]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/target/target_core_transport.c
scsi: Revert "target/core: Inline transport_lun_remove_cmd()"
[mirror_ubuntu-focal-kernel.git] / drivers / target / target_core_transport.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
52
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56 struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
58
59 int init_se_kmem_caches(void)
60 {
61 se_sess_cache = kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session), __alignof__(struct se_session),
63 0, NULL);
64 if (!se_sess_cache) {
65 pr_err("kmem_cache_create() for struct se_session"
66 " failed\n");
67 goto out;
68 }
69 se_ua_cache = kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua), __alignof__(struct se_ua),
71 0, NULL);
72 if (!se_ua_cache) {
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache;
75 }
76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration),
78 __alignof__(struct t10_pr_registration), 0, NULL);
79 if (!t10_pr_reg_cache) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
81 " failed\n");
82 goto out_free_ua_cache;
83 }
84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86 0, NULL);
87 if (!t10_alua_lu_gp_cache) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89 " failed\n");
90 goto out_free_pr_reg_cache;
91 }
92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member),
94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 if (!t10_alua_lu_gp_mem_cache) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97 "cache failed\n");
98 goto out_free_lu_gp_cache;
99 }
100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp),
102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 if (!t10_alua_tg_pt_gp_cache) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105 "cache failed\n");
106 goto out_free_lu_gp_mem_cache;
107 }
108 t10_alua_lba_map_cache = kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map),
111 __alignof__(struct t10_alua_lba_map), 0, NULL);
112 if (!t10_alua_lba_map_cache) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
114 "cache failed\n");
115 goto out_free_tg_pt_gp_cache;
116 }
117 t10_alua_lba_map_mem_cache = kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member),
120 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
121 if (!t10_alua_lba_map_mem_cache) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123 "cache failed\n");
124 goto out_free_lba_map_cache;
125 }
126
127 target_completion_wq = alloc_workqueue("target_completion",
128 WQ_MEM_RECLAIM, 0);
129 if (!target_completion_wq)
130 goto out_free_lba_map_mem_cache;
131
132 return 0;
133
134 out_free_lba_map_mem_cache:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137 kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145 kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147 kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149 kmem_cache_destroy(se_sess_cache);
150 out:
151 return -ENOMEM;
152 }
153
154 void release_se_kmem_caches(void)
155 {
156 destroy_workqueue(target_completion_wq);
157 kmem_cache_destroy(se_sess_cache);
158 kmem_cache_destroy(se_ua_cache);
159 kmem_cache_destroy(t10_pr_reg_cache);
160 kmem_cache_destroy(t10_alua_lu_gp_cache);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 kmem_cache_destroy(t10_alua_lba_map_cache);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 }
166
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170
171 /*
172 * Allocate a new row index for the entry type specified
173 */
174 u32 scsi_get_new_index(scsi_index_t type)
175 {
176 u32 new_index;
177
178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179
180 spin_lock(&scsi_mib_index_lock);
181 new_index = ++scsi_mib_index[type];
182 spin_unlock(&scsi_mib_index_lock);
183
184 return new_index;
185 }
186
187 void transport_subsystem_check_init(void)
188 {
189 int ret;
190 static int sub_api_initialized;
191
192 if (sub_api_initialized)
193 return;
194
195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196 if (ret != 0)
197 pr_err("Unable to load target_core_iblock\n");
198
199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200 if (ret != 0)
201 pr_err("Unable to load target_core_file\n");
202
203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204 if (ret != 0)
205 pr_err("Unable to load target_core_pscsi\n");
206
207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 if (ret != 0)
209 pr_err("Unable to load target_core_user\n");
210
211 sub_api_initialized = 1;
212 }
213
214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
215 {
216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
217
218 wake_up(&sess->cmd_list_wq);
219 }
220
221 /**
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
224 *
225 * The caller must have zero-initialized @se_sess before calling this function.
226 */
227 int transport_init_session(struct se_session *se_sess)
228 {
229 INIT_LIST_HEAD(&se_sess->sess_list);
230 INIT_LIST_HEAD(&se_sess->sess_acl_list);
231 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
232 spin_lock_init(&se_sess->sess_cmd_lock);
233 init_waitqueue_head(&se_sess->cmd_list_wq);
234 return percpu_ref_init(&se_sess->cmd_count,
235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 }
237 EXPORT_SYMBOL(transport_init_session);
238
239 /**
240 * transport_alloc_session - allocate a session object and initialize it
241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
242 */
243 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
244 {
245 struct se_session *se_sess;
246 int ret;
247
248 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
249 if (!se_sess) {
250 pr_err("Unable to allocate struct se_session from"
251 " se_sess_cache\n");
252 return ERR_PTR(-ENOMEM);
253 }
254 ret = transport_init_session(se_sess);
255 if (ret < 0) {
256 kmem_cache_free(se_sess_cache, se_sess);
257 return ERR_PTR(ret);
258 }
259 se_sess->sup_prot_ops = sup_prot_ops;
260
261 return se_sess;
262 }
263 EXPORT_SYMBOL(transport_alloc_session);
264
265 /**
266 * transport_alloc_session_tags - allocate target driver private data
267 * @se_sess: Session pointer.
268 * @tag_num: Maximum number of in-flight commands between initiator and target.
269 * @tag_size: Size in bytes of the private data a target driver associates with
270 * each command.
271 */
272 int transport_alloc_session_tags(struct se_session *se_sess,
273 unsigned int tag_num, unsigned int tag_size)
274 {
275 int rc;
276
277 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
278 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
279 if (!se_sess->sess_cmd_map) {
280 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
281 return -ENOMEM;
282 }
283
284 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
285 false, GFP_KERNEL, NUMA_NO_NODE);
286 if (rc < 0) {
287 pr_err("Unable to init se_sess->sess_tag_pool,"
288 " tag_num: %u\n", tag_num);
289 kvfree(se_sess->sess_cmd_map);
290 se_sess->sess_cmd_map = NULL;
291 return -ENOMEM;
292 }
293
294 return 0;
295 }
296 EXPORT_SYMBOL(transport_alloc_session_tags);
297
298 /**
299 * transport_init_session_tags - allocate a session and target driver private data
300 * @tag_num: Maximum number of in-flight commands between initiator and target.
301 * @tag_size: Size in bytes of the private data a target driver associates with
302 * each command.
303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
304 */
305 static struct se_session *
306 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
307 enum target_prot_op sup_prot_ops)
308 {
309 struct se_session *se_sess;
310 int rc;
311
312 if (tag_num != 0 && !tag_size) {
313 pr_err("init_session_tags called with percpu-ida tag_num:"
314 " %u, but zero tag_size\n", tag_num);
315 return ERR_PTR(-EINVAL);
316 }
317 if (!tag_num && tag_size) {
318 pr_err("init_session_tags called with percpu-ida tag_size:"
319 " %u, but zero tag_num\n", tag_size);
320 return ERR_PTR(-EINVAL);
321 }
322
323 se_sess = transport_alloc_session(sup_prot_ops);
324 if (IS_ERR(se_sess))
325 return se_sess;
326
327 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
328 if (rc < 0) {
329 transport_free_session(se_sess);
330 return ERR_PTR(-ENOMEM);
331 }
332
333 return se_sess;
334 }
335
336 /*
337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
338 */
339 void __transport_register_session(
340 struct se_portal_group *se_tpg,
341 struct se_node_acl *se_nacl,
342 struct se_session *se_sess,
343 void *fabric_sess_ptr)
344 {
345 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
346 unsigned char buf[PR_REG_ISID_LEN];
347 unsigned long flags;
348
349 se_sess->se_tpg = se_tpg;
350 se_sess->fabric_sess_ptr = fabric_sess_ptr;
351 /*
352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
353 *
354 * Only set for struct se_session's that will actually be moving I/O.
355 * eg: *NOT* discovery sessions.
356 */
357 if (se_nacl) {
358 /*
359 *
360 * Determine if fabric allows for T10-PI feature bits exposed to
361 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
362 *
363 * If so, then always save prot_type on a per se_node_acl node
364 * basis and re-instate the previous sess_prot_type to avoid
365 * disabling PI from below any previously initiator side
366 * registered LUNs.
367 */
368 if (se_nacl->saved_prot_type)
369 se_sess->sess_prot_type = se_nacl->saved_prot_type;
370 else if (tfo->tpg_check_prot_fabric_only)
371 se_sess->sess_prot_type = se_nacl->saved_prot_type =
372 tfo->tpg_check_prot_fabric_only(se_tpg);
373 /*
374 * If the fabric module supports an ISID based TransportID,
375 * save this value in binary from the fabric I_T Nexus now.
376 */
377 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
378 memset(&buf[0], 0, PR_REG_ISID_LEN);
379 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
380 &buf[0], PR_REG_ISID_LEN);
381 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
382 }
383
384 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
385 /*
386 * The se_nacl->nacl_sess pointer will be set to the
387 * last active I_T Nexus for each struct se_node_acl.
388 */
389 se_nacl->nacl_sess = se_sess;
390
391 list_add_tail(&se_sess->sess_acl_list,
392 &se_nacl->acl_sess_list);
393 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
394 }
395 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
396
397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
398 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
399 }
400 EXPORT_SYMBOL(__transport_register_session);
401
402 void transport_register_session(
403 struct se_portal_group *se_tpg,
404 struct se_node_acl *se_nacl,
405 struct se_session *se_sess,
406 void *fabric_sess_ptr)
407 {
408 unsigned long flags;
409
410 spin_lock_irqsave(&se_tpg->session_lock, flags);
411 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
412 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
413 }
414 EXPORT_SYMBOL(transport_register_session);
415
416 struct se_session *
417 target_setup_session(struct se_portal_group *tpg,
418 unsigned int tag_num, unsigned int tag_size,
419 enum target_prot_op prot_op,
420 const char *initiatorname, void *private,
421 int (*callback)(struct se_portal_group *,
422 struct se_session *, void *))
423 {
424 struct se_session *sess;
425
426 /*
427 * If the fabric driver is using percpu-ida based pre allocation
428 * of I/O descriptor tags, go ahead and perform that setup now..
429 */
430 if (tag_num != 0)
431 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
432 else
433 sess = transport_alloc_session(prot_op);
434
435 if (IS_ERR(sess))
436 return sess;
437
438 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
439 (unsigned char *)initiatorname);
440 if (!sess->se_node_acl) {
441 transport_free_session(sess);
442 return ERR_PTR(-EACCES);
443 }
444 /*
445 * Go ahead and perform any remaining fabric setup that is
446 * required before transport_register_session().
447 */
448 if (callback != NULL) {
449 int rc = callback(tpg, sess, private);
450 if (rc) {
451 transport_free_session(sess);
452 return ERR_PTR(rc);
453 }
454 }
455
456 transport_register_session(tpg, sess->se_node_acl, sess, private);
457 return sess;
458 }
459 EXPORT_SYMBOL(target_setup_session);
460
461 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
462 {
463 struct se_session *se_sess;
464 ssize_t len = 0;
465
466 spin_lock_bh(&se_tpg->session_lock);
467 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
468 if (!se_sess->se_node_acl)
469 continue;
470 if (!se_sess->se_node_acl->dynamic_node_acl)
471 continue;
472 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
473 break;
474
475 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
476 se_sess->se_node_acl->initiatorname);
477 len += 1; /* Include NULL terminator */
478 }
479 spin_unlock_bh(&se_tpg->session_lock);
480
481 return len;
482 }
483 EXPORT_SYMBOL(target_show_dynamic_sessions);
484
485 static void target_complete_nacl(struct kref *kref)
486 {
487 struct se_node_acl *nacl = container_of(kref,
488 struct se_node_acl, acl_kref);
489 struct se_portal_group *se_tpg = nacl->se_tpg;
490
491 if (!nacl->dynamic_stop) {
492 complete(&nacl->acl_free_comp);
493 return;
494 }
495
496 mutex_lock(&se_tpg->acl_node_mutex);
497 list_del_init(&nacl->acl_list);
498 mutex_unlock(&se_tpg->acl_node_mutex);
499
500 core_tpg_wait_for_nacl_pr_ref(nacl);
501 core_free_device_list_for_node(nacl, se_tpg);
502 kfree(nacl);
503 }
504
505 void target_put_nacl(struct se_node_acl *nacl)
506 {
507 kref_put(&nacl->acl_kref, target_complete_nacl);
508 }
509 EXPORT_SYMBOL(target_put_nacl);
510
511 void transport_deregister_session_configfs(struct se_session *se_sess)
512 {
513 struct se_node_acl *se_nacl;
514 unsigned long flags;
515 /*
516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
517 */
518 se_nacl = se_sess->se_node_acl;
519 if (se_nacl) {
520 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
521 if (!list_empty(&se_sess->sess_acl_list))
522 list_del_init(&se_sess->sess_acl_list);
523 /*
524 * If the session list is empty, then clear the pointer.
