err:
1782 spin_lock_irq(&cmd->t_state_lock);
1783 cmd->transport_state &= ~CMD_T_SENT;
1784 spin_unlock_irq(&cmd->t_state_lock);
1785
1786 transport_generic_request_failure(cmd, ret);
1787 }
1788
1789 static int target_write_prot_action(struct se_cmd *cmd)
1790 {
1791 u32 sectors;
1792 /*
1793 * Perform WRITE_INSERT of PI using software emulation when backend
1794 * device has PI enabled, if the transport has not already generated
1795 * PI using hardware WRITE_INSERT offload.
1796 */
1797 switch (cmd->prot_op) {
1798 case TARGET_PROT_DOUT_INSERT:
1799 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1800 sbc_dif_generate(cmd);
1801 break;
1802 case TARGET_PROT_DOUT_STRIP:
1803 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1804 break;
1805
1806 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1807 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1808 sectors, 0, cmd->t_prot_sg, 0);
1809 if (unlikely(cmd->pi_err)) {
1810 spin_lock_irq(&cmd->t_state_lock);
1811 cmd->transport_state &= ~CMD_T_SENT;
1812 spin_unlock_irq(&cmd->t_state_lock);
1813 transport_generic_request_failure(cmd, cmd->pi_err);
1814 return -1;
1815 }
1816 break;
1817 default:
1818 break;
1819 }
1820
1821 return 0;
1822 }
1823
1824 static bool target_handle_task_attr(struct se_cmd *cmd)
1825 {
1826 struct se_device *dev = cmd->se_dev;
1827
1828 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1829 return false;
1830
1831 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1832
1833 /*
1834 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1835 * to allow the passed struct se_cmd list of tasks to the front of the list.
1836 */
1837 switch (cmd->sam_task_attr) {
1838 case TCM_HEAD_TAG:
1839 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1840 cmd->t_task_cdb[0]);
1841 return false;
1842 case TCM_ORDERED_TAG:
1843 atomic_inc_mb(&dev->dev_ordered_sync);
1844
1845 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1846 cmd->t_task_cdb[0]);
1847
1848 /*
1849 * Execute an ORDERED command if no other older commands
1850 * exist that need to be completed first.
1851 */
1852 if (!atomic_read(&dev->simple_cmds))
1853 return false;
1854 break;
1855 default:
1856 /*
1857 * For SIMPLE and UNTAGGED Task Attribute commands
1858 */
1859 atomic_inc_mb(&dev->simple_cmds);
1860 break;
1861 }
1862
1863 if (atomic_read(&dev->dev_ordered_sync) == 0)
1864 return false;
1865
1866 spin_lock(&dev->delayed_cmd_lock);
1867 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1868 spin_unlock(&dev->delayed_cmd_lock);
1869
1870 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1871 cmd->t_task_cdb[0], cmd->sam_task_attr);
1872 return true;
1873 }
1874
1875 static int __transport_check_aborted_status(struct se_cmd *, int);
1876
1877 void target_execute_cmd(struct se_cmd *cmd)
1878 {
1879 /*
1880 * Determine if frontend context caller is requesting the stopping of
1881 * this command for frontend exceptions.
1882 *
1883 * If the received CDB has aleady been aborted stop processing it here.
1884 */
1885 spin_lock_irq(&cmd->t_state_lock);
1886 if (__transport_check_aborted_status(cmd, 1)) {
1887 spin_unlock_irq(&cmd->t_state_lock);
1888 return;
1889 }
1890 if (cmd->transport_state & CMD_T_STOP) {
1891 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1892 __func__, __LINE__, cmd->tag);
1893
1894 spin_unlock_irq(&cmd->t_state_lock);
1895 complete_all(&cmd->t_transport_stop_comp);
1896 return;
1897 }
1898
1899 cmd->t_state = TRANSPORT_PROCESSING;
1900 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1901 spin_unlock_irq(&cmd->t_state_lock);
1902
1903 if (target_write_prot_action(cmd))
1904 return;
1905
1906 if (target_handle_task_attr(cmd)) {
1907 spin_lock_irq(&cmd->t_state_lock);
1908 cmd->transport_state &= ~CMD_T_SENT;
1909 spin_unlock_irq(&cmd->t_state_lock);
1910 return;
1911 }
1912
1913 __target_execute_cmd(cmd, true);
1914 }
1915 EXPORT_SYMBOL(target_execute_cmd);
1916
1917 /*
1918 * Process all commands up to the last received ORDERED task attribute which
1919 * requires another blocking boundary
1920 */
1921 static void target_restart_delayed_cmds(struct se_device *dev)
1922 {
1923 for (;;) {
1924 struct se_cmd *cmd;
1925
1926 spin_lock(&dev->delayed_cmd_lock);
1927 if (list_empty(&dev->delayed_cmd_list)) {
1928 spin_unlock(&dev->delayed_cmd_lock);
1929 break;
1930 }
1931
1932 cmd = list_entry(dev->delayed_cmd_list.next,
1933 struct se_cmd, se_delayed_node);
1934 list_del(&cmd->se_delayed_node);
1935 spin_unlock(&dev->delayed_cmd_lock);
1936
1937 __target_execute_cmd(cmd, true);
1938
1939 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1940 break;
1941 }
1942 }
1943
1944 /*
1945 * Called from I/O completion to determine which dormant/delayed
1946 * and ordered cmds need to have their tasks added to the execution queue.
