]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/target/target_core_transport.c
b9122a56784ed3503c17568dd0ded4c8c55b8e73
[mirror_ubuntu-hirsute-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_lba_map_cache = kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map),
125 __alignof__(struct t10_alua_lba_map), 0, NULL);
126 if (!t10_alua_lba_map_cache) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 "cache failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_mem_cache = kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member),
134 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 if (!t10_alua_lba_map_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 "cache failed\n");
138 goto out_free_lba_map_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_lba_map_mem_cache;
145
146 return 0;
147
148 out_free_lba_map_mem_cache:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 kmem_cache_destroy(se_sess_cache);
164 out:
165 return -ENOMEM;
166 }
167
168 void release_se_kmem_caches(void)
169 {
170 destroy_workqueue(target_completion_wq);
171 kmem_cache_destroy(se_sess_cache);
172 kmem_cache_destroy(se_ua_cache);
173 kmem_cache_destroy(t10_pr_reg_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 kmem_cache_destroy(t10_alua_lba_map_cache);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186 * Allocate a new row index for the entry type specified
187 */
188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 u32 new_index;
191
192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194 spin_lock(&scsi_mib_index_lock);
195 new_index = ++scsi_mib_index[type];
196 spin_unlock(&scsi_mib_index_lock);
197
198 return new_index;
199 }
200
201 void transport_subsystem_check_init(void)
202 {
203 int ret;
204 static int sub_api_initialized;
205
206 if (sub_api_initialized)
207 return;
208
209 ret = request_module("target_core_iblock");
210 if (ret != 0)
211 pr_err("Unable to load target_core_iblock\n");
212
213 ret = request_module("target_core_file");
214 if (ret != 0)
215 pr_err("Unable to load target_core_file\n");
216
217 ret = request_module("target_core_pscsi");
218 if (ret != 0)
219 pr_err("Unable to load target_core_pscsi\n");
220
221 ret = request_module("target_core_user");
222 if (ret != 0)
223 pr_err("Unable to load target_core_user\n");
224
225 sub_api_initialized = 1;
226 }
227
228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 struct se_session *se_sess;
231
232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 if (!se_sess) {
234 pr_err("Unable to allocate struct se_session from"
235 " se_sess_cache\n");
236 return ERR_PTR(-ENOMEM);
237 }
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 spin_lock_init(&se_sess->sess_cmd_lock);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
288 }
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
293 }
294
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
298
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 */
312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
317 {
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
320
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 /*
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 *
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
328 */
329 if (se_nacl) {
330 /*
331 *
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 *
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
339 */
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
345 /*
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
348 */
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
354 }
355
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 /*
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
360 */
361 se_nacl->nacl_sess = se_sess;
362
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 }
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
395 {
396 struct se_session *sess;
397
398 /*
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
401 */
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
406
407 if (IS_ERR(sess))
408 return sess;
409
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
415 }
416 /*
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
419 */
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
425 }
426 }
427
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
430 }
431 EXPORT_SYMBOL(target_alloc_session);
432
433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 {
435 struct se_session *se_sess;
436 ssize_t len = 0;
437
438 spin_lock_bh(&se_tpg->session_lock);
439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
440 if (!se_sess->se_node_acl)
441 continue;
442 if (!se_sess->se_node_acl->dynamic_node_acl)
443 continue;
444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
445 break;
446
447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
448 se_sess->se_node_acl->initiatorname);
449 len += 1; /* Include NULL terminator */
450 }
451 spin_unlock_bh(&se_tpg->session_lock);
452
453 return len;
454 }
455 EXPORT_SYMBOL(target_show_dynamic_sessions);
456
457 static void target_complete_nacl(struct kref *kref)
458 {
459 struct se_node_acl *nacl = container_of(kref,
460 struct se_node_acl, acl_kref);
461 struct se_portal_group *se_tpg = nacl->se_tpg;
462
463 if (!nacl->dynamic_stop) {
464 complete(&nacl->acl_free_comp);
465 return;
466 }
467
468 mutex_lock(&se_tpg->acl_node_mutex);
469 list_del(&nacl->acl_list);
470 mutex_unlock(&se_tpg->acl_node_mutex);
471
472 core_tpg_wait_for_nacl_pr_ref(nacl);
473 core_free_device_list_for_node(nacl, se_tpg);
474 kfree(nacl);
475 }
476
477 void target_put_nacl(struct se_node_acl *nacl)
478 {
479 kref_put(&nacl->acl_kref, target_complete_nacl);
480 }
481 EXPORT_SYMBOL(target_put_nacl);
482
483 void transport_deregister_session_configfs(struct se_session *se_sess)
484 {
485 struct se_node_acl *se_nacl;
486 unsigned long flags;
487 /*
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 */
490 se_nacl = se_sess->se_node_acl;
491 if (se_nacl) {
492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
493 if (!list_empty(&se_sess->sess_acl_list))
494 list_del_init(&se_sess->sess_acl_list);
495 /*
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
499 */
500 if (list_empty(&se_nacl->acl_sess_list))
501 se_nacl->nacl_sess = NULL;
502 else {
503 se_nacl->nacl_sess = container_of(
504 se_nacl->acl_sess_list.prev,
505 struct se_session, sess_acl_list);
506 }
507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 }
509 }
510 EXPORT_SYMBOL(transport_deregister_session_configfs);
511
512 void transport_free_session(struct se_session *se_sess)
513 {
514 struct se_node_acl *se_nacl = se_sess->se_node_acl;
515
516 /*
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
519 */
520 if (se_nacl) {
521 struct se_portal_group *se_tpg = se_nacl->se_tpg;
522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
523 unsigned long flags;
524
525 se_sess->se_node_acl = NULL;
526
527 /*
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
531 */
532 mutex_lock(&se_tpg->acl_node_mutex);
533 if (se_nacl->dynamic_node_acl &&
534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
536 if (list_empty(&se_nacl->acl_sess_list))
537 se_nacl->dynamic_stop = true;
538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539
540 if (se_nacl->dynamic_stop)
541 list_del(&se_nacl->acl_list);
542 }
543 mutex_unlock(&se_tpg->acl_node_mutex);
544
545 if (se_nacl->dynamic_stop)
546 target_put_nacl(se_nacl);
547
548 target_put_nacl(se_nacl);
549 }
550 if (se_sess->sess_cmd_map) {
551 percpu_ida_destroy(&se_sess->sess_tag_pool);
552 kvfree(se_sess->sess_cmd_map);
553 }
554 kmem_cache_free(se_sess_cache, se_sess);
555 }
556 EXPORT_SYMBOL(transport_free_session);
557
558 void transport_deregister_session(struct se_session *se_sess)
559 {
560 struct se_portal_group *se_tpg = se_sess->se_tpg;
561 unsigned long flags;
562
563 if (!se_tpg) {
564 transport_free_session(se_sess);
565 return;
566 }
567
568 spin_lock_irqsave(&se_tpg->session_lock, flags);
569 list_del(&se_sess->sess_list);
570 se_sess->se_tpg = NULL;
571 se_sess->fabric_sess_ptr = NULL;
572 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg->se_tpg_tfo->get_fabric_name());
576 /*
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
580 *
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
583 */
584
585 transport_free_session(se_sess);
586 }
587 EXPORT_SYMBOL(transport_deregister_session);
588
589 static void target_remove_from_state_list(struct se_cmd *cmd)
590 {
591 struct se_device *dev = cmd->se_dev;
592 unsigned long flags;
593
594 if (!dev)
595 return;
596
597 spin_lock_irqsave(&dev->execute_task_lock, flags);
598 if (cmd->state_active) {
599 list_del(&cmd->state_list);
600 cmd->state_active = false;
601 }
602 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
603 }
604
605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 {
607 unsigned long flags;
608
609 target_remove_from_state_list(cmd);
610
611 /*
612 * Clear struct se_cmd->se_lun before the handoff to FE.
613 */
614 cmd->se_lun = NULL;
615
616 spin_lock_irqsave(&cmd->t_state_lock, flags);
617 /*
618 * Determine if frontend context caller is requesting the stopping of
619 * this command for frontend exceptions.
620 */
621 if (cmd->transport_state & CMD_T_STOP) {
622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
623 __func__, __LINE__, cmd->tag);
624
625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626
627 complete_all(&cmd->t_transport_stop_comp);
628 return 1;
629 }
630 cmd->transport_state &= ~CMD_T_ACTIVE;
631 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632
633 /*
634 * Some fabric modules like tcm_loop can release their internally
635 * allocated I/O reference and struct se_cmd now.
636 *
637 * Fabric modules are expected to return '1' here if the se_cmd being
638 * passed is released at this point, or zero if not being released.
639 */
640 return cmd->se_tfo->check_stop_free(cmd);
641 }
642
643 static void transport_lun_remove_cmd(struct se_cmd *cmd)
644 {
645 struct se_lun *lun = cmd->se_lun;
646
647 if (!lun)
648 return;
649
650 if (cmpxchg(&cmd->lun_ref_active, true, false))
651 percpu_ref_put(&lun->lun_ref);
652 }
653
654 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655 {
656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657 int ret = 0;
658
659 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
660 transport_lun_remove_cmd(cmd);
661 /*
662 * Allow the fabric driver to unmap any resources before
663 * releasing the descriptor via TFO->release_cmd()
664 */
665 if (remove)
666 cmd->se_tfo->aborted_task(cmd);
667
668 if (transport_cmd_check_stop_to_fabric(cmd))
669 return 1;
670 if (remove && ack_kref)
671 ret = transport_put_cmd(cmd);
672
673 return ret;
674 }
675
676 static void target_complete_failure_work(struct work_struct *work)
677 {
678 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
679
680 transport_generic_request_failure(cmd,
681 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
682 }
683
684 /*
685 * Used when asking transport to copy Sense Data from the underlying
686 * Linux/SCSI struct scsi_cmnd
687 */
688 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
689 {
690 struct se_device *dev = cmd->se_dev;
691
692 WARN_ON(!cmd->se_lun);
693
694 if (!dev)
695 return NULL;
696
697 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
698 return NULL;
699
700 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
701
702 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
703 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
704 return cmd->sense_buffer;
705 }
706
707 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
708 {
709 unsigned char *cmd_sense_buf;
710 unsigned long flags;
711
712 spin_lock_irqsave(&cmd->t_state_lock, flags);
713 cmd_sense_buf = transport_get_sense_buffer(cmd);
714 if (!cmd_sense_buf) {
715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716 return;
717 }
718
719 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
720 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722 }
723 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
724
725 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
726 {
727 struct se_device *dev = cmd->se_dev;
728 int success = scsi_status == GOOD;
729 unsigned long flags;
730
731 cmd->scsi_status = scsi_status;
732
733
734 spin_lock_irqsave(&cmd->t_state_lock, flags);
735 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
736 success = 1;
737
738 /*
739 * Check for case where an explicit ABORT_TASK has been received
740 * and transport_wait_for_tasks() will be waiting for completion..
741 */
742 if (cmd->transport_state & CMD_T_ABORTED ||
743 cmd->transport_state & CMD_T_STOP) {
744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745 /*
746 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
747 * release se_device->caw_sem obtained by sbc_compare_and_write()
748 * since target_complete_ok_work() or target_complete_failure_work()
749 * won't be called to invoke the normal CAW completion callbacks.