525 * Otherwise, set the struct se_session pointer from the tail
526 * element of the per struct se_node_acl active session list.
527 */
528 if (list_empty(&se_nacl->acl_sess_list))
529 se_nacl->nacl_sess = NULL;
530 else {
531 se_nacl->nacl_sess = container_of(
532 se_nacl->acl_sess_list.prev,
533 struct se_session, sess_acl_list);
534 }
535 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
536 }
537 }
538 EXPORT_SYMBOL(transport_deregister_session_configfs);
539
540 void transport_free_session(struct se_session *se_sess)
541 {
542 struct se_node_acl *se_nacl = se_sess->se_node_acl;
543
544 /*
545 * Drop the se_node_acl->nacl_kref obtained from within
546 * core_tpg_get_initiator_node_acl().
547 */
548 if (se_nacl) {
549 struct se_portal_group *se_tpg = se_nacl->se_tpg;
550 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
551 unsigned long flags;
552
553 se_sess->se_node_acl = NULL;
554
555 /*
556 * Also determine if we need to drop the extra ->cmd_kref if
557 * it had been previously dynamically generated, and
558 * the endpoint is not caching dynamic ACLs.
559 */
560 mutex_lock(&se_tpg->acl_node_mutex);
561 if (se_nacl->dynamic_node_acl &&
562 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
563 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
564 if (list_empty(&se_nacl->acl_sess_list))
565 se_nacl->dynamic_stop = true;
566 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
567
568 if (se_nacl->dynamic_stop)
569 list_del_init(&se_nacl->acl_list);
570 }
571 mutex_unlock(&se_tpg->acl_node_mutex);
572
573 if (se_nacl->dynamic_stop)
574 target_put_nacl(se_nacl);
575
576 target_put_nacl(se_nacl);
577 }
578 if (se_sess->sess_cmd_map) {
579 sbitmap_queue_free(&se_sess->sess_tag_pool);
580 kvfree(se_sess->sess_cmd_map);
581 }
582 percpu_ref_exit(&se_sess->cmd_count);
583 kmem_cache_free(se_sess_cache, se_sess);
584 }
585 EXPORT_SYMBOL(transport_free_session);
586
587 static int target_release_res(struct se_device *dev, void *data)
588 {
589 struct se_session *sess = data;
590
591 if (dev->reservation_holder == sess)
592 target_release_reservation(dev);
593 return 0;
594 }
595
596 void transport_deregister_session(struct se_session *se_sess)
597 {
598 struct se_portal_group *se_tpg = se_sess->se_tpg;
599 unsigned long flags;
600
601 if (!se_tpg) {
602 transport_free_session(se_sess);
603 return;
604 }
605
606 spin_lock_irqsave(&se_tpg->session_lock, flags);
607 list_del(&se_sess->sess_list);
608 se_sess->se_tpg = NULL;
609 se_sess->fabric_sess_ptr = NULL;
610 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
611
612 /*
613 * Since the session is being removed, release SPC-2
614 * reservations held by the session that is disappearing.
615 */
616 target_for_each_device(target_release_res, se_sess);
617
618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
619 se_tpg->se_tpg_tfo->fabric_name);
620 /*
621 * If last kref is dropping now for an explicit NodeACL, awake sleeping
622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
623 * removal context from within transport_free_session() code.
624 *
625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
626 * to release all remaining generate_node_acl=1 created ACL resources.
627 */
628
629 transport_free_session(se_sess);
630 }
631 EXPORT_SYMBOL(transport_deregister_session);
632
633 void target_remove_session(struct se_session *se_sess)
634 {
635 transport_deregister_session_configfs(se_sess);
636 transport_deregister_session(se_sess);
637 }
638 EXPORT_SYMBOL(target_remove_session);
639
640 static void target_remove_from_state_list(struct se_cmd *cmd)
641 {
642 struct se_device *dev = cmd->se_dev;
643 unsigned long flags;
644
645 if (!dev)
646 return;
647
648 spin_lock_irqsave(&dev->execute_task_lock, flags);
649 if (cmd->state_active) {
650 list_del(&cmd->state_list);
651 cmd->state_active = false;
652 }
653 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
654 }
655
656 /*
657 * This function is called by the target core after the target core has
658 * finished processing a SCSI command or SCSI TMF. Both the regular command
659 * processing code and the code for aborting commands can call this
660 * function. CMD_T_STOP is set if and only if another thread is waiting
661 * inside transport_wait_for_tasks() for t_transport_stop_comp.
662 */
663 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
664 {
665 unsigned long flags;
666
667 target_remove_from_state_list(cmd);
668
669 /*
670 * Clear struct se_cmd->se_lun before the handoff to FE.
671 */
672 cmd->se_lun = NULL;
673
674 spin_lock_irqsave(&cmd->t_state_lock, flags);
675 /*
676 * Determine if frontend context caller is requesting the stopping of
677 * this command for frontend exceptions.
678 */
679 if (cmd->transport_state & CMD_T_STOP) {
680 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
681 __func__, __LINE__, cmd->tag);
682
683 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
684
685 complete_all(&cmd->t_transport_stop_comp);
686 return 1;
687 }
688 cmd->transport_state &= ~CMD_T_ACTIVE;
689 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690
691 /*
692 * Some fabric modules like tcm_loop can release their internally
693 * allocated I/O reference and struct se_cmd now.
694 *
695 * Fabric modules are expected to return '1' here if the se_cmd being
696 * passed is released at this point, or zero if not being released.
697 */
698 return cmd->se_tfo->check_stop_free(cmd);
699 }
700
701 static void transport_lun_remove_cmd(struct se_cmd *cmd)
702 {
703 struct se_lun *lun = cmd->se_lun;
704
705 if (!lun)
706 return;
707
708 if (cmpxchg(&cmd->lun_ref_active, true, false))
709 percpu_ref_put(&lun->lun_ref);
710 }
711
712 static void target_complete_failure_work(struct work_struct *work)
713 {
714 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
715
716 transport_generic_request_failure(cmd,
717 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
718 }
719
720 /*
721 * Used when asking transport to copy Sense Data from the underlying
722 * Linux/SCSI struct scsi_cmnd
723 */
724 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
725 {
726 struct se_device *dev = cmd->se_dev;
727
728 WARN_ON(!cmd->se_lun);
729
730 if (!dev)
731 return NULL;
732
733 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
734 return NULL;
735
736 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
737
738 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
739 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
740 return cmd->sense_buffer;
741 }
742
743 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
744 {
745 unsigned char *cmd_sense_buf;
746 unsigned long flags;
747
748 spin_lock_irqsave(&cmd->t_state_lock, flags);
749 cmd_sense_buf = transport_get_sense_buffer(cmd);
750 if (!cmd_sense_buf) {
751 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752 return;
753 }
754
755 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
756 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 }
759 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
760
761 static void target_handle_abort(struct se_cmd *cmd)
762 {
763 bool tas = cmd->transport_state & CMD_T_TAS;
764 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
765 int ret;
766
767 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
768
769 if (tas) {
770 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
771 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
772 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
773 cmd->t_task_cdb[0], cmd->tag);
774 trace_target_cmd_complete(cmd);
775 ret = cmd->se_tfo->queue_status(cmd);
776 if (ret) {
777 transport_handle_queue_full(cmd, cmd->se_dev,
778 ret, false);
779 return;
780 }
781 } else {
782 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
783 cmd->se_tfo->queue_tm_rsp(cmd);
784 }
785 } else {
786 /*
787 * Allow the fabric driver to unmap any resources before
788 * releasing the descriptor via TFO->release_cmd().
789 */
790 cmd->se_tfo->aborted_task(cmd);
791 if (ack_kref)
792 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
793 /*
794 * To do: establish a unit attention condition on the I_T
795 * nexus associated with cmd. See also the paragraph "Aborting
796 * commands" in SAM.
797 */
798 }
799
800 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
801
802 transport_lun_remove_cmd(cmd);
803
804 transport_cmd_check_stop_to_fabric(cmd);
805 }
806
807 static void target_abort_work(struct work_struct *work)
808 {
809 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
810
811 target_handle_abort(cmd);
812 }
813
814 static bool target_cmd_interrupted(struct se_cmd *cmd)
815 {
816 int post_ret;
817
818 if (cmd->transport_state & CMD_T_ABORTED) {
819 if (cmd->transport_complete_callback)
820 cmd->transport_complete_callback(cmd, false, &post_ret);
821 INIT_WORK(&cmd->work, target_abort_work);
822 queue_work(target_completion_wq, &cmd->work);
823 return true;
824 } else if (cmd->transport_state & CMD_T_STOP) {
825 if (cmd->transport_complete_callback)
826 cmd->transport_complete_callback(cmd, false, &post_ret);
827 complete_all(&cmd->t_transport_stop_comp);
828 return true;
829 }
830
831 return false;
832 }
833
834 /* May be called from interrupt context so must not sleep. */
835 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
836 {
837 int success;
838 unsigned long flags;
839
840 if (target_cmd_interrupted(cmd))
841 return;
842
843 cmd->scsi_status = scsi_status;
844
845 spin_lock_irqsave(&cmd->t_state_lock, flags);
846 switch (cmd->scsi_status) {
847 case SAM_STAT_CHECK_CONDITION:
848 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
849 success = 1;
850 else
851 success = 0;
852 break;
853 default:
854 success = 1;
855 break;
856 }
857
858 cmd->t_state = TRANSPORT_COMPLETE;
859 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
860 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
861
862 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
863 target_complete_failure_work);
864 if (cmd->se_cmd_flags & SCF_USE_CPUID)
865 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
866 else
867 queue_work(target_completion_wq, &cmd->work);
868 }
869 EXPORT_SYMBOL(target_complete_cmd);
870
871 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
872 {
873 if ((scsi_status == SAM_STAT_GOOD ||
874 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
875 length < cmd->data_length) {
876 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
877 cmd->residual_count += cmd->data_length - length;
878 } else {
879 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
880 cmd->residual_count = cmd->data_length - length;
881 }
882
883 cmd->data_length = length;
884 }
885
886 target_complete_cmd(cmd, scsi_status);
887 }
888 EXPORT_SYMBOL(target_complete_cmd_with_length);
889
890 static void target_add_to_state_list(struct se_cmd *cmd)
891 {
892 struct se_device *dev = cmd->se_dev;
893 unsigned long flags;
894
895 spin_lock_irqsave(&dev->execute_task_lock, flags);
896 if (!cmd->state_active) {
897 list_add_tail(&cmd->state_list, &dev->state_list);
898 cmd->state_active = true;
899 }
900 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
901 }
902
903 /*
904 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
905 */
906 static void transport_write_pending_qf(struct se_cmd *cmd);
907 static void transport_complete_qf(struct se_cmd *cmd);
908
909 void target_qf_do_work(struct work_struct *work)
910 {
911 struct se_device *dev = container_of(work, struct se_device,
912 qf_work_queue);
913 LIST_HEAD(qf_cmd_list);
914 struct se_cmd *cmd, *cmd_tmp;
915
916 spin_lock_irq(&dev->qf_cmd_lock);
917 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
918 spin_unlock_irq(&dev->qf_cmd_lock);
919
920 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
921 list_del(&cmd->se_qf_node);
922 atomic_dec_mb(&dev->dev_qf_count);
923
924 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
925 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
926 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
927 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
928 : "UNKNOWN");
929
930 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
931 transport_write_pending_qf(cmd);
932 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
933 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
934 transport_complete_qf(cmd);
935 }
936 }
937
938 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
939 {
940 switch (cmd->data_direction) {
941 case DMA_NONE:
942 return "NONE";
943 case DMA_FROM_DEVICE:
944 return "READ";
945 case DMA_TO_DEVICE:
946 return "WRITE";
947 case DMA_BIDIRECTIONAL:
948 return "BIDI";
949 default:
950 break;
951 }
952
953 return "UNKNOWN";
954 }
955
956 void transport_dump_dev_state(
957 struct se_device *dev,
958 char *b,
959 int *bl)
960 {
961 *bl += sprintf(b + *bl, "Status: ");
962 if (dev->export_count)
963 *bl += sprintf(b + *bl, "ACTIVATED");
964 else
965 *bl += sprintf(b + *bl, "DEACTIVATED");
966
967 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
968 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
969 dev->dev_attrib.block_size,
970 dev->dev_attrib.hw_max_sectors);
971 *bl += sprintf(b + *bl, " ");
972 }
973
974 void transport_dump_vpd_proto_id(
975 struct t10_vpd *vpd,
976 unsigned char *p_buf,
977 int p_buf_len)
978 {
979 unsigned char buf[VPD_TMP_BUF_SIZE];
980 int len;
981
982 memset(buf, 0, VPD_TMP_BUF_SIZE);
983 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
984
985 switch (vpd->protocol_identifier) {
986 case 0x00:
987 sprintf(buf+len, "Fibre Channel\n");
988 break;
989 case 0x10:
990 sprintf(buf+len, "Parallel SCSI\n");
991 break;
992 case 0x20:
993 sprintf(buf+len, "SSA\n");
994 break;
995 case 0x30:
996 sprintf(buf+len, "IEEE 1394\n");
997 break;
998 case 0x40:
999 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1000 " Protocol\n");
1001 break;
1002 case 0x50:
1003 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1004 break;
1005 case 0x60:
1006 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1007 break;
1008 case 0x70:
1009 sprintf(buf+len, "Automation/Drive Interface Transport"
1010 " Protocol\n");
1011 break;
1012 case 0x80:
1013 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1014 break;
1015 default:
1016 sprintf(buf+len, "Unknown 0x%02x\n",
1017 vpd->protocol_identifier);
1018 break;
1019 }
1020
1021 if (p_buf)
1022 strncpy(p_buf, buf, p_buf_len);
1023 else
1024 pr_debug("%s", buf);
1025 }
1026
1027 void
1028 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1029 {
1030 /*
1031 * Check if the Protocol Identifier Valid (PIV) bit is set..
