]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/target/target_core_transport.c
Merge branch 'drm-nouveau-next' of git://anongit.freedesktop.org/git/nouveau/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2012 RisingTide Systems LLC.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/target.h>
57
58 static struct workqueue_struct *target_completion_wq;
59 static struct kmem_cache *se_sess_cache;
60 struct kmem_cache *se_ua_cache;
61 struct kmem_cache *t10_pr_reg_cache;
62 struct kmem_cache *t10_alua_lu_gp_cache;
63 struct kmem_cache *t10_alua_lu_gp_mem_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_cache;
65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
66
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev);
70 static int transport_generic_get_mem(struct se_cmd *cmd);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
83 }
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
90 }
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
98 }
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
106 }
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
114 }
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
122 }
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
132 }
133
134 target_completion_wq = alloc_workqueue("target_completion",
135 WQ_MEM_RECLAIM, 0);
136 if (!target_completion_wq)
137 goto out_free_tg_pt_gp_mem_cache;
138
139 return 0;
140
141 out_free_tg_pt_gp_mem_cache:
142 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
143 out_free_tg_pt_gp_cache:
144 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
145 out_free_lu_gp_mem_cache:
146 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
147 out_free_lu_gp_cache:
148 kmem_cache_destroy(t10_alua_lu_gp_cache);
149 out_free_pr_reg_cache:
150 kmem_cache_destroy(t10_pr_reg_cache);
151 out_free_ua_cache:
152 kmem_cache_destroy(se_ua_cache);
153 out_free_sess_cache:
154 kmem_cache_destroy(se_sess_cache);
155 out:
156 return -ENOMEM;
157 }
158
159 void release_se_kmem_caches(void)
160 {
161 destroy_workqueue(target_completion_wq);
162 kmem_cache_destroy(se_sess_cache);
163 kmem_cache_destroy(se_ua_cache);
164 kmem_cache_destroy(t10_pr_reg_cache);
165 kmem_cache_destroy(t10_alua_lu_gp_cache);
166 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
167 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
168 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
169 }
170
171 /* This code ensures unique mib indexes are handed out. */
172 static DEFINE_SPINLOCK(scsi_mib_index_lock);
173 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
174
175 /*
176 * Allocate a new row index for the entry type specified
177 */
178 u32 scsi_get_new_index(scsi_index_t type)
179 {
180 u32 new_index;
181
182 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
183
184 spin_lock(&scsi_mib_index_lock);
185 new_index = ++scsi_mib_index[type];
186 spin_unlock(&scsi_mib_index_lock);
187
188 return new_index;
189 }
190
191 void transport_subsystem_check_init(void)
192 {
193 int ret;
194 static int sub_api_initialized;
195
196 if (sub_api_initialized)
197 return;
198
199 ret = request_module("target_core_iblock");
200 if (ret != 0)
201 pr_err("Unable to load target_core_iblock\n");
202
203 ret = request_module("target_core_file");
204 if (ret != 0)
205 pr_err("Unable to load target_core_file\n");
206
207 ret = request_module("target_core_pscsi");
208 if (ret != 0)
209 pr_err("Unable to load target_core_pscsi\n");
210
211 sub_api_initialized = 1;
212 }
213
214 struct se_session *transport_init_session(void)
215 {
216 struct se_session *se_sess;
217
218 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
219 if (!se_sess) {
220 pr_err("Unable to allocate struct se_session from"
221 " se_sess_cache\n");
222 return ERR_PTR(-ENOMEM);
223 }
224 INIT_LIST_HEAD(&se_sess->sess_list);
225 INIT_LIST_HEAD(&se_sess->sess_acl_list);
226 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
227 INIT_LIST_HEAD(&se_sess->sess_wait_list);
228 spin_lock_init(&se_sess->sess_cmd_lock);
229 kref_init(&se_sess->sess_kref);
230
231 return se_sess;
232 }
233 EXPORT_SYMBOL(transport_init_session);
234
235 /*
236 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
237 */
238 void __transport_register_session(
239 struct se_portal_group *se_tpg,
240 struct se_node_acl *se_nacl,
241 struct se_session *se_sess,
242 void *fabric_sess_ptr)
243 {
244 unsigned char buf[PR_REG_ISID_LEN];
245
246 se_sess->se_tpg = se_tpg;
247 se_sess->fabric_sess_ptr = fabric_sess_ptr;
248 /*
249 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
250 *
251 * Only set for struct se_session's that will actually be moving I/O.
252 * eg: *NOT* discovery sessions.
253 */
254 if (se_nacl) {
255 /*
256 * If the fabric module supports an ISID based TransportID,
257 * save this value in binary from the fabric I_T Nexus now.
258 */
259 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
260 memset(&buf[0], 0, PR_REG_ISID_LEN);
261 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
262 &buf[0], PR_REG_ISID_LEN);
263 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
264 }
265 kref_get(&se_nacl->acl_kref);
266
267 spin_lock_irq(&se_nacl->nacl_sess_lock);
268 /*
269 * The se_nacl->nacl_sess pointer will be set to the
270 * last active I_T Nexus for each struct se_node_acl.
271 */
272 se_nacl->nacl_sess = se_sess;
273
274 list_add_tail(&se_sess->sess_acl_list,
275 &se_nacl->acl_sess_list);
276 spin_unlock_irq(&se_nacl->nacl_sess_lock);
277 }
278 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
279
280 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
281 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
282 }
283 EXPORT_SYMBOL(__transport_register_session);
284
285 void transport_register_session(
286 struct se_portal_group *se_tpg,
287 struct se_node_acl *se_nacl,
288 struct se_session *se_sess,
289 void *fabric_sess_ptr)
290 {
291 unsigned long flags;
292
293 spin_lock_irqsave(&se_tpg->session_lock, flags);
294 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
295 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
296 }
297 EXPORT_SYMBOL(transport_register_session);
298
299 static void target_release_session(struct kref *kref)
300 {
301 struct se_session *se_sess = container_of(kref,
302 struct se_session, sess_kref);
303 struct se_portal_group *se_tpg = se_sess->se_tpg;
304
305 se_tpg->se_tpg_tfo->close_session(se_sess);
306 }
307
308 void target_get_session(struct se_session *se_sess)
309 {
310 kref_get(&se_sess->sess_kref);
311 }
312 EXPORT_SYMBOL(target_get_session);
313
314 void target_put_session(struct se_session *se_sess)
315 {
316 struct se_portal_group *tpg = se_sess->se_tpg;
317
318 if (tpg->se_tpg_tfo->put_session != NULL) {
319 tpg->se_tpg_tfo->put_session(se_sess);
320 return;
321 }
322 kref_put(&se_sess->sess_kref, target_release_session);
323 }
324 EXPORT_SYMBOL(target_put_session);
325
326 static void target_complete_nacl(struct kref *kref)
327 {
328 struct se_node_acl *nacl = container_of(kref,
329 struct se_node_acl, acl_kref);
330
331 complete(&nacl->acl_free_comp);
332 }
333
334 void target_put_nacl(struct se_node_acl *nacl)
335 {
336 kref_put(&nacl->acl_kref, target_complete_nacl);
337 }
338
339 void transport_deregister_session_configfs(struct se_session *se_sess)
340 {
341 struct se_node_acl *se_nacl;
342 unsigned long flags;
343 /*
344 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
345 */
346 se_nacl = se_sess->se_node_acl;
347 if (se_nacl) {
348 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
349 if (se_nacl->acl_stop == 0)
350 list_del(&se_sess->sess_acl_list);
351 /*
352 * If the session list is empty, then clear the pointer.
353 * Otherwise, set the struct se_session pointer from the tail
354 * element of the per struct se_node_acl active session list.
355 */
356 if (list_empty(&se_nacl->acl_sess_list))
357 se_nacl->nacl_sess = NULL;
358 else {
359 se_nacl->nacl_sess = container_of(
360 se_nacl->acl_sess_list.prev,
361 struct se_session, sess_acl_list);
362 }
363 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
364 }
365 }
366 EXPORT_SYMBOL(transport_deregister_session_configfs);
367
368 void transport_free_session(struct se_session *se_sess)
369 {
370 kmem_cache_free(se_sess_cache, se_sess);
371 }
372 EXPORT_SYMBOL(transport_free_session);
373
374 void transport_deregister_session(struct se_session *se_sess)
375 {
376 struct se_portal_group *se_tpg = se_sess->se_tpg;
377 struct target_core_fabric_ops *se_tfo;
378 struct se_node_acl *se_nacl;
379 unsigned long flags;
380 bool comp_nacl = true;
381
382 if (!se_tpg) {
383 transport_free_session(se_sess);
384 return;
385 }
386 se_tfo = se_tpg->se_tpg_tfo;
387
388 spin_lock_irqsave(&se_tpg->session_lock, flags);
389 list_del(&se_sess->sess_list);
390 se_sess->se_tpg = NULL;
391 se_sess->fabric_sess_ptr = NULL;
392 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
393
394 /*
395 * Determine if we need to do extra work for this initiator node's
396 * struct se_node_acl if it had been previously dynamically generated.
