]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/target/target_core_transport.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_lba_map_cache = kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map),
125 __alignof__(struct t10_alua_lba_map), 0, NULL);
126 if (!t10_alua_lba_map_cache) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 "cache failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_mem_cache = kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member),
134 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 if (!t10_alua_lba_map_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 "cache failed\n");
138 goto out_free_lba_map_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_lba_map_mem_cache;
145
146 return 0;
147
148 out_free_lba_map_mem_cache:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 kmem_cache_destroy(se_sess_cache);
164 out:
165 return -ENOMEM;
166 }
167
168 void release_se_kmem_caches(void)
169 {
170 destroy_workqueue(target_completion_wq);
171 kmem_cache_destroy(se_sess_cache);
172 kmem_cache_destroy(se_ua_cache);
173 kmem_cache_destroy(t10_pr_reg_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 kmem_cache_destroy(t10_alua_lba_map_cache);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186 * Allocate a new row index for the entry type specified
187 */
188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 u32 new_index;
191
192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194 spin_lock(&scsi_mib_index_lock);
195 new_index = ++scsi_mib_index[type];
196 spin_unlock(&scsi_mib_index_lock);
197
198 return new_index;
199 }
200
201 void transport_subsystem_check_init(void)
202 {
203 int ret;
204 static int sub_api_initialized;
205
206 if (sub_api_initialized)
207 return;
208
209 ret = request_module("target_core_iblock");
210 if (ret != 0)
211 pr_err("Unable to load target_core_iblock\n");
212
213 ret = request_module("target_core_file");
214 if (ret != 0)
215 pr_err("Unable to load target_core_file\n");
216
217 ret = request_module("target_core_pscsi");
218 if (ret != 0)
219 pr_err("Unable to load target_core_pscsi\n");
220
221 ret = request_module("target_core_user");
222 if (ret != 0)
223 pr_err("Unable to load target_core_user\n");
224
225 sub_api_initialized = 1;
226 }
227
228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 struct se_session *se_sess;
231
232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 if (!se_sess) {
234 pr_err("Unable to allocate struct se_session from"
235 " se_sess_cache\n");
236 return ERR_PTR(-ENOMEM);
237 }
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 spin_lock_init(&se_sess->sess_cmd_lock);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
288 }
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
293 }
294
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
298
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 */
312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
317 {
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
320
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 /*
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 *
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
328 */
329 if (se_nacl) {
330 /*
331 *
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 *
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
339 */
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
345 /*
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
348 */
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
354 }
355
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 /*
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
360 */
361 se_nacl->nacl_sess = se_sess;
362
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 }
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
395 {
396 struct se_session *sess;
397
398 /*
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
401 */
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
406
407 if (IS_ERR(sess))
408 return sess;
409
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
415 }
416 /*
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
419 */
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
425 }
426 }
427
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
430 }
431 EXPORT_SYMBOL(target_alloc_session);
432
433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 {
435 struct se_session *se_sess;
436 ssize_t len = 0;
437
438 spin_lock_bh(&se_tpg->session_lock);
439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
440 if (!se_sess->se_node_acl)
441 continue;
442 if (!se_sess->se_node_acl->dynamic_node_acl)
443 continue;
444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
445 break;
446
447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
448 se_sess->se_node_acl->initiatorname);
449 len += 1; /* Include NULL terminator */
450 }
451 spin_unlock_bh(&se_tpg->session_lock);
452
453 return len;
454 }
455 EXPORT_SYMBOL(target_show_dynamic_sessions);
456
457 static void target_complete_nacl(struct kref *kref)
458 {
459 struct se_node_acl *nacl = container_of(kref,
460 struct se_node_acl, acl_kref);
461 struct se_portal_group *se_tpg = nacl->se_tpg;
462
463 if (!nacl->dynamic_stop) {
464 complete(&nacl->acl_free_comp);
465 return;
466 }
467
468 mutex_lock(&se_tpg->acl_node_mutex);
469 list_del(&nacl->acl_list);
470 mutex_unlock(&se_tpg->acl_node_mutex);
471
472 core_tpg_wait_for_nacl_pr_ref(nacl);
473 core_free_device_list_for_node(nacl, se_tpg);
474 kfree(nacl);
475 }
476
477 void target_put_nacl(struct se_node_acl *nacl)
478 {
479 kref_put(&nacl->acl_kref, target_complete_nacl);
480 }
481 EXPORT_SYMBOL(target_put_nacl);
482
483 void transport_deregister_session_configfs(struct se_session *se_sess)
484 {
485 struct se_node_acl *se_nacl;
486 unsigned long flags;
487 /*
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 */
490 se_nacl = se_sess->se_node_acl;
491 if (se_nacl) {
492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
493 if (!list_empty(&se_sess->sess_acl_list))
494 list_del_init(&se_sess->sess_acl_list);
495 /*
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
499 */
500 if (list_empty(&se_nacl->acl_sess_list))
501 se_nacl->nacl_sess = NULL;
502 else {
503 se_nacl->nacl_sess = container_of(
504 se_nacl->acl_sess_list.prev,
505 struct se_session, sess_acl_list);
506 }
507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 }
509 }
510 EXPORT_SYMBOL(transport_deregister_session_configfs);
511
512 void transport_free_session(struct se_session *se_sess)
513 {
514 struct se_node_acl *se_nacl = se_sess->se_node_acl;
515
516 /*
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
519 */
520 if (se_nacl) {
521 struct se_portal_group *se_tpg = se_nacl->se_tpg;
522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
523 unsigned long flags;
524
525 se_sess->se_node_acl = NULL;
526
527 /*
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
531 */
532 mutex_lock(&se_tpg->acl_node_mutex);
533 if (se_nacl->dynamic_node_acl &&
534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
536 if (list_empty(&se_nacl->acl_sess_list))
537 se_nacl->dynamic_stop = true;
538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539
540 if (se_nacl->dynamic_stop)
541 list_del(&se_nacl->acl_list);
542 }
543 mutex_unlock(&se_tpg->acl_node_mutex);
544
545 if (se_nacl->dynamic_stop)
546 target_put_nacl(se_nacl);
547
548 target_put_nacl(se_nacl);
549 }
550 if (se_sess->sess_cmd_map) {
551 percpu_ida_destroy(&se_sess->sess_tag_pool);
552 kvfree(se_sess->sess_cmd_map);
553 }
554 kmem_cache_free(se_sess_cache, se_sess);
555 }
556 EXPORT_SYMBOL(transport_free_session);
557
558 void transport_deregister_session(struct se_session *se_sess)
559 {
560 struct se_portal_group *se_tpg = se_sess->se_tpg;
561 unsigned long flags;
562
563 if (!se_tpg) {
564 transport_free_session(se_sess);
565 return;
566 }
567
568 spin_lock_irqsave(&se_tpg->session_lock, flags);
569 list_del(&se_sess->sess_list);
570 se_sess->se_tpg = NULL;
571 se_sess->fabric_sess_ptr = NULL;
572 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg->se_tpg_tfo->get_fabric_name());
576 /*
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
580 *
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
583 */
584
585 transport_free_session(se_sess);
586 }
587 EXPORT_SYMBOL(transport_deregister_session);
588
589 static void target_remove_from_state_list(struct se_cmd *cmd)
590 {
591 struct se_device *dev = cmd->se_dev;
592 unsigned long flags;
593
594 if (!dev)
595 return;
596
597 spin_lock_irqsave(&dev->execute_task_lock, flags);
598 if (cmd->state_active) {
599 list_del(&cmd->state_list);
600 cmd->state_active = false;
601 }
602 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
603 }
604
605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 {
607 unsigned long flags;
608
609 target_remove_from_state_list(cmd);
610
611 /*
612 * Clear struct se_cmd->se_lun before the handoff to FE.
613 */
614 cmd->se_lun = NULL;
615
616 spin_lock_irqsave(&cmd->t_state_lock, flags);
617 /*
618 * Determine if frontend context caller is requesting the stopping of
619 * this command for frontend exceptions.
620 */
621 if (cmd->transport_state & CMD_T_STOP) {
622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
623 __func__, __LINE__, cmd->tag);
624
625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626
627 complete_all(&cmd->t_transport_stop_comp);
628 return 1;
629 }
630 cmd->transport_state &= ~CMD_T_ACTIVE;
631 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632
633 /*
634 * Some fabric modules like tcm_loop can release their internally
635 * allocated I/O reference and struct se_cmd now.
636 *
637 * Fabric modules are expected to return '1' here if the se_cmd being
638 * passed is released at this point, or zero if not being released.
639 */
640 return cmd->se_tfo->check_stop_free(cmd);
641 }
642
643 static void transport_lun_remove_cmd(struct se_cmd *cmd)
644 {
645 struct se_lun *lun = cmd->se_lun;
646
647 if (!lun)
648 return;
649
650 if (cmpxchg(&cmd->lun_ref_active, true, false))
651 percpu_ref_put(&lun->lun_ref);
652 }
653
654 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655 {
656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657 int ret = 0;
658
659 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
660 transport_lun_remove_cmd(cmd);
661 /*
662 * Allow the fabric driver to unmap any resources before
663 * releasing the descriptor via TFO->release_cmd()
664 */
665 if (remove)
666 cmd->se_tfo->aborted_task(cmd);
667
668 if (transport_cmd_check_stop_to_fabric(cmd))
669 return 1;
670 if (remove && ack_kref)
671 ret = transport_put_cmd(cmd);
672
673 return ret;
674 }
675
676 static void target_complete_failure_work(struct work_struct *work)
677 {
678 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
679
680 transport_generic_request_failure(cmd,
681 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
682 }
683
684 /*
685 * Used when asking transport to copy Sense Data from the underlying
686 * Linux/SCSI struct scsi_cmnd
687 */
688 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
689 {
690 struct se_device *dev = cmd->se_dev;
691
692 WARN_ON(!cmd->se_lun);
693
694 if (!dev)
695 return NULL;
696
697 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
698 return NULL;
699
700 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
701
702 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
703 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
704 return cmd->sense_buffer;
705 }
706
707 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
708 {
709 struct se_device *dev = cmd->se_dev;
710 int success = scsi_status == GOOD;
711 unsigned long flags;
712
713 cmd->scsi_status = scsi_status;
714
715
716 spin_lock_irqsave(&cmd->t_state_lock, flags);
717
718 if (dev && dev->transport->transport_complete) {
719 dev->transport->transport_complete(cmd,
720 cmd->t_data_sg,
721 transport_get_sense_buffer(cmd));
722 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
723 success = 1;
724 }
725
726 /*
727 * Check for case where an explicit ABORT_TASK has been received
728 * and transport_wait_for_tasks() will be waiting for completion..