1947 */
1948 static void transport_complete_task_attr(struct se_cmd *cmd)
1949 {
1950 struct se_device *dev = cmd->se_dev;
1951
1952 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1953 return;
1954
1955 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1956 goto restart;
1957
1958 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1959 atomic_dec_mb(&dev->simple_cmds);
1960 dev->dev_cur_ordered_id++;
1961 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1962 dev->dev_cur_ordered_id++;
1963 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1964 dev->dev_cur_ordered_id);
1965 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1966 atomic_dec_mb(&dev->dev_ordered_sync);
1967
1968 dev->dev_cur_ordered_id++;
1969 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1970 dev->dev_cur_ordered_id);
1971 }
1972 restart:
1973 target_restart_delayed_cmds(dev);
1974 }
1975
1976 static void transport_complete_qf(struct se_cmd *cmd)
1977 {
1978 int ret = 0;
1979
1980 transport_complete_task_attr(cmd);
1981 /*
1982 * If a fabric driver ->write_pending() or ->queue_data_in() callback
1983 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
1984 * the same callbacks should not be retried. Return CHECK_CONDITION
1985 * if a scsi_status is not already set.
1986 *
1987 * If a fabric driver ->queue_status() has returned non zero, always
1988 * keep retrying no matter what..
1989 */
1990 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
1991 if (cmd->scsi_status)
1992 goto queue_status;
1993
1994 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
1995 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
1996 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
1997 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
1998 goto queue_status;
1999 }
2000
2001 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2002 goto queue_status;
2003
2004 switch (cmd->data_direction) {
2005 case DMA_FROM_DEVICE:
2006 if (cmd->scsi_status)
2007 goto queue_status;
2008
2009 trace_target_cmd_complete(cmd);
2010 ret = cmd->se_tfo->queue_data_in(cmd);
2011 break;
2012 case DMA_TO_DEVICE:
2013 if (cmd->se_cmd_flags & SCF_BIDI) {
2014 ret = cmd->se_tfo->queue_data_in(cmd);
2015 break;
2016 }
2017 /* Fall through for DMA_TO_DEVICE */
2018 case DMA_NONE:
2019 queue_status:
2020 trace_target_cmd_complete(cmd);
2021 ret = cmd->se_tfo->queue_status(cmd);
2022 break;
2023 default:
2024 break;
2025 }
2026
2027 if (ret < 0) {
2028 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2029 return;
2030 }
2031 transport_lun_remove_cmd(cmd);
2032 transport_cmd_check_stop_to_fabric(cmd);
2033 }
2034
2035 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2036 int err, bool write_pending)
2037 {
2038 /*
2039 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2040 * ->queue_data_in() callbacks from new process context.
2041 *
2042 * Otherwise for other errors, transport_complete_qf() will send
2043 * CHECK_CONDITION via ->queue_status() instead of attempting to
2044 * retry associated fabric driver data-transfer callbacks.
2045 */
2046 if (err == -EAGAIN || err == -ENOMEM) {
2047 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2048 TRANSPORT_COMPLETE_QF_OK;
2049 } else {
2050 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2051 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2052 }
2053
2054 spin_lock_irq(&dev->qf_cmd_lock);
2055 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2056 atomic_inc_mb(&dev->dev_qf_count);
2057 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2058
2059 schedule_work(&cmd->se_dev->qf_work_queue);
2060 }
2061
2062 static bool target_read_prot_action(struct se_cmd *cmd)
2063 {
2064 switch (cmd->prot_op) {
2065 case TARGET_PROT_DIN_STRIP:
2066 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2067 u32 sectors = cmd->data_length >>
2068 ilog2(cmd->se_dev->dev_attrib.block_size);
2069
2070 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2071 sectors, 0, cmd->t_prot_sg,
2072 0);
2073 if (cmd->pi_err)
2074 return true;
2075 }
2076 break;
2077 case TARGET_PROT_DIN_INSERT:
2078 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2079 break;
2080
2081 sbc_dif_generate(cmd);
2082 break;
2083 default:
2084 break;
2085 }
2086
2087 return false;
2088 }
2089
2090 static void target_complete_ok_work(struct work_struct *work)
2091 {
2092 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2093 int ret;
2094
2095 /*
2096 * Check if we need to move delayed/dormant tasks from cmds on the
2097 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2098 * Attribute.
2099 */
2100 transport_complete_task_attr(cmd);
2101
2102 /*
2103 * Check to schedule QUEUE_FULL work, or execute an existing
2104 * cmd->transport_qf_callback()
2105 */
2106 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2107 schedule_work(&cmd->se_dev->qf_work_queue);
2108
2109 /*
2110 * Check if we need to send a sense buffer from
2111 * the struct se_cmd in question.