397 */
398 se_nacl = se_sess->se_node_acl;
399
400 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
401 if (se_nacl && se_nacl->dynamic_node_acl) {
402 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
403 list_del(&se_nacl->acl_list);
404 se_tpg->num_node_acls--;
405 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
406 core_tpg_wait_for_nacl_pr_ref(se_nacl);
407 core_free_device_list_for_node(se_nacl, se_tpg);
408 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
409
410 comp_nacl = false;
411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412 }
413 }
414 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
415
416 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417 se_tpg->se_tpg_tfo->get_fabric_name());
418 /*
419 * If last kref is dropping now for an explict NodeACL, awake sleeping
420 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
421 * removal context.
422 */
423 if (se_nacl && comp_nacl == true)
424 target_put_nacl(se_nacl);
425
426 transport_free_session(se_sess);
427 }
428 EXPORT_SYMBOL(transport_deregister_session);
429
430 /*
431 * Called with cmd->t_state_lock held.
432 */
433 static void target_remove_from_state_list(struct se_cmd *cmd)
434 {
435 struct se_device *dev = cmd->se_dev;
436 unsigned long flags;
437
438 if (!dev)
439 return;
440
441 if (cmd->transport_state & CMD_T_BUSY)
442 return;
443
444 spin_lock_irqsave(&dev->execute_task_lock, flags);
445 if (cmd->state_active) {
446 list_del(&cmd->state_list);
447 cmd->state_active = false;
448 }
449 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
450 }
451
452 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
453 bool write_pending)
454 {
455 unsigned long flags;
456
457 spin_lock_irqsave(&cmd->t_state_lock, flags);
458 if (write_pending)
459 cmd->t_state = TRANSPORT_WRITE_PENDING;
460
461 /*
462 * Determine if IOCTL context caller in requesting the stopping of this
463 * command for LUN shutdown purposes.
464 */
465 if (cmd->transport_state & CMD_T_LUN_STOP) {
466 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
467 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
468
469 cmd->transport_state &= ~CMD_T_ACTIVE;
470 if (remove_from_lists)
471 target_remove_from_state_list(cmd);
472 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
473
474 complete(&cmd->transport_lun_stop_comp);
475 return 1;
476 }
477
478 if (remove_from_lists) {
479 target_remove_from_state_list(cmd);
480
481 /*
482 * Clear struct se_cmd->se_lun before the handoff to FE.
483 */
484 cmd->se_lun = NULL;
485 }
486
487 /*
488 * Determine if frontend context caller is requesting the stopping of
489 * this command for frontend exceptions.
490 */
491 if (cmd->transport_state & CMD_T_STOP) {
492 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
493 __func__, __LINE__,
494 cmd->se_tfo->get_task_tag(cmd));
495
496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
497
498 complete(&cmd->t_transport_stop_comp);
499 return 1;
500 }
501
502 cmd->transport_state &= ~CMD_T_ACTIVE;
503 if (remove_from_lists) {
504 /*
505 * Some fabric modules like tcm_loop can release
506 * their internally allocated I/O reference now and
507 * struct se_cmd now.
508 *
509 * Fabric modules are expected to return '1' here if the
510 * se_cmd being passed is released at this point,
511 * or zero if not being released.
512 */
513 if (cmd->se_tfo->check_stop_free != NULL) {
514 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
515 return cmd->se_tfo->check_stop_free(cmd);
516 }
517 }
518
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 return 0;
521 }
522
523 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
524 {
525 return transport_cmd_check_stop(cmd, true, false);
526 }
527
528 static void transport_lun_remove_cmd(struct se_cmd *cmd)
529 {
530 struct se_lun *lun = cmd->se_lun;
531 unsigned long flags;
532
533 if (!lun)
534 return;
535
536 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537 if (!list_empty(&cmd->se_lun_node))
538 list_del_init(&cmd->se_lun_node);
539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544 if (transport_cmd_check_stop_to_fabric(cmd))
545 return;
546 if (remove)
547 transport_put_cmd(cmd);
548 }
549
550 static void target_complete_failure_work(struct work_struct *work)
551 {
552 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
553
554 transport_generic_request_failure(cmd,
555 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
556 }
557
558 /*
559 * Used when asking transport to copy Sense Data from the underlying
560 * Linux/SCSI struct scsi_cmnd
561 */
562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
563 {
564 struct se_device *dev = cmd->se_dev;
565
566 WARN_ON(!cmd->se_lun);
567
568 if (!dev)
569 return NULL;
570
571 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
572 return NULL;
573
574 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
575
576 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
577 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
578 return cmd->sense_buffer;
579 }
580
581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
582 {
583 struct se_device *dev = cmd->se_dev;
584 int success = scsi_status == GOOD;
585 unsigned long flags;
586
587 cmd->scsi_status = scsi_status;
588
589
590 spin_lock_irqsave(&cmd->t_state_lock, flags);
591 cmd->transport_state &= ~CMD_T_BUSY;
592
593 if (dev && dev->transport->transport_complete) {
594 dev->transport->transport_complete(cmd,
595 cmd->t_data_sg,
596 transport_get_sense_buffer(cmd));
597 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
598 success = 1;
599 }
600
601 /*
602 * See if we are waiting to complete for an exception condition.
603 */
604 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606 complete(&cmd->task_stop_comp);
607 return;
608 }
609
610 if (!success)
611 cmd->transport_state |= CMD_T_FAILED;
612
613 /*
614 * Check for case where an explict ABORT_TASK has been received
615 * and transport_wait_for_tasks() will be waiting for completion..
616 */
617 if (cmd->transport_state & CMD_T_ABORTED &&
618 cmd->transport_state & CMD_T_STOP) {
619 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
620 complete(&cmd->t_transport_stop_comp);
621 return;
622 } else if (cmd->transport_state & CMD_T_FAILED) {
623 INIT_WORK(&cmd->work, target_complete_failure_work);
624 } else {
625 INIT_WORK(&cmd->work, target_complete_ok_work);
626 }
627
628 cmd->t_state = TRANSPORT_COMPLETE;
629 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631
632 queue_work(target_completion_wq, &cmd->work);
633 }
634 EXPORT_SYMBOL(target_complete_cmd);
635
636 static void target_add_to_state_list(struct se_cmd *cmd)
637 {
638 struct se_device *dev = cmd->se_dev;
639 unsigned long flags;
640
641 spin_lock_irqsave(&dev->execute_task_lock, flags);
642 if (!cmd->state_active) {
643 list_add_tail(&cmd->state_list, &dev->state_list);
644 cmd->state_active = true;
645 }
646 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
647 }
648
649 /*
650 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
651 */
652 static void transport_write_pending_qf(struct se_cmd *cmd);
653 static void transport_complete_qf(struct se_cmd *cmd);
654
655 void target_qf_do_work(struct work_struct *work)
656 {
657 struct se_device *dev = container_of(work, struct se_device,
658 qf_work_queue);
659 LIST_HEAD(qf_cmd_list);
660 struct se_cmd *cmd, *cmd_tmp;
661
662 spin_lock_irq(&dev->qf_cmd_lock);
663 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
664 spin_unlock_irq(&dev->qf_cmd_lock);
665
666 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
667 list_del(&cmd->se_qf_node);
668 atomic_dec(&dev->dev_qf_count);
669 smp_mb__after_atomic_dec();
670
671 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
672 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
673 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
674 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
675 : "UNKNOWN");
676
677 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
678 transport_write_pending_qf(cmd);
679 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
680 transport_complete_qf(cmd);
681 }
682 }
683
684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
685 {
686 switch (cmd->data_direction) {
687 case DMA_NONE:
688 return "NONE";
689 case DMA_FROM_DEVICE:
690 return "READ";
691 case DMA_TO_DEVICE:
692 return "WRITE";
693 case DMA_BIDIRECTIONAL:
694 return "BIDI";
695 default:
696 break;
697 }
698
699 return "UNKNOWN";
700 }
701
702 void transport_dump_dev_state(
703 struct se_device *dev,
704 char *b,
705 int *bl)
706 {
707 *bl += sprintf(b + *bl, "Status: ");
708 if (dev->export_count)
709 *bl += sprintf(b + *bl, "ACTIVATED");
710 else
711 *bl += sprintf(b + *bl, "DEACTIVATED");
712
713 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
714 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
715 dev->dev_attrib.block_size,
716 dev->dev_attrib.hw_max_sectors);
717 *bl += sprintf(b + *bl, " ");
718 }
719
720 void transport_dump_vpd_proto_id(
721 struct t10_vpd *vpd,
722 unsigned char *p_buf,
723 int p_buf_len)
724 {
725 unsigned char buf[VPD_TMP_BUF_SIZE];
726 int len;
727
728 memset(buf, 0, VPD_TMP_BUF_SIZE);
729 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
730
731 switch (vpd->protocol_identifier) {
732 case 0x00:
733 sprintf(buf+len, "Fibre Channel\n");
734 break;
735 case 0x10:
736 sprintf(buf+len, "Parallel SCSI\n");
737 break;
738 case 0x20:
739 sprintf(buf+len, "SSA\n");
740 break;
741 case 0x30:
742 sprintf(buf+len, "IEEE 1394\n");
743 break;
744 case 0x40:
745 sprintf(buf+len, "SCSI Remote Direct Memory Access"
746 " Protocol\n");
747 break;
748 case 0x50:
749 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
750 break;
751 case 0x60:
752 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
753 break;
754 case 0x70:
755 sprintf(buf+len, "Automation/Drive Interface Transport"
756 " Protocol\n");
757 break;
758 case 0x80:
759 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
760 break;
761 default:
762 sprintf(buf+len, "Unknown 0x%02x\n",
763 vpd->protocol_identifier);
764 break;
765 }
766
767 if (p_buf)
768 strncpy(p_buf, buf, p_buf_len);
769 else
770 pr_debug("%s", buf);
771 }
772
773 void
774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
775 {
776 /*
777 * Check if the Protocol Identifier Valid (PIV) bit is set..