750 */
751 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
752 up(&dev->caw_sem);
753 }
754 complete_all(&cmd->t_transport_stop_comp);
755 return;
756 } else if (!success) {
757 INIT_WORK(&cmd->work, target_complete_failure_work);
758 } else {
759 INIT_WORK(&cmd->work, target_complete_ok_work);
760 }
761
762 cmd->t_state = TRANSPORT_COMPLETE;
763 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
764 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
765
766 if (cmd->se_cmd_flags & SCF_USE_CPUID)
767 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
768 else
769 queue_work(target_completion_wq, &cmd->work);
770 }
771 EXPORT_SYMBOL(target_complete_cmd);
772
773 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
774 {
775 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
776 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
777 cmd->residual_count += cmd->data_length - length;
778 } else {
779 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
780 cmd->residual_count = cmd->data_length - length;
781 }
782
783 cmd->data_length = length;
784 }
785
786 target_complete_cmd(cmd, scsi_status);
787 }
788 EXPORT_SYMBOL(target_complete_cmd_with_length);
789
790 static void target_add_to_state_list(struct se_cmd *cmd)
791 {
792 struct se_device *dev = cmd->se_dev;
793 unsigned long flags;
794
795 spin_lock_irqsave(&dev->execute_task_lock, flags);
796 if (!cmd->state_active) {
797 list_add_tail(&cmd->state_list, &dev->state_list);
798 cmd->state_active = true;
799 }
800 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
801 }
802
803 /*
804 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
805 */
806 static void transport_write_pending_qf(struct se_cmd *cmd);
807 static void transport_complete_qf(struct se_cmd *cmd);
808
809 void target_qf_do_work(struct work_struct *work)
810 {
811 struct se_device *dev = container_of(work, struct se_device,
812 qf_work_queue);
813 LIST_HEAD(qf_cmd_list);
814 struct se_cmd *cmd, *cmd_tmp;
815
816 spin_lock_irq(&dev->qf_cmd_lock);
817 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
818 spin_unlock_irq(&dev->qf_cmd_lock);
819
820 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
821 list_del(&cmd->se_qf_node);
822 atomic_dec_mb(&dev->dev_qf_count);
823
824 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
825 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
826 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
827 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
828 : "UNKNOWN");
829
830 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
831 transport_write_pending_qf(cmd);
832 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
833 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
834 transport_complete_qf(cmd);
835 }
836 }
837
838 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
839 {
840 switch (cmd->data_direction) {
841 case DMA_NONE:
842 return "NONE";
843 case DMA_FROM_DEVICE:
844 return "READ";
845 case DMA_TO_DEVICE:
846 return "WRITE";
847 case DMA_BIDIRECTIONAL:
848 return "BIDI";
849 default:
850 break;
851 }
852
853 return "UNKNOWN";
854 }
855
856 void transport_dump_dev_state(
857 struct se_device *dev,
858 char *b,
859 int *bl)
860 {
861 *bl += sprintf(b + *bl, "Status: ");
862 if (dev->export_count)
863 *bl += sprintf(b + *bl, "ACTIVATED");
864 else
865 *bl += sprintf(b + *bl, "DEACTIVATED");
866
867 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
868 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
869 dev->dev_attrib.block_size,
870 dev->dev_attrib.hw_max_sectors);
871 *bl += sprintf(b + *bl, " ");
872 }
873
874 void transport_dump_vpd_proto_id(
875 struct t10_vpd *vpd,
876 unsigned char *p_buf,
877 int p_buf_len)
878 {
879 unsigned char buf[VPD_TMP_BUF_SIZE];
880 int len;
881
882 memset(buf, 0, VPD_TMP_BUF_SIZE);
883 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
884
885 switch (vpd->protocol_identifier) {
886 case 0x00:
887 sprintf(buf+len, "Fibre Channel\n");
888 break;
889 case 0x10:
890 sprintf(buf+len, "Parallel SCSI\n");
891 break;
892 case 0x20:
893 sprintf(buf+len, "SSA\n");
894 break;
895 case 0x30:
896 sprintf(buf+len, "IEEE 1394\n");
897 break;
898 case 0x40:
899 sprintf(buf+len, "SCSI Remote Direct Memory Access"
900 " Protocol\n");
901 break;
902 case 0x50:
903 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
904 break;
905 case 0x60:
906 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
907 break;
908 case 0x70:
909 sprintf(buf+len, "Automation/Drive Interface Transport"
910 " Protocol\n");
911 break;
912 case 0x80:
913 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
914 break;
915 default:
916 sprintf(buf+len, "Unknown 0x%02x\n",
917 vpd->protocol_identifier);
918 break;
919 }
920
921 if (p_buf)
922 strncpy(p_buf, buf, p_buf_len);
923 else
924 pr_debug("%s", buf);
925 }
926
927 void
928 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
929 {
930 /*
931 * Check if the Protocol Identifier Valid (PIV) bit is set..
932 *
933 * from spc3r23.pdf section 7.5.1
934 */
935 if (page_83[1] & 0x80) {
936 vpd->protocol_identifier = (page_83[0] & 0xf0);
937 vpd->protocol_identifier_set = 1;
938 transport_dump_vpd_proto_id(vpd, NULL, 0);
939 }
940 }
941 EXPORT_SYMBOL(transport_set_vpd_proto_id);
942
943 int transport_dump_vpd_assoc(
944 struct t10_vpd *vpd,
945 unsigned char *p_buf,
946 int p_buf_len)
947 {
948 unsigned char buf[VPD_TMP_BUF_SIZE];
949 int ret = 0;
950 int len;
951
952 memset(buf, 0, VPD_TMP_BUF_SIZE);
953 len = sprintf(buf, "T10 VPD Identifier Association: ");
954
955 switch (vpd->association) {
956 case 0x00:
957 sprintf(buf+len, "addressed logical unit\n");
958 break;
959 case 0x10:
960 sprintf(buf+len, "target port\n");
961 break;
962 case 0x20:
963 sprintf(buf+len, "SCSI target device\n");
964 break;
965 default:
966 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
967 ret = -EINVAL;
968 break;
969 }
970
971 if (p_buf)
972 strncpy(p_buf, buf, p_buf_len);
973 else
974 pr_debug("%s", buf);
975
976 return ret;
977 }
978
979 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
980 {
981 /*
982 * The VPD identification association..
983 *
984 * from spc3r23.pdf Section 7.6.3.1 Table 297
985 */
986 vpd->association = (page_83[1] & 0x30);
987 return transport_dump_vpd_assoc(vpd, NULL, 0);
988 }
989 EXPORT_SYMBOL(transport_set_vpd_assoc);
990
991 int transport_dump_vpd_ident_type(
992 struct t10_vpd *vpd,
993 unsigned char *p_buf,
994 int p_buf_len)
995 {
996 unsigned char buf[VPD_TMP_BUF_SIZE];
997 int ret = 0;
998 int len;
999
1000 memset(buf, 0, VPD_TMP_BUF_SIZE);
1001 len = sprintf(buf, "T10 VPD Identifier Type: ");
1002
1003 switch (vpd->device_identifier_type) {
1004 case 0x00:
1005 sprintf(buf+len, "Vendor specific\n");
1006 break;
1007 case 0x01:
1008 sprintf(buf+len, "T10 Vendor ID based\n");
1009 break;
1010 case 0x02:
1011 sprintf(buf+len, "EUI-64 based\n");
1012 break;
1013 case 0x03:
1014 sprintf(buf+len, "NAA\n");
1015 break;
1016 case 0x04:
1017 sprintf(buf+len, "Relative target port identifier\n");
1018 break;
1019 case 0x08:
1020 sprintf(buf+len, "SCSI name string\n");
1021 break;
1022 default:
1023 sprintf(buf+len, "Unsupported: 0x%02x\n",
1024 vpd->device_identifier_type);
1025 ret = -EINVAL;
1026 break;
1027 }
1028
1029 if (p_buf) {
1030 if (p_buf_len < strlen(buf)+1)
1031 return -EINVAL;
1032 strncpy(p_buf, buf, p_buf_len);
1033 } else {
1034 pr_debug("%s", buf);
1035 }
1036
1037 return ret;
1038 }
1039
1040 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1041 {
1042 /*
1043 * The VPD identifier type..
1044 *
1045 * from spc3r23.pdf Section 7.6.3.1 Table 298
1046 */
1047 vpd->device_identifier_type = (page_83[1] & 0x0f);
1048 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1049 }
1050 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1051
1052 int transport_dump_vpd_ident(
1053 struct t10_vpd *vpd,
1054 unsigned char *p_buf,
1055 int p_buf_len)
1056 {
1057 unsigned char buf[VPD_TMP_BUF_SIZE];
1058 int ret = 0;
1059
1060 memset(buf, 0, VPD_TMP_BUF_SIZE);
1061
1062 switch (vpd->device_identifier_code_set) {
1063 case 0x01: /* Binary */
1064 snprintf(buf, sizeof(buf),
1065 "T10 VPD Binary Device Identifier: %s\n",
1066 &vpd->device_identifier[0]);
1067 break;
1068 case 0x02: /* ASCII */
1069 snprintf(buf, sizeof(buf),
1070 "T10 VPD ASCII Device Identifier: %s\n",
1071 &vpd->device_identifier[0]);
1072 break;
1073 case 0x03: /* UTF-8 */
1074 snprintf(buf, sizeof(buf),
1075 "T10 VPD UTF-8 Device Identifier: %s\n",
1076 &vpd->device_identifier[0]);
1077 break;
1078 default:
1079 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1080 " 0x%02x", vpd->device_identifier_code_set);
1081 ret = -EINVAL;
1082 break;
1083 }
1084
1085 if (p_buf)
1086 strncpy(p_buf, buf, p_buf_len);
1087 else
1088 pr_debug("%s", buf);
1089
1090 return ret;
1091 }
1092
1093 int
1094 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1095 {
1096 static const char hex_str[] = "0123456789abcdef";
1097 int j = 0, i = 4; /* offset to start of the identifier */
1098
1099 /*
1100 * The VPD Code Set (encoding)
1101 *
1102 * from spc3r23.pdf Section 7.6.3.1 Table 296
1103 */
1104 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1105 switch (vpd->device_identifier_code_set) {
1106 case 0x01: /* Binary */
1107 vpd->device_identifier[j++] =
1108 hex_str[vpd->device_identifier_type];
1109 while (i < (4 + page_83[3])) {
1110 vpd->device_identifier[j++] =
1111 hex_str[(page_83[i] & 0xf0) >> 4];
1112 vpd->device_identifier[j++] =
1113 hex_str[page_83[i] & 0x0f];
1114 i++;
1115 }
1116 break;
1117 case 0x02: /* ASCII */
1118 case 0x03: /* UTF-8 */
1119 while (i < (4 + page_83[3]))
1120 vpd->device_identifier[j++] = page_83[i++];
1121 break;
1122 default:
1123 break;
1124 }
1125
1126 return transport_dump_vpd_ident(vpd, NULL, 0);
1127 }
1128 EXPORT_SYMBOL(transport_set_vpd_ident);
1129
1130 static sense_reason_t
1131 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1132 unsigned int size)
1133 {
1134 u32 mtl;
1135
1136 if (!cmd->se_tfo->max_data_sg_nents)
1137 return TCM_NO_SENSE;
1138 /*
1139 * Check if fabric enforced maximum SGL entries per I/O descriptor
1140 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1141 * residual_count and reduce original cmd->data_length to maximum
1142 * length based on single PAGE_SIZE entry scatter-lists.