2112 */
2113 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2114 WARN_ON(!cmd->scsi_status);
2115 ret = transport_send_check_condition_and_sense(
2116 cmd, 0, 1);
2117 if (ret)
2118 goto queue_full;
2119
2120 transport_lun_remove_cmd(cmd);
2121 transport_cmd_check_stop_to_fabric(cmd);
2122 return;
2123 }
2124 /*
2125 * Check for a callback, used by amongst other things
2126 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2127 */
2128 if (cmd->transport_complete_callback) {
2129 sense_reason_t rc;
2130 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2131 bool zero_dl = !(cmd->data_length);
2132 int post_ret = 0;
2133
2134 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2135 if (!rc && !post_ret) {
2136 if (caw && zero_dl)
2137 goto queue_rsp;
2138
2139 return;
2140 } else if (rc) {
2141 ret = transport_send_check_condition_and_sense(cmd,
2142 rc, 0);
2143 if (ret)
2144 goto queue_full;
2145
2146 transport_lun_remove_cmd(cmd);
2147 transport_cmd_check_stop_to_fabric(cmd);
2148 return;
2149 }
2150 }
2151
2152 queue_rsp:
2153 switch (cmd->data_direction) {
2154 case DMA_FROM_DEVICE:
2155 if (cmd->scsi_status)
2156 goto queue_status;
2157
2158 atomic_long_add(cmd->data_length,
2159 &cmd->se_lun->lun_stats.tx_data_octets);
2160 /*
2161 * Perform READ_STRIP of PI using software emulation when
2162 * backend had PI enabled, if the transport will not be
2163 * performing hardware READ_STRIP offload.
2164 */
2165 if (target_read_prot_action(cmd)) {
2166 ret = transport_send_check_condition_and_sense(cmd,
2167 cmd->pi_err, 0);
2168 if (ret)
2169 goto queue_full;
2170
2171 transport_lun_remove_cmd(cmd);
2172 transport_cmd_check_stop_to_fabric(cmd);
2173 return;
2174 }
2175
2176 trace_target_cmd_complete(cmd);
2177 ret = cmd->se_tfo->queue_data_in(cmd);
2178 if (ret)
2179 goto queue_full;
2180 break;
2181 case DMA_TO_DEVICE:
2182 atomic_long_add(cmd->data_length,
2183 &cmd->se_lun->lun_stats.rx_data_octets);
2184 /*
2185 * Check if we need to send READ payload for BIDI-COMMAND
2186 */
2187 if (cmd->se_cmd_flags & SCF_BIDI) {
2188 atomic_long_add(cmd->data_length,
2189 &cmd->se_lun->lun_stats.tx_data_octets);
2190 ret = cmd->se_tfo->queue_data_in(cmd);
2191 if (ret)
2192 goto queue_full;
2193 break;
2194 }
2195 /* Fall through for DMA_TO_DEVICE */
2196 case DMA_NONE:
2197 queue_status:
2198 trace_target_cmd_complete(cmd);
2199 ret = cmd->se_tfo->queue_status(cmd);
2200 if (ret)
2201 goto queue_full;
2202 break;
2203 default:
2204 break;
2205 }
2206
2207 transport_lun_remove_cmd(cmd);
2208 transport_cmd_check_stop_to_fabric(cmd);
2209 return;
2210
2211 queue_full:
2212 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2213 " data_direction: %d\n", cmd, cmd->data_direction);
2214
2215 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2216 }
2217
2218 void target_free_sgl(struct scatterlist *sgl, int nents)
2219 {
2220 struct scatterlist *sg;
2221 int count;
2222
2223 for_each_sg(sgl, sg, nents, count)
2224 __free_page(sg_page(sg));
2225
2226 kfree(sgl);
2227 }
2228 EXPORT_SYMBOL(target_free_sgl);
2229
2230 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2231 {
2232 /*
2233 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2234 * emulation, and free + reset pointers if necessary..
2235 */
2236 if (!cmd->t_data_sg_orig)
2237 return;
2238
2239 kfree(cmd->t_data_sg);
2240 cmd->t_data_sg = cmd->t_data_sg_orig;
2241 cmd->t_data_sg_orig = NULL;
2242 cmd->t_data_nents = cmd->t_data_nents_orig;
2243 cmd->t_data_nents_orig = 0;
2244 }
2245
2246 static inline void transport_free_pages(struct se_cmd *cmd)
2247 {
2248 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2249 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2250 cmd->t_prot_sg = NULL;
2251 cmd->t_prot_nents = 0;
2252 }
2253
2254 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2255 /*
2256 * Release special case READ buffer payload required for
2257 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2258 */
2259 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2260 target_free_sgl(cmd->t_bidi_data_sg,
2261 cmd->t_bidi_data_nents);
2262 cmd->t_bidi_data_sg = NULL;
2263 cmd->t_bidi_data_nents = 0;
2264 }
2265 transport_reset_sgl_orig(cmd);
2266 return;
2267 }
2268 transport_reset_sgl_orig(cmd);
2269
2270 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2271 cmd->t_data_sg = NULL;
2272 cmd->t_data_nents = 0;
2273
2274 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2275 cmd->t_bidi_data_sg = NULL;
2276 cmd->t_bidi_data_nents = 0;
2277 }
2278
2279 /**
2280 * transport_put_cmd - release a reference to a command
2281 * @cmd: command to release
2282 *
2283 * This routine releases our reference to the command and frees it if possible.
2284 */
2285 static int transport_put_cmd(struct se_cmd *cmd)
2286 {
2287 BUG_ON(!cmd->se_tfo);
2288 /*
2289 * If this cmd has been setup with target_get_sess_cmd(), drop
2290 * the kref and call ->release_cmd() in kref callback.