778 *
779 * from spc3r23.pdf section 7.5.1
780 */
781 if (page_83[1] & 0x80) {
782 vpd->protocol_identifier = (page_83[0] & 0xf0);
783 vpd->protocol_identifier_set = 1;
784 transport_dump_vpd_proto_id(vpd, NULL, 0);
785 }
786 }
787 EXPORT_SYMBOL(transport_set_vpd_proto_id);
788
789 int transport_dump_vpd_assoc(
790 struct t10_vpd *vpd,
791 unsigned char *p_buf,
792 int p_buf_len)
793 {
794 unsigned char buf[VPD_TMP_BUF_SIZE];
795 int ret = 0;
796 int len;
797
798 memset(buf, 0, VPD_TMP_BUF_SIZE);
799 len = sprintf(buf, "T10 VPD Identifier Association: ");
800
801 switch (vpd->association) {
802 case 0x00:
803 sprintf(buf+len, "addressed logical unit\n");
804 break;
805 case 0x10:
806 sprintf(buf+len, "target port\n");
807 break;
808 case 0x20:
809 sprintf(buf+len, "SCSI target device\n");
810 break;
811 default:
812 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
813 ret = -EINVAL;
814 break;
815 }
816
817 if (p_buf)
818 strncpy(p_buf, buf, p_buf_len);
819 else
820 pr_debug("%s", buf);
821
822 return ret;
823 }
824
825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
826 {
827 /*
828 * The VPD identification association..
829 *
830 * from spc3r23.pdf Section 7.6.3.1 Table 297
831 */
832 vpd->association = (page_83[1] & 0x30);
833 return transport_dump_vpd_assoc(vpd, NULL, 0);
834 }
835 EXPORT_SYMBOL(transport_set_vpd_assoc);
836
837 int transport_dump_vpd_ident_type(
838 struct t10_vpd *vpd,
839 unsigned char *p_buf,
840 int p_buf_len)
841 {
842 unsigned char buf[VPD_TMP_BUF_SIZE];
843 int ret = 0;
844 int len;
845
846 memset(buf, 0, VPD_TMP_BUF_SIZE);
847 len = sprintf(buf, "T10 VPD Identifier Type: ");
848
849 switch (vpd->device_identifier_type) {
850 case 0x00:
851 sprintf(buf+len, "Vendor specific\n");
852 break;
853 case 0x01:
854 sprintf(buf+len, "T10 Vendor ID based\n");
855 break;
856 case 0x02:
857 sprintf(buf+len, "EUI-64 based\n");
858 break;
859 case 0x03:
860 sprintf(buf+len, "NAA\n");
861 break;
862 case 0x04:
863 sprintf(buf+len, "Relative target port identifier\n");
864 break;
865 case 0x08:
866 sprintf(buf+len, "SCSI name string\n");
867 break;
868 default:
869 sprintf(buf+len, "Unsupported: 0x%02x\n",
870 vpd->device_identifier_type);
871 ret = -EINVAL;
872 break;
873 }
874
875 if (p_buf) {
876 if (p_buf_len < strlen(buf)+1)
877 return -EINVAL;
878 strncpy(p_buf, buf, p_buf_len);
879 } else {
880 pr_debug("%s", buf);
881 }
882
883 return ret;
884 }
885
886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
887 {
888 /*
889 * The VPD identifier type..
890 *
891 * from spc3r23.pdf Section 7.6.3.1 Table 298
892 */
893 vpd->device_identifier_type = (page_83[1] & 0x0f);
894 return transport_dump_vpd_ident_type(vpd, NULL, 0);
895 }
896 EXPORT_SYMBOL(transport_set_vpd_ident_type);
897
898 int transport_dump_vpd_ident(
899 struct t10_vpd *vpd,
900 unsigned char *p_buf,
901 int p_buf_len)
902 {
903 unsigned char buf[VPD_TMP_BUF_SIZE];
904 int ret = 0;
905
906 memset(buf, 0, VPD_TMP_BUF_SIZE);
907
908 switch (vpd->device_identifier_code_set) {
909 case 0x01: /* Binary */
910 snprintf(buf, sizeof(buf),
911 "T10 VPD Binary Device Identifier: %s\n",
912 &vpd->device_identifier[0]);
913 break;
914 case 0x02: /* ASCII */
915 snprintf(buf, sizeof(buf),
916 "T10 VPD ASCII Device Identifier: %s\n",
917 &vpd->device_identifier[0]);
918 break;
919 case 0x03: /* UTF-8 */
920 snprintf(buf, sizeof(buf),
921 "T10 VPD UTF-8 Device Identifier: %s\n",
922 &vpd->device_identifier[0]);
923 break;
924 default:
925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
926 " 0x%02x", vpd->device_identifier_code_set);
927 ret = -EINVAL;
928 break;
929 }
930
931 if (p_buf)
932 strncpy(p_buf, buf, p_buf_len);
933 else
934 pr_debug("%s", buf);
935
936 return ret;
937 }
938
939 int
940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
941 {
942 static const char hex_str[] = "0123456789abcdef";
943 int j = 0, i = 4; /* offset to start of the identifier */
944
945 /*
946 * The VPD Code Set (encoding)
947 *
948 * from spc3r23.pdf Section 7.6.3.1 Table 296
949 */
950 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
951 switch (vpd->device_identifier_code_set) {
952 case 0x01: /* Binary */
953 vpd->device_identifier[j++] =
954 hex_str[vpd->device_identifier_type];
955 while (i < (4 + page_83[3])) {
956 vpd->device_identifier[j++] =
957 hex_str[(page_83[i] & 0xf0) >> 4];
958 vpd->device_identifier[j++] =
959 hex_str[page_83[i] & 0x0f];
960 i++;
961 }
962 break;
963 case 0x02: /* ASCII */
964 case 0x03: /* UTF-8 */
965 while (i < (4 + page_83[3]))
966 vpd->device_identifier[j++] = page_83[i++];
967 break;
968 default:
969 break;
970 }
971
972 return transport_dump_vpd_ident(vpd, NULL, 0);
973 }
974 EXPORT_SYMBOL(transport_set_vpd_ident);
975
976 sense_reason_t
977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
978 {
979 struct se_device *dev = cmd->se_dev;
980
981 if (cmd->unknown_data_length) {
982 cmd->data_length = size;
983 } else if (size != cmd->data_length) {
984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
985 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
987 cmd->data_length, size, cmd->t_task_cdb[0]);
988
989 if (cmd->data_direction == DMA_TO_DEVICE) {
990 pr_err("Rejecting underflow/overflow"
991 " WRITE data\n");
992 return TCM_INVALID_CDB_FIELD;
993 }
994 /*
995 * Reject READ_* or WRITE_* with overflow/underflow for
996 * type SCF_SCSI_DATA_CDB.
997 */
998 if (dev->dev_attrib.block_size != 512) {
999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1000 " CDB on non 512-byte sector setup subsystem"
1001 " plugin: %s\n", dev->transport->name);
1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1003 return TCM_INVALID_CDB_FIELD;
1004 }
1005 /*
1006 * For the overflow case keep the existing fabric provided
1007 * ->data_length. Otherwise for the underflow case, reset
1008 * ->data_length to the smaller SCSI expected data transfer
1009 * length.