1143 */
1144 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1145 if (cmd->data_length > mtl) {
1146 /*
1147 * If an existing CDB overflow is present, calculate new residual
1148 * based on CDB size minus fabric maximum transfer length.
1149 *
1150 * If an existing CDB underflow is present, calculate new residual
1151 * based on original cmd->data_length minus fabric maximum transfer
1152 * length.
1153 *
1154 * Otherwise, set the underflow residual based on cmd->data_length
1155 * minus fabric maximum transfer length.
1156 */
1157 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1158 cmd->residual_count = (size - mtl);
1159 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1160 u32 orig_dl = size + cmd->residual_count;
1161 cmd->residual_count = (orig_dl - mtl);
1162 } else {
1163 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1164 cmd->residual_count = (cmd->data_length - mtl);
1165 }
1166 cmd->data_length = mtl;
1167 /*
1168 * Reset sbc_check_prot() calculated protection payload
1169 * length based upon the new smaller MTL.
1170 */
1171 if (cmd->prot_length) {
1172 u32 sectors = (mtl / dev->dev_attrib.block_size);
1173 cmd->prot_length = dev->prot_length * sectors;
1174 }
1175 }
1176 return TCM_NO_SENSE;
1177 }
1178
1179 sense_reason_t
1180 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1181 {
1182 struct se_device *dev = cmd->se_dev;
1183
1184 if (cmd->unknown_data_length) {
1185 cmd->data_length = size;
1186 } else if (size != cmd->data_length) {
1187 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1188 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1189 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1190 cmd->data_length, size, cmd->t_task_cdb[0]);
1191
1192 if (cmd->data_direction == DMA_TO_DEVICE) {
1193 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1194 pr_err_ratelimited("Rejecting underflow/overflow"
1195 " for WRITE data CDB\n");
1196 return TCM_INVALID_CDB_FIELD;
1197 }
1198 /*
1199 * Some fabric drivers like iscsi-target still expect to
1200 * always reject overflow writes. Reject this case until
1201 * full fabric driver level support for overflow writes
1202 * is introduced tree-wide.
1203 */
1204 if (size > cmd->data_length) {
1205 pr_err_ratelimited("Rejecting overflow for"
1206 " WRITE control CDB\n");
1207 return TCM_INVALID_CDB_FIELD;
1208 }
1209 }
1210 /*
1211 * Reject READ_* or WRITE_* with overflow/underflow for
1212 * type SCF_SCSI_DATA_CDB.
1213 */
1214 if (dev->dev_attrib.block_size != 512) {
1215 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1216 " CDB on non 512-byte sector setup subsystem"
1217 " plugin: %s\n", dev->transport->name);
1218 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1219 return TCM_INVALID_CDB_FIELD;
1220 }
1221 /*
1222 * For the overflow case keep the existing fabric provided
1223 * ->data_length. Otherwise for the underflow case, reset
1224 * ->data_length to the smaller SCSI expected data transfer
1225 * length.
1226 */
1227 if (size > cmd->data_length) {
1228 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1229 cmd->residual_count = (size - cmd->data_length);
1230 } else {
1231 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1232 cmd->residual_count = (cmd->data_length - size);
1233 cmd->data_length = size;
1234 }
1235 }
1236
1237 return target_check_max_data_sg_nents(cmd, dev, size);
1238
1239 }
1240
1241 /*
1242 * Used by fabric modules containing a local struct se_cmd within their
1243 * fabric dependent per I/O descriptor.
1244 *
1245 * Preserves the value of @cmd->tag.
1246 */
1247 void transport_init_se_cmd(
1248 struct se_cmd *cmd,
1249 const struct target_core_fabric_ops *tfo,
1250 struct se_session *se_sess,
1251 u32 data_length,
1252 int data_direction,
1253 int task_attr,
1254 unsigned char *sense_buffer)
1255 {
1256 INIT_LIST_HEAD(&cmd->se_delayed_node);
1257 INIT_LIST_HEAD(&cmd->se_qf_node);
1258 INIT_LIST_HEAD(&cmd->se_cmd_list);
1259 INIT_LIST_HEAD(&cmd->state_list);
1260 init_completion(&cmd->t_transport_stop_comp);
1261 init_completion(&cmd->cmd_wait_comp);
1262 spin_lock_init(&cmd->t_state_lock);
1263 INIT_WORK(&cmd->work, NULL);
1264 kref_init(&cmd->cmd_kref);
1265
1266 cmd->se_tfo = tfo;
1267 cmd->se_sess = se_sess;
1268 cmd->data_length = data_length;
1269 cmd->data_direction = data_direction;
1270 cmd->sam_task_attr = task_attr;
1271 cmd->sense_buffer = sense_buffer;
1272
1273 cmd->state_active = false;
1274 }
1275 EXPORT_SYMBOL(transport_init_se_cmd);
1276
1277 static sense_reason_t
1278 transport_check_alloc_task_attr(struct se_cmd *cmd)
1279 {
1280 struct se_device *dev = cmd->se_dev;
1281
1282 /*
1283 * Check if SAM Task Attribute emulation is enabled for this
1284 * struct se_device storage object
1285 */
1286 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1287 return 0;
1288
1289 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1290 pr_debug("SAM Task Attribute ACA"
1291 " emulation is not supported\n");
1292 return TCM_INVALID_CDB_FIELD;
1293 }
1294
1295 return 0;
1296 }
1297
1298 sense_reason_t
1299 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1300 {
1301 struct se_device *dev = cmd->se_dev;
1302 sense_reason_t ret;
1303
1304 /*
1305 * Ensure that the received CDB is less than the max (252 + 8) bytes
1306 * for VARIABLE_LENGTH_CMD
1307 */
1308 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1309 pr_err("Received SCSI CDB with command_size: %d that"
1310 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1311 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1312 return TCM_INVALID_CDB_FIELD;
1313 }
1314 /*
1315 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1316 * allocate the additional extended CDB buffer now.. Otherwise
1317 * setup the pointer from __t_task_cdb to t_task_cdb.
1318 */
1319 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1320 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1321 GFP_KERNEL);
1322 if (!cmd->t_task_cdb) {
1323 pr_err("Unable to allocate cmd->t_task_cdb"
1324 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1325 scsi_command_size(cdb),
1326 (unsigned long)sizeof(cmd->__t_task_cdb));
1327 return TCM_OUT_OF_RESOURCES;
1328 }
1329 } else
1330 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1331 /*
1332 * Copy the original CDB into cmd->
1333 */
1334 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1335
1336 trace_target_sequencer_start(cmd);
1337
1338 ret = dev->transport->parse_cdb(cmd);
1339 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1340 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1341 cmd->se_tfo->get_fabric_name(),
1342 cmd->se_sess->se_node_acl->initiatorname,
1343 cmd->t_task_cdb[0]);
1344 if (ret)
1345 return ret;
1346
1347 ret = transport_check_alloc_task_attr(cmd);
1348 if (ret)
1349 return ret;
1350
1351 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1352 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1353 return 0;
1354 }
1355 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1356
1357 /*
1358 * Used by fabric module frontends to queue tasks directly.
1359 * May only be used from process context.
1360 */
1361 int transport_handle_cdb_direct(
1362 struct se_cmd *cmd)
1363 {
1364 sense_reason_t ret;
1365
1366 if (!cmd->se_lun) {
1367 dump_stack();
1368 pr_err("cmd->se_lun is NULL\n");
1369 return -EINVAL;
1370 }
1371 if (in_interrupt()) {
1372 dump_stack();
1373 pr_err("transport_generic_handle_cdb cannot be called"
1374 " from interrupt context\n");
1375 return -EINVAL;
1376 }
1377 /*
1378 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1379 * outstanding descriptors are handled correctly during shutdown via
1380 * transport_wait_for_tasks()
1381 *
1382 * Also, we don't take cmd->t_state_lock here as we only expect
1383 * this to be called for initial descriptor submission.
1384 */
1385 cmd->t_state = TRANSPORT_NEW_CMD;
1386 cmd->transport_state |= CMD_T_ACTIVE;
1387
1388 /*
1389 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1390 * so follow TRANSPORT_NEW_CMD processing thread context usage
1391 * and call transport_generic_request_failure() if necessary..
1392 */
1393 ret = transport_generic_new_cmd(cmd);
1394 if (ret)
1395 transport_generic_request_failure(cmd, ret);
1396 return 0;
1397 }
1398 EXPORT_SYMBOL(transport_handle_cdb_direct);
1399
1400 sense_reason_t
1401 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1402 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1403 {
1404 if (!sgl || !sgl_count)
1405 return 0;
1406
1407 /*
1408 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1409 * scatterlists already have been set to follow what the fabric
1410 * passes for the original expected data transfer length.
1411 */
1412 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1413 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1414 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1415 return TCM_INVALID_CDB_FIELD;
1416 }
1417
1418 cmd->t_data_sg = sgl;
1419 cmd->t_data_nents = sgl_count;
1420 cmd->t_bidi_data_sg = sgl_bidi;
1421 cmd->t_bidi_data_nents = sgl_bidi_count;
1422
1423 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1424 return 0;
1425 }
1426
1427 /*
1428 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1429 * se_cmd + use pre-allocated SGL memory.
1430 *
1431 * @se_cmd: command descriptor to submit
1432 * @se_sess: associated se_sess for endpoint
1433 * @cdb: pointer to SCSI CDB
1434 * @sense: pointer to SCSI sense buffer
1435 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1436 * @data_length: fabric expected data transfer length
1437 * @task_addr: SAM task attribute
1438 * @data_dir: DMA data direction
1439 * @flags: flags for command submission from target_sc_flags_tables
1440 * @sgl: struct scatterlist memory for unidirectional mapping
1441 * @sgl_count: scatterlist count for unidirectional mapping
1442 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1443 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1444 * @sgl_prot: struct scatterlist memory protection information
1445 * @sgl_prot_count: scatterlist count for protection information
1446 *
1447 * Task tags are supported if the caller has set @se_cmd->tag.
1448 *
1449 * Returns non zero to signal active I/O shutdown failure. All other
1450 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1451 * but still return zero here.
1452 *
1453 * This may only be called from process context, and also currently
1454 * assumes internal allocation of fabric payload buffer by target-core.
1455 */
1456 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1457 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1458 u32 data_length, int task_attr, int data_dir, int flags,
1459 struct scatterlist *sgl, u32 sgl_count,
1460 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1461 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1462 {
1463 struct se_portal_group *se_tpg;
1464 sense_reason_t rc;
1465 int ret;
1466
1467 se_tpg = se_sess->se_tpg;
1468 BUG_ON(!se_tpg);
1469 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1470 BUG_ON(in_interrupt());
1471 /*
1472 * Initialize se_cmd for target operation. From this point
1473 * exceptions are handled by sending exception status via
1474 * target_core_fabric_ops->queue_status() callback
1475 */
1476 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1477 data_length, data_dir, task_attr, sense);
1478
1479 if (flags & TARGET_SCF_USE_CPUID)
1480 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1481 else
1482 se_cmd->cpuid = WORK_CPU_UNBOUND;
1483
1484 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1485 se_cmd->unknown_data_length = 1;
1486 /*
1487 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1488 * se_sess->sess_cmd_list. A second kref_get here is necessary
1489 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1490 * kref_put() to happen during fabric packet acknowledgement.