2291 */
2292 return target_put_sess_cmd(cmd);
2293 }
2294
2295 void *transport_kmap_data_sg(struct se_cmd *cmd)
2296 {
2297 struct scatterlist *sg = cmd->t_data_sg;
2298 struct page **pages;
2299 int i;
2300
2301 /*
2302 * We need to take into account a possible offset here for fabrics like
2303 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2304 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2305 */
2306 if (!cmd->t_data_nents)
2307 return NULL;
2308
2309 BUG_ON(!sg);
2310 if (cmd->t_data_nents == 1)
2311 return kmap(sg_page(sg)) + sg->offset;
2312
2313 /* >1 page. use vmap */
2314 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2315 if (!pages)
2316 return NULL;
2317
2318 /* convert sg[] to pages[] */
2319 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2320 pages[i] = sg_page(sg);
2321 }
2322
2323 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2324 kfree(pages);
2325 if (!cmd->t_data_vmap)
2326 return NULL;
2327
2328 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2329 }
2330 EXPORT_SYMBOL(transport_kmap_data_sg);
2331
2332 void transport_kunmap_data_sg(struct se_cmd *cmd)
2333 {
2334 if (!cmd->t_data_nents) {
2335 return;
2336 } else if (cmd->t_data_nents == 1) {
2337 kunmap(sg_page(cmd->t_data_sg));
2338 return;
2339 }
2340
2341 vunmap(cmd->t_data_vmap);
2342 cmd->t_data_vmap = NULL;
2343 }
2344 EXPORT_SYMBOL(transport_kunmap_data_sg);
2345
2346 int
2347 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2348 bool zero_page, bool chainable)
2349 {
2350 struct scatterlist *sg;
2351 struct page *page;
2352 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2353 unsigned int nalloc, nent;
2354 int i = 0;
2355
2356 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2357 if (chainable)
2358 nalloc++;
2359 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2360 if (!sg)
2361 return -ENOMEM;
2362
2363 sg_init_table(sg, nalloc);
2364
2365 while (length) {
2366 u32 page_len = min_t(u32, length, PAGE_SIZE);
2367 page = alloc_page(GFP_KERNEL | zero_flag);
2368 if (!page)
2369 goto out;
2370
2371 sg_set_page(&sg[i], page, page_len, 0);
2372 length -= page_len;
2373 i++;
2374 }
2375 *sgl = sg;
2376 *nents = nent;
2377 return 0;
2378
2379 out:
2380 while (i > 0) {
2381 i--;
2382 __free_page(sg_page(&sg[i]));
2383 }
2384 kfree(sg);
2385 return -ENOMEM;
2386 }
2387 EXPORT_SYMBOL(target_alloc_sgl);
2388
2389 /*
2390 * Allocate any required resources to execute the command. For writes we
2391 * might not have the payload yet, so notify the fabric via a call to
2392 * ->write_pending instead. Otherwise place it on the execution queue.
2393 */
2394 sense_reason_t
2395 transport_generic_new_cmd(struct se_cmd *cmd)
2396 {
2397 unsigned long flags;
2398 int ret = 0;
2399 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2400
2401 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2402 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2403 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2404 cmd->prot_length, true, false);
2405 if (ret < 0)
2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2407 }
2408
2409 /*
2410 * Determine is the TCM fabric module has already allocated physical
2411 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2412 * beforehand.
2413 */
2414 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2415 cmd->data_length) {
2416
2417 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2418 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2419 u32 bidi_length;
2420
2421 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2422 bidi_length = cmd->t_task_nolb *
2423 cmd->se_dev->dev_attrib.block_size;
2424 else
2425 bidi_length = cmd->data_length;
2426
2427 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2428 &cmd->t_bidi_data_nents,
2429 bidi_length, zero_flag, false);
2430 if (ret < 0)
2431 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2432 }
2433
2434 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2435 cmd->data_length, zero_flag, false);
2436 if (ret < 0)
2437 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2438 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2439 cmd->data_length) {
2440 /*
2441 * Special case for COMPARE_AND_WRITE with fabrics
2442 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2443 */
2444 u32 caw_length = cmd->t_task_nolb *
2445 cmd->se_dev->dev_attrib.block_size;
2446
2447 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2448 &cmd->t_bidi_data_nents,
2449 caw_length, zero_flag, false);
2450 if (ret < 0)
2451 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2452 }
2453 /*
2454 * If this command is not a write we can execute it right here,
2455 * for write buffers we need to notify the fabric driver first
2456 * and let it call back once the write buffers are ready.
2457 */
2458 target_add_to_state_list(cmd);
2459 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2460 target_execute_cmd(cmd);
2461 return 0;
2462 }
2463
2464 spin_lock_irqsave(&cmd->t_state_lock, flags);
2465 cmd->t_state = TRANSPORT_WRITE_PENDING;
2466 /*
2467 * Determine if frontend context caller is requesting the stopping of
2468 * this command for frontend exceptions.