1010 */
1011 if (size > cmd->data_length) {
1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1013 cmd->residual_count = (size - cmd->data_length);
1014 } else {
1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1016 cmd->residual_count = (cmd->data_length - size);
1017 cmd->data_length = size;
1018 }
1019 }
1020
1021 return 0;
1022
1023 }
1024
1025 /*
1026 * Used by fabric modules containing a local struct se_cmd within their
1027 * fabric dependent per I/O descriptor.
1028 */
1029 void transport_init_se_cmd(
1030 struct se_cmd *cmd,
1031 struct target_core_fabric_ops *tfo,
1032 struct se_session *se_sess,
1033 u32 data_length,
1034 int data_direction,
1035 int task_attr,
1036 unsigned char *sense_buffer)
1037 {
1038 INIT_LIST_HEAD(&cmd->se_lun_node);
1039 INIT_LIST_HEAD(&cmd->se_delayed_node);
1040 INIT_LIST_HEAD(&cmd->se_qf_node);
1041 INIT_LIST_HEAD(&cmd->se_cmd_list);
1042 INIT_LIST_HEAD(&cmd->state_list);
1043 init_completion(&cmd->transport_lun_fe_stop_comp);
1044 init_completion(&cmd->transport_lun_stop_comp);
1045 init_completion(&cmd->t_transport_stop_comp);
1046 init_completion(&cmd->cmd_wait_comp);
1047 init_completion(&cmd->task_stop_comp);
1048 spin_lock_init(&cmd->t_state_lock);
1049 cmd->transport_state = CMD_T_DEV_ACTIVE;
1050
1051 cmd->se_tfo = tfo;
1052 cmd->se_sess = se_sess;
1053 cmd->data_length = data_length;
1054 cmd->data_direction = data_direction;
1055 cmd->sam_task_attr = task_attr;
1056 cmd->sense_buffer = sense_buffer;
1057
1058 cmd->state_active = false;
1059 }
1060 EXPORT_SYMBOL(transport_init_se_cmd);
1061
1062 static sense_reason_t
1063 transport_check_alloc_task_attr(struct se_cmd *cmd)
1064 {
1065 struct se_device *dev = cmd->se_dev;
1066
1067 /*
1068 * Check if SAM Task Attribute emulation is enabled for this
1069 * struct se_device storage object
1070 */
1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1072 return 0;
1073
1074 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1075 pr_debug("SAM Task Attribute ACA"
1076 " emulation is not supported\n");
1077 return TCM_INVALID_CDB_FIELD;
1078 }
1079 /*
1080 * Used to determine when ORDERED commands should go from
1081 * Dormant to Active status.
1082 */
1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1084 smp_mb__after_atomic_inc();
1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1086 cmd->se_ordered_id, cmd->sam_task_attr,
1087 dev->transport->name);
1088 return 0;
1089 }
1090
1091 sense_reason_t
1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1093 {
1094 struct se_device *dev = cmd->se_dev;
1095 sense_reason_t ret;
1096
1097 /*
1098 * Ensure that the received CDB is less than the max (252 + 8) bytes
1099 * for VARIABLE_LENGTH_CMD
1100 */
1101 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1102 pr_err("Received SCSI CDB with command_size: %d that"
1103 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1104 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1105 return TCM_INVALID_CDB_FIELD;
1106 }
1107 /*
1108 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1109 * allocate the additional extended CDB buffer now.. Otherwise
1110 * setup the pointer from __t_task_cdb to t_task_cdb.
1111 */
1112 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1113 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1114 GFP_KERNEL);
1115 if (!cmd->t_task_cdb) {
1116 pr_err("Unable to allocate cmd->t_task_cdb"
1117 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1118 scsi_command_size(cdb),
1119 (unsigned long)sizeof(cmd->__t_task_cdb));
1120 return TCM_OUT_OF_RESOURCES;
1121 }
1122 } else
1123 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1124 /*
1125 * Copy the original CDB into cmd->
1126 */
1127 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1128
1129 trace_target_sequencer_start(cmd);
1130
1131 /*
1132 * Check for an existing UNIT ATTENTION condition
1133 */
1134 ret = target_scsi3_ua_check(cmd);
1135 if (ret)
1136 return ret;
1137
1138 ret = target_alua_state_check(cmd);
1139 if (ret)
1140 return ret;
1141
1142 ret = target_check_reservation(cmd);
1143 if (ret) {
1144 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1145 return ret;
1146 }
1147
1148 ret = dev->transport->parse_cdb(cmd);
1149 if (ret)
1150 return ret;
1151
1152 ret = transport_check_alloc_task_attr(cmd);
1153 if (ret)
1154 return ret;
1155
1156 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1157
1158 spin_lock(&cmd->se_lun->lun_sep_lock);
1159 if (cmd->se_lun->lun_sep)
1160 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1161 spin_unlock(&cmd->se_lun->lun_sep_lock);
1162 return 0;
1163 }
1164 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1165
1166 /*
1167 * Used by fabric module frontends to queue tasks directly.
1168 * Many only be used from process context only
1169 */
1170 int transport_handle_cdb_direct(
1171 struct se_cmd *cmd)
1172 {
1173 sense_reason_t ret;
1174
1175 if (!cmd->se_lun) {
1176 dump_stack();
1177 pr_err("cmd->se_lun is NULL\n");
1178 return -EINVAL;
1179 }
1180 if (in_interrupt()) {
1181 dump_stack();
1182 pr_err("transport_generic_handle_cdb cannot be called"
1183 " from interrupt context\n");
1184 return -EINVAL;
1185 }
1186 /*
1187 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1188 * outstanding descriptors are handled correctly during shutdown via
1189 * transport_wait_for_tasks()
1190 *
1191 * Also, we don't take cmd->t_state_lock here as we only expect
1192 * this to be called for initial descriptor submission.
1193 */
1194 cmd->t_state = TRANSPORT_NEW_CMD;
1195 cmd->transport_state |= CMD_T_ACTIVE;
1196
1197 /*
1198 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1199 * so follow TRANSPORT_NEW_CMD processing thread context usage
1200 * and call transport_generic_request_failure() if necessary..
1201 */
1202 ret = transport_generic_new_cmd(cmd);
1203 if (ret)
1204 transport_generic_request_failure(cmd, ret);
1205 return 0;
1206 }
1207 EXPORT_SYMBOL(transport_handle_cdb_direct);
1208
1209 static sense_reason_t
1210 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1211 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1212 {
1213 if (!sgl || !sgl_count)
1214 return 0;
1215
1216 /*
1217 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1218 * scatterlists already have been set to follow what the fabric
1219 * passes for the original expected data transfer length.
1220 */
1221 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1222 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1223 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1224 return TCM_INVALID_CDB_FIELD;
1225 }
1226
1227 cmd->t_data_sg = sgl;
1228 cmd->t_data_nents = sgl_count;
1229
1230 if (sgl_bidi && sgl_bidi_count) {
1231 cmd->t_bidi_data_sg = sgl_bidi;
1232 cmd->t_bidi_data_nents = sgl_bidi_count;
1233 }
1234 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1235 return 0;
1236 }
1237
1238 /*
1239 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1240 * se_cmd + use pre-allocated SGL memory.
1241 *
1242 * @se_cmd: command descriptor to submit
1243 * @se_sess: associated se_sess for endpoint
1244 * @cdb: pointer to SCSI CDB
1245 * @sense: pointer to SCSI sense buffer
1246 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1247 * @data_length: fabric expected data transfer length
1248 * @task_addr: SAM task attribute
1249 * @data_dir: DMA data direction
1250 * @flags: flags for command submission from target_sc_flags_tables
1251 * @sgl: struct scatterlist memory for unidirectional mapping
1252 * @sgl_count: scatterlist count for unidirectional mapping
1253 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1254 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1255 *
1256 * Returns non zero to signal active I/O shutdown failure. All other
1257 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1258 * but still return zero here.
1259 *
1260 * This may only be called from process context, and also currently
1261 * assumes internal allocation of fabric payload buffer by target-core.
1262 */
1263 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1264 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1265 u32 data_length, int task_attr, int data_dir, int flags,
1266 struct scatterlist *sgl, u32 sgl_count,
1267 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1268 {
1269 struct se_portal_group *se_tpg;
1270 sense_reason_t rc;
1271 int ret;
1272
1273 se_tpg = se_sess->se_tpg;
1274 BUG_ON(!se_tpg);
1275 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1276 BUG_ON(in_interrupt());
1277 /*
1278 * Initialize se_cmd for target operation. From this point
1279 * exceptions are handled by sending exception status via
1280 * target_core_fabric_ops->queue_status() callback
1281 */
1282 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1283 data_length, data_dir, task_attr, sense);
1284 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1285 se_cmd->unknown_data_length = 1;
1286 /*
1287 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1288 * se_sess->sess_cmd_list. A second kref_get here is necessary
1289 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1290 * kref_put() to happen during fabric packet acknowledgement.