729 */
730 if (cmd->transport_state & CMD_T_ABORTED ||
731 cmd->transport_state & CMD_T_STOP) {
732 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
733 complete_all(&cmd->t_transport_stop_comp);
734 return;
735 } else if (!success) {
736 INIT_WORK(&cmd->work, target_complete_failure_work);
737 } else {
738 INIT_WORK(&cmd->work, target_complete_ok_work);
739 }
740
741 cmd->t_state = TRANSPORT_COMPLETE;
742 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
743 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
744
745 if (cmd->se_cmd_flags & SCF_USE_CPUID)
746 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
747 else
748 queue_work(target_completion_wq, &cmd->work);
749 }
750 EXPORT_SYMBOL(target_complete_cmd);
751
752 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
753 {
754 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
755 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
756 cmd->residual_count += cmd->data_length - length;
757 } else {
758 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
759 cmd->residual_count = cmd->data_length - length;
760 }
761
762 cmd->data_length = length;
763 }
764
765 target_complete_cmd(cmd, scsi_status);
766 }
767 EXPORT_SYMBOL(target_complete_cmd_with_length);
768
769 static void target_add_to_state_list(struct se_cmd *cmd)
770 {
771 struct se_device *dev = cmd->se_dev;
772 unsigned long flags;
773
774 spin_lock_irqsave(&dev->execute_task_lock, flags);
775 if (!cmd->state_active) {
776 list_add_tail(&cmd->state_list, &dev->state_list);
777 cmd->state_active = true;
778 }
779 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
780 }
781
782 /*
783 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
784 */
785 static void transport_write_pending_qf(struct se_cmd *cmd);
786 static void transport_complete_qf(struct se_cmd *cmd);
787
788 void target_qf_do_work(struct work_struct *work)
789 {
790 struct se_device *dev = container_of(work, struct se_device,
791 qf_work_queue);
792 LIST_HEAD(qf_cmd_list);
793 struct se_cmd *cmd, *cmd_tmp;
794
795 spin_lock_irq(&dev->qf_cmd_lock);
796 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
797 spin_unlock_irq(&dev->qf_cmd_lock);
798
799 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
800 list_del(&cmd->se_qf_node);
801 atomic_dec_mb(&dev->dev_qf_count);
802
803 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
804 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
805 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
806 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
807 : "UNKNOWN");
808
809 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
810 transport_write_pending_qf(cmd);
811 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
812 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
813 transport_complete_qf(cmd);
814 }
815 }
816
817 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
818 {
819 switch (cmd->data_direction) {
820 case DMA_NONE:
821 return "NONE";
822 case DMA_FROM_DEVICE:
823 return "READ";
824 case DMA_TO_DEVICE:
825 return "WRITE";
826 case DMA_BIDIRECTIONAL:
827 return "BIDI";
828 default:
829 break;
830 }
831
832 return "UNKNOWN";
833 }
834
835 void transport_dump_dev_state(
836 struct se_device *dev,
837 char *b,
838 int *bl)
839 {
840 *bl += sprintf(b + *bl, "Status: ");
841 if (dev->export_count)
842 *bl += sprintf(b + *bl, "ACTIVATED");
843 else
844 *bl += sprintf(b + *bl, "DEACTIVATED");
845
846 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
847 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
848 dev->dev_attrib.block_size,
849 dev->dev_attrib.hw_max_sectors);
850 *bl += sprintf(b + *bl, " ");
851 }
852
853 void transport_dump_vpd_proto_id(
854 struct t10_vpd *vpd,
855 unsigned char *p_buf,
856 int p_buf_len)
857 {
858 unsigned char buf[VPD_TMP_BUF_SIZE];
859 int len;
860
861 memset(buf, 0, VPD_TMP_BUF_SIZE);
862 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
863
864 switch (vpd->protocol_identifier) {
865 case 0x00:
866 sprintf(buf+len, "Fibre Channel\n");
867 break;
868 case 0x10:
869 sprintf(buf+len, "Parallel SCSI\n");
870 break;
871 case 0x20:
872 sprintf(buf+len, "SSA\n");
873 break;
874 case 0x30:
875 sprintf(buf+len, "IEEE 1394\n");
876 break;
877 case 0x40:
878 sprintf(buf+len, "SCSI Remote Direct Memory Access"
879 " Protocol\n");
880 break;
881 case 0x50:
882 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
883 break;
884 case 0x60:
885 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
886 break;
887 case 0x70:
888 sprintf(buf+len, "Automation/Drive Interface Transport"
889 " Protocol\n");
890 break;
891 case 0x80:
892 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
893 break;
894 default:
895 sprintf(buf+len, "Unknown 0x%02x\n",
896 vpd->protocol_identifier);
897 break;
898 }
899
900 if (p_buf)
901 strncpy(p_buf, buf, p_buf_len);
902 else
903 pr_debug("%s", buf);
904 }
905
906 void
907 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
908 {
909 /*
910 * Check if the Protocol Identifier Valid (PIV) bit is set..
911 *
912 * from spc3r23.pdf section 7.5.1
913 */
914 if (page_83[1] & 0x80) {
915 vpd->protocol_identifier = (page_83[0] & 0xf0);
916 vpd->protocol_identifier_set = 1;
917 transport_dump_vpd_proto_id(vpd, NULL, 0);
918 }
919 }
920 EXPORT_SYMBOL(transport_set_vpd_proto_id);
921
922 int transport_dump_vpd_assoc(
923 struct t10_vpd *vpd,
924 unsigned char *p_buf,
925 int p_buf_len)
926 {
927 unsigned char buf[VPD_TMP_BUF_SIZE];
928 int ret = 0;
929 int len;
930
931 memset(buf, 0, VPD_TMP_BUF_SIZE);
932 len = sprintf(buf, "T10 VPD Identifier Association: ");
933
934 switch (vpd->association) {
935 case 0x00:
936 sprintf(buf+len, "addressed logical unit\n");
937 break;
938 case 0x10:
939 sprintf(buf+len, "target port\n");
940 break;
941 case 0x20:
942 sprintf(buf+len, "SCSI target device\n");
943 break;
944 default:
945 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
946 ret = -EINVAL;
947 break;
948 }
949
950 if (p_buf)
951 strncpy(p_buf, buf, p_buf_len);
952 else
953 pr_debug("%s", buf);
954
955 return ret;
956 }
957
958 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
959 {
960 /*
961 * The VPD identification association..
962 *
963 * from spc3r23.pdf Section 7.6.3.1 Table 297
964 */
965 vpd->association = (page_83[1] & 0x30);
966 return transport_dump_vpd_assoc(vpd, NULL, 0);
967 }
968 EXPORT_SYMBOL(transport_set_vpd_assoc);
969
970 int transport_dump_vpd_ident_type(
971 struct t10_vpd *vpd,
972 unsigned char *p_buf,
973 int p_buf_len)
974 {
975 unsigned char buf[VPD_TMP_BUF_SIZE];
976 int ret = 0;
977 int len;
978
979 memset(buf, 0, VPD_TMP_BUF_SIZE);
980 len = sprintf(buf, "T10 VPD Identifier Type: ");
981
982 switch (vpd->device_identifier_type) {
983 case 0x00:
984 sprintf(buf+len, "Vendor specific\n");
985 break;
986 case 0x01:
987 sprintf(buf+len, "T10 Vendor ID based\n");
988 break;
989 case 0x02:
990 sprintf(buf+len, "EUI-64 based\n");
991 break;
992 case 0x03:
993 sprintf(buf+len, "NAA\n");
994 break;
995 case 0x04:
996 sprintf(buf+len, "Relative target port identifier\n");
997 break;
998 case 0x08:
999 sprintf(buf+len, "SCSI name string\n");
1000 break;
1001 default:
1002 sprintf(buf+len, "Unsupported: 0x%02x\n",
1003 vpd->device_identifier_type);
1004 ret = -EINVAL;
1005 break;
1006 }
1007
1008 if (p_buf) {
1009 if (p_buf_len < strlen(buf)+1)
1010 return -EINVAL;
1011 strncpy(p_buf, buf, p_buf_len);
1012 } else {
1013 pr_debug("%s", buf);
1014 }
1015
1016 return ret;
1017 }
1018
1019 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1020 {
1021 /*
1022 * The VPD identifier type..
1023 *
1024 * from spc3r23.pdf Section 7.6.3.1 Table 298
1025 */
1026 vpd->device_identifier_type = (page_83[1] & 0x0f);
1027 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1028 }
1029 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1030
1031 int transport_dump_vpd_ident(
1032 struct t10_vpd *vpd,
1033 unsigned char *p_buf,
1034 int p_buf_len)
1035 {
1036 unsigned char buf[VPD_TMP_BUF_SIZE];
1037 int ret = 0;
1038
1039 memset(buf, 0, VPD_TMP_BUF_SIZE);
1040
1041 switch (vpd->device_identifier_code_set) {
1042 case 0x01: /* Binary */
1043 snprintf(buf, sizeof(buf),
1044 "T10 VPD Binary Device Identifier: %s\n",
1045 &vpd->device_identifier[0]);
1046 break;
1047 case 0x02: /* ASCII */
1048 snprintf(buf, sizeof(buf),
1049 "T10 VPD ASCII Device Identifier: %s\n",
1050 &vpd->device_identifier[0]);
1051 break;
1052 case 0x03: /* UTF-8 */
1053 snprintf(buf, sizeof(buf),
1054 "T10 VPD UTF-8 Device Identifier: %s\n",
1055 &vpd->device_identifier[0]);
1056 break;
1057 default:
1058 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1059 " 0x%02x", vpd->device_identifier_code_set);
1060 ret = -EINVAL;
1061 break;
1062 }
1063
1064 if (p_buf)
1065 strncpy(p_buf, buf, p_buf_len);
1066 else
1067 pr_debug("%s", buf);
1068
1069 return ret;
1070 }
1071
1072 int
1073 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1074 {
1075 static const char hex_str[] = "0123456789abcdef";
1076 int j = 0, i = 4; /* offset to start of the identifier */
1077
1078 /*
1079 * The VPD Code Set (encoding)
1080 *
1081 * from spc3r23.pdf Section 7.6.3.1 Table 296
1082 */
1083 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1084 switch (vpd->device_identifier_code_set) {
1085 case 0x01: /* Binary */
1086 vpd->device_identifier[j++] =
1087 hex_str[vpd->device_identifier_type];
1088 while (i < (4 + page_83[3])) {
1089 vpd->device_identifier[j++] =
1090 hex_str[(page_83[i] & 0xf0) >> 4];
1091 vpd->device_identifier[j++] =
1092 hex_str[page_83[i] & 0x0f];
1093 i++;
1094 }
1095 break;
1096 case 0x02: /* ASCII */
1097 case 0x03: /* UTF-8 */
1098 while (i < (4 + page_83[3]))
1099 vpd->device_identifier[j++] = page_83[i++];
1100 break;
1101 default:
1102 break;
1103 }
1104
1105 return transport_dump_vpd_ident(vpd, NULL, 0);
1106 }
1107 EXPORT_SYMBOL(transport_set_vpd_ident);
1108
1109 static sense_reason_t
1110 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1111 unsigned int size)
1112 {
1113 u32 mtl;
1114
1115 if (!cmd->se_tfo->max_data_sg_nents)
1116 return TCM_NO_SENSE;
1117 /*
1118 * Check if fabric enforced maximum SGL entries per I/O descriptor
1119 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1120 * residual_count and reduce original cmd->data_length to maximum
1121 * length based on single PAGE_SIZE entry scatter-lists.