2469 */
2470 if (cmd->transport_state & CMD_T_STOP) {
2471 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2472 __func__, __LINE__, cmd->tag);
2473
2474 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2475
2476 complete_all(&cmd->t_transport_stop_comp);
2477 return 0;
2478 }
2479 cmd->transport_state &= ~CMD_T_ACTIVE;
2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2481
2482 ret = cmd->se_tfo->write_pending(cmd);
2483 if (ret)
2484 goto queue_full;
2485
2486 return 0;
2487
2488 queue_full:
2489 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2490 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2491 return 0;
2492 }
2493 EXPORT_SYMBOL(transport_generic_new_cmd);
2494
2495 static void transport_write_pending_qf(struct se_cmd *cmd)
2496 {
2497 int ret;
2498
2499 ret = cmd->se_tfo->write_pending(cmd);
2500 if (ret) {
2501 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2502 cmd);
2503 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2504 }
2505 }
2506
2507 static bool
2508 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2509 unsigned long *flags);
2510
2511 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2512 {
2513 unsigned long flags;
2514
2515 spin_lock_irqsave(&cmd->t_state_lock, flags);
2516 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2517 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2518 }
2519
2520 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2521 {
2522 int ret = 0;
2523 bool aborted = false, tas = false;
2524
2525 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2526 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2527 target_wait_free_cmd(cmd, &aborted, &tas);
2528
2529 if (!aborted || tas)
2530 ret = transport_put_cmd(cmd);
2531 } else {
2532 if (wait_for_tasks)
2533 target_wait_free_cmd(cmd, &aborted, &tas);
2534 /*
2535 * Handle WRITE failure case where transport_generic_new_cmd()
2536 * has already added se_cmd to state_list, but fabric has
2537 * failed command before I/O submission.
2538 */
2539 if (cmd->state_active)
2540 target_remove_from_state_list(cmd);
2541
2542 if (cmd->se_lun)
2543 transport_lun_remove_cmd(cmd);
2544
2545 if (!aborted || tas)
2546 ret = transport_put_cmd(cmd);
2547 }
2548 /*
2549 * If the task has been internally aborted due to TMR ABORT_TASK
2550 * or LUN_RESET, target_core_tmr.c is responsible for performing
2551 * the remaining calls to target_put_sess_cmd(), and not the
2552 * callers of this function.
2553 */
2554 if (aborted) {
2555 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2556 wait_for_completion(&cmd->cmd_wait_comp);
2557 cmd->se_tfo->release_cmd(cmd);
2558 ret = 1;
2559 }
2560 return ret;
2561 }
2562 EXPORT_SYMBOL(transport_generic_free_cmd);
2563
2564 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2565 * @se_cmd: command descriptor to add
2566 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2567 */
2568 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2569 {
2570 struct se_session *se_sess = se_cmd->se_sess;
2571 unsigned long flags;
2572 int ret = 0;
2573
2574 /*
2575 * Add a second kref if the fabric caller is expecting to handle
2576 * fabric acknowledgement that requires two target_put_sess_cmd()
2577 * invocations before se_cmd descriptor release.
2578 */
2579 if (ack_kref) {
2580 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2581 return -EINVAL;
2582
2583 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2584 }
2585
2586 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2587 if (se_sess->sess_tearing_down) {
2588 ret = -ESHUTDOWN;
2589 goto out;
2590 }
2591 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2592 out:
2593 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2594
2595 if (ret && ack_kref)
2596 target_put_sess_cmd(se_cmd);
2597
2598 return ret;
2599 }
2600 EXPORT_SYMBOL(target_get_sess_cmd);
2601
2602 static void target_free_cmd_mem(struct se_cmd *cmd)
2603 {
2604 transport_free_pages(cmd);
2605
2606 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2607 core_tmr_release_req(cmd->se_tmr_req);
2608 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2609 kfree(cmd->t_task_cdb);
2610 }
2611
2612 static void target_release_cmd_kref(struct kref *kref)
2613 {
2614 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2615 struct se_session *se_sess = se_cmd->se_sess;
2616 unsigned long flags;
2617 bool fabric_stop;
2618
2619 if (se_sess) {
2620 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2621
2622 spin_lock(&se_cmd->t_state_lock);
2623 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2624 (se_cmd->transport_state & CMD_T_ABORTED);
2625 spin_unlock(&se_cmd->t_state_lock);
2626
2627 if (se_cmd->cmd_wait_set || fabric_stop) {
2628 list_del_init(&se_cmd->se_cmd_list);
2629 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2630 target_free_cmd_mem(se_cmd);
2631 complete(&se_cmd->cmd_wait_comp);
2632 return;
2633 }
2634 list_del_init(&se_cmd->se_cmd_list);
2635 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2636 }
2637
2638 target_free_cmd_mem(se_cmd);
2639 se_cmd->se_tfo->release_cmd(se_cmd);
2640 }
2641
2642 /**
2643 * target_put_sess_cmd - decrease the command reference count
2644 * @se_cmd: command to drop a reference from
2645 *
2646 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2647 * refcount to drop to zero. Returns zero otherwise.
2648 */
2649 int target_put_sess_cmd(struct se_cmd *se_cmd)
2650 {
2651 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2652 }
2653 EXPORT_SYMBOL(target_put_sess_cmd);
2654
2655 /* target_sess_cmd_list_set_waiting - Flag all commands in
2656 * sess_cmd_list to complete cmd_wait_comp. Set
2657 * sess_tearing_down so no more commands are queued.