1291 */
1292 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1293 if (ret)
1294 return ret;
1295 /*
1296 * Signal bidirectional data payloads to target-core
1297 */
1298 if (flags & TARGET_SCF_BIDI_OP)
1299 se_cmd->se_cmd_flags |= SCF_BIDI;
1300 /*
1301 * Locate se_lun pointer and attach it to struct se_cmd
1302 */
1303 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1304 if (rc) {
1305 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1306 target_put_sess_cmd(se_sess, se_cmd);
1307 return 0;
1308 }
1309
1310 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1311 if (rc != 0) {
1312 transport_generic_request_failure(se_cmd, rc);
1313 return 0;
1314 }
1315 /*
1316 * When a non zero sgl_count has been passed perform SGL passthrough
1317 * mapping for pre-allocated fabric memory instead of having target
1318 * core perform an internal SGL allocation..
1319 */
1320 if (sgl_count != 0) {
1321 BUG_ON(!sgl);
1322
1323 /*
1324 * A work-around for tcm_loop as some userspace code via
1325 * scsi-generic do not memset their associated read buffers,
1326 * so go ahead and do that here for type non-data CDBs. Also
1327 * note that this is currently guaranteed to be a single SGL
1328 * for this case by target core in target_setup_cmd_from_cdb()
1329 * -> transport_generic_cmd_sequencer().
1330 */
1331 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1332 se_cmd->data_direction == DMA_FROM_DEVICE) {
1333 unsigned char *buf = NULL;
1334
1335 if (sgl)
1336 buf = kmap(sg_page(sgl)) + sgl->offset;
1337
1338 if (buf) {
1339 memset(buf, 0, sgl->length);
1340 kunmap(sg_page(sgl));
1341 }
1342 }
1343
1344 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1345 sgl_bidi, sgl_bidi_count);
1346 if (rc != 0) {
1347 transport_generic_request_failure(se_cmd, rc);
1348 return 0;
1349 }
1350 }
1351 /*
1352 * Check if we need to delay processing because of ALUA
1353 * Active/NonOptimized primary access state..
1354 */
1355 core_alua_check_nonop_delay(se_cmd);
1356
1357 transport_handle_cdb_direct(se_cmd);
1358 return 0;
1359 }
1360 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1361
1362 /*
1363 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1364 *
1365 * @se_cmd: command descriptor to submit
1366 * @se_sess: associated se_sess for endpoint
1367 * @cdb: pointer to SCSI CDB
1368 * @sense: pointer to SCSI sense buffer
1369 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1370 * @data_length: fabric expected data transfer length
1371 * @task_addr: SAM task attribute
1372 * @data_dir: DMA data direction
1373 * @flags: flags for command submission from target_sc_flags_tables
1374 *
1375 * Returns non zero to signal active I/O shutdown failure. All other
1376 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1377 * but still return zero here.
1378 *
1379 * This may only be called from process context, and also currently
1380 * assumes internal allocation of fabric payload buffer by target-core.
1381 *
1382 * It also assumes interal target core SGL memory allocation.
1383 */
1384 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1385 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1386 u32 data_length, int task_attr, int data_dir, int flags)
1387 {
1388 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1389 unpacked_lun, data_length, task_attr, data_dir,
1390 flags, NULL, 0, NULL, 0);
1391 }
1392 EXPORT_SYMBOL(target_submit_cmd);
1393
1394 static void target_complete_tmr_failure(struct work_struct *work)
1395 {
1396 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1397
1398 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1399 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1400
1401 transport_cmd_check_stop_to_fabric(se_cmd);
1402 }
1403
1404 /**
1405 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1406 * for TMR CDBs
1407 *
1408 * @se_cmd: command descriptor to submit
1409 * @se_sess: associated se_sess for endpoint
1410 * @sense: pointer to SCSI sense buffer
1411 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1412 * @fabric_context: fabric context for TMR req
1413 * @tm_type: Type of TM request
1414 * @gfp: gfp type for caller
1415 * @tag: referenced task tag for TMR_ABORT_TASK
1416 * @flags: submit cmd flags
1417 *
1418 * Callable from all contexts.
1419 **/
1420
1421 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1422 unsigned char *sense, u32 unpacked_lun,
1423 void *fabric_tmr_ptr, unsigned char tm_type,
1424 gfp_t gfp, unsigned int tag, int flags)
1425 {
1426 struct se_portal_group *se_tpg;
1427 int ret;
1428
1429 se_tpg = se_sess->se_tpg;
1430 BUG_ON(!se_tpg);
1431
1432 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1433 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1434 /*
1435 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1436 * allocation failure.
1437 */
1438 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1439 if (ret < 0)
1440 return -ENOMEM;
1441
1442 if (tm_type == TMR_ABORT_TASK)
1443 se_cmd->se_tmr_req->ref_task_tag = tag;
1444
1445 /* See target_submit_cmd for commentary */
1446 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1447 if (ret) {
1448 core_tmr_release_req(se_cmd->se_tmr_req);
1449 return ret;
1450 }
1451
1452 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1453 if (ret) {
1454 /*
1455 * For callback during failure handling, push this work off
1456 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1457 */
1458 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1459 schedule_work(&se_cmd->work);
1460 return 0;
1461 }
1462 transport_generic_handle_tmr(se_cmd);
1463 return 0;
1464 }
1465 EXPORT_SYMBOL(target_submit_tmr);
1466
1467 /*
1468 * If the cmd is active, request it to be stopped and sleep until it
1469 * has completed.
1470 */
1471 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1472 {
1473 bool was_active = false;
1474
1475 if (cmd->transport_state & CMD_T_BUSY) {
1476 cmd->transport_state |= CMD_T_REQUEST_STOP;
1477 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1478
1479 pr_debug("cmd %p waiting to complete\n", cmd);
1480 wait_for_completion(&cmd->task_stop_comp);
1481 pr_debug("cmd %p stopped successfully\n", cmd);
1482
1483 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1484 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1485 cmd->transport_state &= ~CMD_T_BUSY;
1486 was_active = true;
1487 }
1488
1489 return was_active;
1490 }
1491
1492 /*
1493 * Handle SAM-esque emulation for generic transport request failures.
1494 */
1495 void transport_generic_request_failure(struct se_cmd *cmd,
1496 sense_reason_t sense_reason)
1497 {
1498 int ret = 0;
1499
1500 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1501 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1502 cmd->t_task_cdb[0]);
1503 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1504 cmd->se_tfo->get_cmd_state(cmd),
1505 cmd->t_state, sense_reason);
1506 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1507 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1508 (cmd->transport_state & CMD_T_STOP) != 0,
1509 (cmd->transport_state & CMD_T_SENT) != 0);
1510
1511 /*
1512 * For SAM Task Attribute emulation for failed struct se_cmd
1513 */
1514 transport_complete_task_attr(cmd);
1515
1516 switch (sense_reason) {
1517 case TCM_NON_EXISTENT_LUN:
1518 case TCM_UNSUPPORTED_SCSI_OPCODE:
1519 case TCM_INVALID_CDB_FIELD:
1520 case TCM_INVALID_PARAMETER_LIST:
1521 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1522 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1523 case TCM_UNKNOWN_MODE_PAGE:
1524 case TCM_WRITE_PROTECTED:
1525 case TCM_ADDRESS_OUT_OF_RANGE:
1526 case TCM_CHECK_CONDITION_ABORT_CMD:
1527 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1528 case TCM_CHECK_CONDITION_NOT_READY:
1529 break;
1530 case TCM_OUT_OF_RESOURCES:
1531 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1532 break;
1533 case TCM_RESERVATION_CONFLICT:
1534 /*
1535 * No SENSE Data payload for this case, set SCSI Status
1536 * and queue the response to $FABRIC_MOD.
1537 *
1538 * Uses linux/include/scsi/scsi.h SAM status codes defs
1539 */
1540 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1541 /*
1542 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1543 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1544 * CONFLICT STATUS.
1545 *
1546 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1547 */
1548 if (cmd->se_sess &&
1549 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1550 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1551 cmd->orig_fe_lun, 0x2C,
1552 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1553
1554 trace_target_cmd_complete(cmd);
1555 ret = cmd->se_tfo-> queue_status(cmd);
1556 if (ret == -EAGAIN || ret == -ENOMEM)
1557 goto queue_full;
1558 goto check_stop;
1559 default:
1560 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1561 cmd->t_task_cdb[0], sense_reason);
1562 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1563 break;
1564 }
1565
1566 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1567 if (ret == -EAGAIN || ret == -ENOMEM)
1568 goto queue_full;
1569
1570 check_stop:
1571 transport_lun_remove_cmd(cmd);
1572 if (!transport_cmd_check_stop_to_fabric(cmd))
1573 ;
1574 return;
1575
1576 queue_full:
1577 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1578 transport_handle_queue_full(cmd, cmd->se_dev);
1579 }
1580 EXPORT_SYMBOL(transport_generic_request_failure);
1581
1582 static void __target_execute_cmd(struct se_cmd *cmd)
1583 {
1584 sense_reason_t ret;
1585
1586 if (cmd->execute_cmd) {
1587 ret = cmd->execute_cmd(cmd);
1588 if (ret) {
1589 spin_lock_irq(&cmd->t_state_lock);
1590 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1591 spin_unlock_irq(&cmd->t_state_lock);
1592
1593 transport_generic_request_failure(cmd, ret);
1594 }
1595 }
1596 }
1597
1598 static bool target_handle_task_attr(struct se_cmd *cmd)
1599 {
1600 struct se_device *dev = cmd->se_dev;
1601
1602 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1603 return false;
1604
1605 /*
1606 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1607 * to allow the passed struct se_cmd list of tasks to the front of the list.