1491 */
1492 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1493 if (ret)
1494 return ret;
1495 /*
1496 * Signal bidirectional data payloads to target-core
1497 */
1498 if (flags & TARGET_SCF_BIDI_OP)
1499 se_cmd->se_cmd_flags |= SCF_BIDI;
1500 /*
1501 * Locate se_lun pointer and attach it to struct se_cmd
1502 */
1503 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1504 if (rc) {
1505 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1506 target_put_sess_cmd(se_cmd);
1507 return 0;
1508 }
1509
1510 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1511 if (rc != 0) {
1512 transport_generic_request_failure(se_cmd, rc);
1513 return 0;
1514 }
1515
1516 /*
1517 * Save pointers for SGLs containing protection information,
1518 * if present.
1519 */
1520 if (sgl_prot_count) {
1521 se_cmd->t_prot_sg = sgl_prot;
1522 se_cmd->t_prot_nents = sgl_prot_count;
1523 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1524 }
1525
1526 /*
1527 * When a non zero sgl_count has been passed perform SGL passthrough
1528 * mapping for pre-allocated fabric memory instead of having target
1529 * core perform an internal SGL allocation..
1530 */
1531 if (sgl_count != 0) {
1532 BUG_ON(!sgl);
1533
1534 /*
1535 * A work-around for tcm_loop as some userspace code via
1536 * scsi-generic do not memset their associated read buffers,
1537 * so go ahead and do that here for type non-data CDBs. Also
1538 * note that this is currently guaranteed to be a single SGL
1539 * for this case by target core in target_setup_cmd_from_cdb()
1540 * -> transport_generic_cmd_sequencer().
1541 */
1542 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1543 se_cmd->data_direction == DMA_FROM_DEVICE) {
1544 unsigned char *buf = NULL;
1545
1546 if (sgl)
1547 buf = kmap(sg_page(sgl)) + sgl->offset;
1548
1549 if (buf) {
1550 memset(buf, 0, sgl->length);
1551 kunmap(sg_page(sgl));
1552 }
1553 }
1554
1555 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1556 sgl_bidi, sgl_bidi_count);
1557 if (rc != 0) {
1558 transport_generic_request_failure(se_cmd, rc);
1559 return 0;
1560 }
1561 }
1562
1563 /*
1564 * Check if we need to delay processing because of ALUA
1565 * Active/NonOptimized primary access state..
1566 */
1567 core_alua_check_nonop_delay(se_cmd);
1568
1569 transport_handle_cdb_direct(se_cmd);
1570 return 0;
1571 }
1572 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1573
1574 /*
1575 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1576 *
1577 * @se_cmd: command descriptor to submit
1578 * @se_sess: associated se_sess for endpoint
1579 * @cdb: pointer to SCSI CDB
1580 * @sense: pointer to SCSI sense buffer
1581 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1582 * @data_length: fabric expected data transfer length
1583 * @task_addr: SAM task attribute
1584 * @data_dir: DMA data direction
1585 * @flags: flags for command submission from target_sc_flags_tables
1586 *
1587 * Task tags are supported if the caller has set @se_cmd->tag.
1588 *
1589 * Returns non zero to signal active I/O shutdown failure. All other
1590 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1591 * but still return zero here.
1592 *
1593 * This may only be called from process context, and also currently
1594 * assumes internal allocation of fabric payload buffer by target-core.
1595 *
1596 * It also assumes interal target core SGL memory allocation.
1597 */
1598 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1599 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1600 u32 data_length, int task_attr, int data_dir, int flags)
1601 {
1602 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1603 unpacked_lun, data_length, task_attr, data_dir,
1604 flags, NULL, 0, NULL, 0, NULL, 0);
1605 }
1606 EXPORT_SYMBOL(target_submit_cmd);
1607
1608 static void target_complete_tmr_failure(struct work_struct *work)
1609 {
1610 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1611
1612 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1613 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1614
1615 transport_lun_remove_cmd(se_cmd);
1616 transport_cmd_check_stop_to_fabric(se_cmd);
1617 }
1618
1619 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1620 u64 *unpacked_lun)
1621 {
1622 struct se_cmd *se_cmd;
1623 unsigned long flags;
1624 bool ret = false;
1625
1626 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1627 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1628 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1629 continue;
1630
1631 if (se_cmd->tag == tag) {
1632 *unpacked_lun = se_cmd->orig_fe_lun;
1633 ret = true;
1634 break;
1635 }
1636 }
1637 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1638
1639 return ret;
1640 }
1641
1642 /**
1643 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1644 * for TMR CDBs
1645 *
1646 * @se_cmd: command descriptor to submit
1647 * @se_sess: associated se_sess for endpoint
1648 * @sense: pointer to SCSI sense buffer
1649 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1650 * @fabric_context: fabric context for TMR req
1651 * @tm_type: Type of TM request
1652 * @gfp: gfp type for caller
1653 * @tag: referenced task tag for TMR_ABORT_TASK
1654 * @flags: submit cmd flags
1655 *
1656 * Callable from all contexts.
1657 **/
1658
1659 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1660 unsigned char *sense, u64 unpacked_lun,
1661 void *fabric_tmr_ptr, unsigned char tm_type,
1662 gfp_t gfp, u64 tag, int flags)
1663 {
1664 struct se_portal_group *se_tpg;
1665 int ret;
1666
1667 se_tpg = se_sess->se_tpg;
1668 BUG_ON(!se_tpg);
1669
1670 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1671 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1672 /*
1673 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1674 * allocation failure.
1675 */
1676 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1677 if (ret < 0)
1678 return -ENOMEM;
1679
1680 if (tm_type == TMR_ABORT_TASK)
1681 se_cmd->se_tmr_req->ref_task_tag = tag;
1682
1683 /* See target_submit_cmd for commentary */
1684 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1685 if (ret) {
1686 core_tmr_release_req(se_cmd->se_tmr_req);
1687 return ret;
1688 }
1689 /*
1690 * If this is ABORT_TASK with no explicit fabric provided LUN,
1691 * go ahead and search active session tags for a match to figure
1692 * out unpacked_lun for the original se_cmd.
1693 */
1694 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1695 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1696 goto failure;
1697 }
1698
1699 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1700 if (ret)
1701 goto failure;
1702
1703 transport_generic_handle_tmr(se_cmd);
1704 return 0;
1705
1706 /*
1707 * For callback during failure handling, push this work off
1708 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1709 */
1710 failure:
1711 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1712 schedule_work(&se_cmd->work);
1713 return 0;
1714 }
1715 EXPORT_SYMBOL(target_submit_tmr);
1716
1717 /*
1718 * Handle SAM-esque emulation for generic transport request failures.
1719 */
1720 void transport_generic_request_failure(struct se_cmd *cmd,
1721 sense_reason_t sense_reason)
1722 {
1723 int ret = 0, post_ret = 0;
1724
1725 if (transport_check_aborted_status(cmd, 1))
1726 return;
1727
1728 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1729 sense_reason);
1730 target_show_cmd("-----[ ", cmd);
1731
1732 /*
1733 * For SAM Task Attribute emulation for failed struct se_cmd
1734 */
1735 transport_complete_task_attr(cmd);
1736 /*
1737 * Handle special case for COMPARE_AND_WRITE failure, where the
1738 * callback is expected to drop the per device ->caw_sem.
1739 */
1740 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1741 cmd->transport_complete_callback)
1742 cmd->transport_complete_callback(cmd, false, &post_ret);
1743
1744 switch (sense_reason) {
1745 case TCM_NON_EXISTENT_LUN:
1746 case TCM_UNSUPPORTED_SCSI_OPCODE:
1747 case TCM_INVALID_CDB_FIELD:
1748 case TCM_INVALID_PARAMETER_LIST:
1749 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1750 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1751 case TCM_UNKNOWN_MODE_PAGE:
1752 case TCM_WRITE_PROTECTED:
1753 case TCM_ADDRESS_OUT_OF_RANGE:
1754 case TCM_CHECK_CONDITION_ABORT_CMD:
1755 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1756 case TCM_CHECK_CONDITION_NOT_READY:
1757 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1758 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1759 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1760 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1761 case TCM_TOO_MANY_TARGET_DESCS:
1762 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1763 case TCM_TOO_MANY_SEGMENT_DESCS:
1764 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1765 break;
1766 case TCM_OUT_OF_RESOURCES:
1767 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1768 break;
1769 case TCM_RESERVATION_CONFLICT:
1770 /*
1771 * No SENSE Data payload for this case, set SCSI Status
1772 * and queue the response to $FABRIC_MOD.
1773 *
1774 * Uses linux/include/scsi/scsi.h SAM status codes defs
1775 */
1776 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1777 /*
1778 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1779 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1780 * CONFLICT STATUS.
1781 *
1782 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1783 */
1784 if (cmd->se_sess &&
1785 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1786 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1787 cmd->orig_fe_lun, 0x2C,
1788 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1789 }
1790 trace_target_cmd_complete(cmd);
1791 ret = cmd->se_tfo->queue_status(cmd);
1792 if (ret)
1793 goto queue_full;
1794 goto check_stop;
1795 default:
1796 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1797 cmd->t_task_cdb[0], sense_reason);
1798 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1799 break;
1800 }
1801
1802 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1803 if (ret)
1804 goto queue_full;
1805
1806 check_stop:
1807 transport_lun_remove_cmd(cmd);
1808 transport_cmd_check_stop_to_fabric(cmd);
1809 return;
1810
1811 queue_full:
1812 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1813 }
1814 EXPORT_SYMBOL(transport_generic_request_failure);
1815
1816 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1817 {
1818 sense_reason_t ret;
1819
1820 if (!cmd->execute_cmd) {
1821 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1822 goto err;
1823 }
1824 if (do_checks) {
1825 /*
1826 * Check for an existing UNIT ATTENTION condition after
1827 * target_handle_task_attr() has done SAM task attr
1828 * checking, and possibly have already defered execution
1829 * out to target_restart_delayed_cmds() context.
1830 */
1831 ret = target_scsi3_ua_check(cmd);
1832 if (ret)
1833 goto err;
1834
1835 ret = target_alua_state_check(cmd);
1836 if (ret)
1837 goto err;
1838
1839 ret = target_check_reservation(cmd);
1840 if (ret) {
1841 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1842 goto err;
1843 }
1844 }
1845
1846 ret = cmd->execute_cmd(cmd);
1847 if (!ret)
1848 return;
1849 err:
1850 spin_lock_irq(&cmd->t_state_lock);
1851 cmd->transport_state &= ~CMD_T_SENT;
1852 spin_unlock_irq(&cmd->t_state_lock);
1853
1854 transport_generic_request_failure(cmd, ret);
1855 }
1856
1857 static int target_write_prot_action(struct se_cmd *cmd)
1858 {
1859 u32 sectors;
1860 /*
1861 * Perform WRITE_INSERT of PI using software emulation when backend
1862 * device has PI enabled, if the transport has not already generated
1863 * PI using hardware WRITE_INSERT offload.