2658 * @se_sess: session to flag
2659 */
2660 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2661 {
2662 struct se_cmd *se_cmd, *tmp_cmd;
2663 unsigned long flags;
2664 int rc;
2665
2666 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2667 if (se_sess->sess_tearing_down) {
2668 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2669 return;
2670 }
2671 se_sess->sess_tearing_down = 1;
2672 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2673
2674 list_for_each_entry_safe(se_cmd, tmp_cmd,
2675 &se_sess->sess_wait_list, se_cmd_list) {
2676 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2677 if (rc) {
2678 se_cmd->cmd_wait_set = 1;
2679 spin_lock(&se_cmd->t_state_lock);
2680 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2681 spin_unlock(&se_cmd->t_state_lock);
2682 } else
2683 list_del_init(&se_cmd->se_cmd_list);
2684 }
2685
2686 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2687 }
2688 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2689
2690 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2691 * @se_sess: session to wait for active I/O
2692 */
2693 void target_wait_for_sess_cmds(struct se_session *se_sess)
2694 {
2695 struct se_cmd *se_cmd, *tmp_cmd;
2696 unsigned long flags;
2697 bool tas;
2698
2699 list_for_each_entry_safe(se_cmd, tmp_cmd,
2700 &se_sess->sess_wait_list, se_cmd_list) {
2701 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2702 " %d\n", se_cmd, se_cmd->t_state,
2703 se_cmd->se_tfo->get_cmd_state(se_cmd));
2704
2705 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2706 tas = (se_cmd->transport_state & CMD_T_TAS);
2707 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2708
2709 if (!target_put_sess_cmd(se_cmd)) {
2710 if (tas)
2711 target_put_sess_cmd(se_cmd);
2712 }
2713
2714 wait_for_completion(&se_cmd->cmd_wait_comp);
2715 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2716 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2717 se_cmd->se_tfo->get_cmd_state(se_cmd));
2718
2719 se_cmd->se_tfo->release_cmd(se_cmd);
2720 }
2721
2722 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2723 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2724 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2725
2726 }
2727 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2728
2729 static void target_lun_confirm(struct percpu_ref *ref)
2730 {
2731 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2732
2733 complete(&lun->lun_ref_comp);
2734 }
2735
2736 void transport_clear_lun_ref(struct se_lun *lun)
2737 {
2738 /*
2739 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2740 * the initial reference and schedule confirm kill to be
2741 * executed after one full RCU grace period has completed.
2742 */
2743 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2744 /*
2745 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2746 * to call target_lun_confirm after lun->lun_ref has been marked
2747 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2748 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2749 * fails for all new incoming I/O.
2750 */
2751 wait_for_completion(&lun->lun_ref_comp);
2752 /*
2753 * The second completion waits for percpu_ref_put_many() to
2754 * invoke ->release() after lun->lun_ref has switched to
2755 * atomic_t mode, and lun->lun_ref.count has reached zero.
2756 *
2757 * At this point all target-core lun->lun_ref references have
2758 * been dropped via transport_lun_remove_cmd(), and it's safe
2759 * to proceed with the remaining LUN shutdown.
2760 */
2761 wait_for_completion(&lun->lun_shutdown_comp);
2762 }
2763
2764 static bool
2765 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2766 bool *aborted, bool *tas, unsigned long *flags)
2767 __releases(&cmd->t_state_lock)
2768 __acquires(&cmd->t_state_lock)
2769 {
2770
2771 assert_spin_locked(&cmd->t_state_lock);
2772 WARN_ON_ONCE(!irqs_disabled());
2773
2774 if (fabric_stop)
2775 cmd->transport_state |= CMD_T_FABRIC_STOP;
2776
2777 if (cmd->transport_state & CMD_T_ABORTED)
2778 *aborted = true;
2779
2780 if (cmd->transport_state & CMD_T_TAS)
2781 *tas = true;
2782
2783 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2784 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2785 return false;
2786
2787 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2788 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2789 return false;
2790
2791 if (!(cmd->transport_state & CMD_T_ACTIVE))
2792 return false;
2793
2794 if (fabric_stop && *aborted)
2795 return false;
2796
2797 cmd->transport_state |= CMD_T_STOP;
2798
2799 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2800 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2801 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2802
2803 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2804
2805 wait_for_completion(&cmd->t_transport_stop_comp);
2806
2807 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2808 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2809
2810 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2811 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2812
2813 return true;
2814 }
2815
2816 /**
2817 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2818 * @cmd: command to wait on
2819 */
2820 bool transport_wait_for_tasks(struct se_cmd *cmd)
2821 {
2822 unsigned long flags;
2823 bool ret, aborted = false, tas = false;
2824
2825 spin_lock_irqsave(&cmd->t_state_lock, flags);
2826 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2827 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2828
2829 return ret;
2830 }
2831 EXPORT_SYMBOL(transport_wait_for_tasks);
2832
2833 struct sense_info {
2834 u8 key;
2835 u8 asc;
2836 u8 ascq;
2837 bool add_sector_info;
2838 };
2839
2840 static const struct sense_info sense_info_table[] = {
2841 [TCM_NO_SENSE] = {
2842 .key = NOT_READY
2843 },
2844 [TCM_NON_EXISTENT_LUN] = {
2845 .key = ILLEGAL_REQUEST,
2846 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2847 },
2848 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2849 .key = ILLEGAL_REQUEST,
2850 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2851 },
2852 [TCM_SECTOR_COUNT_TOO_MANY] = {
2853 .key = ILLEGAL_REQUEST,
2854 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2855 },
2856 [TCM_UNKNOWN_MODE_PAGE] = {
2857 .key = ILLEGAL_REQUEST,
2858 .asc = 0x24, /* INVALID FIELD IN CDB */
2859 },
2860 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2861 .key = ABORTED_COMMAND,
2862 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2863 .ascq = 0x03,
2864 },
2865 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2866 .key = ABORTED_COMMAND,
2867 .asc = 0x0c, /* WRITE ERROR */
2868 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2869 },
2870 [TCM_INVALID_CDB_FIELD] = {
2871 .key = ILLEGAL_REQUEST,
2872 .asc = 0x24, /* INVALID FIELD IN CDB */
2873 },
2874 [TCM_INVALID_PARAMETER_LIST] = {
2875 .key = ILLEGAL_REQUEST,
2876 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2877 },