1608 */
1609 switch (cmd->sam_task_attr) {
1610 case MSG_HEAD_TAG:
1611 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1612 "se_ordered_id: %u\n",
1613 cmd->t_task_cdb[0], cmd->se_ordered_id);
1614 return false;
1615 case MSG_ORDERED_TAG:
1616 atomic_inc(&dev->dev_ordered_sync);
1617 smp_mb__after_atomic_inc();
1618
1619 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1620 " se_ordered_id: %u\n",
1621 cmd->t_task_cdb[0], cmd->se_ordered_id);
1622
1623 /*
1624 * Execute an ORDERED command if no other older commands
1625 * exist that need to be completed first.
1626 */
1627 if (!atomic_read(&dev->simple_cmds))
1628 return false;
1629 break;
1630 default:
1631 /*
1632 * For SIMPLE and UNTAGGED Task Attribute commands
1633 */
1634 atomic_inc(&dev->simple_cmds);
1635 smp_mb__after_atomic_inc();
1636 break;
1637 }
1638
1639 if (atomic_read(&dev->dev_ordered_sync) == 0)
1640 return false;
1641
1642 spin_lock(&dev->delayed_cmd_lock);
1643 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1644 spin_unlock(&dev->delayed_cmd_lock);
1645
1646 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1647 " delayed CMD list, se_ordered_id: %u\n",
1648 cmd->t_task_cdb[0], cmd->sam_task_attr,
1649 cmd->se_ordered_id);
1650 return true;
1651 }
1652
1653 void target_execute_cmd(struct se_cmd *cmd)
1654 {
1655 /*
1656 * If the received CDB has aleady been aborted stop processing it here.
1657 */
1658 if (transport_check_aborted_status(cmd, 1)) {
1659 complete(&cmd->transport_lun_stop_comp);
1660 return;
1661 }
1662
1663 /*
1664 * Determine if IOCTL context caller in requesting the stopping of this
1665 * command for LUN shutdown purposes.
1666 */
1667 spin_lock_irq(&cmd->t_state_lock);
1668 if (cmd->transport_state & CMD_T_LUN_STOP) {
1669 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1670 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1671
1672 cmd->transport_state &= ~CMD_T_ACTIVE;
1673 spin_unlock_irq(&cmd->t_state_lock);
1674 complete(&cmd->transport_lun_stop_comp);
1675 return;
1676 }
1677 /*
1678 * Determine if frontend context caller is requesting the stopping of
1679 * this command for frontend exceptions.
1680 */
1681 if (cmd->transport_state & CMD_T_STOP) {
1682 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1683 __func__, __LINE__,
1684 cmd->se_tfo->get_task_tag(cmd));
1685
1686 spin_unlock_irq(&cmd->t_state_lock);
1687 complete(&cmd->t_transport_stop_comp);
1688 return;
1689 }
1690
1691 cmd->t_state = TRANSPORT_PROCESSING;
1692 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1693 spin_unlock_irq(&cmd->t_state_lock);
1694
1695 if (target_handle_task_attr(cmd)) {
1696 spin_lock_irq(&cmd->t_state_lock);
1697 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1698 spin_unlock_irq(&cmd->t_state_lock);
1699 return;
1700 }
1701
1702 __target_execute_cmd(cmd);
1703 }
1704 EXPORT_SYMBOL(target_execute_cmd);
1705
1706 /*
1707 * Process all commands up to the last received ORDERED task attribute which
1708 * requires another blocking boundary
1709 */
1710 static void target_restart_delayed_cmds(struct se_device *dev)
1711 {
1712 for (;;) {
1713 struct se_cmd *cmd;
1714
1715 spin_lock(&dev->delayed_cmd_lock);
1716 if (list_empty(&dev->delayed_cmd_list)) {
1717 spin_unlock(&dev->delayed_cmd_lock);
1718 break;
1719 }
1720
1721 cmd = list_entry(dev->delayed_cmd_list.next,
1722 struct se_cmd, se_delayed_node);
1723 list_del(&cmd->se_delayed_node);
1724 spin_unlock(&dev->delayed_cmd_lock);
1725
1726 __target_execute_cmd(cmd);
1727
1728 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1729 break;
1730 }
1731 }
1732
1733 /*
1734 * Called from I/O completion to determine which dormant/delayed
1735 * and ordered cmds need to have their tasks added to the execution queue.
1736 */
1737 static void transport_complete_task_attr(struct se_cmd *cmd)
1738 {
1739 struct se_device *dev = cmd->se_dev;
1740
1741 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1742 return;
1743
1744 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1745 atomic_dec(&dev->simple_cmds);
1746 smp_mb__after_atomic_dec();
1747 dev->dev_cur_ordered_id++;
1748 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1749 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1750 cmd->se_ordered_id);
1751 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1752 dev->dev_cur_ordered_id++;
1753 pr_debug("Incremented dev_cur_ordered_id: %u for"
1754 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1755 cmd->se_ordered_id);
1756 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1757 atomic_dec(&dev->dev_ordered_sync);
1758 smp_mb__after_atomic_dec();
1759
1760 dev->dev_cur_ordered_id++;
1761 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1762 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1763 }
1764
1765 target_restart_delayed_cmds(dev);
1766 }
1767
1768 static void transport_complete_qf(struct se_cmd *cmd)
1769 {
1770 int ret = 0;
1771
1772 transport_complete_task_attr(cmd);
1773
1774 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1775 trace_target_cmd_complete(cmd);
1776 ret = cmd->se_tfo->queue_status(cmd);
1777 if (ret)
1778 goto out;
1779 }
1780
1781 switch (cmd->data_direction) {
1782 case DMA_FROM_DEVICE:
1783 trace_target_cmd_complete(cmd);
1784 ret = cmd->se_tfo->queue_data_in(cmd);
1785 break;
1786 case DMA_TO_DEVICE:
1787 if (cmd->t_bidi_data_sg) {
1788 ret = cmd->se_tfo->queue_data_in(cmd);
1789 if (ret < 0)
1790 break;
1791 }
1792 /* Fall through for DMA_TO_DEVICE */
1793 case DMA_NONE:
1794 trace_target_cmd_complete(cmd);
1795 ret = cmd->se_tfo->queue_status(cmd);
1796 break;
1797 default:
1798 break;
1799 }
1800
1801 out:
1802 if (ret < 0) {
1803 transport_handle_queue_full(cmd, cmd->se_dev);
1804 return;
1805 }
1806 transport_lun_remove_cmd(cmd);
1807 transport_cmd_check_stop_to_fabric(cmd);
1808 }
1809
1810 static void transport_handle_queue_full(
1811 struct se_cmd *cmd,
1812 struct se_device *dev)
1813 {
1814 spin_lock_irq(&dev->qf_cmd_lock);
1815 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1816 atomic_inc(&dev->dev_qf_count);
1817 smp_mb__after_atomic_inc();
1818 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1819
1820 schedule_work(&cmd->se_dev->qf_work_queue);
1821 }
1822
1823 static void target_complete_ok_work(struct work_struct *work)
1824 {
1825 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1826 int ret;
1827
1828 /*
1829 * Check if we need to move delayed/dormant tasks from cmds on the
1830 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1831 * Attribute.
1832 */
1833 transport_complete_task_attr(cmd);
1834
1835 /*
1836 * Check to schedule QUEUE_FULL work, or execute an existing
1837 * cmd->transport_qf_callback()
1838 */
1839 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1840 schedule_work(&cmd->se_dev->qf_work_queue);
1841
1842 /*
1843 * Check if we need to send a sense buffer from
1844 * the struct se_cmd in question.
1845 */
1846 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1847 WARN_ON(!cmd->scsi_status);
1848 ret = transport_send_check_condition_and_sense(
1849 cmd, 0, 1);
1850 if (ret == -EAGAIN || ret == -ENOMEM)
1851 goto queue_full;
1852
1853 transport_lun_remove_cmd(cmd);
1854 transport_cmd_check_stop_to_fabric(cmd);
1855 return;
1856 }
1857 /*
1858 * Check for a callback, used by amongst other things
1859 * XDWRITE_READ_10 emulation.