1032 *
1033 * from spc3r23.pdf section 7.5.1
1034 */
1035 if (page_83[1] & 0x80) {
1036 vpd->protocol_identifier = (page_83[0] & 0xf0);
1037 vpd->protocol_identifier_set = 1;
1038 transport_dump_vpd_proto_id(vpd, NULL, 0);
1039 }
1040 }
1041 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1042
1043 int transport_dump_vpd_assoc(
1044 struct t10_vpd *vpd,
1045 unsigned char *p_buf,
1046 int p_buf_len)
1047 {
1048 unsigned char buf[VPD_TMP_BUF_SIZE];
1049 int ret = 0;
1050 int len;
1051
1052 memset(buf, 0, VPD_TMP_BUF_SIZE);
1053 len = sprintf(buf, "T10 VPD Identifier Association: ");
1054
1055 switch (vpd->association) {
1056 case 0x00:
1057 sprintf(buf+len, "addressed logical unit\n");
1058 break;
1059 case 0x10:
1060 sprintf(buf+len, "target port\n");
1061 break;
1062 case 0x20:
1063 sprintf(buf+len, "SCSI target device\n");
1064 break;
1065 default:
1066 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1067 ret = -EINVAL;
1068 break;
1069 }
1070
1071 if (p_buf)
1072 strncpy(p_buf, buf, p_buf_len);
1073 else
1074 pr_debug("%s", buf);
1075
1076 return ret;
1077 }
1078
1079 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1080 {
1081 /*
1082 * The VPD identification association..
1083 *
1084 * from spc3r23.pdf Section 7.6.3.1 Table 297
1085 */
1086 vpd->association = (page_83[1] & 0x30);
1087 return transport_dump_vpd_assoc(vpd, NULL, 0);
1088 }
1089 EXPORT_SYMBOL(transport_set_vpd_assoc);
1090
1091 int transport_dump_vpd_ident_type(
1092 struct t10_vpd *vpd,
1093 unsigned char *p_buf,
1094 int p_buf_len)
1095 {
1096 unsigned char buf[VPD_TMP_BUF_SIZE];
1097 int ret = 0;
1098 int len;
1099
1100 memset(buf, 0, VPD_TMP_BUF_SIZE);
1101 len = sprintf(buf, "T10 VPD Identifier Type: ");
1102
1103 switch (vpd->device_identifier_type) {
1104 case 0x00:
1105 sprintf(buf+len, "Vendor specific\n");
1106 break;
1107 case 0x01:
1108 sprintf(buf+len, "T10 Vendor ID based\n");
1109 break;
1110 case 0x02:
1111 sprintf(buf+len, "EUI-64 based\n");
1112 break;
1113 case 0x03:
1114 sprintf(buf+len, "NAA\n");
1115 break;
1116 case 0x04:
1117 sprintf(buf+len, "Relative target port identifier\n");
1118 break;
1119 case 0x08:
1120 sprintf(buf+len, "SCSI name string\n");
1121 break;
1122 default:
1123 sprintf(buf+len, "Unsupported: 0x%02x\n",
1124 vpd->device_identifier_type);
1125 ret = -EINVAL;
1126 break;
1127 }
1128
1129 if (p_buf) {
1130 if (p_buf_len < strlen(buf)+1)
1131 return -EINVAL;
1132 strncpy(p_buf, buf, p_buf_len);
1133 } else {
1134 pr_debug("%s", buf);
1135 }
1136
1137 return ret;
1138 }
1139
1140 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1141 {
1142 /*
1143 * The VPD identifier type..
1144 *
1145 * from spc3r23.pdf Section 7.6.3.1 Table 298
1146 */
1147 vpd->device_identifier_type = (page_83[1] & 0x0f);
1148 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1149 }
1150 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1151
1152 int transport_dump_vpd_ident(
1153 struct t10_vpd *vpd,
1154 unsigned char *p_buf,
1155 int p_buf_len)
1156 {
1157 unsigned char buf[VPD_TMP_BUF_SIZE];
1158 int ret = 0;
1159
1160 memset(buf, 0, VPD_TMP_BUF_SIZE);
1161
1162 switch (vpd->device_identifier_code_set) {
1163 case 0x01: /* Binary */
1164 snprintf(buf, sizeof(buf),
1165 "T10 VPD Binary Device Identifier: %s\n",
1166 &vpd->device_identifier[0]);
1167 break;
1168 case 0x02: /* ASCII */
1169 snprintf(buf, sizeof(buf),
1170 "T10 VPD ASCII Device Identifier: %s\n",
1171 &vpd->device_identifier[0]);
1172 break;
1173 case 0x03: /* UTF-8 */
1174 snprintf(buf, sizeof(buf),
1175 "T10 VPD UTF-8 Device Identifier: %s\n",
1176 &vpd->device_identifier[0]);
1177 break;
1178 default:
1179 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1180 " 0x%02x", vpd->device_identifier_code_set);
1181 ret = -EINVAL;
1182 break;
1183 }
1184
1185 if (p_buf)
1186 strncpy(p_buf, buf, p_buf_len);
1187 else
1188 pr_debug("%s", buf);
1189
1190 return ret;
1191 }
1192
1193 int
1194 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1195 {
1196 static const char hex_str[] = "0123456789abcdef";
1197 int j = 0, i = 4; /* offset to start of the identifier */
1198
1199 /*
1200 * The VPD Code Set (encoding)
1201 *
1202 * from spc3r23.pdf Section 7.6.3.1 Table 296
1203 */
1204 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1205 switch (vpd->device_identifier_code_set) {
1206 case 0x01: /* Binary */
1207 vpd->device_identifier[j++] =
1208 hex_str[vpd->device_identifier_type];
1209 while (i < (4 + page_83[3])) {
1210 vpd->device_identifier[j++] =
1211 hex_str[(page_83[i] & 0xf0) >> 4];
1212 vpd->device_identifier[j++] =
1213 hex_str[page_83[i] & 0x0f];
1214 i++;
1215 }
1216 break;
1217 case 0x02: /* ASCII */
1218 case 0x03: /* UTF-8 */
1219 while (i < (4 + page_83[3]))
1220 vpd->device_identifier[j++] = page_83[i++];
1221 break;
1222 default:
1223 break;
1224 }
1225
1226 return transport_dump_vpd_ident(vpd, NULL, 0);
1227 }
1228 EXPORT_SYMBOL(transport_set_vpd_ident);
1229
1230 static sense_reason_t
1231 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1232 unsigned int size)
1233 {
1234 u32 mtl;
1235
1236 if (!cmd->se_tfo->max_data_sg_nents)
1237 return TCM_NO_SENSE;
1238 /*
1239 * Check if fabric enforced maximum SGL entries per I/O descriptor
1240 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1241 * residual_count and reduce original cmd->data_length to maximum
1242 * length based on single PAGE_SIZE entry scatter-lists.
1243 */
1244 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1245 if (cmd->data_length > mtl) {
1246 /*
1247 * If an existing CDB overflow is present, calculate new residual
1248 * based on CDB size minus fabric maximum transfer length.
1249 *
1250 * If an existing CDB underflow is present, calculate new residual
1251 * based on original cmd->data_length minus fabric maximum transfer
1252 * length.
1253 *
1254 * Otherwise, set the underflow residual based on cmd->data_length
1255 * minus fabric maximum transfer length.
1256 */
1257 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1258 cmd->residual_count = (size - mtl);
1259 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1260 u32 orig_dl = size + cmd->residual_count;
1261 cmd->residual_count = (orig_dl - mtl);
1262 } else {
1263 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1264 cmd->residual_count = (cmd->data_length - mtl);
1265 }
1266 cmd->data_length = mtl;
1267 /*
1268 * Reset sbc_check_prot() calculated protection payload
1269 * length based upon the new smaller MTL.
1270 */
1271 if (cmd->prot_length) {
1272 u32 sectors = (mtl / dev->dev_attrib.block_size);
1273 cmd->prot_length = dev->prot_length * sectors;
1274 }
1275 }
1276 return TCM_NO_SENSE;
1277 }
1278
1279 sense_reason_t
1280 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1281 {
1282 struct se_device *dev = cmd->se_dev;
1283
1284 if (cmd->unknown_data_length) {
1285 cmd->data_length = size;
1286 } else if (size != cmd->data_length) {
1287 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1288 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1289 " 0x%02x\n", cmd->se_tfo->fabric_name,
1290 cmd->data_length, size, cmd->t_task_cdb[0]);
1291
1292 if (cmd->data_direction == DMA_TO_DEVICE) {
1293 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1294 pr_err_ratelimited("Rejecting underflow/overflow"
1295 " for WRITE data CDB\n");
1296 return TCM_INVALID_CDB_FIELD;
1297 }
1298 /*
1299 * Some fabric drivers like iscsi-target still expect to
1300 * always reject overflow writes. Reject this case until
1301 * full fabric driver level support for overflow writes
1302 * is introduced tree-wide.
1303 */
1304 if (size > cmd->data_length) {
1305 pr_err_ratelimited("Rejecting overflow for"
1306 " WRITE control CDB\n");
1307 return TCM_INVALID_CDB_FIELD;
1308 }
1309 }
1310 /*
1311 * Reject READ_* or WRITE_* with overflow/underflow for
1312 * type SCF_SCSI_DATA_CDB.
1313 */
1314 if (dev->dev_attrib.block_size != 512) {
1315 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1316 " CDB on non 512-byte sector setup subsystem"
1317 " plugin: %s\n", dev->transport->name);
1318 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1319 return TCM_INVALID_CDB_FIELD;
1320 }
1321 /*
1322 * For the overflow case keep the existing fabric provided
1323 * ->data_length. Otherwise for the underflow case, reset
1324 * ->data_length to the smaller SCSI expected data transfer
1325 * length.