2878 [TCM_TOO_MANY_TARGET_DESCS] = {
2879 .key = ILLEGAL_REQUEST,
2880 .asc = 0x26,
2881 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2882 },
2883 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2884 .key = ILLEGAL_REQUEST,
2885 .asc = 0x26,
2886 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2887 },
2888 [TCM_TOO_MANY_SEGMENT_DESCS] = {
2889 .key = ILLEGAL_REQUEST,
2890 .asc = 0x26,
2891 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2892 },
2893 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2894 .key = ILLEGAL_REQUEST,
2895 .asc = 0x26,
2896 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2897 },
2898 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2899 .key = ILLEGAL_REQUEST,
2900 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2901 },
2902 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2903 .key = ILLEGAL_REQUEST,
2904 .asc = 0x0c, /* WRITE ERROR */
2905 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2906 },
2907 [TCM_SERVICE_CRC_ERROR] = {
2908 .key = ABORTED_COMMAND,
2909 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2910 .ascq = 0x05, /* N/A */
2911 },
2912 [TCM_SNACK_REJECTED] = {
2913 .key = ABORTED_COMMAND,
2914 .asc = 0x11, /* READ ERROR */
2915 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2916 },
2917 [TCM_WRITE_PROTECTED] = {
2918 .key = DATA_PROTECT,
2919 .asc = 0x27, /* WRITE PROTECTED */
2920 },
2921 [TCM_ADDRESS_OUT_OF_RANGE] = {
2922 .key = ILLEGAL_REQUEST,
2923 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2924 },
2925 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2926 .key = UNIT_ATTENTION,
2927 },
2928 [TCM_CHECK_CONDITION_NOT_READY] = {
2929 .key = NOT_READY,
2930 },
2931 [TCM_MISCOMPARE_VERIFY] = {
2932 .key = MISCOMPARE,
2933 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2934 .ascq = 0x00,
2935 },
2936 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2937 .key = ABORTED_COMMAND,
2938 .asc = 0x10,
2939 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2940 .add_sector_info = true,
2941 },
2942 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2943 .key = ABORTED_COMMAND,
2944 .asc = 0x10,
2945 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2946 .add_sector_info = true,
2947 },
2948 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2949 .key = ABORTED_COMMAND,
2950 .asc = 0x10,
2951 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2952 .add_sector_info = true,
2953 },
2954 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2955 .key = COPY_ABORTED,
2956 .asc = 0x0d,
2957 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2958
2959 },
2960 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2961 /*
2962 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2963 * Solaris initiators. Returning NOT READY instead means the
2964 * operations will be retried a finite number of times and we
2965 * can survive intermittent errors.
2966 */
2967 .key = NOT_READY,
2968 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2969 },
2970 };
2971
2972 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2973 {
2974 const struct sense_info *si;
2975 u8 *buffer = cmd->sense_buffer;
2976 int r = (__force int)reason;
2977 u8 asc, ascq;
2978 bool desc_format = target_sense_desc_format(cmd->se_dev);
2979
2980 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2981 si = &sense_info_table[r];
2982 else
2983 si = &sense_info_table[(__force int)
2984 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2985
2986 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2987 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2988 WARN_ON_ONCE(asc == 0);
2989 } else if (si->asc == 0) {
2990 WARN_ON_ONCE(cmd->scsi_asc == 0);
2991 asc = cmd->scsi_asc;
2992 ascq = cmd->scsi_ascq;
2993 } else {
2994 asc = si->asc;
2995 ascq = si->ascq;
2996 }
2997
2998 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2999 if (si->add_sector_info)
3000 return scsi_set_sense_information(buffer,
3001 cmd->scsi_sense_length,
3002 cmd->bad_sector);
3003
3004 return 0;
3005 }
3006
3007 int
3008 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3009 sense_reason_t reason, int from_transport)
3010 {
3011 unsigned long flags;
3012
3013 spin_lock_irqsave(&cmd->t_state_lock, flags);
3014 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3015 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3016 return 0;
3017 }
3018 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3019 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3020
3021 if (!from_transport) {
3022 int rc;
3023
3024 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3025 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3026 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3027 rc = translate_sense_reason(cmd, reason);
3028 if (rc)
3029 return rc;
3030 }
3031
3032 trace_target_cmd_complete(cmd);
3033 return cmd->se_tfo->queue_status(cmd);
3034 }
3035 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3036
3037 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3038 __releases(&cmd->t_state_lock)
3039 __acquires(&cmd->t_state_lock)
3040 {
3041 int ret;
3042
3043 assert_spin_locked(&cmd->t_state_lock);
3044 WARN_ON_ONCE(!irqs_disabled());
3045
3046 if (!(cmd->transport_state & CMD_T_ABORTED))
3047 return 0;
3048 /*
3049 * If cmd has been aborted but either no status is to be sent or it has
3050 * already been sent, just return
3051 */
3052 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3053 if (send_status)
3054 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3055 return 1;
3056 }
3057
3058 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3059 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3060
3061 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3062 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3063 trace_target_cmd_complete(cmd);
3064
3065 spin_unlock_irq(&cmd->t_state_lock);
3066 ret = cmd->se_tfo->queue_status(cmd);
3067 if (ret)
3068 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3069 spin_lock_irq(&cmd->t_state_lock);
3070
3071 return 1;
3072 }
3073
3074 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3075 {
3076 int ret;
3077
3078 spin_lock_irq(&cmd->t_state_lock);
3079 ret = __transport_check_aborted_status(cmd, send_status);
3080 spin_unlock_irq(&cmd->t_state_lock);
3081
3082 return ret;
3083 }
3084 EXPORT_SYMBOL(transport_check_aborted_status);
3085
3086 void transport_send_task_abort(struct se_cmd *cmd)
3087 {
3088 unsigned long flags;
3089 int ret;
3090
3091 spin_lock_irqsave(&cmd->t_state_lock, flags);
3092 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3094 return;
3095 }
3096 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3097
3098 /*
3099 * If there are still expected incoming fabric WRITEs, we wait
3100 * until until they have completed before sending a TASK_ABORTED
3101 * response. This response with TASK_ABORTED status will be
3102 * queued back to fabric module by transport_check_aborted_status().