1122 */
1123 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1124 if (cmd->data_length > mtl) {
1125 /*
1126 * If an existing CDB overflow is present, calculate new residual
1127 * based on CDB size minus fabric maximum transfer length.
1128 *
1129 * If an existing CDB underflow is present, calculate new residual
1130 * based on original cmd->data_length minus fabric maximum transfer
1131 * length.
1132 *
1133 * Otherwise, set the underflow residual based on cmd->data_length
1134 * minus fabric maximum transfer length.
1135 */
1136 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1137 cmd->residual_count = (size - mtl);
1138 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1139 u32 orig_dl = size + cmd->residual_count;
1140 cmd->residual_count = (orig_dl - mtl);
1141 } else {
1142 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1143 cmd->residual_count = (cmd->data_length - mtl);
1144 }
1145 cmd->data_length = mtl;
1146 /*
1147 * Reset sbc_check_prot() calculated protection payload
1148 * length based upon the new smaller MTL.
1149 */
1150 if (cmd->prot_length) {
1151 u32 sectors = (mtl / dev->dev_attrib.block_size);
1152 cmd->prot_length = dev->prot_length * sectors;
1153 }
1154 }
1155 return TCM_NO_SENSE;
1156 }
1157
1158 sense_reason_t
1159 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1160 {
1161 struct se_device *dev = cmd->se_dev;
1162
1163 if (cmd->unknown_data_length) {
1164 cmd->data_length = size;
1165 } else if (size != cmd->data_length) {
1166 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1167 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1168 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1169 cmd->data_length, size, cmd->t_task_cdb[0]);
1170
1171 if (cmd->data_direction == DMA_TO_DEVICE) {
1172 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1173 pr_err_ratelimited("Rejecting underflow/overflow"
1174 " for WRITE data CDB\n");
1175 return TCM_INVALID_CDB_FIELD;
1176 }
1177 /*
1178 * Some fabric drivers like iscsi-target still expect to
1179 * always reject overflow writes. Reject this case until
1180 * full fabric driver level support for overflow writes
1181 * is introduced tree-wide.
1182 */
1183 if (size > cmd->data_length) {
1184 pr_err_ratelimited("Rejecting overflow for"
1185 " WRITE control CDB\n");
1186 return TCM_INVALID_CDB_FIELD;
1187 }
1188 }
1189 /*
1190 * Reject READ_* or WRITE_* with overflow/underflow for
1191 * type SCF_SCSI_DATA_CDB.
1192 */
1193 if (dev->dev_attrib.block_size != 512) {
1194 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1195 " CDB on non 512-byte sector setup subsystem"
1196 " plugin: %s\n", dev->transport->name);
1197 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1198 return TCM_INVALID_CDB_FIELD;
1199 }
1200 /*
1201 * For the overflow case keep the existing fabric provided
1202 * ->data_length. Otherwise for the underflow case, reset
1203 * ->data_length to the smaller SCSI expected data transfer
1204 * length.
1205 */
1206 if (size > cmd->data_length) {
1207 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1208 cmd->residual_count = (size - cmd->data_length);
1209 } else {
1210 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1211 cmd->residual_count = (cmd->data_length - size);
1212 cmd->data_length = size;
1213 }
1214 }
1215
1216 return target_check_max_data_sg_nents(cmd, dev, size);
1217
1218 }
1219
1220 /*
1221 * Used by fabric modules containing a local struct se_cmd within their
1222 * fabric dependent per I/O descriptor.
1223 *
1224 * Preserves the value of @cmd->tag.
1225 */
1226 void transport_init_se_cmd(
1227 struct se_cmd *cmd,
1228 const struct target_core_fabric_ops *tfo,
1229 struct se_session *se_sess,
1230 u32 data_length,
1231 int data_direction,
1232 int task_attr,
1233 unsigned char *sense_buffer)
1234 {
1235 INIT_LIST_HEAD(&cmd->se_delayed_node);
1236 INIT_LIST_HEAD(&cmd->se_qf_node);
1237 INIT_LIST_HEAD(&cmd->se_cmd_list);
1238 INIT_LIST_HEAD(&cmd->state_list);
1239 init_completion(&cmd->t_transport_stop_comp);
1240 init_completion(&cmd->cmd_wait_comp);
1241 spin_lock_init(&cmd->t_state_lock);
1242 kref_init(&cmd->cmd_kref);
1243
1244 cmd->se_tfo = tfo;
1245 cmd->se_sess = se_sess;
1246 cmd->data_length = data_length;
1247 cmd->data_direction = data_direction;
1248 cmd->sam_task_attr = task_attr;
1249 cmd->sense_buffer = sense_buffer;
1250
1251 cmd->state_active = false;
1252 }
1253 EXPORT_SYMBOL(transport_init_se_cmd);
1254
1255 static sense_reason_t
1256 transport_check_alloc_task_attr(struct se_cmd *cmd)
1257 {
1258 struct se_device *dev = cmd->se_dev;
1259
1260 /*
1261 * Check if SAM Task Attribute emulation is enabled for this
1262 * struct se_device storage object
1263 */
1264 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1265 return 0;
1266
1267 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1268 pr_debug("SAM Task Attribute ACA"
1269 " emulation is not supported\n");
1270 return TCM_INVALID_CDB_FIELD;
1271 }
1272
1273 return 0;
1274 }
1275
1276 sense_reason_t
1277 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1278 {
1279 struct se_device *dev = cmd->se_dev;
1280 sense_reason_t ret;
1281
1282 /*
1283 * Ensure that the received CDB is less than the max (252 + 8) bytes
1284 * for VARIABLE_LENGTH_CMD
1285 */
1286 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1287 pr_err("Received SCSI CDB with command_size: %d that"
1288 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1289 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1290 return TCM_INVALID_CDB_FIELD;
1291 }
1292 /*
1293 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1294 * allocate the additional extended CDB buffer now.. Otherwise
1295 * setup the pointer from __t_task_cdb to t_task_cdb.
1296 */
1297 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1298 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1299 GFP_KERNEL);
1300 if (!cmd->t_task_cdb) {
1301 pr_err("Unable to allocate cmd->t_task_cdb"
1302 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1303 scsi_command_size(cdb),
1304 (unsigned long)sizeof(cmd->__t_task_cdb));
1305 return TCM_OUT_OF_RESOURCES;
1306 }
1307 } else
1308 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1309 /*
1310 * Copy the original CDB into cmd->
1311 */
1312 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1313
1314 trace_target_sequencer_start(cmd);
1315
1316 ret = dev->transport->parse_cdb(cmd);
1317 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1318 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1319 cmd->se_tfo->get_fabric_name(),
1320 cmd->se_sess->se_node_acl->initiatorname,
1321 cmd->t_task_cdb[0]);
1322 if (ret)
1323 return ret;
1324
1325 ret = transport_check_alloc_task_attr(cmd);
1326 if (ret)
1327 return ret;
1328
1329 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1330 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1334
1335 /*
1336 * Used by fabric module frontends to queue tasks directly.
1337 * May only be used from process context.
1338 */
1339 int transport_handle_cdb_direct(
1340 struct se_cmd *cmd)
1341 {
1342 sense_reason_t ret;
1343
1344 if (!cmd->se_lun) {
1345 dump_stack();
1346 pr_err("cmd->se_lun is NULL\n");
1347 return -EINVAL;
1348 }
1349 if (in_interrupt()) {
1350 dump_stack();
1351 pr_err("transport_generic_handle_cdb cannot be called"
1352 " from interrupt context\n");
1353 return -EINVAL;
1354 }
1355 /*
1356 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1357 * outstanding descriptors are handled correctly during shutdown via
1358 * transport_wait_for_tasks()
1359 *
1360 * Also, we don't take cmd->t_state_lock here as we only expect
1361 * this to be called for initial descriptor submission.
1362 */
1363 cmd->t_state = TRANSPORT_NEW_CMD;
1364 cmd->transport_state |= CMD_T_ACTIVE;
1365
1366 /*
1367 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1368 * so follow TRANSPORT_NEW_CMD processing thread context usage
1369 * and call transport_generic_request_failure() if necessary..
1370 */
1371 ret = transport_generic_new_cmd(cmd);
1372 if (ret)
1373 transport_generic_request_failure(cmd, ret);
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(transport_handle_cdb_direct);
1377
1378 sense_reason_t
1379 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1380 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1381 {
1382 if (!sgl || !sgl_count)
1383 return 0;
1384
1385 /*
1386 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1387 * scatterlists already have been set to follow what the fabric
1388 * passes for the original expected data transfer length.
1389 */
1390 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1391 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1392 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1393 return TCM_INVALID_CDB_FIELD;
1394 }
1395
1396 cmd->t_data_sg = sgl;
1397 cmd->t_data_nents = sgl_count;
1398 cmd->t_bidi_data_sg = sgl_bidi;
1399 cmd->t_bidi_data_nents = sgl_bidi_count;
1400
1401 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1402 return 0;
1403 }
1404
1405 /*
1406 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1407 * se_cmd + use pre-allocated SGL memory.
1408 *
1409 * @se_cmd: command descriptor to submit
1410 * @se_sess: associated se_sess for endpoint
1411 * @cdb: pointer to SCSI CDB
1412 * @sense: pointer to SCSI sense buffer
1413 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1414 * @data_length: fabric expected data transfer length
1415 * @task_addr: SAM task attribute
1416 * @data_dir: DMA data direction
1417 * @flags: flags for command submission from target_sc_flags_tables
1418 * @sgl: struct scatterlist memory for unidirectional mapping
1419 * @sgl_count: scatterlist count for unidirectional mapping
1420 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1421 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1422 * @sgl_prot: struct scatterlist memory protection information
1423 * @sgl_prot_count: scatterlist count for protection information
1424 *
1425 * Task tags are supported if the caller has set @se_cmd->tag.