1864 */
1865 switch (cmd->prot_op) {
1866 case TARGET_PROT_DOUT_INSERT:
1867 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1868 sbc_dif_generate(cmd);
1869 break;
1870 case TARGET_PROT_DOUT_STRIP:
1871 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1872 break;
1873
1874 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1875 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1876 sectors, 0, cmd->t_prot_sg, 0);
1877 if (unlikely(cmd->pi_err)) {
1878 spin_lock_irq(&cmd->t_state_lock);
1879 cmd->transport_state &= ~CMD_T_SENT;
1880 spin_unlock_irq(&cmd->t_state_lock);
1881 transport_generic_request_failure(cmd, cmd->pi_err);
1882 return -1;
1883 }
1884 break;
1885 default:
1886 break;
1887 }
1888
1889 return 0;
1890 }
1891
1892 static bool target_handle_task_attr(struct se_cmd *cmd)
1893 {
1894 struct se_device *dev = cmd->se_dev;
1895
1896 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1897 return false;
1898
1899 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1900
1901 /*
1902 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1903 * to allow the passed struct se_cmd list of tasks to the front of the list.
1904 */
1905 switch (cmd->sam_task_attr) {
1906 case TCM_HEAD_TAG:
1907 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1908 cmd->t_task_cdb[0]);
1909 return false;
1910 case TCM_ORDERED_TAG:
1911 atomic_inc_mb(&dev->dev_ordered_sync);
1912
1913 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1914 cmd->t_task_cdb[0]);
1915
1916 /*
1917 * Execute an ORDERED command if no other older commands
1918 * exist that need to be completed first.
1919 */
1920 if (!atomic_read(&dev->simple_cmds))
1921 return false;
1922 break;
1923 default:
1924 /*
1925 * For SIMPLE and UNTAGGED Task Attribute commands
1926 */
1927 atomic_inc_mb(&dev->simple_cmds);
1928 break;
1929 }
1930
1931 if (atomic_read(&dev->dev_ordered_sync) == 0)
1932 return false;
1933
1934 spin_lock(&dev->delayed_cmd_lock);
1935 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1936 spin_unlock(&dev->delayed_cmd_lock);
1937
1938 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1939 cmd->t_task_cdb[0], cmd->sam_task_attr);
1940 return true;
1941 }
1942
1943 static int __transport_check_aborted_status(struct se_cmd *, int);
1944
1945 void target_execute_cmd(struct se_cmd *cmd)
1946 {
1947 /*
1948 * Determine if frontend context caller is requesting the stopping of
1949 * this command for frontend exceptions.
1950 *
1951 * If the received CDB has aleady been aborted stop processing it here.
1952 */
1953 spin_lock_irq(&cmd->t_state_lock);
1954 if (__transport_check_aborted_status(cmd, 1)) {
1955 spin_unlock_irq(&cmd->t_state_lock);
1956 return;
1957 }
1958 if (cmd->transport_state & CMD_T_STOP) {
1959 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1960 __func__, __LINE__, cmd->tag);
1961
1962 spin_unlock_irq(&cmd->t_state_lock);
1963 complete_all(&cmd->t_transport_stop_comp);
1964 return;
1965 }
1966
1967 cmd->t_state = TRANSPORT_PROCESSING;
1968 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1969 spin_unlock_irq(&cmd->t_state_lock);
1970
1971 if (target_write_prot_action(cmd))
1972 return;
1973
1974 if (target_handle_task_attr(cmd)) {
1975 spin_lock_irq(&cmd->t_state_lock);
1976 cmd->transport_state &= ~CMD_T_SENT;
1977 spin_unlock_irq(&cmd->t_state_lock);
1978 return;
1979 }
1980
1981 __target_execute_cmd(cmd, true);
1982 }
1983 EXPORT_SYMBOL(target_execute_cmd);
1984
1985 /*
1986 * Process all commands up to the last received ORDERED task attribute which
1987 * requires another blocking boundary
1988 */
1989 static void target_restart_delayed_cmds(struct se_device *dev)
1990 {
1991 for (;;) {
1992 struct se_cmd *cmd;
1993
1994 spin_lock(&dev->delayed_cmd_lock);
1995 if (list_empty(&dev->delayed_cmd_list)) {
1996 spin_unlock(&dev->delayed_cmd_lock);
1997 break;
1998 }
1999
2000 cmd = list_entry(dev->delayed_cmd_list.next,
2001 struct se_cmd, se_delayed_node);
2002 list_del(&cmd->se_delayed_node);
2003 spin_unlock(&dev->delayed_cmd_lock);
2004
2005 __target_execute_cmd(cmd, true);
2006
2007 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2008 break;
2009 }
2010 }
2011
2012 /*
2013 * Called from I/O completion to determine which dormant/delayed
2014 * and ordered cmds need to have their tasks added to the execution queue.
2015 */
2016 static void transport_complete_task_attr(struct se_cmd *cmd)
2017 {
2018 struct se_device *dev = cmd->se_dev;
2019
2020 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2021 return;
2022
2023 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2024 goto restart;
2025
2026 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2027 atomic_dec_mb(&dev->simple_cmds);
2028 dev->dev_cur_ordered_id++;
2029 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2030 dev->dev_cur_ordered_id++;
2031 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2032 dev->dev_cur_ordered_id);
2033 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2034 atomic_dec_mb(&dev->dev_ordered_sync);
2035
2036 dev->dev_cur_ordered_id++;
2037 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2038 dev->dev_cur_ordered_id);
2039 }
2040 restart:
2041 target_restart_delayed_cmds(dev);
2042 }
2043
2044 static void transport_complete_qf(struct se_cmd *cmd)
2045 {
2046 int ret = 0;
2047
2048 transport_complete_task_attr(cmd);
2049 /*
2050 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2051 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2052 * the same callbacks should not be retried. Return CHECK_CONDITION
2053 * if a scsi_status is not already set.
2054 *
2055 * If a fabric driver ->queue_status() has returned non zero, always
2056 * keep retrying no matter what..
2057 */
2058 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2059 if (cmd->scsi_status)
2060 goto queue_status;
2061
2062 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2063 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2064 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2065 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2066 goto queue_status;
2067 }
2068
2069 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2070 goto queue_status;
2071
2072 switch (cmd->data_direction) {
2073 case DMA_FROM_DEVICE:
2074 if (cmd->scsi_status)
2075 goto queue_status;
2076
2077 trace_target_cmd_complete(cmd);
2078 ret = cmd->se_tfo->queue_data_in(cmd);
2079 break;
2080 case DMA_TO_DEVICE:
2081 if (cmd->se_cmd_flags & SCF_BIDI) {
2082 ret = cmd->se_tfo->queue_data_in(cmd);
2083 break;
2084 }
2085 /* Fall through for DMA_TO_DEVICE */
2086 case DMA_NONE:
2087 queue_status:
2088 trace_target_cmd_complete(cmd);
2089 ret = cmd->se_tfo->queue_status(cmd);
2090 break;
2091 default:
2092 break;
2093 }
2094
2095 if (ret < 0) {
2096 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2097 return;
2098 }
2099 transport_lun_remove_cmd(cmd);
2100 transport_cmd_check_stop_to_fabric(cmd);
2101 }
2102
2103 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2104 int err, bool write_pending)
2105 {
2106 /*
2107 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2108 * ->queue_data_in() callbacks from new process context.
2109 *
2110 * Otherwise for other errors, transport_complete_qf() will send
2111 * CHECK_CONDITION via ->queue_status() instead of attempting to
2112 * retry associated fabric driver data-transfer callbacks.
2113 */
2114 if (err == -EAGAIN || err == -ENOMEM) {
2115 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2116 TRANSPORT_COMPLETE_QF_OK;
2117 } else {
2118 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2119 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2120 }
2121
2122 spin_lock_irq(&dev->qf_cmd_lock);
2123 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2124 atomic_inc_mb(&dev->dev_qf_count);
2125 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2126
2127 schedule_work(&cmd->se_dev->qf_work_queue);
2128 }
2129
2130 static bool target_read_prot_action(struct se_cmd *cmd)
2131 {
2132 switch (cmd->prot_op) {
2133 case TARGET_PROT_DIN_STRIP:
2134 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2135 u32 sectors = cmd->data_length >>
2136 ilog2(cmd->se_dev->dev_attrib.block_size);
2137
2138 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2139 sectors, 0, cmd->t_prot_sg,
2140 0);
2141 if (cmd->pi_err)
2142 return true;
2143 }
2144 break;
2145 case TARGET_PROT_DIN_INSERT:
2146 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2147 break;
2148
2149 sbc_dif_generate(cmd);
2150 break;
2151 default:
2152 break;
2153 }
2154
2155 return false;
2156 }
2157
2158 static void target_complete_ok_work(struct work_struct *work)
2159 {
2160 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2161 int ret;
2162
2163 /*
2164 * Check if we need to move delayed/dormant tasks from cmds on the
2165 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2166 * Attribute.
2167 */
2168 transport_complete_task_attr(cmd);
2169
2170 /*
2171 * Check to schedule QUEUE_FULL work, or execute an existing
2172 * cmd->transport_qf_callback()
2173 */
2174 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2175 schedule_work(&cmd->se_dev->qf_work_queue);
2176
2177 /*
2178 * Check if we need to send a sense buffer from
2179 * the struct se_cmd in question.
2180 */
2181 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2182 WARN_ON(!cmd->scsi_status);
2183 ret = transport_send_check_condition_and_sense(
2184 cmd, 0, 1);
2185 if (ret)
2186 goto queue_full;
2187
2188 transport_lun_remove_cmd(cmd);
2189 transport_cmd_check_stop_to_fabric(cmd);
2190 return;
2191 }
2192 /*
2193 * Check for a callback, used by amongst other things
2194 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2195 */
2196 if (cmd->transport_complete_callback) {
2197 sense_reason_t rc;
2198 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2199 bool zero_dl = !(cmd->data_length);
2200 int post_ret = 0;
2201
2202 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2203 if (!rc && !post_ret) {
2204 if (caw && zero_dl)
2205 goto queue_rsp;
2206
2207 return;
2208 } else if (rc) {
2209 ret = transport_send_check_condition_and_sense(cmd,
2210 rc, 0);
2211 if (ret)
2212 goto queue_full;
2213
2214 transport_lun_remove_cmd(cmd);
2215 transport_cmd_check_stop_to_fabric(cmd);
2216 return;
2217 }
2218 }
2219
2220 queue_rsp:
2221 switch (cmd->data_direction) {
2222 case DMA_FROM_DEVICE:
2223 if (cmd->scsi_status)
2224 goto queue_status;
2225
2226 atomic_long_add(cmd->data_length,
2227 &cmd->se_lun->lun_stats.tx_data_octets);
2228 /*
2229 * Perform READ_STRIP of PI using software emulation when
2230 * backend had PI enabled, if the transport will not be
2231 * performing hardware READ_STRIP offload.