1860 */
1861 if (cmd->transport_complete_callback)
1862 cmd->transport_complete_callback(cmd);
1863
1864 switch (cmd->data_direction) {
1865 case DMA_FROM_DEVICE:
1866 spin_lock(&cmd->se_lun->lun_sep_lock);
1867 if (cmd->se_lun->lun_sep) {
1868 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1869 cmd->data_length;
1870 }
1871 spin_unlock(&cmd->se_lun->lun_sep_lock);
1872
1873 trace_target_cmd_complete(cmd);
1874 ret = cmd->se_tfo->queue_data_in(cmd);
1875 if (ret == -EAGAIN || ret == -ENOMEM)
1876 goto queue_full;
1877 break;
1878 case DMA_TO_DEVICE:
1879 spin_lock(&cmd->se_lun->lun_sep_lock);
1880 if (cmd->se_lun->lun_sep) {
1881 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1882 cmd->data_length;
1883 }
1884 spin_unlock(&cmd->se_lun->lun_sep_lock);
1885 /*
1886 * Check if we need to send READ payload for BIDI-COMMAND
1887 */
1888 if (cmd->t_bidi_data_sg) {
1889 spin_lock(&cmd->se_lun->lun_sep_lock);
1890 if (cmd->se_lun->lun_sep) {
1891 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1892 cmd->data_length;
1893 }
1894 spin_unlock(&cmd->se_lun->lun_sep_lock);
1895 ret = cmd->se_tfo->queue_data_in(cmd);
1896 if (ret == -EAGAIN || ret == -ENOMEM)
1897 goto queue_full;
1898 break;
1899 }
1900 /* Fall through for DMA_TO_DEVICE */
1901 case DMA_NONE:
1902 trace_target_cmd_complete(cmd);
1903 ret = cmd->se_tfo->queue_status(cmd);
1904 if (ret == -EAGAIN || ret == -ENOMEM)
1905 goto queue_full;
1906 break;
1907 default:
1908 break;
1909 }
1910
1911 transport_lun_remove_cmd(cmd);
1912 transport_cmd_check_stop_to_fabric(cmd);
1913 return;
1914
1915 queue_full:
1916 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1917 " data_direction: %d\n", cmd, cmd->data_direction);
1918 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1919 transport_handle_queue_full(cmd, cmd->se_dev);
1920 }
1921
1922 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1923 {
1924 struct scatterlist *sg;
1925 int count;
1926
1927 for_each_sg(sgl, sg, nents, count)
1928 __free_page(sg_page(sg));
1929
1930 kfree(sgl);
1931 }
1932
1933 static inline void transport_free_pages(struct se_cmd *cmd)
1934 {
1935 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
1936 return;
1937
1938 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1939 cmd->t_data_sg = NULL;
1940 cmd->t_data_nents = 0;
1941
1942 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1943 cmd->t_bidi_data_sg = NULL;
1944 cmd->t_bidi_data_nents = 0;
1945 }
1946
1947 /**
1948 * transport_release_cmd - free a command
1949 * @cmd: command to free
1950 *
1951 * This routine unconditionally frees a command, and reference counting
1952 * or list removal must be done in the caller.
1953 */
1954 static int transport_release_cmd(struct se_cmd *cmd)
1955 {
1956 BUG_ON(!cmd->se_tfo);
1957
1958 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1959 core_tmr_release_req(cmd->se_tmr_req);
1960 if (cmd->t_task_cdb != cmd->__t_task_cdb)
1961 kfree(cmd->t_task_cdb);
1962 /*
1963 * If this cmd has been setup with target_get_sess_cmd(), drop
1964 * the kref and call ->release_cmd() in kref callback.
1965 */
1966 return target_put_sess_cmd(cmd->se_sess, cmd);
1967 }
1968
1969 /**
1970 * transport_put_cmd - release a reference to a command
1971 * @cmd: command to release
1972 *
1973 * This routine releases our reference to the command and frees it if possible.
1974 */
1975 static int transport_put_cmd(struct se_cmd *cmd)
1976 {
1977 transport_free_pages(cmd);
1978 return transport_release_cmd(cmd);
1979 }
1980
1981 void *transport_kmap_data_sg(struct se_cmd *cmd)
1982 {
1983 struct scatterlist *sg = cmd->t_data_sg;
1984 struct page **pages;
1985 int i;
1986
1987 /*
1988 * We need to take into account a possible offset here for fabrics like
1989 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
1990 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
1991 */
1992 if (!cmd->t_data_nents)
1993 return NULL;
1994
1995 BUG_ON(!sg);
1996 if (cmd->t_data_nents == 1)
1997 return kmap(sg_page(sg)) + sg->offset;
1998
1999 /* >1 page. use vmap */
2000 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2001 if (!pages)
2002 return NULL;
2003
2004 /* convert sg[] to pages[] */
2005 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2006 pages[i] = sg_page(sg);
2007 }
2008
2009 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2010 kfree(pages);
2011 if (!cmd->t_data_vmap)
2012 return NULL;
2013
2014 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2015 }
2016 EXPORT_SYMBOL(transport_kmap_data_sg);
2017
2018 void transport_kunmap_data_sg(struct se_cmd *cmd)
2019 {
2020 if (!cmd->t_data_nents) {
2021 return;
2022 } else if (cmd->t_data_nents == 1) {
2023 kunmap(sg_page(cmd->t_data_sg));
2024 return;
2025 }
2026
2027 vunmap(cmd->t_data_vmap);
2028 cmd->t_data_vmap = NULL;
2029 }
2030 EXPORT_SYMBOL(transport_kunmap_data_sg);
2031
2032 static int
2033 transport_generic_get_mem(struct se_cmd *cmd)
2034 {
2035 u32 length = cmd->data_length;
2036 unsigned int nents;
2037 struct page *page;
2038 gfp_t zero_flag;
2039 int i = 0;
2040
2041 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2042 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2043 if (!cmd->t_data_sg)
2044 return -ENOMEM;
2045
2046 cmd->t_data_nents = nents;
2047 sg_init_table(cmd->t_data_sg, nents);
2048
2049 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2050
2051 while (length) {
2052 u32 page_len = min_t(u32, length, PAGE_SIZE);
2053 page = alloc_page(GFP_KERNEL | zero_flag);
2054 if (!page)
2055 goto out;
2056
2057 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2058 length -= page_len;
2059 i++;
2060 }
2061 return 0;
2062
2063 out:
2064 while (i > 0) {
2065 i--;
2066 __free_page(sg_page(&cmd->t_data_sg[i]));
2067 }
2068 kfree(cmd->t_data_sg);
2069 cmd->t_data_sg = NULL;
2070 return -ENOMEM;
2071 }
2072
2073 /*
2074 * Allocate any required resources to execute the command. For writes we
2075 * might not have the payload yet, so notify the fabric via a call to
2076 * ->write_pending instead. Otherwise place it on the execution queue.
2077 */
2078 sense_reason_t
2079 transport_generic_new_cmd(struct se_cmd *cmd)
2080 {
2081 int ret = 0;
2082
2083 /*
2084 * Determine is the TCM fabric module has already allocated physical
2085 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2086 * beforehand.
2087 */
2088 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2089 cmd->data_length) {
2090 ret = transport_generic_get_mem(cmd);
2091 if (ret < 0)
2092 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2093 }
2094 /*
2095 * If this command is not a write we can execute it right here,
2096 * for write buffers we need to notify the fabric driver first
2097 * and let it call back once the write buffers are ready.
2098 */
2099 target_add_to_state_list(cmd);
2100 if (cmd->data_direction != DMA_TO_DEVICE) {
2101 target_execute_cmd(cmd);
2102 return 0;
2103 }
2104 transport_cmd_check_stop(cmd, false, true);
2105
2106 ret = cmd->se_tfo->write_pending(cmd);
2107 if (ret == -EAGAIN || ret == -ENOMEM)
2108 goto queue_full;
2109
2110 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2111 WARN_ON(ret);
2112
2113 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2114
2115 queue_full:
2116 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2117 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2118 transport_handle_queue_full(cmd, cmd->se_dev);
2119 return 0;
2120 }
2121 EXPORT_SYMBOL(transport_generic_new_cmd);
2122
2123 static void transport_write_pending_qf(struct se_cmd *cmd)
2124 {
2125 int ret;
2126
2127 ret = cmd->se_tfo->write_pending(cmd);
2128 if (ret == -EAGAIN || ret == -ENOMEM) {
2129 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2130 cmd);
2131 transport_handle_queue_full(cmd, cmd->se_dev);
2132 }
2133 }
2134
2135 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2136 {
2137 int ret = 0;
2138
2139 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2140 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2141 transport_wait_for_tasks(cmd);
2142
2143 ret = transport_release_cmd(cmd);
2144 } else {
2145 if (wait_for_tasks)
2146 transport_wait_for_tasks(cmd);
2147
2148 if (cmd->se_lun)
2149 transport_lun_remove_cmd(cmd);
2150
2151 ret = transport_put_cmd(cmd);
2152 }
2153 return ret;
2154 }
2155 EXPORT_SYMBOL(transport_generic_free_cmd);
2156
2157 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2158 * @se_sess: session to reference
2159 * @se_cmd: command descriptor to add
2160 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2161 */
2162 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2163 bool ack_kref)
2164 {
2165 unsigned long flags;
2166 int ret = 0;
2167
2168 kref_init(&se_cmd->cmd_kref);
2169 /*
2170 * Add a second kref if the fabric caller is expecting to handle
2171 * fabric acknowledgement that requires two target_put_sess_cmd()
2172 * invocations before se_cmd descriptor release.