1426 *
1427 * Returns non zero to signal active I/O shutdown failure. All other
1428 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1429 * but still return zero here.
1430 *
1431 * This may only be called from process context, and also currently
1432 * assumes internal allocation of fabric payload buffer by target-core.
1433 */
1434 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1435 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1436 u32 data_length, int task_attr, int data_dir, int flags,
1437 struct scatterlist *sgl, u32 sgl_count,
1438 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1439 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1440 {
1441 struct se_portal_group *se_tpg;
1442 sense_reason_t rc;
1443 int ret;
1444
1445 se_tpg = se_sess->se_tpg;
1446 BUG_ON(!se_tpg);
1447 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1448 BUG_ON(in_interrupt());
1449 /*
1450 * Initialize se_cmd for target operation. From this point
1451 * exceptions are handled by sending exception status via
1452 * target_core_fabric_ops->queue_status() callback
1453 */
1454 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1455 data_length, data_dir, task_attr, sense);
1456
1457 if (flags & TARGET_SCF_USE_CPUID)
1458 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1459 else
1460 se_cmd->cpuid = WORK_CPU_UNBOUND;
1461
1462 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1463 se_cmd->unknown_data_length = 1;
1464 /*
1465 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1466 * se_sess->sess_cmd_list. A second kref_get here is necessary
1467 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1468 * kref_put() to happen during fabric packet acknowledgement.
1469 */
1470 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1471 if (ret)
1472 return ret;
1473 /*
1474 * Signal bidirectional data payloads to target-core
1475 */
1476 if (flags & TARGET_SCF_BIDI_OP)
1477 se_cmd->se_cmd_flags |= SCF_BIDI;
1478 /*
1479 * Locate se_lun pointer and attach it to struct se_cmd
1480 */
1481 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1482 if (rc) {
1483 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1484 target_put_sess_cmd(se_cmd);
1485 return 0;
1486 }
1487
1488 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1489 if (rc != 0) {
1490 transport_generic_request_failure(se_cmd, rc);
1491 return 0;
1492 }
1493
1494 /*
1495 * Save pointers for SGLs containing protection information,
1496 * if present.
1497 */
1498 if (sgl_prot_count) {
1499 se_cmd->t_prot_sg = sgl_prot;
1500 se_cmd->t_prot_nents = sgl_prot_count;
1501 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1502 }
1503
1504 /*
1505 * When a non zero sgl_count has been passed perform SGL passthrough
1506 * mapping for pre-allocated fabric memory instead of having target
1507 * core perform an internal SGL allocation..
1508 */
1509 if (sgl_count != 0) {
1510 BUG_ON(!sgl);
1511
1512 /*
1513 * A work-around for tcm_loop as some userspace code via
1514 * scsi-generic do not memset their associated read buffers,
1515 * so go ahead and do that here for type non-data CDBs. Also
1516 * note that this is currently guaranteed to be a single SGL
1517 * for this case by target core in target_setup_cmd_from_cdb()
1518 * -> transport_generic_cmd_sequencer().
1519 */
1520 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1521 se_cmd->data_direction == DMA_FROM_DEVICE) {
1522 unsigned char *buf = NULL;
1523
1524 if (sgl)
1525 buf = kmap(sg_page(sgl)) + sgl->offset;
1526
1527 if (buf) {
1528 memset(buf, 0, sgl->length);
1529 kunmap(sg_page(sgl));
1530 }
1531 }
1532
1533 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1534 sgl_bidi, sgl_bidi_count);
1535 if (rc != 0) {
1536 transport_generic_request_failure(se_cmd, rc);
1537 return 0;
1538 }
1539 }
1540
1541 /*
1542 * Check if we need to delay processing because of ALUA
1543 * Active/NonOptimized primary access state..
1544 */
1545 core_alua_check_nonop_delay(se_cmd);
1546
1547 transport_handle_cdb_direct(se_cmd);
1548 return 0;
1549 }
1550 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1551
1552 /*
1553 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1554 *
1555 * @se_cmd: command descriptor to submit
1556 * @se_sess: associated se_sess for endpoint
1557 * @cdb: pointer to SCSI CDB
1558 * @sense: pointer to SCSI sense buffer
1559 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1560 * @data_length: fabric expected data transfer length
1561 * @task_addr: SAM task attribute
1562 * @data_dir: DMA data direction
1563 * @flags: flags for command submission from target_sc_flags_tables
1564 *
1565 * Task tags are supported if the caller has set @se_cmd->tag.
1566 *
1567 * Returns non zero to signal active I/O shutdown failure. All other
1568 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1569 * but still return zero here.
1570 *
1571 * This may only be called from process context, and also currently
1572 * assumes internal allocation of fabric payload buffer by target-core.
1573 *
1574 * It also assumes interal target core SGL memory allocation.
1575 */
1576 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1577 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1578 u32 data_length, int task_attr, int data_dir, int flags)
1579 {
1580 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1581 unpacked_lun, data_length, task_attr, data_dir,
1582 flags, NULL, 0, NULL, 0, NULL, 0);
1583 }
1584 EXPORT_SYMBOL(target_submit_cmd);
1585
1586 static void target_complete_tmr_failure(struct work_struct *work)
1587 {
1588 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1589
1590 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1591 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1592
1593 transport_cmd_check_stop_to_fabric(se_cmd);
1594 }
1595
1596 /**
1597 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1598 * for TMR CDBs
1599 *
1600 * @se_cmd: command descriptor to submit
1601 * @se_sess: associated se_sess for endpoint
1602 * @sense: pointer to SCSI sense buffer
1603 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1604 * @fabric_context: fabric context for TMR req
1605 * @tm_type: Type of TM request
1606 * @gfp: gfp type for caller
1607 * @tag: referenced task tag for TMR_ABORT_TASK
1608 * @flags: submit cmd flags
1609 *
1610 * Callable from all contexts.
1611 **/
1612
1613 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1614 unsigned char *sense, u64 unpacked_lun,
1615 void *fabric_tmr_ptr, unsigned char tm_type,
1616 gfp_t gfp, u64 tag, int flags)
1617 {
1618 struct se_portal_group *se_tpg;
1619 int ret;
1620
1621 se_tpg = se_sess->se_tpg;
1622 BUG_ON(!se_tpg);
1623
1624 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1625 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1626 /*
1627 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1628 * allocation failure.
1629 */
1630 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1631 if (ret < 0)
1632 return -ENOMEM;
1633
1634 if (tm_type == TMR_ABORT_TASK)
1635 se_cmd->se_tmr_req->ref_task_tag = tag;
1636
1637 /* See target_submit_cmd for commentary */
1638 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1639 if (ret) {
1640 core_tmr_release_req(se_cmd->se_tmr_req);
1641 return ret;
1642 }
1643
1644 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1645 if (ret) {
1646 /*
1647 * For callback during failure handling, push this work off
1648 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1649 */
1650 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1651 schedule_work(&se_cmd->work);
1652 return 0;
1653 }
1654 transport_generic_handle_tmr(se_cmd);
1655 return 0;
1656 }
1657 EXPORT_SYMBOL(target_submit_tmr);
1658
1659 /*
1660 * Handle SAM-esque emulation for generic transport request failures.
1661 */
1662 void transport_generic_request_failure(struct se_cmd *cmd,
1663 sense_reason_t sense_reason)
1664 {
1665 int ret = 0, post_ret = 0;
1666
1667 if (transport_check_aborted_status(cmd, 1))
1668 return;
1669
1670 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1671 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1672 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1673 cmd->se_tfo->get_cmd_state(cmd),
1674 cmd->t_state, sense_reason);
1675 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1676 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1677 (cmd->transport_state & CMD_T_STOP) != 0,
1678 (cmd->transport_state & CMD_T_SENT) != 0);
1679
1680 /*
1681 * For SAM Task Attribute emulation for failed struct se_cmd
1682 */
1683 transport_complete_task_attr(cmd);
1684 /*
1685 * Handle special case for COMPARE_AND_WRITE failure, where the
1686 * callback is expected to drop the per device ->caw_sem.
1687 */
1688 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1689 cmd->transport_complete_callback)
1690 cmd->transport_complete_callback(cmd, false, &post_ret);
1691
1692 switch (sense_reason) {
1693 case TCM_NON_EXISTENT_LUN:
1694 case TCM_UNSUPPORTED_SCSI_OPCODE:
1695 case TCM_INVALID_CDB_FIELD:
1696 case TCM_INVALID_PARAMETER_LIST:
1697 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1698 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1699 case TCM_UNKNOWN_MODE_PAGE:
1700 case TCM_WRITE_PROTECTED:
1701 case TCM_ADDRESS_OUT_OF_RANGE:
1702 case TCM_CHECK_CONDITION_ABORT_CMD:
1703 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1704 case TCM_CHECK_CONDITION_NOT_READY:
1705 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1706 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1707 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1708 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1709 case TCM_TOO_MANY_TARGET_DESCS:
1710 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1711 case TCM_TOO_MANY_SEGMENT_DESCS:
1712 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1713 break;
1714 case TCM_OUT_OF_RESOURCES:
1715 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1716 break;
1717 case TCM_RESERVATION_CONFLICT:
1718 /*
1719 * No SENSE Data payload for this case, set SCSI Status
1720 * and queue the response to $FABRIC_MOD.
1721 *
1722 * Uses linux/include/scsi/scsi.h SAM status codes defs
1723 */
1724 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1725 /*
1726 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1727 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1728 * CONFLICT STATUS.
1729 *
1730 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1731 */
1732 if (cmd->se_sess &&
1733 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1734 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1735 cmd->orig_fe_lun, 0x2C,
1736 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1737 }
1738 trace_target_cmd_complete(cmd);
1739 ret = cmd->se_tfo->queue_status(cmd);
1740 if (ret)
1741 goto queue_full;
1742 goto check_stop;
1743 default:
1744 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1745 cmd->t_task_cdb[0], sense_reason);
1746 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1747 break;
1748 }
1749
1750 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1751 if (ret)
1752 goto queue_full;
1753
1754 check_stop:
1755 transport_lun_remove_cmd(cmd);
1756 transport_cmd_check_stop_to_fabric(cmd);
1757 return;
1758
1759 queue_full:
1760 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1761 }
1762 EXPORT_SYMBOL(transport_generic_request_failure);
1763
1764 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1765 {
1766 sense_reason_t ret;
1767
1768 if (!cmd->execute_cmd) {
1769 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1770 goto err;
1771 }
1772 if (do_checks) {
1773 /*
1774 * Check for an existing UNIT ATTENTION condition after
1775 * target_handle_task_attr() has done SAM task attr
1776 * checking, and possibly have already defered execution
1777 * out to target_restart_delayed_cmds() context.