1326 */
1327 if (size > cmd->data_length) {
1328 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1329 cmd->residual_count = (size - cmd->data_length);
1330 } else {
1331 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1332 cmd->residual_count = (cmd->data_length - size);
1333 cmd->data_length = size;
1334 }
1335 }
1336
1337 return target_check_max_data_sg_nents(cmd, dev, size);
1338
1339 }
1340
1341 /*
1342 * Used by fabric modules containing a local struct se_cmd within their
1343 * fabric dependent per I/O descriptor.
1344 *
1345 * Preserves the value of @cmd->tag.
1346 */
1347 void transport_init_se_cmd(
1348 struct se_cmd *cmd,
1349 const struct target_core_fabric_ops *tfo,
1350 struct se_session *se_sess,
1351 u32 data_length,
1352 int data_direction,
1353 int task_attr,
1354 unsigned char *sense_buffer)
1355 {
1356 INIT_LIST_HEAD(&cmd->se_delayed_node);
1357 INIT_LIST_HEAD(&cmd->se_qf_node);
1358 INIT_LIST_HEAD(&cmd->se_cmd_list);
1359 INIT_LIST_HEAD(&cmd->state_list);
1360 init_completion(&cmd->t_transport_stop_comp);
1361 cmd->free_compl = NULL;
1362 cmd->abrt_compl = NULL;
1363 spin_lock_init(&cmd->t_state_lock);
1364 INIT_WORK(&cmd->work, NULL);
1365 kref_init(&cmd->cmd_kref);
1366
1367 cmd->se_tfo = tfo;
1368 cmd->se_sess = se_sess;
1369 cmd->data_length = data_length;
1370 cmd->data_direction = data_direction;
1371 cmd->sam_task_attr = task_attr;
1372 cmd->sense_buffer = sense_buffer;
1373
1374 cmd->state_active = false;
1375 }
1376 EXPORT_SYMBOL(transport_init_se_cmd);
1377
1378 static sense_reason_t
1379 transport_check_alloc_task_attr(struct se_cmd *cmd)
1380 {
1381 struct se_device *dev = cmd->se_dev;
1382
1383 /*
1384 * Check if SAM Task Attribute emulation is enabled for this
1385 * struct se_device storage object
1386 */
1387 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1388 return 0;
1389
1390 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1391 pr_debug("SAM Task Attribute ACA"
1392 " emulation is not supported\n");
1393 return TCM_INVALID_CDB_FIELD;
1394 }
1395
1396 return 0;
1397 }
1398
1399 sense_reason_t
1400 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1401 {
1402 struct se_device *dev = cmd->se_dev;
1403 sense_reason_t ret;
1404
1405 /*
1406 * Ensure that the received CDB is less than the max (252 + 8) bytes
1407 * for VARIABLE_LENGTH_CMD
1408 */
1409 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1410 pr_err("Received SCSI CDB with command_size: %d that"
1411 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1412 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1413 return TCM_INVALID_CDB_FIELD;
1414 }
1415 /*
1416 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1417 * allocate the additional extended CDB buffer now.. Otherwise
1418 * setup the pointer from __t_task_cdb to t_task_cdb.
1419 */
1420 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1421 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1422 GFP_KERNEL);
1423 if (!cmd->t_task_cdb) {
1424 pr_err("Unable to allocate cmd->t_task_cdb"
1425 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1426 scsi_command_size(cdb),
1427 (unsigned long)sizeof(cmd->__t_task_cdb));
1428 return TCM_OUT_OF_RESOURCES;
1429 }
1430 } else
1431 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1432 /*
1433 * Copy the original CDB into cmd->
1434 */
1435 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1436
1437 trace_target_sequencer_start(cmd);
1438
1439 ret = dev->transport->parse_cdb(cmd);
1440 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1441 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1442 cmd->se_tfo->fabric_name,
1443 cmd->se_sess->se_node_acl->initiatorname,
1444 cmd->t_task_cdb[0]);
1445 if (ret)
1446 return ret;
1447
1448 ret = transport_check_alloc_task_attr(cmd);
1449 if (ret)
1450 return ret;
1451
1452 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1453 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1454 return 0;
1455 }
1456 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1457
1458 /*
1459 * Used by fabric module frontends to queue tasks directly.
1460 * May only be used from process context.
1461 */
1462 int transport_handle_cdb_direct(
1463 struct se_cmd *cmd)
1464 {
1465 sense_reason_t ret;
1466
1467 if (!cmd->se_lun) {
1468 dump_stack();
1469 pr_err("cmd->se_lun is NULL\n");
1470 return -EINVAL;
1471 }
1472 if (in_interrupt()) {
1473 dump_stack();
1474 pr_err("transport_generic_handle_cdb cannot be called"
1475 " from interrupt context\n");
1476 return -EINVAL;
1477 }
1478 /*
1479 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1480 * outstanding descriptors are handled correctly during shutdown via
1481 * transport_wait_for_tasks()
1482 *
1483 * Also, we don't take cmd->t_state_lock here as we only expect
1484 * this to be called for initial descriptor submission.
1485 */
1486 cmd->t_state = TRANSPORT_NEW_CMD;
1487 cmd->transport_state |= CMD_T_ACTIVE;
1488
1489 /*
1490 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1491 * so follow TRANSPORT_NEW_CMD processing thread context usage
1492 * and call transport_generic_request_failure() if necessary..
1493 */
1494 ret = transport_generic_new_cmd(cmd);
1495 if (ret)
1496 transport_generic_request_failure(cmd, ret);
1497 return 0;
1498 }
1499 EXPORT_SYMBOL(transport_handle_cdb_direct);
1500
1501 sense_reason_t
1502 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1503 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1504 {
1505 if (!sgl || !sgl_count)
1506 return 0;
1507
1508 /*
1509 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1510 * scatterlists already have been set to follow what the fabric
1511 * passes for the original expected data transfer length.
1512 */
1513 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1514 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1515 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1516 return TCM_INVALID_CDB_FIELD;
1517 }
1518
1519 cmd->t_data_sg = sgl;
1520 cmd->t_data_nents = sgl_count;
1521 cmd->t_bidi_data_sg = sgl_bidi;
1522 cmd->t_bidi_data_nents = sgl_bidi_count;
1523
1524 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1525 return 0;
1526 }
1527
1528 /**
1529 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1530 * se_cmd + use pre-allocated SGL memory.
1531 *
1532 * @se_cmd: command descriptor to submit
1533 * @se_sess: associated se_sess for endpoint
1534 * @cdb: pointer to SCSI CDB
1535 * @sense: pointer to SCSI sense buffer
1536 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1537 * @data_length: fabric expected data transfer length
1538 * @task_attr: SAM task attribute
1539 * @data_dir: DMA data direction
1540 * @flags: flags for command submission from target_sc_flags_tables
1541 * @sgl: struct scatterlist memory for unidirectional mapping
1542 * @sgl_count: scatterlist count for unidirectional mapping
1543 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1544 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1545 * @sgl_prot: struct scatterlist memory protection information
1546 * @sgl_prot_count: scatterlist count for protection information
1547 *
1548 * Task tags are supported if the caller has set @se_cmd->tag.
1549 *
1550 * Returns non zero to signal active I/O shutdown failure. All other
1551 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1552 * but still return zero here.
1553 *
1554 * This may only be called from process context, and also currently
1555 * assumes internal allocation of fabric payload buffer by target-core.
1556 */
1557 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1558 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1559 u32 data_length, int task_attr, int data_dir, int flags,
1560 struct scatterlist *sgl, u32 sgl_count,
1561 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1562 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1563 {
1564 struct se_portal_group *se_tpg;
1565 sense_reason_t rc;
1566 int ret;
1567
1568 se_tpg = se_sess->se_tpg;
1569 BUG_ON(!se_tpg);
1570 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1571 BUG_ON(in_interrupt());
1572 /*
1573 * Initialize se_cmd for target operation. From this point
1574 * exceptions are handled by sending exception status via
1575 * target_core_fabric_ops->queue_status() callback
1576 */
1577 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1578 data_length, data_dir, task_attr, sense);
1579
1580 if (flags & TARGET_SCF_USE_CPUID)
1581 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1582 else
1583 se_cmd->cpuid = WORK_CPU_UNBOUND;
1584
1585 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1586 se_cmd->unknown_data_length = 1;
1587 /*
1588 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1589 * se_sess->sess_cmd_list. A second kref_get here is necessary
1590 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1591 * kref_put() to happen during fabric packet acknowledgement.
1592 */
1593 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1594 if (ret)
1595 return ret;
1596 /*
1597 * Signal bidirectional data payloads to target-core
1598 */
1599 if (flags & TARGET_SCF_BIDI_OP)
1600 se_cmd->se_cmd_flags |= SCF_BIDI;
1601 /*
1602 * Locate se_lun pointer and attach it to struct se_cmd
1603 */
1604 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1605 if (rc) {
1606 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1607 target_put_sess_cmd(se_cmd);
1608 return 0;
1609 }
1610
1611 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1612 if (rc != 0) {
1613 transport_generic_request_failure(se_cmd, rc);
1614 return 0;
1615 }
1616
1617 /*
1618 * Save pointers for SGLs containing protection information,
1619 * if present.
1620 */
1621 if (sgl_prot_count) {
1622 se_cmd->t_prot_sg = sgl_prot;
1623 se_cmd->t_prot_nents = sgl_prot_count;
1624 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1625 }
1626
1627 /*
1628 * When a non zero sgl_count has been passed perform SGL passthrough
1629 * mapping for pre-allocated fabric memory instead of having target
1630 * core perform an internal SGL allocation..
1631 */
1632 if (sgl_count != 0) {
1633 BUG_ON(!sgl);
1634
1635 /*
1636 * A work-around for tcm_loop as some userspace code via
1637 * scsi-generic do not memset their associated read buffers,
1638 * so go ahead and do that here for type non-data CDBs. Also
1639 * note that this is currently guaranteed to be a single SGL
1640 * for this case by target core in target_setup_cmd_from_cdb()
1641 * -> transport_generic_cmd_sequencer().
1642 */
1643 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1644 se_cmd->data_direction == DMA_FROM_DEVICE) {
1645 unsigned char *buf = NULL;
1646
1647 if (sgl)
1648 buf = kmap(sg_page(sgl)) + sgl->offset;
1649
1650 if (buf) {
1651 memset(buf, 0, sgl->length);
1652 kunmap(sg_page(sgl));
1653 }
1654 }
1655
1656 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1657 sgl_bidi, sgl_bidi_count);
1658 if (rc != 0) {
1659 transport_generic_request_failure(se_cmd, rc);
1660 return 0;
1661 }
1662 }
1663
1664 /*
1665 * Check if we need to delay processing because of ALUA
1666 * Active/NonOptimized primary access state..
1667 */
1668 core_alua_check_nonop_delay(se_cmd);
1669
1670 transport_handle_cdb_direct(se_cmd);
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1674
1675 /**
1676 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1677 *
1678 * @se_cmd: command descriptor to submit
1679 * @se_sess: associated se_sess for endpoint
1680 * @cdb: pointer to SCSI CDB
1681 * @sense: pointer to SCSI sense buffer
1682 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1683 * @data_length: fabric expected data transfer length
1684 * @task_attr: SAM task attribute
1685 * @data_dir: DMA data direction
1686 * @flags: flags for command submission from target_sc_flags_tables
1687 *
1688 * Task tags are supported if the caller has set @se_cmd->tag.
1689 *
1690 * Returns non zero to signal active I/O shutdown failure. All other
1691 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1692 * but still return zero here.
1693 *
1694 * This may only be called from process context, and also currently
1695 * assumes internal allocation of fabric payload buffer by target-core.
1696 *
1697 * It also assumes interal target core SGL memory allocation.