2232 */
2233 if (target_read_prot_action(cmd)) {
2234 ret = transport_send_check_condition_and_sense(cmd,
2235 cmd->pi_err, 0);
2236 if (ret)
2237 goto queue_full;
2238
2239 transport_lun_remove_cmd(cmd);
2240 transport_cmd_check_stop_to_fabric(cmd);
2241 return;
2242 }
2243
2244 trace_target_cmd_complete(cmd);
2245 ret = cmd->se_tfo->queue_data_in(cmd);
2246 if (ret)
2247 goto queue_full;
2248 break;
2249 case DMA_TO_DEVICE:
2250 atomic_long_add(cmd->data_length,
2251 &cmd->se_lun->lun_stats.rx_data_octets);
2252 /*
2253 * Check if we need to send READ payload for BIDI-COMMAND
2254 */
2255 if (cmd->se_cmd_flags & SCF_BIDI) {
2256 atomic_long_add(cmd->data_length,
2257 &cmd->se_lun->lun_stats.tx_data_octets);
2258 ret = cmd->se_tfo->queue_data_in(cmd);
2259 if (ret)
2260 goto queue_full;
2261 break;
2262 }
2263 /* Fall through for DMA_TO_DEVICE */
2264 case DMA_NONE:
2265 queue_status:
2266 trace_target_cmd_complete(cmd);
2267 ret = cmd->se_tfo->queue_status(cmd);
2268 if (ret)
2269 goto queue_full;
2270 break;
2271 default:
2272 break;
2273 }
2274
2275 transport_lun_remove_cmd(cmd);
2276 transport_cmd_check_stop_to_fabric(cmd);
2277 return;
2278
2279 queue_full:
2280 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2281 " data_direction: %d\n", cmd, cmd->data_direction);
2282
2283 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2284 }
2285
2286 void target_free_sgl(struct scatterlist *sgl, int nents)
2287 {
2288 struct scatterlist *sg;
2289 int count;
2290
2291 for_each_sg(sgl, sg, nents, count)
2292 __free_page(sg_page(sg));
2293
2294 kfree(sgl);
2295 }
2296 EXPORT_SYMBOL(target_free_sgl);
2297
2298 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2299 {
2300 /*
2301 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2302 * emulation, and free + reset pointers if necessary..
2303 */
2304 if (!cmd->t_data_sg_orig)
2305 return;
2306
2307 kfree(cmd->t_data_sg);
2308 cmd->t_data_sg = cmd->t_data_sg_orig;
2309 cmd->t_data_sg_orig = NULL;
2310 cmd->t_data_nents = cmd->t_data_nents_orig;
2311 cmd->t_data_nents_orig = 0;
2312 }
2313
2314 static inline void transport_free_pages(struct se_cmd *cmd)
2315 {
2316 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2317 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2318 cmd->t_prot_sg = NULL;
2319 cmd->t_prot_nents = 0;
2320 }
2321
2322 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2323 /*
2324 * Release special case READ buffer payload required for
2325 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2326 */
2327 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2328 target_free_sgl(cmd->t_bidi_data_sg,
2329 cmd->t_bidi_data_nents);
2330 cmd->t_bidi_data_sg = NULL;
2331 cmd->t_bidi_data_nents = 0;
2332 }
2333 transport_reset_sgl_orig(cmd);
2334 return;
2335 }
2336 transport_reset_sgl_orig(cmd);
2337
2338 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2339 cmd->t_data_sg = NULL;
2340 cmd->t_data_nents = 0;
2341
2342 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2343 cmd->t_bidi_data_sg = NULL;
2344 cmd->t_bidi_data_nents = 0;
2345 }
2346
2347 /**
2348 * transport_put_cmd - release a reference to a command
2349 * @cmd: command to release
2350 *
2351 * This routine releases our reference to the command and frees it if possible.
2352 */
2353 static int transport_put_cmd(struct se_cmd *cmd)
2354 {
2355 BUG_ON(!cmd->se_tfo);
2356 /*
2357 * If this cmd has been setup with target_get_sess_cmd(), drop
2358 * the kref and call ->release_cmd() in kref callback.
2359 */
2360 return target_put_sess_cmd(cmd);
2361 }
2362
2363 void *transport_kmap_data_sg(struct se_cmd *cmd)
2364 {
2365 struct scatterlist *sg = cmd->t_data_sg;
2366 struct page **pages;
2367 int i;
2368
2369 /*
2370 * We need to take into account a possible offset here for fabrics like
2371 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2372 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2373 */
2374 if (!cmd->t_data_nents)
2375 return NULL;
2376
2377 BUG_ON(!sg);
2378 if (cmd->t_data_nents == 1)
2379 return kmap(sg_page(sg)) + sg->offset;
2380
2381 /* >1 page. use vmap */
2382 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2383 if (!pages)
2384 return NULL;
2385
2386 /* convert sg[] to pages[] */
2387 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2388 pages[i] = sg_page(sg);
2389 }
2390
2391 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2392 kfree(pages);
2393 if (!cmd->t_data_vmap)
2394 return NULL;
2395
2396 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2397 }
2398 EXPORT_SYMBOL(transport_kmap_data_sg);
2399
2400 void transport_kunmap_data_sg(struct se_cmd *cmd)
2401 {
2402 if (!cmd->t_data_nents) {
2403 return;
2404 } else if (cmd->t_data_nents == 1) {
2405 kunmap(sg_page(cmd->t_data_sg));
2406 return;
2407 }
2408
2409 vunmap(cmd->t_data_vmap);
2410 cmd->t_data_vmap = NULL;
2411 }
2412 EXPORT_SYMBOL(transport_kunmap_data_sg);
2413
2414 int
2415 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2416 bool zero_page, bool chainable)
2417 {
2418 struct scatterlist *sg;
2419 struct page *page;
2420 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2421 unsigned int nalloc, nent;
2422 int i = 0;
2423
2424 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2425 if (chainable)
2426 nalloc++;
2427 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2428 if (!sg)
2429 return -ENOMEM;
2430
2431 sg_init_table(sg, nalloc);
2432
2433 while (length) {
2434 u32 page_len = min_t(u32, length, PAGE_SIZE);
2435 page = alloc_page(GFP_KERNEL | zero_flag);
2436 if (!page)
2437 goto out;
2438
2439 sg_set_page(&sg[i], page, page_len, 0);
2440 length -= page_len;
2441 i++;
2442 }
2443 *sgl = sg;
2444 *nents = nent;
2445 return 0;
2446
2447 out:
2448 while (i > 0) {
2449 i--;
2450 __free_page(sg_page(&sg[i]));
2451 }
2452 kfree(sg);
2453 return -ENOMEM;
2454 }
2455 EXPORT_SYMBOL(target_alloc_sgl);
2456
2457 /*
2458 * Allocate any required resources to execute the command. For writes we
2459 * might not have the payload yet, so notify the fabric via a call to
2460 * ->write_pending instead. Otherwise place it on the execution queue.
2461 */
2462 sense_reason_t
2463 transport_generic_new_cmd(struct se_cmd *cmd)
2464 {
2465 unsigned long flags;
2466 int ret = 0;
2467 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2468
2469 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2470 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2471 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2472 cmd->prot_length, true, false);
2473 if (ret < 0)
2474 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2475 }
2476
2477 /*
2478 * Determine is the TCM fabric module has already allocated physical
2479 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2480 * beforehand.
2481 */
2482 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2483 cmd->data_length) {
2484
2485 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2486 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2487 u32 bidi_length;
2488
2489 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2490 bidi_length = cmd->t_task_nolb *
2491 cmd->se_dev->dev_attrib.block_size;
2492 else
2493 bidi_length = cmd->data_length;
2494
2495 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2496 &cmd->t_bidi_data_nents,
2497 bidi_length, zero_flag, false);
2498 if (ret < 0)
2499 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2500 }
2501
2502 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2503 cmd->data_length, zero_flag, false);
2504 if (ret < 0)
2505 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2506 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2507 cmd->data_length) {
2508 /*
2509 * Special case for COMPARE_AND_WRITE with fabrics
2510 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2511 */
2512 u32 caw_length = cmd->t_task_nolb *
2513 cmd->se_dev->dev_attrib.block_size;
2514
2515 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2516 &cmd->t_bidi_data_nents,
2517 caw_length, zero_flag, false);
2518 if (ret < 0)
2519 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2520 }
2521 /*
2522 * If this command is not a write we can execute it right here,
2523 * for write buffers we need to notify the fabric driver first
2524 * and let it call back once the write buffers are ready.
2525 */
2526 target_add_to_state_list(cmd);
2527 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2528 target_execute_cmd(cmd);
2529 return 0;
2530 }
2531
2532 spin_lock_irqsave(&cmd->t_state_lock, flags);
2533 cmd->t_state = TRANSPORT_WRITE_PENDING;
2534 /*
2535 * Determine if frontend context caller is requesting the stopping of
2536 * this command for frontend exceptions.
2537 */
2538 if (cmd->transport_state & CMD_T_STOP) {
2539 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2540 __func__, __LINE__, cmd->tag);
2541
2542 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2543
2544 complete_all(&cmd->t_transport_stop_comp);
2545 return 0;
2546 }
2547 cmd->transport_state &= ~CMD_T_ACTIVE;
2548 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2549
2550 ret = cmd->se_tfo->write_pending(cmd);
2551 if (ret)
2552 goto queue_full;
2553
2554 return 0;
2555
2556 queue_full:
2557 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2558 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2559 return 0;
2560 }
2561 EXPORT_SYMBOL(transport_generic_new_cmd);
2562
2563 static void transport_write_pending_qf(struct se_cmd *cmd)
2564 {
2565 int ret;
2566
2567 ret = cmd->se_tfo->write_pending(cmd);
2568 if (ret) {
2569 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2570 cmd);
2571 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2572 }
2573 }
2574
2575 static bool
2576 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2577 unsigned long *flags);
2578
2579 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2580 {
2581 unsigned long flags;
2582
2583 spin_lock_irqsave(&cmd->t_state_lock, flags);
2584 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2585 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2586 }
2587
2588 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2589 {
2590 int ret = 0;
2591 bool aborted = false, tas = false;
2592
2593 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2594 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2595 target_wait_free_cmd(cmd, &aborted, &tas);
2596
2597 if (!aborted || tas)
2598 ret = transport_put_cmd(cmd);
2599 } else {
2600 if (wait_for_tasks)
2601 target_wait_free_cmd(cmd, &aborted, &tas);
2602 /*
2603 * Handle WRITE failure case where transport_generic_new_cmd()
2604 * has already added se_cmd to state_list, but fabric has
2605 * failed command before I/O submission.
2606 */
2607 if (cmd->state_active)
2608 target_remove_from_state_list(cmd);
2609
2610 if (cmd->se_lun)
2611 transport_lun_remove_cmd(cmd);
2612
2613 if (!aborted || tas)
2614 ret = transport_put_cmd(cmd);
2615 }
2616 /*
2617 * If the task has been internally aborted due to TMR ABORT_TASK
2618 * or LUN_RESET, target_core_tmr.c is responsible for performing
2619 * the remaining calls to target_put_sess_cmd(), and not the
2620 * callers of this function.