3103 */
3104 if (cmd->data_direction == DMA_TO_DEVICE) {
3105 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3106 spin_lock_irqsave(&cmd->t_state_lock, flags);
3107 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3108 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3109 goto send_abort;
3110 }
3111 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3112 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3113 return;
3114 }
3115 }
3116 send_abort:
3117 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3118
3119 transport_lun_remove_cmd(cmd);
3120
3121 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3122 cmd->t_task_cdb[0], cmd->tag);
3123
3124 trace_target_cmd_complete(cmd);
3125 ret = cmd->se_tfo->queue_status(cmd);
3126 if (ret)
3127 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3128 }
3129
3130 static void target_tmr_work(struct work_struct *work)
3131 {
3132 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3133 struct se_device *dev = cmd->se_dev;
3134 struct se_tmr_req *tmr = cmd->se_tmr_req;
3135 unsigned long flags;
3136 int ret;
3137
3138 spin_lock_irqsave(&cmd->t_state_lock, flags);
3139 if (cmd->transport_state & CMD_T_ABORTED) {
3140 tmr->response = TMR_FUNCTION_REJECTED;
3141 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3142 goto check_stop;
3143 }
3144 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3145
3146 switch (tmr->function) {
3147 case TMR_ABORT_TASK:
3148 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3149 break;
3150 case TMR_ABORT_TASK_SET:
3151 case TMR_CLEAR_ACA:
3152 case TMR_CLEAR_TASK_SET:
3153 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3154 break;
3155 case TMR_LUN_RESET:
3156 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3157 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3158 TMR_FUNCTION_REJECTED;
3159 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3160 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3161 cmd->orig_fe_lun, 0x29,
3162 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3163 }
3164 break;
3165 case TMR_TARGET_WARM_RESET:
3166 tmr->response = TMR_FUNCTION_REJECTED;
3167 break;
3168 case TMR_TARGET_COLD_RESET:
3169 tmr->response = TMR_FUNCTION_REJECTED;
3170 break;
3171 default:
3172 pr_err("Uknown TMR function: 0x%02x.\n",
3173 tmr->function);
3174 tmr->response = TMR_FUNCTION_REJECTED;
3175 break;
3176 }
3177
3178 spin_lock_irqsave(&cmd->t_state_lock, flags);
3179 if (cmd->transport_state & CMD_T_ABORTED) {
3180 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3181 goto check_stop;
3182 }
3183 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3184
3185 cmd->se_tfo->queue_tm_rsp(cmd);
3186
3187 check_stop:
3188 transport_cmd_check_stop_to_fabric(cmd);
3189 }
3190
3191 int transport_generic_handle_tmr(
3192 struct se_cmd *cmd)
3193 {
3194 unsigned long flags;
3195 bool aborted = false;
3196
3197 spin_lock_irqsave(&cmd->t_state_lock, flags);
3198 if (cmd->transport_state & CMD_T_ABORTED) {
3199 aborted = true;
3200 } else {
3201 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3202 cmd->transport_state |= CMD_T_ACTIVE;
3203 }
3204 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3205
3206 if (aborted) {
3207 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3208 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3209 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3210 transport_cmd_check_stop_to_fabric(cmd);
3211 return 0;
3212 }
3213
3214 INIT_WORK(&cmd->work, target_tmr_work);
3215 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3216 return 0;
3217 }
3218 EXPORT_SYMBOL(transport_generic_handle_tmr);
3219
3220 bool
3221 target_check_wce(struct se_device *dev)
3222 {
3223 bool wce = false;
3224
3225 if (dev->transport->get_write_cache)
3226 wce = dev->transport->get_write_cache(dev);
3227 else if (dev->dev_attrib.emulate_write_cache > 0)
3228 wce = true;
3229
3230 return wce;
3231 }
3232
3233 bool
3234 target_check_fua(struct se_device *dev)
3235 {
3236 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3237 }