1698 */
1699 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1700 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1701 u32 data_length, int task_attr, int data_dir, int flags)
1702 {
1703 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1704 unpacked_lun, data_length, task_attr, data_dir,
1705 flags, NULL, 0, NULL, 0, NULL, 0);
1706 }
1707 EXPORT_SYMBOL(target_submit_cmd);
1708
1709 static void target_complete_tmr_failure(struct work_struct *work)
1710 {
1711 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1712
1713 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1714 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1715
1716 transport_lun_remove_cmd(se_cmd);
1717 transport_cmd_check_stop_to_fabric(se_cmd);
1718 }
1719
1720 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1721 u64 *unpacked_lun)
1722 {
1723 struct se_cmd *se_cmd;
1724 unsigned long flags;
1725 bool ret = false;
1726
1727 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1728 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1729 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1730 continue;
1731
1732 if (se_cmd->tag == tag) {
1733 *unpacked_lun = se_cmd->orig_fe_lun;
1734 ret = true;
1735 break;
1736 }
1737 }
1738 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1739
1740 return ret;
1741 }
1742
1743 /**
1744 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1745 * for TMR CDBs
1746 *
1747 * @se_cmd: command descriptor to submit
1748 * @se_sess: associated se_sess for endpoint
1749 * @sense: pointer to SCSI sense buffer
1750 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1751 * @fabric_tmr_ptr: fabric context for TMR req
1752 * @tm_type: Type of TM request
1753 * @gfp: gfp type for caller
1754 * @tag: referenced task tag for TMR_ABORT_TASK
1755 * @flags: submit cmd flags
1756 *
1757 * Callable from all contexts.
1758 **/
1759
1760 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1761 unsigned char *sense, u64 unpacked_lun,
1762 void *fabric_tmr_ptr, unsigned char tm_type,
1763 gfp_t gfp, u64 tag, int flags)
1764 {
1765 struct se_portal_group *se_tpg;
1766 int ret;
1767
1768 se_tpg = se_sess->se_tpg;
1769 BUG_ON(!se_tpg);
1770
1771 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1772 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1773 /*
1774 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1775 * allocation failure.
1776 */
1777 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1778 if (ret < 0)
1779 return -ENOMEM;
1780
1781 if (tm_type == TMR_ABORT_TASK)
1782 se_cmd->se_tmr_req->ref_task_tag = tag;
1783
1784 /* See target_submit_cmd for commentary */
1785 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1786 if (ret) {
1787 core_tmr_release_req(se_cmd->se_tmr_req);
1788 return ret;
1789 }
1790 /*
1791 * If this is ABORT_TASK with no explicit fabric provided LUN,
1792 * go ahead and search active session tags for a match to figure
1793 * out unpacked_lun for the original se_cmd.
1794 */
1795 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1796 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1797 goto failure;
1798 }
1799
1800 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1801 if (ret)
1802 goto failure;
1803
1804 transport_generic_handle_tmr(se_cmd);
1805 return 0;
1806
1807 /*
1808 * For callback during failure handling, push this work off
1809 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1810 */
1811 failure:
1812 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1813 schedule_work(&se_cmd->work);
1814 return 0;
1815 }
1816 EXPORT_SYMBOL(target_submit_tmr);
1817
1818 /*
1819 * Handle SAM-esque emulation for generic transport request failures.
1820 */
1821 void transport_generic_request_failure(struct se_cmd *cmd,
1822 sense_reason_t sense_reason)
1823 {
1824 int ret = 0, post_ret;
1825
1826 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1827 sense_reason);
1828 target_show_cmd("-----[ ", cmd);
1829
1830 /*
1831 * For SAM Task Attribute emulation for failed struct se_cmd
1832 */
1833 transport_complete_task_attr(cmd);
1834
1835 if (cmd->transport_complete_callback)
1836 cmd->transport_complete_callback(cmd, false, &post_ret);
1837
1838 if (cmd->transport_state & CMD_T_ABORTED) {
1839 INIT_WORK(&cmd->work, target_abort_work);
1840 queue_work(target_completion_wq, &cmd->work);
1841 return;
1842 }
1843
1844 switch (sense_reason) {
1845 case TCM_NON_EXISTENT_LUN:
1846 case TCM_UNSUPPORTED_SCSI_OPCODE:
1847 case TCM_INVALID_CDB_FIELD:
1848 case TCM_INVALID_PARAMETER_LIST:
1849 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1850 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1851 case TCM_UNKNOWN_MODE_PAGE:
1852 case TCM_WRITE_PROTECTED:
1853 case TCM_ADDRESS_OUT_OF_RANGE:
1854 case TCM_CHECK_CONDITION_ABORT_CMD:
1855 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1856 case TCM_CHECK_CONDITION_NOT_READY:
1857 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1858 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1859 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1860 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1861 case TCM_TOO_MANY_TARGET_DESCS:
1862 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1863 case TCM_TOO_MANY_SEGMENT_DESCS:
1864 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1865 break;
1866 case TCM_OUT_OF_RESOURCES:
1867 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1868 goto queue_status;
1869 case TCM_LUN_BUSY:
1870 cmd->scsi_status = SAM_STAT_BUSY;
1871 goto queue_status;
1872 case TCM_RESERVATION_CONFLICT:
1873 /*
1874 * No SENSE Data payload for this case, set SCSI Status
1875 * and queue the response to $FABRIC_MOD.
1876 *
1877 * Uses linux/include/scsi/scsi.h SAM status codes defs
1878 */
1879 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1880 /*
1881 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1882 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1883 * CONFLICT STATUS.
1884 *
1885 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1886 */
1887 if (cmd->se_sess &&
1888 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1889 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1890 cmd->orig_fe_lun, 0x2C,
1891 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1892 }
1893
1894 goto queue_status;
1895 default:
1896 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1897 cmd->t_task_cdb[0], sense_reason);
1898 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1899 break;
1900 }
1901
1902 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1903 if (ret)
1904 goto queue_full;
1905
1906 check_stop:
1907 transport_lun_remove_cmd(cmd);
1908 transport_cmd_check_stop_to_fabric(cmd);
1909 return;
1910
1911 queue_status:
1912 trace_target_cmd_complete(cmd);
1913 ret = cmd->se_tfo->queue_status(cmd);
1914 if (!ret)
1915 goto check_stop;
1916 queue_full:
1917 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1918 }
1919 EXPORT_SYMBOL(transport_generic_request_failure);
1920
1921 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1922 {
1923 sense_reason_t ret;
1924
1925 if (!cmd->execute_cmd) {
1926 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1927 goto err;
1928 }
1929 if (do_checks) {
1930 /*
1931 * Check for an existing UNIT ATTENTION condition after
1932 * target_handle_task_attr() has done SAM task attr
1933 * checking, and possibly have already defered execution
1934 * out to target_restart_delayed_cmds() context.
1935 */
1936 ret = target_scsi3_ua_check(cmd);
1937 if (ret)
1938 goto err;
1939
1940 ret = target_alua_state_check(cmd);
1941 if (ret)
1942 goto err;
1943
1944 ret = target_check_reservation(cmd);
1945 if (ret) {
1946 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1947 goto err;
1948 }
1949 }
1950
1951 ret = cmd->execute_cmd(cmd);
1952 if (!ret)
1953 return;
1954 err:
1955 spin_lock_irq(&cmd->t_state_lock);
1956 cmd->transport_state &= ~CMD_T_SENT;
1957 spin_unlock_irq(&cmd->t_state_lock);
1958
1959 transport_generic_request_failure(cmd, ret);
1960 }
1961
1962 static int target_write_prot_action(struct se_cmd *cmd)
1963 {
1964 u32 sectors;
1965 /*
1966 * Perform WRITE_INSERT of PI using software emulation when backend
1967 * device has PI enabled, if the transport has not already generated
1968 * PI using hardware WRITE_INSERT offload.
1969 */
1970 switch (cmd->prot_op) {
1971 case TARGET_PROT_DOUT_INSERT:
1972 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1973 sbc_dif_generate(cmd);
1974 break;
1975 case TARGET_PROT_DOUT_STRIP:
1976 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1977 break;
1978
1979 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1980 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1981 sectors, 0, cmd->t_prot_sg, 0);
1982 if (unlikely(cmd->pi_err)) {
1983 spin_lock_irq(&cmd->t_state_lock);
1984 cmd->transport_state &= ~CMD_T_SENT;
1985 spin_unlock_irq(&cmd->t_state_lock);
1986 transport_generic_request_failure(cmd, cmd->pi_err);
1987 return -1;
1988 }
1989 break;
1990 default:
1991 break;
1992 }
1993
1994 return 0;
1995 }
1996
1997 static bool target_handle_task_attr(struct se_cmd *cmd)
1998 {
1999 struct se_device *dev = cmd->se_dev;
2000
2001 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2002 return false;
2003
2004 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2005
2006 /*
2007 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2008 * to allow the passed struct se_cmd list of tasks to the front of the list.
2009 */
2010 switch (cmd->sam_task_attr) {
2011 case TCM_HEAD_TAG:
2012 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2013 cmd->t_task_cdb[0]);
2014 return false;
2015 case TCM_ORDERED_TAG:
2016 atomic_inc_mb(&dev->dev_ordered_sync);
2017
2018 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2019 cmd->t_task_cdb[0]);
2020
2021 /*
2022 * Execute an ORDERED command if no other older commands
2023 * exist that need to be completed first.
2024 */
2025 if (!atomic_read(&dev->simple_cmds))
2026 return false;
2027 break;
2028 default:
2029 /*
2030 * For SIMPLE and UNTAGGED Task Attribute commands
2031 */
2032 atomic_inc_mb(&dev->simple_cmds);
2033 break;
2034 }
2035
2036 if (atomic_read(&dev->dev_ordered_sync) == 0)
2037 return false;
2038
2039 spin_lock(&dev->delayed_cmd_lock);
2040 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2041 spin_unlock(&dev->delayed_cmd_lock);
2042
2043 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2044 cmd->t_task_cdb[0], cmd->sam_task_attr);
2045 return true;
2046 }
2047
2048 void target_execute_cmd(struct se_cmd *cmd)
2049 {
2050 /*
2051 * Determine if frontend context caller is requesting the stopping of
2052 * this command for frontend exceptions.
2053 *
2054 * If the received CDB has already been aborted stop processing it here.
2055 */
2056 if (target_cmd_interrupted(cmd))
2057 return;
2058
2059 spin_lock_irq(&cmd->t_state_lock);
2060 cmd->t_state = TRANSPORT_PROCESSING;
2061 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2062 spin_unlock_irq(&cmd->t_state_lock);
2063
2064 if (target_write_prot_action(cmd))
2065 return;
2066
2067 if (target_handle_task_attr(cmd)) {
2068 spin_lock_irq(&cmd->t_state_lock);
2069 cmd->transport_state &= ~CMD_T_SENT;
2070 spin_unlock_irq(&cmd->t_state_lock);
2071 return;
2072 }
2073
2074 __target_execute_cmd(cmd, true);
2075 }
2076 EXPORT_SYMBOL(target_execute_cmd);
2077
2078 /*
2079 * Process all commands up to the last received ORDERED task attribute which
2080 * requires another blocking boundary
2081 */
2082 static void target_restart_delayed_cmds(struct se_device *dev)
2083 {
2084 for (;;) {
2085 struct se_cmd *cmd;
2086
2087 spin_lock(&dev->delayed_cmd_lock);
2088 if (list_empty(&dev->delayed_cmd_list)) {
2089 spin_unlock(&dev->delayed_cmd_lock);
2090 break;
2091 }
2092
2093 cmd = list_entry(dev->delayed_cmd_list.next,
2094 struct se_cmd, se_delayed_node);
2095 list_del(&cmd->se_delayed_node);
2096 spin_unlock(&dev->delayed_cmd_lock);
2097
2098 cmd->transport_state |= CMD_T_SENT;
2099
2100 __target_execute_cmd(cmd, true);
2101
2102 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2103 break;
2104 }
2105 }
2106
2107 /*
2108 * Called from I/O completion to determine which dormant/delayed
2109 * and ordered cmds need to have their tasks added to the execution queue.