1778 */
1779 ret = target_scsi3_ua_check(cmd);
1780 if (ret)
1781 goto err;
1782
1783 ret = target_alua_state_check(cmd);
1784 if (ret)
1785 goto err;
1786
1787 ret = target_check_reservation(cmd);
1788 if (ret) {
1789 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1790 goto err;
1791 }
1792 }
1793
1794 ret = cmd->execute_cmd(cmd);
1795 if (!ret)
1796 return;
1797 err:
1798 spin_lock_irq(&cmd->t_state_lock);
1799 cmd->transport_state &= ~CMD_T_SENT;
1800 spin_unlock_irq(&cmd->t_state_lock);
1801
1802 transport_generic_request_failure(cmd, ret);
1803 }
1804
1805 static int target_write_prot_action(struct se_cmd *cmd)
1806 {
1807 u32 sectors;
1808 /*
1809 * Perform WRITE_INSERT of PI using software emulation when backend
1810 * device has PI enabled, if the transport has not already generated
1811 * PI using hardware WRITE_INSERT offload.
1812 */
1813 switch (cmd->prot_op) {
1814 case TARGET_PROT_DOUT_INSERT:
1815 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1816 sbc_dif_generate(cmd);
1817 break;
1818 case TARGET_PROT_DOUT_STRIP:
1819 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1820 break;
1821
1822 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1823 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1824 sectors, 0, cmd->t_prot_sg, 0);
1825 if (unlikely(cmd->pi_err)) {
1826 spin_lock_irq(&cmd->t_state_lock);
1827 cmd->transport_state &= ~CMD_T_SENT;
1828 spin_unlock_irq(&cmd->t_state_lock);
1829 transport_generic_request_failure(cmd, cmd->pi_err);
1830 return -1;
1831 }
1832 break;
1833 default:
1834 break;
1835 }
1836
1837 return 0;
1838 }
1839
1840 static bool target_handle_task_attr(struct se_cmd *cmd)
1841 {
1842 struct se_device *dev = cmd->se_dev;
1843
1844 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1845 return false;
1846
1847 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1848
1849 /*
1850 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1851 * to allow the passed struct se_cmd list of tasks to the front of the list.
1852 */
1853 switch (cmd->sam_task_attr) {
1854 case TCM_HEAD_TAG:
1855 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1856 cmd->t_task_cdb[0]);
1857 return false;
1858 case TCM_ORDERED_TAG:
1859 atomic_inc_mb(&dev->dev_ordered_sync);
1860
1861 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1862 cmd->t_task_cdb[0]);
1863
1864 /*
1865 * Execute an ORDERED command if no other older commands
1866 * exist that need to be completed first.
1867 */
1868 if (!atomic_read(&dev->simple_cmds))
1869 return false;
1870 break;
1871 default:
1872 /*
1873 * For SIMPLE and UNTAGGED Task Attribute commands
1874 */
1875 atomic_inc_mb(&dev->simple_cmds);
1876 break;
1877 }
1878
1879 if (atomic_read(&dev->dev_ordered_sync) == 0)
1880 return false;
1881
1882 spin_lock(&dev->delayed_cmd_lock);
1883 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1884 spin_unlock(&dev->delayed_cmd_lock);
1885
1886 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1887 cmd->t_task_cdb[0], cmd->sam_task_attr);
1888 return true;
1889 }
1890
1891 static int __transport_check_aborted_status(struct se_cmd *, int);
1892
1893 void target_execute_cmd(struct se_cmd *cmd)
1894 {
1895 /*
1896 * Determine if frontend context caller is requesting the stopping of
1897 * this command for frontend exceptions.
1898 *
1899 * If the received CDB has aleady been aborted stop processing it here.
1900 */
1901 spin_lock_irq(&cmd->t_state_lock);
1902 if (__transport_check_aborted_status(cmd, 1)) {
1903 spin_unlock_irq(&cmd->t_state_lock);
1904 return;
1905 }
1906 if (cmd->transport_state & CMD_T_STOP) {
1907 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1908 __func__, __LINE__, cmd->tag);
1909
1910 spin_unlock_irq(&cmd->t_state_lock);
1911 complete_all(&cmd->t_transport_stop_comp);
1912 return;
1913 }
1914
1915 cmd->t_state = TRANSPORT_PROCESSING;
1916 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1917 spin_unlock_irq(&cmd->t_state_lock);
1918
1919 if (target_write_prot_action(cmd))
1920 return;
1921
1922 if (target_handle_task_attr(cmd)) {
1923 spin_lock_irq(&cmd->t_state_lock);
1924 cmd->transport_state &= ~CMD_T_SENT;
1925 spin_unlock_irq(&cmd->t_state_lock);
1926 return;
1927 }
1928
1929 __target_execute_cmd(cmd, true);
1930 }
1931 EXPORT_SYMBOL(target_execute_cmd);
1932
1933 /*
1934 * Process all commands up to the last received ORDERED task attribute which
1935 * requires another blocking boundary
1936 */
1937 static void target_restart_delayed_cmds(struct se_device *dev)
1938 {
1939 for (;;) {
1940 struct se_cmd *cmd;
1941
1942 spin_lock(&dev->delayed_cmd_lock);
1943 if (list_empty(&dev->delayed_cmd_list)) {
1944 spin_unlock(&dev->delayed_cmd_lock);
1945 break;
1946 }
1947
1948 cmd = list_entry(dev->delayed_cmd_list.next,
1949 struct se_cmd, se_delayed_node);
1950 list_del(&cmd->se_delayed_node);
1951 spin_unlock(&dev->delayed_cmd_lock);
1952
1953 __target_execute_cmd(cmd, true);
1954
1955 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1956 break;
1957 }
1958 }
1959
1960 /*
1961 * Called from I/O completion to determine which dormant/delayed
1962 * and ordered cmds need to have their tasks added to the execution queue.
1963 */
1964 static void transport_complete_task_attr(struct se_cmd *cmd)
1965 {
1966 struct se_device *dev = cmd->se_dev;
1967
1968 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1969 return;
1970
1971 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1972 goto restart;
1973
1974 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1975 atomic_dec_mb(&dev->simple_cmds);
1976 dev->dev_cur_ordered_id++;
1977 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1978 dev->dev_cur_ordered_id++;
1979 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1980 dev->dev_cur_ordered_id);
1981 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1982 atomic_dec_mb(&dev->dev_ordered_sync);
1983
1984 dev->dev_cur_ordered_id++;
1985 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1986 dev->dev_cur_ordered_id);
1987 }
1988 restart:
1989 target_restart_delayed_cmds(dev);
1990 }
1991
1992 static void transport_complete_qf(struct se_cmd *cmd)
1993 {
1994 int ret = 0;
1995
1996 transport_complete_task_attr(cmd);
1997 /*
1998 * If a fabric driver ->write_pending() or ->queue_data_in() callback
1999 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2000 * the same callbacks should not be retried. Return CHECK_CONDITION
2001 * if a scsi_status is not already set.
2002 *
2003 * If a fabric driver ->queue_status() has returned non zero, always
2004 * keep retrying no matter what..
2005 */
2006 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2007 if (cmd->scsi_status)
2008 goto queue_status;
2009
2010 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2011 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2012 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2013 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2014 goto queue_status;
2015 }
2016
2017 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2018 goto queue_status;
2019
2020 switch (cmd->data_direction) {
2021 case DMA_FROM_DEVICE:
2022 if (cmd->scsi_status)
2023 goto queue_status;
2024
2025 trace_target_cmd_complete(cmd);
2026 ret = cmd->se_tfo->queue_data_in(cmd);
2027 break;
2028 case DMA_TO_DEVICE:
2029 if (cmd->se_cmd_flags & SCF_BIDI) {
2030 ret = cmd->se_tfo->queue_data_in(cmd);
2031 break;
2032 }
2033 /* Fall through for DMA_TO_DEVICE */
2034 case DMA_NONE:
2035 queue_status:
2036 trace_target_cmd_complete(cmd);
2037 ret = cmd->se_tfo->queue_status(cmd);
2038 break;
2039 default:
2040 break;
2041 }
2042
2043 if (ret < 0) {
2044 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2045 return;
2046 }
2047 transport_lun_remove_cmd(cmd);
2048 transport_cmd_check_stop_to_fabric(cmd);
2049 }
2050
2051 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2052 int err, bool write_pending)
2053 {
2054 /*
2055 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2056 * ->queue_data_in() callbacks from new process context.
2057 *
2058 * Otherwise for other errors, transport_complete_qf() will send
2059 * CHECK_CONDITION via ->queue_status() instead of attempting to
2060 * retry associated fabric driver data-transfer callbacks.
2061 */
2062 if (err == -EAGAIN || err == -ENOMEM) {
2063 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2064 TRANSPORT_COMPLETE_QF_OK;
2065 } else {
2066 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2067 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2068 }
2069
2070 spin_lock_irq(&dev->qf_cmd_lock);
2071 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2072 atomic_inc_mb(&dev->dev_qf_count);
2073 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2074
2075 schedule_work(&cmd->se_dev->qf_work_queue);
2076 }
2077
2078 static bool target_read_prot_action(struct se_cmd *cmd)
2079 {
2080 switch (cmd->prot_op) {
2081 case TARGET_PROT_DIN_STRIP:
2082 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2083 u32 sectors = cmd->data_length >>
2084 ilog2(cmd->se_dev->dev_attrib.block_size);
2085
2086 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2087 sectors, 0, cmd->t_prot_sg,
2088 0);
2089 if (cmd->pi_err)
2090 return true;
2091 }
2092 break;
2093 case TARGET_PROT_DIN_INSERT:
2094 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2095 break;
2096
2097 sbc_dif_generate(cmd);
2098 break;
2099 default:
2100 break;
2101 }
2102
2103 return false;
2104 }
2105
2106 static void target_complete_ok_work(struct work_struct *work)
2107 {
2108 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2109 int ret;
2110
2111 /*
2112 * Check if we need to move delayed/dormant tasks from cmds on the
2113 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2114 * Attribute.
2115 */
2116 transport_complete_task_attr(cmd);
2117
2118 /*
2119 * Check to schedule QUEUE_FULL work, or execute an existing
2120 * cmd->transport_qf_callback()
2121 */
2122 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2123 schedule_work(&cmd->se_dev->qf_work_queue);
2124
2125 /*
2126 * Check if we need to send a sense buffer from
2127 * the struct se_cmd in question.