2621 */
2622 if (aborted) {
2623 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2624 wait_for_completion(&cmd->cmd_wait_comp);
2625 cmd->se_tfo->release_cmd(cmd);
2626 ret = 1;
2627 }
2628 return ret;
2629 }
2630 EXPORT_SYMBOL(transport_generic_free_cmd);
2631
2632 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2633 * @se_cmd: command descriptor to add
2634 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2635 */
2636 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2637 {
2638 struct se_session *se_sess = se_cmd->se_sess;
2639 unsigned long flags;
2640 int ret = 0;
2641
2642 /*
2643 * Add a second kref if the fabric caller is expecting to handle
2644 * fabric acknowledgement that requires two target_put_sess_cmd()
2645 * invocations before se_cmd descriptor release.
2646 */
2647 if (ack_kref) {
2648 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2649 return -EINVAL;
2650
2651 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2652 }
2653
2654 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2655 if (se_sess->sess_tearing_down) {
2656 ret = -ESHUTDOWN;
2657 goto out;
2658 }
2659 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2660 out:
2661 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2662
2663 if (ret && ack_kref)
2664 target_put_sess_cmd(se_cmd);
2665
2666 return ret;
2667 }
2668 EXPORT_SYMBOL(target_get_sess_cmd);
2669
2670 static void target_free_cmd_mem(struct se_cmd *cmd)
2671 {
2672 transport_free_pages(cmd);
2673
2674 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2675 core_tmr_release_req(cmd->se_tmr_req);
2676 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2677 kfree(cmd->t_task_cdb);
2678 }
2679
2680 static void target_release_cmd_kref(struct kref *kref)
2681 {
2682 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2683 struct se_session *se_sess = se_cmd->se_sess;
2684 unsigned long flags;
2685 bool fabric_stop;
2686
2687 if (se_sess) {
2688 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2689
2690 spin_lock(&se_cmd->t_state_lock);
2691 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2692 (se_cmd->transport_state & CMD_T_ABORTED);
2693 spin_unlock(&se_cmd->t_state_lock);
2694
2695 if (se_cmd->cmd_wait_set || fabric_stop) {
2696 list_del_init(&se_cmd->se_cmd_list);
2697 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2698 target_free_cmd_mem(se_cmd);
2699 complete(&se_cmd->cmd_wait_comp);
2700 return;
2701 }
2702 list_del_init(&se_cmd->se_cmd_list);
2703 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2704 }
2705
2706 target_free_cmd_mem(se_cmd);
2707 se_cmd->se_tfo->release_cmd(se_cmd);
2708 }
2709
2710 /**
2711 * target_put_sess_cmd - decrease the command reference count
2712 * @se_cmd: command to drop a reference from
2713 *
2714 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2715 * refcount to drop to zero. Returns zero otherwise.
2716 */
2717 int target_put_sess_cmd(struct se_cmd *se_cmd)
2718 {
2719 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2720 }
2721 EXPORT_SYMBOL(target_put_sess_cmd);
2722
2723 static const char *data_dir_name(enum dma_data_direction d)
2724 {
2725 switch (d) {
2726 case DMA_BIDIRECTIONAL: return "BIDI";
2727 case DMA_TO_DEVICE: return "WRITE";
2728 case DMA_FROM_DEVICE: return "READ";
2729 case DMA_NONE: return "NONE";
2730 }
2731
2732 return "(?)";
2733 }
2734
2735 static const char *cmd_state_name(enum transport_state_table t)
2736 {
2737 switch (t) {
2738 case TRANSPORT_NO_STATE: return "NO_STATE";
2739 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2740 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2741 case TRANSPORT_PROCESSING: return "PROCESSING";
2742 case TRANSPORT_COMPLETE: return "COMPLETE";
2743 case TRANSPORT_ISTATE_PROCESSING:
2744 return "ISTATE_PROCESSING";
2745 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2746 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2747 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2748 }
2749
2750 return "(?)";
2751 }
2752
2753 static void target_append_str(char **str, const char *txt)
2754 {
2755 char *prev = *str;
2756
2757 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2758 kstrdup(txt, GFP_ATOMIC);
2759 kfree(prev);
2760 }
2761
2762 /*
2763 * Convert a transport state bitmask into a string. The caller is
2764 * responsible for freeing the returned pointer.
2765 */
2766 static char *target_ts_to_str(u32 ts)
2767 {
2768 char *str = NULL;
2769
2770 if (ts & CMD_T_ABORTED)
2771 target_append_str(&str, "aborted");
2772 if (ts & CMD_T_ACTIVE)
2773 target_append_str(&str, "active");
2774 if (ts & CMD_T_COMPLETE)
2775 target_append_str(&str, "complete");
2776 if (ts & CMD_T_SENT)
2777 target_append_str(&str, "sent");
2778 if (ts & CMD_T_STOP)
2779 target_append_str(&str, "stop");
2780 if (ts & CMD_T_FABRIC_STOP)
2781 target_append_str(&str, "fabric_stop");
2782
2783 return str;
2784 }
2785
2786 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2787 {
2788 switch (tmf) {
2789 case TMR_ABORT_TASK: return "ABORT_TASK";
2790 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2791 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2792 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2793 case TMR_LUN_RESET: return "LUN_RESET";
2794 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2795 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2796 case TMR_UNKNOWN: break;
2797 }
2798 return "(?)";
2799 }
2800
2801 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2802 {
2803 char *ts_str = target_ts_to_str(cmd->transport_state);
2804 const u8 *cdb = cmd->t_task_cdb;
2805 struct se_tmr_req *tmf = cmd->se_tmr_req;
2806
2807 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2808 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2809 pfx, cdb[0], cdb[1], cmd->tag,
2810 data_dir_name(cmd->data_direction),
2811 cmd->se_tfo->get_cmd_state(cmd),
2812 cmd_state_name(cmd->t_state), cmd->data_length,
2813 kref_read(&cmd->cmd_kref), ts_str);
2814 } else {
2815 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2816 pfx, target_tmf_name(tmf->function), cmd->tag,
2817 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2818 cmd_state_name(cmd->t_state),
2819 kref_read(&cmd->cmd_kref), ts_str);
2820 }
2821 kfree(ts_str);
2822 }
2823 EXPORT_SYMBOL(target_show_cmd);
2824
2825 /* target_sess_cmd_list_set_waiting - Flag all commands in
2826 * sess_cmd_list to complete cmd_wait_comp. Set
2827 * sess_tearing_down so no more commands are queued.
2828 * @se_sess: session to flag
2829 */
2830 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2831 {
2832 struct se_cmd *se_cmd, *tmp_cmd;
2833 unsigned long flags;
2834 int rc;
2835
2836 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2837 if (se_sess->sess_tearing_down) {
2838 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2839 return;
2840 }
2841 se_sess->sess_tearing_down = 1;
2842 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2843
2844 list_for_each_entry_safe(se_cmd, tmp_cmd,
2845 &se_sess->sess_wait_list, se_cmd_list) {
2846 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2847 if (rc) {
2848 se_cmd->cmd_wait_set = 1;
2849 spin_lock(&se_cmd->t_state_lock);
2850 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2851 spin_unlock(&se_cmd->t_state_lock);
2852 } else
2853 list_del_init(&se_cmd->se_cmd_list);
2854 }
2855
2856 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2857 }
2858 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2859
2860 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2861 * @se_sess: session to wait for active I/O
2862 */
2863 void target_wait_for_sess_cmds(struct se_session *se_sess)
2864 {
2865 struct se_cmd *se_cmd, *tmp_cmd;
2866 unsigned long flags;
2867 bool tas;
2868
2869 list_for_each_entry_safe(se_cmd, tmp_cmd,
2870 &se_sess->sess_wait_list, se_cmd_list) {
2871 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2872 " %d\n", se_cmd, se_cmd->t_state,
2873 se_cmd->se_tfo->get_cmd_state(se_cmd));
2874
2875 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2876 tas = (se_cmd->transport_state & CMD_T_TAS);
2877 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2878
2879 if (!target_put_sess_cmd(se_cmd)) {
2880 if (tas)
2881 target_put_sess_cmd(se_cmd);
2882 }
2883
2884 wait_for_completion(&se_cmd->cmd_wait_comp);
2885 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2886 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2887 se_cmd->se_tfo->get_cmd_state(se_cmd));
2888
2889 se_cmd->se_tfo->release_cmd(se_cmd);
2890 }
2891
2892 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2893 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2894 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2895
2896 }
2897 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2898
2899 static void target_lun_confirm(struct percpu_ref *ref)
2900 {
2901 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2902
2903 complete(&lun->lun_ref_comp);
2904 }
2905
2906 void transport_clear_lun_ref(struct se_lun *lun)
2907 {
2908 /*
2909 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2910 * the initial reference and schedule confirm kill to be
2911 * executed after one full RCU grace period has completed.
2912 */
2913 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2914 /*
2915 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2916 * to call target_lun_confirm after lun->lun_ref has been marked
2917 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2918 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2919 * fails for all new incoming I/O.
2920 */
2921 wait_for_completion(&lun->lun_ref_comp);
2922 /*
2923 * The second completion waits for percpu_ref_put_many() to
2924 * invoke ->release() after lun->lun_ref has switched to
2925 * atomic_t mode, and lun->lun_ref.count has reached zero.
2926 *
2927 * At this point all target-core lun->lun_ref references have
2928 * been dropped via transport_lun_remove_cmd(), and it's safe
2929 * to proceed with the remaining LUN shutdown.