2110 */
2111 static void transport_complete_task_attr(struct se_cmd *cmd)
2112 {
2113 struct se_device *dev = cmd->se_dev;
2114
2115 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2116 return;
2117
2118 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2119 goto restart;
2120
2121 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2122 atomic_dec_mb(&dev->simple_cmds);
2123 dev->dev_cur_ordered_id++;
2124 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2125 dev->dev_cur_ordered_id++;
2126 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2127 dev->dev_cur_ordered_id);
2128 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2129 atomic_dec_mb(&dev->dev_ordered_sync);
2130
2131 dev->dev_cur_ordered_id++;
2132 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2133 dev->dev_cur_ordered_id);
2134 }
2135 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2136
2137 restart:
2138 target_restart_delayed_cmds(dev);
2139 }
2140
2141 static void transport_complete_qf(struct se_cmd *cmd)
2142 {
2143 int ret = 0;
2144
2145 transport_complete_task_attr(cmd);
2146 /*
2147 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2148 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2149 * the same callbacks should not be retried. Return CHECK_CONDITION
2150 * if a scsi_status is not already set.
2151 *
2152 * If a fabric driver ->queue_status() has returned non zero, always
2153 * keep retrying no matter what..
2154 */
2155 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2156 if (cmd->scsi_status)
2157 goto queue_status;
2158
2159 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2160 goto queue_status;
2161 }
2162
2163 /*
2164 * Check if we need to send a sense buffer from
2165 * the struct se_cmd in question. We do NOT want
2166 * to take this path of the IO has been marked as
2167 * needing to be treated like a "normal read". This
2168 * is the case if it's a tape read, and either the
2169 * FM, EOM, or ILI bits are set, but there is no
2170 * sense data.
2171 */
2172 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2173 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2174 goto queue_status;
2175
2176 switch (cmd->data_direction) {
2177 case DMA_FROM_DEVICE:
2178 /* queue status if not treating this as a normal read */
2179 if (cmd->scsi_status &&
2180 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2181 goto queue_status;
2182
2183 trace_target_cmd_complete(cmd);
2184 ret = cmd->se_tfo->queue_data_in(cmd);
2185 break;
2186 case DMA_TO_DEVICE:
2187 if (cmd->se_cmd_flags & SCF_BIDI) {
2188 ret = cmd->se_tfo->queue_data_in(cmd);
2189 break;
2190 }
2191 /* fall through */
2192 case DMA_NONE:
2193 queue_status:
2194 trace_target_cmd_complete(cmd);
2195 ret = cmd->se_tfo->queue_status(cmd);
2196 break;
2197 default:
2198 break;
2199 }
2200
2201 if (ret < 0) {
2202 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2203 return;
2204 }
2205 transport_lun_remove_cmd(cmd);
2206 transport_cmd_check_stop_to_fabric(cmd);
2207 }
2208
2209 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2210 int err, bool write_pending)
2211 {
2212 /*
2213 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2214 * ->queue_data_in() callbacks from new process context.
2215 *
2216 * Otherwise for other errors, transport_complete_qf() will send
2217 * CHECK_CONDITION via ->queue_status() instead of attempting to
2218 * retry associated fabric driver data-transfer callbacks.
2219 */
2220 if (err == -EAGAIN || err == -ENOMEM) {
2221 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2222 TRANSPORT_COMPLETE_QF_OK;
2223 } else {
2224 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2225 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2226 }
2227
2228 spin_lock_irq(&dev->qf_cmd_lock);
2229 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2230 atomic_inc_mb(&dev->dev_qf_count);
2231 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2232
2233 schedule_work(&cmd->se_dev->qf_work_queue);
2234 }
2235
2236 static bool target_read_prot_action(struct se_cmd *cmd)
2237 {
2238 switch (cmd->prot_op) {
2239 case TARGET_PROT_DIN_STRIP:
2240 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2241 u32 sectors = cmd->data_length >>
2242 ilog2(cmd->se_dev->dev_attrib.block_size);
2243
2244 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2245 sectors, 0, cmd->t_prot_sg,
2246 0);
2247 if (cmd->pi_err)
2248 return true;
2249 }
2250 break;
2251 case TARGET_PROT_DIN_INSERT:
2252 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2253 break;
2254
2255 sbc_dif_generate(cmd);
2256 break;
2257 default:
2258 break;
2259 }
2260
2261 return false;
2262 }
2263
2264 static void target_complete_ok_work(struct work_struct *work)
2265 {
2266 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2267 int ret;
2268
2269 /*
2270 * Check if we need to move delayed/dormant tasks from cmds on the
2271 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2272 * Attribute.
2273 */
2274 transport_complete_task_attr(cmd);
2275
2276 /*
2277 * Check to schedule QUEUE_FULL work, or execute an existing
2278 * cmd->transport_qf_callback()
2279 */
2280 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2281 schedule_work(&cmd->se_dev->qf_work_queue);
2282
2283 /*
2284 * Check if we need to send a sense buffer from
2285 * the struct se_cmd in question. We do NOT want
2286 * to take this path of the IO has been marked as
2287 * needing to be treated like a "normal read". This
2288 * is the case if it's a tape read, and either the
2289 * FM, EOM, or ILI bits are set, but there is no
2290 * sense data.
2291 */
2292 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2293 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2294 WARN_ON(!cmd->scsi_status);
2295 ret = transport_send_check_condition_and_sense(
2296 cmd, 0, 1);
2297 if (ret)
2298 goto queue_full;
2299
2300 transport_lun_remove_cmd(cmd);
2301 transport_cmd_check_stop_to_fabric(cmd);
2302 return;
2303 }
2304 /*
2305 * Check for a callback, used by amongst other things
2306 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2307 */
2308 if (cmd->transport_complete_callback) {
2309 sense_reason_t rc;
2310 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2311 bool zero_dl = !(cmd->data_length);
2312 int post_ret = 0;
2313
2314 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2315 if (!rc && !post_ret) {
2316 if (caw && zero_dl)
2317 goto queue_rsp;
2318
2319 return;
2320 } else if (rc) {
2321 ret = transport_send_check_condition_and_sense(cmd,
2322 rc, 0);
2323 if (ret)
2324 goto queue_full;
2325
2326 transport_lun_remove_cmd(cmd);
2327 transport_cmd_check_stop_to_fabric(cmd);
2328 return;
2329 }
2330 }
2331
2332 queue_rsp:
2333 switch (cmd->data_direction) {
2334 case DMA_FROM_DEVICE:
2335 /*
2336 * if this is a READ-type IO, but SCSI status
2337 * is set, then skip returning data and just
2338 * return the status -- unless this IO is marked
2339 * as needing to be treated as a normal read,
2340 * in which case we want to go ahead and return
2341 * the data. This happens, for example, for tape
2342 * reads with the FM, EOM, or ILI bits set, with
2343 * no sense data.
2344 */
2345 if (cmd->scsi_status &&
2346 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2347 goto queue_status;
2348
2349 atomic_long_add(cmd->data_length,
2350 &cmd->se_lun->lun_stats.tx_data_octets);
2351 /*
2352 * Perform READ_STRIP of PI using software emulation when
2353 * backend had PI enabled, if the transport will not be
2354 * performing hardware READ_STRIP offload.
2355 */
2356 if (target_read_prot_action(cmd)) {
2357 ret = transport_send_check_condition_and_sense(cmd,
2358 cmd->pi_err, 0);
2359 if (ret)
2360 goto queue_full;
2361
2362 transport_lun_remove_cmd(cmd);
2363 transport_cmd_check_stop_to_fabric(cmd);
2364 return;
2365 }
2366
2367 trace_target_cmd_complete(cmd);
2368 ret = cmd->se_tfo->queue_data_in(cmd);
2369 if (ret)
2370 goto queue_full;
2371 break;
2372 case DMA_TO_DEVICE:
2373 atomic_long_add(cmd->data_length,
2374 &cmd->se_lun->lun_stats.rx_data_octets);
2375 /*
2376 * Check if we need to send READ payload for BIDI-COMMAND
2377 */
2378 if (cmd->se_cmd_flags & SCF_BIDI) {
2379 atomic_long_add(cmd->data_length,
2380 &cmd->se_lun->lun_stats.tx_data_octets);
2381 ret = cmd->se_tfo->queue_data_in(cmd);
2382 if (ret)
2383 goto queue_full;
2384 break;
2385 }
2386 /* fall through */
2387 case DMA_NONE:
2388 queue_status:
2389 trace_target_cmd_complete(cmd);
2390 ret = cmd->se_tfo->queue_status(cmd);
2391 if (ret)
2392 goto queue_full;
2393 break;
2394 default:
2395 break;
2396 }
2397
2398 transport_lun_remove_cmd(cmd);
2399 transport_cmd_check_stop_to_fabric(cmd);
2400 return;
2401
2402 queue_full:
2403 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2404 " data_direction: %d\n", cmd, cmd->data_direction);
2405
2406 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2407 }
2408
2409 void target_free_sgl(struct scatterlist *sgl, int nents)
2410 {
2411 sgl_free_n_order(sgl, nents, 0);
2412 }
2413 EXPORT_SYMBOL(target_free_sgl);
2414
2415 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2416 {
2417 /*
2418 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2419 * emulation, and free + reset pointers if necessary..
2420 */
2421 if (!cmd->t_data_sg_orig)
2422 return;
2423
2424 kfree(cmd->t_data_sg);
2425 cmd->t_data_sg = cmd->t_data_sg_orig;
2426 cmd->t_data_sg_orig = NULL;
2427 cmd->t_data_nents = cmd->t_data_nents_orig;
2428 cmd->t_data_nents_orig = 0;
2429 }
2430
2431 static inline void transport_free_pages(struct se_cmd *cmd)
2432 {
2433 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2434 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2435 cmd->t_prot_sg = NULL;
2436 cmd->t_prot_nents = 0;
2437 }
2438
2439 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2440 /*
2441 * Release special case READ buffer payload required for
2442 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2443 */
2444 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2445 target_free_sgl(cmd->t_bidi_data_sg,
2446 cmd->t_bidi_data_nents);
2447 cmd->t_bidi_data_sg = NULL;
2448 cmd->t_bidi_data_nents = 0;
2449 }
2450 transport_reset_sgl_orig(cmd);
2451 return;
2452 }
2453 transport_reset_sgl_orig(cmd);
2454
2455 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2456 cmd->t_data_sg = NULL;
2457 cmd->t_data_nents = 0;
2458
2459 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2460 cmd->t_bidi_data_sg = NULL;
2461 cmd->t_bidi_data_nents = 0;
2462 }
2463
2464 void *transport_kmap_data_sg(struct se_cmd *cmd)
2465 {
2466 struct scatterlist *sg = cmd->t_data_sg;
2467 struct page **pages;
2468 int i;
2469
2470 /*
2471 * We need to take into account a possible offset here for fabrics like
2472 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2473 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2474 */
2475 if (!cmd->t_data_nents)
2476 return NULL;
2477
2478 BUG_ON(!sg);
2479 if (cmd->t_data_nents == 1)
2480 return kmap(sg_page(sg)) + sg->offset;
2481
2482 /* >1 page. use vmap */
2483 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2484 if (!pages)
2485 return NULL;
2486
2487 /* convert sg[] to pages[] */
2488 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2489 pages[i] = sg_page(sg);
2490 }
2491
2492 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2493 kfree(pages);
2494 if (!cmd->t_data_vmap)
2495 return NULL;
2496
2497 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2498 }
2499 EXPORT_SYMBOL(transport_kmap_data_sg);
2500
2501 void transport_kunmap_data_sg(struct se_cmd *cmd)
2502 {
2503 if (!cmd->t_data_nents) {
2504 return;
2505 } else if (cmd->t_data_nents == 1) {
2506 kunmap(sg_page(cmd->t_data_sg));
2507 return;
2508 }
2509
2510 vunmap(cmd->t_data_vmap);
2511 cmd->t_data_vmap = NULL;
2512 }
2513 EXPORT_SYMBOL(transport_kunmap_data_sg);
2514
2515 int
2516 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2517 bool zero_page, bool chainable)
2518 {
2519 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2520
2521 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2522 return *sgl ? 0 : -ENOMEM;
2523 }
2524 EXPORT_SYMBOL(target_alloc_sgl);
2525
2526 /*
2527 * Allocate any required resources to execute the command. For writes we
2528 * might not have the payload yet, so notify the fabric via a call to
2529 * ->write_pending instead. Otherwise place it on the execution queue.