2128 */
2129 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2130 WARN_ON(!cmd->scsi_status);
2131 ret = transport_send_check_condition_and_sense(
2132 cmd, 0, 1);
2133 if (ret)
2134 goto queue_full;
2135
2136 transport_lun_remove_cmd(cmd);
2137 transport_cmd_check_stop_to_fabric(cmd);
2138 return;
2139 }
2140 /*
2141 * Check for a callback, used by amongst other things
2142 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2143 */
2144 if (cmd->transport_complete_callback) {
2145 sense_reason_t rc;
2146 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2147 bool zero_dl = !(cmd->data_length);
2148 int post_ret = 0;
2149
2150 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2151 if (!rc && !post_ret) {
2152 if (caw && zero_dl)
2153 goto queue_rsp;
2154
2155 return;
2156 } else if (rc) {
2157 ret = transport_send_check_condition_and_sense(cmd,
2158 rc, 0);
2159 if (ret)
2160 goto queue_full;
2161
2162 transport_lun_remove_cmd(cmd);
2163 transport_cmd_check_stop_to_fabric(cmd);
2164 return;
2165 }
2166 }
2167
2168 queue_rsp:
2169 switch (cmd->data_direction) {
2170 case DMA_FROM_DEVICE:
2171 if (cmd->scsi_status)
2172 goto queue_status;
2173
2174 atomic_long_add(cmd->data_length,
2175 &cmd->se_lun->lun_stats.tx_data_octets);
2176 /*
2177 * Perform READ_STRIP of PI using software emulation when
2178 * backend had PI enabled, if the transport will not be
2179 * performing hardware READ_STRIP offload.
2180 */
2181 if (target_read_prot_action(cmd)) {
2182 ret = transport_send_check_condition_and_sense(cmd,
2183 cmd->pi_err, 0);
2184 if (ret)
2185 goto queue_full;
2186
2187 transport_lun_remove_cmd(cmd);
2188 transport_cmd_check_stop_to_fabric(cmd);
2189 return;
2190 }
2191
2192 trace_target_cmd_complete(cmd);
2193 ret = cmd->se_tfo->queue_data_in(cmd);
2194 if (ret)
2195 goto queue_full;
2196 break;
2197 case DMA_TO_DEVICE:
2198 atomic_long_add(cmd->data_length,
2199 &cmd->se_lun->lun_stats.rx_data_octets);
2200 /*
2201 * Check if we need to send READ payload for BIDI-COMMAND
2202 */
2203 if (cmd->se_cmd_flags & SCF_BIDI) {
2204 atomic_long_add(cmd->data_length,
2205 &cmd->se_lun->lun_stats.tx_data_octets);
2206 ret = cmd->se_tfo->queue_data_in(cmd);
2207 if (ret)
2208 goto queue_full;
2209 break;
2210 }
2211 /* Fall through for DMA_TO_DEVICE */
2212 case DMA_NONE:
2213 queue_status:
2214 trace_target_cmd_complete(cmd);
2215 ret = cmd->se_tfo->queue_status(cmd);
2216 if (ret)
2217 goto queue_full;
2218 break;
2219 default:
2220 break;
2221 }
2222
2223 transport_lun_remove_cmd(cmd);
2224 transport_cmd_check_stop_to_fabric(cmd);
2225 return;
2226
2227 queue_full:
2228 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2229 " data_direction: %d\n", cmd, cmd->data_direction);
2230
2231 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2232 }
2233
2234 void target_free_sgl(struct scatterlist *sgl, int nents)
2235 {
2236 struct scatterlist *sg;
2237 int count;
2238
2239 for_each_sg(sgl, sg, nents, count)
2240 __free_page(sg_page(sg));
2241
2242 kfree(sgl);
2243 }
2244 EXPORT_SYMBOL(target_free_sgl);
2245
2246 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2247 {
2248 /*
2249 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2250 * emulation, and free + reset pointers if necessary..
2251 */
2252 if (!cmd->t_data_sg_orig)
2253 return;
2254
2255 kfree(cmd->t_data_sg);
2256 cmd->t_data_sg = cmd->t_data_sg_orig;
2257 cmd->t_data_sg_orig = NULL;
2258 cmd->t_data_nents = cmd->t_data_nents_orig;
2259 cmd->t_data_nents_orig = 0;
2260 }
2261
2262 static inline void transport_free_pages(struct se_cmd *cmd)
2263 {
2264 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2265 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2266 cmd->t_prot_sg = NULL;
2267 cmd->t_prot_nents = 0;
2268 }
2269
2270 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2271 /*
2272 * Release special case READ buffer payload required for
2273 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2274 */
2275 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2276 target_free_sgl(cmd->t_bidi_data_sg,
2277 cmd->t_bidi_data_nents);
2278 cmd->t_bidi_data_sg = NULL;
2279 cmd->t_bidi_data_nents = 0;
2280 }
2281 transport_reset_sgl_orig(cmd);
2282 return;
2283 }
2284 transport_reset_sgl_orig(cmd);
2285
2286 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2287 cmd->t_data_sg = NULL;
2288 cmd->t_data_nents = 0;
2289
2290 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2291 cmd->t_bidi_data_sg = NULL;
2292 cmd->t_bidi_data_nents = 0;
2293 }
2294
2295 /**
2296 * transport_put_cmd - release a reference to a command
2297 * @cmd: command to release
2298 *
2299 * This routine releases our reference to the command and frees it if possible.
2300 */
2301 static int transport_put_cmd(struct se_cmd *cmd)
2302 {
2303 BUG_ON(!cmd->se_tfo);
2304 /*
2305 * If this cmd has been setup with target_get_sess_cmd(), drop
2306 * the kref and call ->release_cmd() in kref callback.
2307 */
2308 return target_put_sess_cmd(cmd);
2309 }
2310
2311 void *transport_kmap_data_sg(struct se_cmd *cmd)
2312 {
2313 struct scatterlist *sg = cmd->t_data_sg;
2314 struct page **pages;
2315 int i;
2316
2317 /*
2318 * We need to take into account a possible offset here for fabrics like
2319 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2320 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2321 */
2322 if (!cmd->t_data_nents)
2323 return NULL;
2324
2325 BUG_ON(!sg);
2326 if (cmd->t_data_nents == 1)
2327 return kmap(sg_page(sg)) + sg->offset;
2328
2329 /* >1 page. use vmap */
2330 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2331 if (!pages)
2332 return NULL;
2333
2334 /* convert sg[] to pages[] */
2335 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2336 pages[i] = sg_page(sg);
2337 }
2338
2339 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2340 kfree(pages);
2341 if (!cmd->t_data_vmap)
2342 return NULL;
2343
2344 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2345 }
2346 EXPORT_SYMBOL(transport_kmap_data_sg);
2347
2348 void transport_kunmap_data_sg(struct se_cmd *cmd)
2349 {
2350 if (!cmd->t_data_nents) {
2351 return;
2352 } else if (cmd->t_data_nents == 1) {
2353 kunmap(sg_page(cmd->t_data_sg));
2354 return;
2355 }
2356
2357 vunmap(cmd->t_data_vmap);
2358 cmd->t_data_vmap = NULL;
2359 }
2360 EXPORT_SYMBOL(transport_kunmap_data_sg);
2361
2362 int
2363 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2364 bool zero_page, bool chainable)
2365 {
2366 struct scatterlist *sg;
2367 struct page *page;
2368 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2369 unsigned int nalloc, nent;
2370 int i = 0;
2371
2372 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2373 if (chainable)
2374 nalloc++;
2375 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2376 if (!sg)
2377 return -ENOMEM;
2378
2379 sg_init_table(sg, nalloc);
2380
2381 while (length) {
2382 u32 page_len = min_t(u32, length, PAGE_SIZE);
2383 page = alloc_page(GFP_KERNEL | zero_flag);
2384 if (!page)
2385 goto out;
2386
2387 sg_set_page(&sg[i], page, page_len, 0);
2388 length -= page_len;
2389 i++;
2390 }
2391 *sgl = sg;
2392 *nents = nent;
2393 return 0;
2394
2395 out:
2396 while (i > 0) {
2397 i--;
2398 __free_page(sg_page(&sg[i]));
2399 }
2400 kfree(sg);
2401 return -ENOMEM;
2402 }
2403 EXPORT_SYMBOL(target_alloc_sgl);
2404
2405 /*
2406 * Allocate any required resources to execute the command. For writes we
2407 * might not have the payload yet, so notify the fabric via a call to
2408 * ->write_pending instead. Otherwise place it on the execution queue.
2409 */
2410 sense_reason_t
2411 transport_generic_new_cmd(struct se_cmd *cmd)
2412 {
2413 unsigned long flags;
2414 int ret = 0;
2415 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2416
2417 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2418 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2419 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2420 cmd->prot_length, true, false);
2421 if (ret < 0)
2422 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2423 }
2424
2425 /*
2426 * Determine is the TCM fabric module has already allocated physical
2427 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2428 * beforehand.
2429 */
2430 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2431 cmd->data_length) {
2432
2433 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2434 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2435 u32 bidi_length;
2436
2437 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2438 bidi_length = cmd->t_task_nolb *
2439 cmd->se_dev->dev_attrib.block_size;
2440 else
2441 bidi_length = cmd->data_length;
2442
2443 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2444 &cmd->t_bidi_data_nents,
2445 bidi_length, zero_flag, false);
2446 if (ret < 0)
2447 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2448 }
2449
2450 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2451 cmd->data_length, zero_flag, false);
2452 if (ret < 0)
2453 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2454 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2455 cmd->data_length) {
2456 /*
2457 * Special case for COMPARE_AND_WRITE with fabrics
2458 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2459 */
2460 u32 caw_length = cmd->t_task_nolb *
2461 cmd->se_dev->dev_attrib.block_size;
2462
2463 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2464 &cmd->t_bidi_data_nents,
2465 caw_length, zero_flag, false);
2466 if (ret < 0)
2467 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2468 }
2469 /*
2470 * If this command is not a write we can execute it right here,
2471 * for write buffers we need to notify the fabric driver first
2472 * and let it call back once the write buffers are ready.
2473 */
2474 target_add_to_state_list(cmd);
2475 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2476 target_execute_cmd(cmd);
2477 return 0;
2478 }
2479
2480 spin_lock_irqsave(&cmd->t_state_lock, flags);
2481 cmd->t_state = TRANSPORT_WRITE_PENDING;
2482 /*
2483 * Determine if frontend context caller is requesting the stopping of
2484 * this command for frontend exceptions.