2930 */
2931 wait_for_completion(&lun->lun_shutdown_comp);
2932 }
2933
2934 static bool
2935 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2936 bool *aborted, bool *tas, unsigned long *flags)
2937 __releases(&cmd->t_state_lock)
2938 __acquires(&cmd->t_state_lock)
2939 {
2940
2941 assert_spin_locked(&cmd->t_state_lock);
2942 WARN_ON_ONCE(!irqs_disabled());
2943
2944 if (fabric_stop)
2945 cmd->transport_state |= CMD_T_FABRIC_STOP;
2946
2947 if (cmd->transport_state & CMD_T_ABORTED)
2948 *aborted = true;
2949
2950 if (cmd->transport_state & CMD_T_TAS)
2951 *tas = true;
2952
2953 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2954 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2955 return false;
2956
2957 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2958 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2959 return false;
2960
2961 if (!(cmd->transport_state & CMD_T_ACTIVE))
2962 return false;
2963
2964 if (fabric_stop && *aborted)
2965 return false;
2966
2967 cmd->transport_state |= CMD_T_STOP;
2968
2969 target_show_cmd("wait_for_tasks: Stopping ", cmd);
2970
2971 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2972
2973 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
2974 180 * HZ))
2975 target_show_cmd("wait for tasks: ", cmd);
2976
2977 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2978 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2979
2980 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2981 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2982
2983 return true;
2984 }
2985
2986 /**
2987 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2988 * @cmd: command to wait on
2989 */
2990 bool transport_wait_for_tasks(struct se_cmd *cmd)
2991 {
2992 unsigned long flags;
2993 bool ret, aborted = false, tas = false;
2994
2995 spin_lock_irqsave(&cmd->t_state_lock, flags);
2996 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2997 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2998
2999 return ret;
3000 }
3001 EXPORT_SYMBOL(transport_wait_for_tasks);
3002
3003 struct sense_info {
3004 u8 key;
3005 u8 asc;
3006 u8 ascq;
3007 bool add_sector_info;
3008 };
3009
3010 static const struct sense_info sense_info_table[] = {
3011 [TCM_NO_SENSE] = {
3012 .key = NOT_READY
3013 },
3014 [TCM_NON_EXISTENT_LUN] = {
3015 .key = ILLEGAL_REQUEST,
3016 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3017 },
3018 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3019 .key = ILLEGAL_REQUEST,
3020 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3021 },
3022 [TCM_SECTOR_COUNT_TOO_MANY] = {
3023 .key = ILLEGAL_REQUEST,
3024 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3025 },
3026 [TCM_UNKNOWN_MODE_PAGE] = {
3027 .key = ILLEGAL_REQUEST,
3028 .asc = 0x24, /* INVALID FIELD IN CDB */
3029 },
3030 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3031 .key = ABORTED_COMMAND,
3032 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3033 .ascq = 0x03,
3034 },
3035 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3036 .key = ABORTED_COMMAND,
3037 .asc = 0x0c, /* WRITE ERROR */
3038 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3039 },
3040 [TCM_INVALID_CDB_FIELD] = {
3041 .key = ILLEGAL_REQUEST,
3042 .asc = 0x24, /* INVALID FIELD IN CDB */
3043 },
3044 [TCM_INVALID_PARAMETER_LIST] = {
3045 .key = ILLEGAL_REQUEST,
3046 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3047 },
3048 [TCM_TOO_MANY_TARGET_DESCS] = {
3049 .key = ILLEGAL_REQUEST,
3050 .asc = 0x26,
3051 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3052 },
3053 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3054 .key = ILLEGAL_REQUEST,
3055 .asc = 0x26,
3056 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3057 },
3058 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3059 .key = ILLEGAL_REQUEST,
3060 .asc = 0x26,
3061 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3062 },
3063 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3064 .key = ILLEGAL_REQUEST,
3065 .asc = 0x26,
3066 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3067 },
3068 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3069 .key = ILLEGAL_REQUEST,
3070 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3071 },
3072 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3073 .key = ILLEGAL_REQUEST,
3074 .asc = 0x0c, /* WRITE ERROR */
3075 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3076 },
3077 [TCM_SERVICE_CRC_ERROR] = {
3078 .key = ABORTED_COMMAND,
3079 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3080 .ascq = 0x05, /* N/A */
3081 },
3082 [TCM_SNACK_REJECTED] = {
3083 .key = ABORTED_COMMAND,
3084 .asc = 0x11, /* READ ERROR */
3085 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3086 },
3087 [TCM_WRITE_PROTECTED] = {
3088 .key = DATA_PROTECT,
3089 .asc = 0x27, /* WRITE PROTECTED */
3090 },
3091 [TCM_ADDRESS_OUT_OF_RANGE] = {
3092 .key = ILLEGAL_REQUEST,
3093 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3094 },
3095 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3096 .key = UNIT_ATTENTION,
3097 },
3098 [TCM_CHECK_CONDITION_NOT_READY] = {
3099 .key = NOT_READY,
3100 },
3101 [TCM_MISCOMPARE_VERIFY] = {
3102 .key = MISCOMPARE,
3103 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3104 .ascq = 0x00,
3105 },
3106 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3107 .key = ABORTED_COMMAND,
3108 .asc = 0x10,
3109 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3110 .add_sector_info = true,
3111 },
3112 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3113 .key = ABORTED_COMMAND,
3114 .asc = 0x10,
3115 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3116 .add_sector_info = true,
3117 },
3118 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3119 .key = ABORTED_COMMAND,
3120 .asc = 0x10,
3121 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3122 .add_sector_info = true,
3123 },
3124 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3125 .key = COPY_ABORTED,
3126 .asc = 0x0d,
3127 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3128
3129 },
3130 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3131 /*
3132 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3133 * Solaris initiators. Returning NOT READY instead means the
3134 * operations will be retried a finite number of times and we
3135 * can survive intermittent errors.
3136 */
3137 .key = NOT_READY,
3138 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3139 },
3140 };
3141
3142 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3143 {
3144 const struct sense_info *si;
3145 u8 *buffer = cmd->sense_buffer;
3146 int r = (__force int)reason;
3147 u8 asc, ascq;
3148 bool desc_format = target_sense_desc_format(cmd->se_dev);
3149
3150 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3151 si = &sense_info_table[r];
3152 else
3153 si = &sense_info_table[(__force int)
3154 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3155
3156 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3157 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3158 WARN_ON_ONCE(asc == 0);
3159 } else if (si->asc == 0) {
3160 WARN_ON_ONCE(cmd->scsi_asc == 0);
3161 asc = cmd->scsi_asc;
3162 ascq = cmd->scsi_ascq;
3163 } else {
3164 asc = si->asc;
3165 ascq = si->ascq;
3166 }
3167
3168 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3169 if (si->add_sector_info)
3170 return scsi_set_sense_information(buffer,
3171 cmd->scsi_sense_length,
3172 cmd->bad_sector);
3173
3174 return 0;
3175 }
3176
3177 int
3178 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3179 sense_reason_t reason, int from_transport)
3180 {
3181 unsigned long flags;
3182
3183 spin_lock_irqsave(&cmd->t_state_lock, flags);
3184 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3185 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3186 return 0;
3187 }
3188 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3189 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3190
3191 if (!from_transport) {
3192 int rc;
3193
3194 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3195 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3196 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3197 rc = translate_sense_reason(cmd, reason);
3198 if (rc)
3199 return rc;
3200 }
3201
3202 trace_target_cmd_complete(cmd);
3203 return cmd->se_tfo->queue_status(cmd);
3204 }
3205 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3206
3207 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3208 __releases(&cmd->t_state_lock)
3209 __acquires(&cmd->t_state_lock)
3210 {
3211 int ret;
3212
3213 assert_spin_locked(&cmd->t_state_lock);
3214 WARN_ON_ONCE(!irqs_disabled());
3215
3216 if (!(cmd->transport_state & CMD_T_ABORTED))
3217 return 0;
3218 /*
3219 * If cmd has been aborted but either no status is to be sent or it has
3220 * already been sent, just return
3221 */
3222 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3223 if (send_status)
3224 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3225 return 1;
3226 }
3227
3228 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3229 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3230
3231 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3232 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3233 trace_target_cmd_complete(cmd);
3234
3235 spin_unlock_irq(&cmd->t_state_lock);
3236 ret = cmd->se_tfo->queue_status(cmd);
3237 if (ret)
3238 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3239 spin_lock_irq(&cmd->t_state_lock);
3240
3241 return 1;
3242 }
3243
3244 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3245 {
3246 int ret;
3247
3248 spin_lock_irq(&cmd->t_state_lock);
3249 ret = __transport_check_aborted_status(cmd, send_status);
3250 spin_unlock_irq(&cmd->t_state_lock);
3251
3252 return ret;
3253 }
3254 EXPORT_SYMBOL(transport_check_aborted_status);
3255
3256 void transport_send_task_abort(struct se_cmd *cmd)
3257 {
3258 unsigned long flags;
3259 int ret;
3260
3261 spin_lock_irqsave(&cmd->t_state_lock, flags);
3262 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3263 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3264 return;
3265 }
3266 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3267
3268 /*
3269 * If there are still expected incoming fabric WRITEs, we wait
3270 * until until they have completed before sending a TASK_ABORTED
3271 * response. This response with TASK_ABORTED status will be
3272 * queued back to fabric module by transport_check_aborted_status().
3273 */
3274 if (cmd->data_direction == DMA_TO_DEVICE) {
3275 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3276 spin_lock_irqsave(&cmd->t_state_lock, flags);
3277 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3278 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3279 goto send_abort;
3280 }
3281 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3282 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3283 return;
3284 }
3285 }
3286 send_abort:
3287 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3288
3289 transport_lun_remove_cmd(cmd);
3290
3291 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3292 cmd->t_task_cdb[0], cmd->tag);
3293
3294 trace_target_cmd_complete(cmd);
3295 ret = cmd->se_tfo->queue_status(cmd);
3296 if (ret)
3297 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3298 }
3299
3300 static void target_tmr_work(struct work_struct *work)
3301 {
3302 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3303 struct se_device *dev = cmd->se_dev;
3304 struct se_tmr_req *tmr = cmd->se_tmr_req;
3305 unsigned long flags;
3306 int ret;
3307
3308 spin_lock_irqsave(&cmd->t_state_lock, flags);
3309 if (cmd->transport_state & CMD_T_ABORTED) {
3310 tmr->response = TMR_FUNCTION_REJECTED;
3311 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3312 goto check_stop;
3313 }
3314 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3315
3316 switch (tmr->function) {
3317 case TMR_ABORT_TASK:
3318 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3319 break;
3320 case TMR_ABORT_TASK_SET:
3321 case TMR_CLEAR_ACA:
3322 case TMR_CLEAR_TASK_SET:
3323 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3324 break;
3325 case TMR_LUN_RESET:
3326 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3327 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3328 TMR_FUNCTION_REJECTED;
3329 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3330 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3331 cmd->orig_fe_lun, 0x29,
3332 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3333 }
3334 break;
3335 case TMR_TARGET_WARM_RESET:
3336 tmr->response = TMR_FUNCTION_REJECTED;
3337 break;
3338 case TMR_TARGET_COLD_RESET:
3339 tmr->response = TMR_FUNCTION_REJECTED;
3340 break;
3341 default:
3342 pr_err("Uknown TMR function: 0x%02x.\n",
3343 tmr->function);
3344 tmr->response = TMR_FUNCTION_REJECTED;
3345 break;
3346 }
3347
3348 spin_lock_irqsave(&cmd->t_state_lock, flags);
3349 if (cmd->transport_state & CMD_T_ABORTED) {
3350 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3351 goto check_stop;
3352 }
3353 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3354
3355 cmd->se_tfo->queue_tm_rsp(cmd);
3356
3357 check_stop:
3358 transport_lun_remove_cmd(cmd);
3359 transport_cmd_check_stop_to_fabric(cmd);
3360 }
3361
3362 int transport_generic_handle_tmr(
3363 struct se_cmd *cmd)
3364 {
3365 unsigned long flags;
3366 bool aborted = false;
3367
3368 spin_lock_irqsave(&cmd->t_state_lock, flags);
3369 if (cmd->transport_state & CMD_T_ABORTED) {
3370 aborted = true;
3371 } else {
3372 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3373 cmd->transport_state |= CMD_T_ACTIVE;
3374 }
3375 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3376
3377 if (aborted) {
3378 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3379 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3380 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3381 transport_lun_remove_cmd(cmd);
3382 transport_cmd_check_stop_to_fabric(cmd);
3383 return 0;
3384 }
3385
3386 INIT_WORK(&cmd->work, target_tmr_work);
3387 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3388 return 0;
3389 }
3390 EXPORT_SYMBOL(transport_generic_handle_tmr);
3391
3392 bool
3393 target_check_wce(struct se_device *dev)
3394 {
3395 bool wce = false;
3396
3397 if (dev->transport->get_write_cache)
3398 wce = dev->transport->get_write_cache(dev);
3399 else if (dev->dev_attrib.emulate_write_cache > 0)
3400 wce = true;
3401
3402 return wce;
3403 }
3404
3405 bool
3406 target_check_fua(struct se_device *dev)
3407 {
3408 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3409 }