2530 */
2531 sense_reason_t
2532 transport_generic_new_cmd(struct se_cmd *cmd)
2533 {
2534 unsigned long flags;
2535 int ret = 0;
2536 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2537
2538 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2539 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2540 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2541 cmd->prot_length, true, false);
2542 if (ret < 0)
2543 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2544 }
2545
2546 /*
2547 * Determine if the TCM fabric module has already allocated physical
2548 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2549 * beforehand.
2550 */
2551 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2552 cmd->data_length) {
2553
2554 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2555 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2556 u32 bidi_length;
2557
2558 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2559 bidi_length = cmd->t_task_nolb *
2560 cmd->se_dev->dev_attrib.block_size;
2561 else
2562 bidi_length = cmd->data_length;
2563
2564 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2565 &cmd->t_bidi_data_nents,
2566 bidi_length, zero_flag, false);
2567 if (ret < 0)
2568 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2569 }
2570
2571 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2572 cmd->data_length, zero_flag, false);
2573 if (ret < 0)
2574 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2575 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2576 cmd->data_length) {
2577 /*
2578 * Special case for COMPARE_AND_WRITE with fabrics
2579 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2580 */
2581 u32 caw_length = cmd->t_task_nolb *
2582 cmd->se_dev->dev_attrib.block_size;
2583
2584 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2585 &cmd->t_bidi_data_nents,
2586 caw_length, zero_flag, false);
2587 if (ret < 0)
2588 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2589 }
2590 /*
2591 * If this command is not a write we can execute it right here,
2592 * for write buffers we need to notify the fabric driver first
2593 * and let it call back once the write buffers are ready.
2594 */
2595 target_add_to_state_list(cmd);
2596 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2597 target_execute_cmd(cmd);
2598 return 0;
2599 }
2600
2601 spin_lock_irqsave(&cmd->t_state_lock, flags);
2602 cmd->t_state = TRANSPORT_WRITE_PENDING;
2603 /*
2604 * Determine if frontend context caller is requesting the stopping of
2605 * this command for frontend exceptions.
2606 */
2607 if (cmd->transport_state & CMD_T_STOP &&
2608 !cmd->se_tfo->write_pending_must_be_called) {
2609 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2610 __func__, __LINE__, cmd->tag);
2611
2612 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2613
2614 complete_all(&cmd->t_transport_stop_comp);
2615 return 0;
2616 }
2617 cmd->transport_state &= ~CMD_T_ACTIVE;
2618 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2619
2620 ret = cmd->se_tfo->write_pending(cmd);
2621 if (ret)
2622 goto queue_full;
2623
2624 return 0;
2625
2626 queue_full:
2627 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2628 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2629 return 0;
2630 }
2631 EXPORT_SYMBOL(transport_generic_new_cmd);
2632
2633 static void transport_write_pending_qf(struct se_cmd *cmd)
2634 {
2635 unsigned long flags;
2636 int ret;
2637 bool stop;
2638
2639 spin_lock_irqsave(&cmd->t_state_lock, flags);
2640 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2641 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2642
2643 if (stop) {
2644 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2645 __func__, __LINE__, cmd->tag);
2646 complete_all(&cmd->t_transport_stop_comp);
2647 return;
2648 }
2649
2650 ret = cmd->se_tfo->write_pending(cmd);
2651 if (ret) {
2652 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2653 cmd);
2654 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2655 }
2656 }
2657
2658 static bool
2659 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2660 unsigned long *flags);
2661
2662 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2663 {
2664 unsigned long flags;
2665
2666 spin_lock_irqsave(&cmd->t_state_lock, flags);
2667 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2668 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2669 }
2670
2671 /*
2672 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2673 * finished.
2674 */
2675 void target_put_cmd_and_wait(struct se_cmd *cmd)
2676 {
2677 DECLARE_COMPLETION_ONSTACK(compl);
2678
2679 WARN_ON_ONCE(cmd->abrt_compl);
2680 cmd->abrt_compl = &compl;
2681 target_put_sess_cmd(cmd);
2682 wait_for_completion(&compl);
2683 }
2684
2685 /*
2686 * This function is called by frontend drivers after processing of a command
2687 * has finished.
2688 *
2689 * The protocol for ensuring that either the regular frontend command
2690 * processing flow or target_handle_abort() code drops one reference is as
2691 * follows:
2692 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2693 * the frontend driver to call this function synchronously or asynchronously.
2694 * That will cause one reference to be dropped.
2695 * - During regular command processing the target core sets CMD_T_COMPLETE
2696 * before invoking one of the .queue_*() functions.
2697 * - The code that aborts commands skips commands and TMFs for which
2698 * CMD_T_COMPLETE has been set.
2699 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2700 * commands that will be aborted.
2701 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2702 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2703 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2704 * be called and will drop a reference.
2705 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2706 * will be called. target_handle_abort() will drop the final reference.
2707 */
2708 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2709 {
2710 DECLARE_COMPLETION_ONSTACK(compl);
2711 int ret = 0;
2712 bool aborted = false, tas = false;
2713
2714 if (wait_for_tasks)
2715 target_wait_free_cmd(cmd, &aborted, &tas);
2716
2717 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2718 /*
2719 * Handle WRITE failure case where transport_generic_new_cmd()
2720 * has already added se_cmd to state_list, but fabric has
2721 * failed command before I/O submission.
2722 */
2723 if (cmd->state_active)
2724 target_remove_from_state_list(cmd);
2725
2726 if (cmd->se_lun)
2727 transport_lun_remove_cmd(cmd);
2728 }
2729 if (aborted)
2730 cmd->free_compl = &compl;
2731 ret = target_put_sess_cmd(cmd);
2732 if (aborted) {
2733 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2734 wait_for_completion(&compl);
2735 ret = 1;
2736 }
2737 return ret;
2738 }
2739 EXPORT_SYMBOL(transport_generic_free_cmd);
2740
2741 /**
2742 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2743 * @se_cmd: command descriptor to add
2744 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2745 */
2746 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2747 {
2748 struct se_session *se_sess = se_cmd->se_sess;
2749 unsigned long flags;
2750 int ret = 0;
2751
2752 /*
2753 * Add a second kref if the fabric caller is expecting to handle
2754 * fabric acknowledgement that requires two target_put_sess_cmd()
2755 * invocations before se_cmd descriptor release.
2756 */
2757 if (ack_kref) {
2758 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2759 return -EINVAL;
2760
2761 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2762 }
2763
2764 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2765 if (se_sess->sess_tearing_down) {
2766 ret = -ESHUTDOWN;
2767 goto out;
2768 }
2769 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2770 percpu_ref_get(&se_sess->cmd_count);
2771 out:
2772 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2773
2774 if (ret && ack_kref)
2775 target_put_sess_cmd(se_cmd);
2776
2777 return ret;
2778 }
2779 EXPORT_SYMBOL(target_get_sess_cmd);
2780
2781 static void target_free_cmd_mem(struct se_cmd *cmd)
2782 {
2783 transport_free_pages(cmd);
2784
2785 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2786 core_tmr_release_req(cmd->se_tmr_req);
2787 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2788 kfree(cmd->t_task_cdb);
2789 }
2790
2791 static void target_release_cmd_kref(struct kref *kref)
2792 {
2793 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2794 struct se_session *se_sess = se_cmd->se_sess;
2795 struct completion *free_compl = se_cmd->free_compl;
2796 struct completion *abrt_compl = se_cmd->abrt_compl;
2797 unsigned long flags;
2798
2799 if (se_sess) {
2800 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2801 list_del_init(&se_cmd->se_cmd_list);
2802 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2803 }
2804
2805 target_free_cmd_mem(se_cmd);
2806 se_cmd->se_tfo->release_cmd(se_cmd);
2807 if (free_compl)
2808 complete(free_compl);
2809 if (abrt_compl)
2810 complete(abrt_compl);
2811
2812 percpu_ref_put(&se_sess->cmd_count);
2813 }
2814
2815 /**
2816 * target_put_sess_cmd - decrease the command reference count
2817 * @se_cmd: command to drop a reference from
2818 *
2819 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2820 * refcount to drop to zero. Returns zero otherwise.
2821 */
2822 int target_put_sess_cmd(struct se_cmd *se_cmd)
2823 {
2824 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2825 }
2826 EXPORT_SYMBOL(target_put_sess_cmd);
2827
2828 static const char *data_dir_name(enum dma_data_direction d)
2829 {
2830 switch (d) {
2831 case DMA_BIDIRECTIONAL: return "BIDI";
2832 case DMA_TO_DEVICE: return "WRITE";
2833 case DMA_FROM_DEVICE: return "READ";
2834 case DMA_NONE: return "NONE";
2835 }
2836
2837 return "(?)";
2838 }
2839
2840 static const char *cmd_state_name(enum transport_state_table t)
2841 {
2842 switch (t) {
2843 case TRANSPORT_NO_STATE: return "NO_STATE";
2844 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2845 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2846 case TRANSPORT_PROCESSING: return "PROCESSING";
2847 case TRANSPORT_COMPLETE: return "COMPLETE";
2848 case TRANSPORT_ISTATE_PROCESSING:
2849 return "ISTATE_PROCESSING";
2850 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2851 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2852 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2853 }
2854
2855 return "(?)";
2856 }
2857
2858 static void target_append_str(char **str, const char *txt)
2859 {
2860 char *prev = *str;
2861
2862 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2863 kstrdup(txt, GFP_ATOMIC);
2864 kfree(prev);
2865 }
2866
2867 /*
2868 * Convert a transport state bitmask into a string. The caller is
2869 * responsible for freeing the returned pointer.
2870 */
2871 static char *target_ts_to_str(u32 ts)
2872 {
2873 char *str = NULL;
2874
2875 if (ts & CMD_T_ABORTED)
2876 target_append_str(&str, "aborted");
2877 if (ts & CMD_T_ACTIVE)
2878 target_append_str(&str, "active");
2879 if (ts & CMD_T_COMPLETE)
2880 target_append_str(&str, "complete");
2881 if (ts & CMD_T_SENT)
2882 target_append_str(&str, "sent");
2883 if (ts & CMD_T_STOP)
2884 target_append_str(&str, "stop");
2885 if (ts & CMD_T_FABRIC_STOP)
2886 target_append_str(&str, "fabric_stop");
2887
2888 return str;
2889 }
2890
2891 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2892 {
2893 switch (tmf) {
2894 case TMR_ABORT_TASK: return "ABORT_TASK";
2895 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2896 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2897 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2898 case TMR_LUN_RESET: return "LUN_RESET";
2899 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2900 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2901 case TMR_UNKNOWN: break;
2902 }
2903 return "(?)";
2904 }
2905
2906 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2907 {
2908 char *ts_str = target_ts_to_str(cmd->transport_state);
2909 const u8 *cdb = cmd->t_task_cdb;
2910 struct se_tmr_req *tmf = cmd->se_tmr_req;
2911
2912 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2913 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2914 pfx, cdb[0], cdb[1], cmd->tag,
2915 data_dir_name(cmd->data_direction),
2916 cmd->se_tfo->get_cmd_state(cmd),
2917 cmd_state_name(cmd->t_state), cmd->data_length,
2918 kref_read(&cmd->cmd_kref), ts_str);
2919 } else {
2920 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2921 pfx, target_tmf_name(tmf->function), cmd->tag,
2922 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2923 cmd_state_name(cmd->t_state),
2924 kref_read(&cmd->cmd_kref), ts_str);
2925 }
2926 kfree(ts_str);
2927 }
2928 EXPORT_SYMBOL(target_show_cmd);
2929
2930 /**
2931 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2932 * @se_sess: session to flag
2933 */
2934 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2935 {
2936 unsigned long flags;
2937
2938 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2939 se_sess->sess_tearing_down = 1;
2940 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2941
2942 percpu_ref_kill(&se_sess->cmd_count);
2943 }
2944 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2945
2946 /**
2947 * target_wait_for_sess_cmds - Wait for outstanding commands
2948 * @se_sess: session to wait for active I/O
2949 */
2950 void target_wait_for_sess_cmds(struct se_session *se_sess)
2951 {
2952 struct se_cmd *cmd;
2953 int ret;
2954
2955 WARN_ON_ONCE(!se_sess->sess_tearing_down);
2956
2957 do {
2958 ret = wait_event_timeout(se_sess->cmd_list_wq,
2959 percpu_ref_is_zero(&se_sess->cmd_count),
2960 180 * HZ);
2961 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
2962 target_show_cmd("session shutdown: still waiting for ",
2963 cmd);
2964 } while (ret <= 0);
2965 }
2966 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2967
2968 /*
2969 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2970 * all references to the LUN have been released. Called during LUN shutdown.