2485 */
2486 if (cmd->transport_state & CMD_T_STOP) {
2487 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2488 __func__, __LINE__, cmd->tag);
2489
2490 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2491
2492 complete_all(&cmd->t_transport_stop_comp);
2493 return 0;
2494 }
2495 cmd->transport_state &= ~CMD_T_ACTIVE;
2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2497
2498 ret = cmd->se_tfo->write_pending(cmd);
2499 if (ret)
2500 goto queue_full;
2501
2502 return 0;
2503
2504 queue_full:
2505 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2506 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(transport_generic_new_cmd);
2510
2511 static void transport_write_pending_qf(struct se_cmd *cmd)
2512 {
2513 int ret;
2514
2515 ret = cmd->se_tfo->write_pending(cmd);
2516 if (ret) {
2517 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2518 cmd);
2519 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2520 }
2521 }
2522
2523 static bool
2524 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2525 unsigned long *flags);
2526
2527 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2528 {
2529 unsigned long flags;
2530
2531 spin_lock_irqsave(&cmd->t_state_lock, flags);
2532 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2533 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2534 }
2535
2536 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2537 {
2538 int ret = 0;
2539 bool aborted = false, tas = false;
2540
2541 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2542 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2543 target_wait_free_cmd(cmd, &aborted, &tas);
2544
2545 if (!aborted || tas)
2546 ret = transport_put_cmd(cmd);
2547 } else {
2548 if (wait_for_tasks)
2549 target_wait_free_cmd(cmd, &aborted, &tas);
2550 /*
2551 * Handle WRITE failure case where transport_generic_new_cmd()
2552 * has already added se_cmd to state_list, but fabric has
2553 * failed command before I/O submission.
2554 */
2555 if (cmd->state_active)
2556 target_remove_from_state_list(cmd);
2557
2558 if (cmd->se_lun)
2559 transport_lun_remove_cmd(cmd);
2560
2561 if (!aborted || tas)
2562 ret = transport_put_cmd(cmd);
2563 }
2564 /*
2565 * If the task has been internally aborted due to TMR ABORT_TASK
2566 * or LUN_RESET, target_core_tmr.c is responsible for performing
2567 * the remaining calls to target_put_sess_cmd(), and not the
2568 * callers of this function.
2569 */
2570 if (aborted) {
2571 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2572 wait_for_completion(&cmd->cmd_wait_comp);
2573 cmd->se_tfo->release_cmd(cmd);
2574 ret = 1;
2575 }
2576 return ret;
2577 }
2578 EXPORT_SYMBOL(transport_generic_free_cmd);
2579
2580 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2581 * @se_cmd: command descriptor to add
2582 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2583 */
2584 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2585 {
2586 struct se_session *se_sess = se_cmd->se_sess;
2587 unsigned long flags;
2588 int ret = 0;
2589
2590 /*
2591 * Add a second kref if the fabric caller is expecting to handle
2592 * fabric acknowledgement that requires two target_put_sess_cmd()
2593 * invocations before se_cmd descriptor release.
2594 */
2595 if (ack_kref) {
2596 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2597 return -EINVAL;
2598
2599 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2600 }
2601
2602 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2603 if (se_sess->sess_tearing_down) {
2604 ret = -ESHUTDOWN;
2605 goto out;
2606 }
2607 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2608 out:
2609 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2610
2611 if (ret && ack_kref)
2612 target_put_sess_cmd(se_cmd);
2613
2614 return ret;
2615 }
2616 EXPORT_SYMBOL(target_get_sess_cmd);
2617
2618 static void target_free_cmd_mem(struct se_cmd *cmd)
2619 {
2620 transport_free_pages(cmd);
2621
2622 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2623 core_tmr_release_req(cmd->se_tmr_req);
2624 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2625 kfree(cmd->t_task_cdb);
2626 }
2627
2628 static void target_release_cmd_kref(struct kref *kref)
2629 {
2630 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2631 struct se_session *se_sess = se_cmd->se_sess;
2632 unsigned long flags;
2633 bool fabric_stop;
2634
2635 if (se_sess) {
2636 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2637
2638 spin_lock(&se_cmd->t_state_lock);
2639 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2640 (se_cmd->transport_state & CMD_T_ABORTED);
2641 spin_unlock(&se_cmd->t_state_lock);
2642
2643 if (se_cmd->cmd_wait_set || fabric_stop) {
2644 list_del_init(&se_cmd->se_cmd_list);
2645 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2646 target_free_cmd_mem(se_cmd);
2647 complete(&se_cmd->cmd_wait_comp);
2648 return;
2649 }
2650 list_del_init(&se_cmd->se_cmd_list);
2651 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2652 }
2653
2654 target_free_cmd_mem(se_cmd);
2655 se_cmd->se_tfo->release_cmd(se_cmd);
2656 }
2657
2658 /**
2659 * target_put_sess_cmd - decrease the command reference count
2660 * @se_cmd: command to drop a reference from
2661 *
2662 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2663 * refcount to drop to zero. Returns zero otherwise.
2664 */
2665 int target_put_sess_cmd(struct se_cmd *se_cmd)
2666 {
2667 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2668 }
2669 EXPORT_SYMBOL(target_put_sess_cmd);
2670
2671 /* target_sess_cmd_list_set_waiting - Flag all commands in
2672 * sess_cmd_list to complete cmd_wait_comp. Set
2673 * sess_tearing_down so no more commands are queued.
2674 * @se_sess: session to flag
2675 */
2676 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2677 {
2678 struct se_cmd *se_cmd, *tmp_cmd;
2679 unsigned long flags;
2680 int rc;
2681
2682 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2683 if (se_sess->sess_tearing_down) {
2684 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2685 return;
2686 }
2687 se_sess->sess_tearing_down = 1;
2688 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2689
2690 list_for_each_entry_safe(se_cmd, tmp_cmd,
2691 &se_sess->sess_wait_list, se_cmd_list) {
2692 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2693 if (rc) {
2694 se_cmd->cmd_wait_set = 1;
2695 spin_lock(&se_cmd->t_state_lock);
2696 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2697 spin_unlock(&se_cmd->t_state_lock);
2698 } else
2699 list_del_init(&se_cmd->se_cmd_list);
2700 }
2701
2702 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2703 }
2704 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2705
2706 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2707 * @se_sess: session to wait for active I/O
2708 */
2709 void target_wait_for_sess_cmds(struct se_session *se_sess)
2710 {
2711 struct se_cmd *se_cmd, *tmp_cmd;
2712 unsigned long flags;
2713 bool tas;
2714
2715 list_for_each_entry_safe(se_cmd, tmp_cmd,
2716 &se_sess->sess_wait_list, se_cmd_list) {
2717 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2718 " %d\n", se_cmd, se_cmd->t_state,
2719 se_cmd->se_tfo->get_cmd_state(se_cmd));
2720
2721 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2722 tas = (se_cmd->transport_state & CMD_T_TAS);
2723 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2724
2725 if (!target_put_sess_cmd(se_cmd)) {
2726 if (tas)
2727 target_put_sess_cmd(se_cmd);
2728 }
2729
2730 wait_for_completion(&se_cmd->cmd_wait_comp);
2731 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2732 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2733 se_cmd->se_tfo->get_cmd_state(se_cmd));
2734
2735 se_cmd->se_tfo->release_cmd(se_cmd);
2736 }
2737
2738 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2739 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2740 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2741
2742 }
2743 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2744
2745 static void target_lun_confirm(struct percpu_ref *ref)
2746 {
2747 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2748
2749 complete(&lun->lun_ref_comp);
2750 }
2751
2752 void transport_clear_lun_ref(struct se_lun *lun)
2753 {
2754 /*
2755 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2756 * the initial reference and schedule confirm kill to be
2757 * executed after one full RCU grace period has completed.
2758 */
2759 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2760 /*
2761 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2762 * to call target_lun_confirm after lun->lun_ref has been marked
2763 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2764 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2765 * fails for all new incoming I/O.
2766 */
2767 wait_for_completion(&lun->lun_ref_comp);
2768 /*
2769 * The second completion waits for percpu_ref_put_many() to
2770 * invoke ->release() after lun->lun_ref has switched to
2771 * atomic_t mode, and lun->lun_ref.count has reached zero.
2772 *
2773 * At this point all target-core lun->lun_ref references have
2774 * been dropped via transport_lun_remove_cmd(), and it's safe
2775 * to proceed with the remaining LUN shutdown.
2776 */
2777 wait_for_completion(&lun->lun_shutdown_comp);
2778 }
2779
2780 static bool
2781 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2782 bool *aborted, bool *tas, unsigned long *flags)
2783 __releases(&cmd->t_state_lock)
2784 __acquires(&cmd->t_state_lock)
2785 {
2786
2787 assert_spin_locked(&cmd->t_state_lock);
2788 WARN_ON_ONCE(!irqs_disabled());
2789
2790 if (fabric_stop)
2791 cmd->transport_state |= CMD_T_FABRIC_STOP;
2792
2793 if (cmd->transport_state & CMD_T_ABORTED)
2794 *aborted = true;
2795
2796 if (cmd->transport_state & CMD_T_TAS)
2797 *tas = true;
2798
2799 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2800 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2801 return false;
2802
2803 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2804 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2805 return false;
2806
2807 if (!(cmd->transport_state & CMD_T_ACTIVE))
2808 return false;
2809
2810 if (fabric_stop && *aborted)
2811 return false;
2812
2813 cmd->transport_state |= CMD_T_STOP;
2814
2815 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2816 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2817 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2818
2819 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2820
2821 wait_for_completion(&cmd->t_transport_stop_comp);
2822
2823 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2824 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2825
2826 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2827 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2828
2829 return true;
2830 }
2831
2832 /**
2833 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2834 * @cmd: command to wait on
2835 */
2836 bool transport_wait_for_tasks(struct se_cmd *cmd)
2837 {
2838 unsigned long flags;
2839 bool ret, aborted = false, tas = false;
2840
2841 spin_lock_irqsave(&cmd->t_state_lock, flags);
2842 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2843 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2844
2845 return ret;
2846 }
2847 EXPORT_SYMBOL(transport_wait_for_tasks);
2848
2849 struct sense_info {
2850 u8 key;
2851 u8 asc;
2852 u8 ascq;
2853 bool add_sector_info;
2854 };
2855
2856 static const struct sense_info sense_info_table[] = {
2857 [TCM_NO_SENSE] = {
2858 .key = NOT_READY
2859 },
2860 [TCM_NON_EXISTENT_LUN] = {
2861 .key = ILLEGAL_REQUEST,
2862 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2863 },
2864 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2865 .key = ILLEGAL_REQUEST,
2866 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2867 },
2868 [TCM_SECTOR_COUNT_TOO_MANY] = {
2869 .key = ILLEGAL_REQUEST,
2870 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2871 },
2872 [TCM_UNKNOWN_MODE_PAGE] = {
2873 .key = ILLEGAL_REQUEST,
2874 .asc = 0x24, /* INVALID FIELD IN CDB */
2875 },
2876 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2877 .key = ABORTED_COMMAND,
2878 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2879 .ascq = 0x03,
2880 },
2881 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2882 .key = ABORTED_COMMAND,
2883 .asc = 0x0c, /* WRITE ERROR */
2884 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2885 },
2886 [TCM_INVALID_CDB_FIELD] = {
2887 .key = ILLEGAL_REQUEST,
2888 .asc = 0x24, /* INVALID FIELD IN CDB */
2889 },
2890 [TCM_INVALID_PARAMETER_LIST] = {
2891 .key = ILLEGAL_REQUEST,
2892 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2893 },
2894 [TCM_TOO_MANY_TARGET_DESCS] = {
2895 .key = ILLEGAL_REQUEST,
2896 .asc = 0x26,
2897 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2898 },
2899 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2900 .key = ILLEGAL_REQUEST,
2901 .asc = 0x26,
2902 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2903 },
2904 [TCM_TOO_MANY_SEGMENT_DESCS] = {
2905 .key = ILLEGAL_REQUEST,
2906 .asc = 0x26,
2907 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2908 },
2909 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2910 .key = ILLEGAL_REQUEST,
2911 .asc = 0x26,
2912 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2913 },
2914 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2915 .key = ILLEGAL_REQUEST,
2916 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2917 },
2918 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2919 .key = ILLEGAL_REQUEST,
2920 .asc = 0x0c, /* WRITE ERROR */
2921 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2922 },
2923 [TCM_SERVICE_CRC_ERROR] = {
2924 .key = ABORTED_COMMAND,
2925 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2926 .ascq = 0x05, /* N/A */
2927 },
2928 [TCM_SNACK_REJECTED] = {
2929 .key = ABORTED_COMMAND,
2930 .asc = 0x11, /* READ ERROR */
2931 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2932 },
2933 [TCM_WRITE_PROTECTED] = {
2934 .key = DATA_PROTECT,
2935 .asc = 0x27, /* WRITE PROTECTED */
2936 },
2937 [TCM_ADDRESS_OUT_OF_RANGE] = {
2938 .key = ILLEGAL_REQUEST,
2939 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2940 },
2941 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2942 .key = UNIT_ATTENTION,
2943 },
2944 [TCM_CHECK_CONDITION_NOT_READY] = {
2945 .key = NOT_READY,
2946 },
2947 [TCM_MISCOMPARE_VERIFY] = {
2948 .key = MISCOMPARE,
2949 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2950 .ascq = 0x00,
2951 },
2952 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2953 .key = ABORTED_COMMAND,
2954 .asc = 0x10,
2955 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2956 .add_sector_info = true,
2957 },
2958 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2959 .key = ABORTED_COMMAND,
2960 .asc = 0x10,
2961 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2962 .add_sector_info = true,
2963 },
2964 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2965 .key = ABORTED_COMMAND,
2966 .asc = 0x10,
2967 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2968 .add_sector_info = true,
2969 },
2970 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2971 .key = COPY_ABORTED,
2972 .asc = 0x0d,
2973 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2974
2975 },
2976 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2977 /*
2978 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2979 * Solaris initiators. Returning NOT READY instead means the
2980 * operations will be retried a finite number of times and we
2981 * can survive intermittent errors.
2982 */
2983 .key = NOT_READY,
2984 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2985 },
2986 };
2987
2988 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2989 {
2990 const struct sense_info *si;
2991 u8 *buffer = cmd->sense_buffer;
2992 int r = (__force int)reason;
2993 u8 asc, ascq;
2994 bool desc_format = target_sense_desc_format(cmd->se_dev);
2995
2996 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2997 si = &sense_info_table[r];
2998 else
2999 si = &sense_info_table[(__force int)
3000 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3001
3002 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3003 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3004 WARN_ON_ONCE(asc == 0);
3005 } else if (si->asc == 0) {
3006 WARN_ON_ONCE(cmd->scsi_asc == 0);
3007 asc = cmd->scsi_asc;
3008 ascq = cmd->scsi_ascq;
3009 } else {
3010 asc = si->asc;
3011 ascq = si->ascq;
3012 }
3013
3014 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3015 if (si->add_sector_info)
3016 return scsi_set_sense_information(buffer,
3017 cmd->scsi_sense_length,
3018 cmd->bad_sector);
3019
3020 return 0;
3021 }
3022
3023 int
3024 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3025 sense_reason_t reason, int from_transport)
3026 {
3027 unsigned long flags;
3028
3029 spin_lock_irqsave(&cmd->t_state_lock, flags);
3030 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3031 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3032 return 0;
3033 }
3034 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3035 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3036
3037 if (!from_transport) {
3038 int rc;
3039
3040 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3041 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3042 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3043 rc = translate_sense_reason(cmd, reason);
3044 if (rc)
3045 return rc;
3046 }
3047
3048 trace_target_cmd_complete(cmd);
3049 return cmd->se_tfo->queue_status(cmd);
3050 }
3051 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3052
3053 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3054 __releases(&cmd->t_state_lock)
3055 __acquires(&cmd->t_state_lock)
3056 {
3057 int ret;
3058
3059 assert_spin_locked(&cmd->t_state_lock);
3060 WARN_ON_ONCE(!irqs_disabled());
3061
3062 if (!(cmd->transport_state & CMD_T_ABORTED))
3063 return 0;
3064 /*
3065 * If cmd has been aborted but either no status is to be sent or it has
3066 * already been sent, just return
3067 */
3068 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3069 if (send_status)
3070 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3071 return 1;
3072 }
3073
3074 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3075 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3076
3077 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3078 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3079 trace_target_cmd_complete(cmd);
3080
3081 spin_unlock_irq(&cmd->t_state_lock);
3082 ret = cmd->se_tfo->queue_status(cmd);
3083 if (ret)
3084 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3085 spin_lock_irq(&cmd->t_state_lock);
3086
3087 return 1;
3088 }
3089
3090 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3091 {
3092 int ret;
3093
3094 spin_lock_irq(&cmd->t_state_lock);
3095 ret = __transport_check_aborted_status(cmd, send_status);
3096 spin_unlock_irq(&cmd->t_state_lock);
3097
3098 return ret;
3099 }
3100 EXPORT_SYMBOL(transport_check_aborted_status);
3101
3102 void transport_send_task_abort(struct se_cmd *cmd)
3103 {
3104 unsigned long flags;
3105 int ret;
3106
3107 spin_lock_irqsave(&cmd->t_state_lock, flags);
3108 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3109 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3110 return;
3111 }
3112 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3113
3114 /*
3115 * If there are still expected incoming fabric WRITEs, we wait
3116 * until until they have completed before sending a TASK_ABORTED
3117 * response. This response with TASK_ABORTED status will be
3118 * queued back to fabric module by transport_check_aborted_status().
3119 */
3120 if (cmd->data_direction == DMA_TO_DEVICE) {
3121 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3122 spin_lock_irqsave(&cmd->t_state_lock, flags);
3123 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3124 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3125 goto send_abort;
3126 }
3127 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3128 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3129 return;
3130 }
3131 }
3132 send_abort:
3133 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3134
3135 transport_lun_remove_cmd(cmd);
3136
3137 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3138 cmd->t_task_cdb[0], cmd->tag);
3139
3140 trace_target_cmd_complete(cmd);
3141 ret = cmd->se_tfo->queue_status(cmd);
3142 if (ret)
3143 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3144 }
3145
3146 static void target_tmr_work(struct work_struct *work)
3147 {
3148 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3149 struct se_device *dev = cmd->se_dev;
3150 struct se_tmr_req *tmr = cmd->se_tmr_req;
3151 unsigned long flags;
3152 int ret;
3153
3154 spin_lock_irqsave(&cmd->t_state_lock, flags);
3155 if (cmd->transport_state & CMD_T_ABORTED) {
3156 tmr->response = TMR_FUNCTION_REJECTED;
3157 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3158 goto check_stop;
3159 }
3160 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3161
3162 switch (tmr->function) {
3163 case TMR_ABORT_TASK:
3164 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3165 break;
3166 case TMR_ABORT_TASK_SET:
3167 case TMR_CLEAR_ACA:
3168 case TMR_CLEAR_TASK_SET:
3169 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3170 break;
3171 case TMR_LUN_RESET:
3172 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3173 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3174 TMR_FUNCTION_REJECTED;
3175 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3176 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3177 cmd->orig_fe_lun, 0x29,
3178 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3179 }
3180 break;
3181 case TMR_TARGET_WARM_RESET:
3182 tmr->response = TMR_FUNCTION_REJECTED;
3183 break;
3184 case TMR_TARGET_COLD_RESET:
3185 tmr->response = TMR_FUNCTION_REJECTED;
3186 break;
3187 default:
3188 pr_err("Uknown TMR function: 0x%02x.\n",
3189 tmr->function);
3190 tmr->response = TMR_FUNCTION_REJECTED;
3191 break;
3192 }
3193
3194 spin_lock_irqsave(&cmd->t_state_lock, flags);
3195 if (cmd->transport_state & CMD_T_ABORTED) {
3196 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3197 goto check_stop;
3198 }
3199 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3200
3201 cmd->se_tfo->queue_tm_rsp(cmd);
3202
3203 check_stop:
3204 transport_cmd_check_stop_to_fabric(cmd);
3205 }
3206
3207 int transport_generic_handle_tmr(
3208 struct se_cmd *cmd)
3209 {
3210 unsigned long flags;
3211 bool aborted = false;
3212
3213 spin_lock_irqsave(&cmd->t_state_lock, flags);
3214 if (cmd->transport_state & CMD_T_ABORTED) {
3215 aborted = true;
3216 } else {
3217 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3218 cmd->transport_state |= CMD_T_ACTIVE;
3219 }
3220 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3221
3222 if (aborted) {
3223 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3224 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3225 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3226 transport_cmd_check_stop_to_fabric(cmd);
3227 return 0;
3228 }
3229
3230 INIT_WORK(&cmd->work, target_tmr_work);
3231 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3232 return 0;
3233 }
3234 EXPORT_SYMBOL(transport_generic_handle_tmr);
3235
3236 bool
3237 target_check_wce(struct se_device *dev)
3238 {
3239 bool wce = false;
3240
3241 if (dev->transport->get_write_cache)
3242 wce = dev->transport->get_write_cache(dev);
3243 else if (dev->dev_attrib.emulate_write_cache > 0)
3244 wce = true;
3245
3246 return wce;
3247 }
3248
3249 bool
3250 target_check_fua(struct se_device *dev)
3251 {
3252 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3253 }