2971 */
2972 void transport_clear_lun_ref(struct se_lun *lun)
2973 {
2974 percpu_ref_kill(&lun->lun_ref);
2975 wait_for_completion(&lun->lun_shutdown_comp);
2976 }
2977
2978 static bool
2979 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2980 bool *aborted, bool *tas, unsigned long *flags)
2981 __releases(&cmd->t_state_lock)
2982 __acquires(&cmd->t_state_lock)
2983 {
2984
2985 assert_spin_locked(&cmd->t_state_lock);
2986 WARN_ON_ONCE(!irqs_disabled());
2987
2988 if (fabric_stop)
2989 cmd->transport_state |= CMD_T_FABRIC_STOP;
2990
2991 if (cmd->transport_state & CMD_T_ABORTED)
2992 *aborted = true;
2993
2994 if (cmd->transport_state & CMD_T_TAS)
2995 *tas = true;
2996
2997 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2998 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2999 return false;
3000
3001 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3002 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3003 return false;
3004
3005 if (!(cmd->transport_state & CMD_T_ACTIVE))
3006 return false;
3007
3008 if (fabric_stop && *aborted)
3009 return false;
3010
3011 cmd->transport_state |= CMD_T_STOP;
3012
3013 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3014
3015 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3016
3017 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3018 180 * HZ))
3019 target_show_cmd("wait for tasks: ", cmd);
3020
3021 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3022 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3023
3024 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3025 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3026
3027 return true;
3028 }
3029
3030 /**
3031 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3032 * @cmd: command to wait on
3033 */
3034 bool transport_wait_for_tasks(struct se_cmd *cmd)
3035 {
3036 unsigned long flags;
3037 bool ret, aborted = false, tas = false;
3038
3039 spin_lock_irqsave(&cmd->t_state_lock, flags);
3040 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3041 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3042
3043 return ret;
3044 }
3045 EXPORT_SYMBOL(transport_wait_for_tasks);
3046
3047 struct sense_info {
3048 u8 key;
3049 u8 asc;
3050 u8 ascq;
3051 bool add_sector_info;
3052 };
3053
3054 static const struct sense_info sense_info_table[] = {
3055 [TCM_NO_SENSE] = {
3056 .key = NOT_READY
3057 },
3058 [TCM_NON_EXISTENT_LUN] = {
3059 .key = ILLEGAL_REQUEST,
3060 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3061 },
3062 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3063 .key = ILLEGAL_REQUEST,
3064 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3065 },
3066 [TCM_SECTOR_COUNT_TOO_MANY] = {
3067 .key = ILLEGAL_REQUEST,
3068 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3069 },
3070 [TCM_UNKNOWN_MODE_PAGE] = {
3071 .key = ILLEGAL_REQUEST,
3072 .asc = 0x24, /* INVALID FIELD IN CDB */
3073 },
3074 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3075 .key = ABORTED_COMMAND,
3076 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3077 .ascq = 0x03,
3078 },
3079 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3080 .key = ABORTED_COMMAND,
3081 .asc = 0x0c, /* WRITE ERROR */
3082 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3083 },
3084 [TCM_INVALID_CDB_FIELD] = {
3085 .key = ILLEGAL_REQUEST,
3086 .asc = 0x24, /* INVALID FIELD IN CDB */
3087 },
3088 [TCM_INVALID_PARAMETER_LIST] = {
3089 .key = ILLEGAL_REQUEST,
3090 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3091 },
3092 [TCM_TOO_MANY_TARGET_DESCS] = {
3093 .key = ILLEGAL_REQUEST,
3094 .asc = 0x26,
3095 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3096 },
3097 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3098 .key = ILLEGAL_REQUEST,
3099 .asc = 0x26,
3100 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3101 },
3102 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3103 .key = ILLEGAL_REQUEST,
3104 .asc = 0x26,
3105 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3106 },
3107 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3108 .key = ILLEGAL_REQUEST,
3109 .asc = 0x26,
3110 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3111 },
3112 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3113 .key = ILLEGAL_REQUEST,
3114 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3115 },
3116 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3117 .key = ILLEGAL_REQUEST,
3118 .asc = 0x0c, /* WRITE ERROR */
3119 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3120 },
3121 [TCM_SERVICE_CRC_ERROR] = {
3122 .key = ABORTED_COMMAND,
3123 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3124 .ascq = 0x05, /* N/A */
3125 },
3126 [TCM_SNACK_REJECTED] = {
3127 .key = ABORTED_COMMAND,
3128 .asc = 0x11, /* READ ERROR */
3129 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3130 },
3131 [TCM_WRITE_PROTECTED] = {
3132 .key = DATA_PROTECT,
3133 .asc = 0x27, /* WRITE PROTECTED */
3134 },
3135 [TCM_ADDRESS_OUT_OF_RANGE] = {
3136 .key = ILLEGAL_REQUEST,
3137 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3138 },
3139 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3140 .key = UNIT_ATTENTION,
3141 },
3142 [TCM_CHECK_CONDITION_NOT_READY] = {
3143 .key = NOT_READY,
3144 },
3145 [TCM_MISCOMPARE_VERIFY] = {
3146 .key = MISCOMPARE,
3147 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3148 .ascq = 0x00,
3149 },
3150 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3151 .key = ABORTED_COMMAND,
3152 .asc = 0x10,
3153 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3154 .add_sector_info = true,
3155 },
3156 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3157 .key = ABORTED_COMMAND,
3158 .asc = 0x10,
3159 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3160 .add_sector_info = true,
3161 },
3162 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3163 .key = ABORTED_COMMAND,
3164 .asc = 0x10,
3165 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3166 .add_sector_info = true,
3167 },
3168 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3169 .key = COPY_ABORTED,
3170 .asc = 0x0d,
3171 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3172
3173 },
3174 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3175 /*
3176 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3177 * Solaris initiators. Returning NOT READY instead means the
3178 * operations will be retried a finite number of times and we
3179 * can survive intermittent errors.
3180 */
3181 .key = NOT_READY,
3182 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3183 },
3184 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3185 /*
3186 * From spc4r22 section5.7.7,5.7.8
3187 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3188 * or a REGISTER AND IGNORE EXISTING KEY service action or
3189 * REGISTER AND MOVE service actionis attempted,
3190 * but there are insufficient device server resources to complete the
3191 * operation, then the command shall be terminated with CHECK CONDITION
3192 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3193 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3194 */
3195 .key = ILLEGAL_REQUEST,
3196 .asc = 0x55,
3197 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3198 },
3199 };
3200
3201 /**
3202 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3203 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3204 * be stored.
3205 * @reason: LIO sense reason code. If this argument has the value
3206 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3207 * dequeuing a unit attention fails due to multiple commands being processed
3208 * concurrently, set the command status to BUSY.
3209 *
3210 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3211 */
3212 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3213 {
3214 const struct sense_info *si;
3215 u8 *buffer = cmd->sense_buffer;
3216 int r = (__force int)reason;
3217 u8 key, asc, ascq;
3218 bool desc_format = target_sense_desc_format(cmd->se_dev);
3219
3220 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3221 si = &sense_info_table[r];
3222 else
3223 si = &sense_info_table[(__force int)
3224 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3225
3226 key = si->key;
3227 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3228 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3229 &ascq)) {
3230 cmd->scsi_status = SAM_STAT_BUSY;
3231 return;
3232 }
3233 } else if (si->asc == 0) {
3234 WARN_ON_ONCE(cmd->scsi_asc == 0);
3235 asc = cmd->scsi_asc;
3236 ascq = cmd->scsi_ascq;
3237 } else {
3238 asc = si->asc;
3239 ascq = si->ascq;
3240 }
3241
3242 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3243 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3244 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3245 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3246 if (si->add_sector_info)
3247 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3248 cmd->scsi_sense_length,
3249 cmd->bad_sector) < 0);
3250 }
3251
3252 int
3253 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3254 sense_reason_t reason, int from_transport)
3255 {
3256 unsigned long flags;
3257
3258 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3259
3260 spin_lock_irqsave(&cmd->t_state_lock, flags);
3261 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3262 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3263 return 0;
3264 }
3265 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3266 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3267
3268 if (!from_transport)
3269 translate_sense_reason(cmd, reason);
3270
3271 trace_target_cmd_complete(cmd);
3272 return cmd->se_tfo->queue_status(cmd);
3273 }
3274 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3275
3276 /**
3277 * target_send_busy - Send SCSI BUSY status back to the initiator
3278 * @cmd: SCSI command for which to send a BUSY reply.
3279 *
3280 * Note: Only call this function if target_submit_cmd*() failed.
3281 */
3282 int target_send_busy(struct se_cmd *cmd)
3283 {
3284 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3285
3286 cmd->scsi_status = SAM_STAT_BUSY;
3287 trace_target_cmd_complete(cmd);
3288 return cmd->se_tfo->queue_status(cmd);
3289 }
3290 EXPORT_SYMBOL(target_send_busy);
3291
3292 static void target_tmr_work(struct work_struct *work)
3293 {
3294 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3295 struct se_device *dev = cmd->se_dev;
3296 struct se_tmr_req *tmr = cmd->se_tmr_req;
3297 int ret;
3298
3299 if (cmd->transport_state & CMD_T_ABORTED)
3300 goto aborted;
3301
3302 switch (tmr->function) {
3303 case TMR_ABORT_TASK:
3304 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3305 break;
3306 case TMR_ABORT_TASK_SET:
3307 case TMR_CLEAR_ACA:
3308 case TMR_CLEAR_TASK_SET:
3309 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3310 break;
3311 case TMR_LUN_RESET:
3312 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3313 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3314 TMR_FUNCTION_REJECTED;
3315 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3316 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3317 cmd->orig_fe_lun, 0x29,
3318 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3319 }
3320 break;
3321 case TMR_TARGET_WARM_RESET:
3322 tmr->response = TMR_FUNCTION_REJECTED;
3323 break;
3324 case TMR_TARGET_COLD_RESET:
3325 tmr->response = TMR_FUNCTION_REJECTED;
3326 break;
3327 default:
3328 pr_err("Unknown TMR function: 0x%02x.\n",
3329 tmr->function);
3330 tmr->response = TMR_FUNCTION_REJECTED;
3331 break;
3332 }
3333
3334 if (cmd->transport_state & CMD_T_ABORTED)
3335 goto aborted;
3336
3337 cmd->se_tfo->queue_tm_rsp(cmd);
3338
3339 transport_cmd_check_stop_to_fabric(cmd);
3340 return;
3341
3342 aborted:
3343 target_handle_abort(cmd);
3344 }
3345
3346 int transport_generic_handle_tmr(
3347 struct se_cmd *cmd)
3348 {
3349 unsigned long flags;
3350 bool aborted = false;
3351
3352 spin_lock_irqsave(&cmd->t_state_lock, flags);
3353 if (cmd->transport_state & CMD_T_ABORTED) {
3354 aborted = true;
3355 } else {
3356 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3357 cmd->transport_state |= CMD_T_ACTIVE;
3358 }
3359 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3360
3361 if (aborted) {
3362 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3363 cmd->se_tmr_req->function,
3364 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3365 target_handle_abort(cmd);
3366 return 0;
3367 }
3368
3369 INIT_WORK(&cmd->work, target_tmr_work);
3370 schedule_work(&cmd->work);
3371 return 0;
3372 }
3373 EXPORT_SYMBOL(transport_generic_handle_tmr);
3374
3375 bool
3376 target_check_wce(struct se_device *dev)
3377 {
3378 bool wce = false;
3379
3380 if (dev->transport->get_write_cache)
3381 wce = dev->transport->get_write_cache(dev);
3382 else if (dev->dev_attrib.emulate_write_cache > 0)
3383 wce = true;
3384
3385 return wce;
3386 }
3387
3388 bool
3389 target_check_fua(struct se_device *dev)
3390 {
3391 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3392 }