2173 */
2174 if (ack_kref == true) {
2175 kref_get(&se_cmd->cmd_kref);
2176 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2177 }
2178
2179 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2180 if (se_sess->sess_tearing_down) {
2181 ret = -ESHUTDOWN;
2182 goto out;
2183 }
2184 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2185 out:
2186 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2187 return ret;
2188 }
2189 EXPORT_SYMBOL(target_get_sess_cmd);
2190
2191 static void target_release_cmd_kref(struct kref *kref)
2192 {
2193 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2194 struct se_session *se_sess = se_cmd->se_sess;
2195
2196 if (list_empty(&se_cmd->se_cmd_list)) {
2197 spin_unlock(&se_sess->sess_cmd_lock);
2198 se_cmd->se_tfo->release_cmd(se_cmd);
2199 return;
2200 }
2201 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2202 spin_unlock(&se_sess->sess_cmd_lock);
2203 complete(&se_cmd->cmd_wait_comp);
2204 return;
2205 }
2206 list_del(&se_cmd->se_cmd_list);
2207 spin_unlock(&se_sess->sess_cmd_lock);
2208
2209 se_cmd->se_tfo->release_cmd(se_cmd);
2210 }
2211
2212 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2213 * @se_sess: session to reference
2214 * @se_cmd: command descriptor to drop
2215 */
2216 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2217 {
2218 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2219 &se_sess->sess_cmd_lock);
2220 }
2221 EXPORT_SYMBOL(target_put_sess_cmd);
2222
2223 /* target_sess_cmd_list_set_waiting - Flag all commands in
2224 * sess_cmd_list to complete cmd_wait_comp. Set
2225 * sess_tearing_down so no more commands are queued.
2226 * @se_sess: session to flag
2227 */
2228 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2229 {
2230 struct se_cmd *se_cmd;
2231 unsigned long flags;
2232
2233 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2234 if (se_sess->sess_tearing_down) {
2235 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2236 return;
2237 }
2238 se_sess->sess_tearing_down = 1;
2239 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2240
2241 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2242 se_cmd->cmd_wait_set = 1;
2243
2244 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2245 }
2246 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2247
2248 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2249 * @se_sess: session to wait for active I/O
2250 */
2251 void target_wait_for_sess_cmds(struct se_session *se_sess)
2252 {
2253 struct se_cmd *se_cmd, *tmp_cmd;
2254 unsigned long flags;
2255
2256 list_for_each_entry_safe(se_cmd, tmp_cmd,
2257 &se_sess->sess_wait_list, se_cmd_list) {
2258 list_del(&se_cmd->se_cmd_list);
2259
2260 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2261 " %d\n", se_cmd, se_cmd->t_state,
2262 se_cmd->se_tfo->get_cmd_state(se_cmd));
2263
2264 wait_for_completion(&se_cmd->cmd_wait_comp);
2265 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2266 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2267 se_cmd->se_tfo->get_cmd_state(se_cmd));
2268
2269 se_cmd->se_tfo->release_cmd(se_cmd);
2270 }
2271
2272 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2273 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2274 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2275
2276 }
2277 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2278
2279 /* transport_lun_wait_for_tasks():
2280 *
2281 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2282 * an struct se_lun to be successfully shutdown.
2283 */
2284 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2285 {
2286 unsigned long flags;
2287 int ret = 0;
2288
2289 /*
2290 * If the frontend has already requested this struct se_cmd to
2291 * be stopped, we can safely ignore this struct se_cmd.
2292 */
2293 spin_lock_irqsave(&cmd->t_state_lock, flags);
2294 if (cmd->transport_state & CMD_T_STOP) {
2295 cmd->transport_state &= ~CMD_T_LUN_STOP;
2296
2297 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2298 cmd->se_tfo->get_task_tag(cmd));
2299 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2300 transport_cmd_check_stop(cmd, false, false);
2301 return -EPERM;
2302 }
2303 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2304 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2305
2306 // XXX: audit task_flags checks.
2307 spin_lock_irqsave(&cmd->t_state_lock, flags);
2308 if ((cmd->transport_state & CMD_T_BUSY) &&
2309 (cmd->transport_state & CMD_T_SENT)) {
2310 if (!target_stop_cmd(cmd, &flags))
2311 ret++;
2312 }
2313 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2314
2315 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2316 " %d\n", cmd, ret);
2317 if (!ret) {
2318 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2319 cmd->se_tfo->get_task_tag(cmd));
2320 wait_for_completion(&cmd->transport_lun_stop_comp);
2321 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2322 cmd->se_tfo->get_task_tag(cmd));
2323 }
2324
2325 return 0;
2326 }
2327
2328 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2329 {
2330 struct se_cmd *cmd = NULL;
2331 unsigned long lun_flags, cmd_flags;
2332 /*
2333 * Do exception processing and return CHECK_CONDITION status to the
2334 * Initiator Port.
2335 */
2336 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2337 while (!list_empty(&lun->lun_cmd_list)) {
2338 cmd = list_first_entry(&lun->lun_cmd_list,
2339 struct se_cmd, se_lun_node);
2340 list_del_init(&cmd->se_lun_node);
2341
2342 spin_lock(&cmd->t_state_lock);
2343 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2344 "_lun_stop for ITT: 0x%08x\n",
2345 cmd->se_lun->unpacked_lun,
2346 cmd->se_tfo->get_task_tag(cmd));
2347 cmd->transport_state |= CMD_T_LUN_STOP;
2348 spin_unlock(&cmd->t_state_lock);
2349
2350 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2351
2352 if (!cmd->se_lun) {
2353 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2354 cmd->se_tfo->get_task_tag(cmd),
2355 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2356 BUG();
2357 }
2358 /*
2359 * If the Storage engine still owns the iscsi_cmd_t, determine
2360 * and/or stop its context.
2361 */
2362 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2363 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2364 cmd->se_tfo->get_task_tag(cmd));
2365
2366 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2367 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2368 continue;
2369 }
2370
2371 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2372 "_wait_for_tasks(): SUCCESS\n",
2373 cmd->se_lun->unpacked_lun,
2374 cmd->se_tfo->get_task_tag(cmd));
2375
2376 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2377 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2378 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2379 goto check_cond;
2380 }
2381 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2382 target_remove_from_state_list(cmd);
2383 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2384
2385 /*
2386 * The Storage engine stopped this struct se_cmd before it was
2387 * send to the fabric frontend for delivery back to the
2388 * Initiator Node. Return this SCSI CDB back with an
2389 * CHECK_CONDITION status.
2390 */
2391 check_cond:
2392 transport_send_check_condition_and_sense(cmd,
2393 TCM_NON_EXISTENT_LUN, 0);
2394 /*
2395 * If the fabric frontend is waiting for this iscsi_cmd_t to
2396 * be released, notify the waiting thread now that LU has
2397 * finished accessing it.
2398 */
2399 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2400 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2401 pr_debug("SE_LUN[%d] - Detected FE stop for"
2402 " struct se_cmd: %p ITT: 0x%08x\n",
2403 lun->unpacked_lun,
2404 cmd, cmd->se_tfo->get_task_tag(cmd));
2405
2406 spin_unlock_irqrestore(&cmd->t_state_lock,
2407 cmd_flags);
2408 transport_cmd_check_stop(cmd, false, false);
2409 complete(&cmd->transport_lun_fe_stop_comp);
2410 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2411 continue;
2412 }
2413 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2414 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2415
2416 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2417 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2418 }
2419 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2420 }
2421
2422 static int transport_clear_lun_thread(void *p)
2423 {
2424 struct se_lun *lun = p;
2425
2426 __transport_clear_lun_from_sessions(lun);
2427 complete(&lun->lun_shutdown_comp);
2428
2429 return 0;
2430 }
2431
2432 int transport_clear_lun_from_sessions(struct se_lun *lun)
2433 {
2434 struct task_struct *kt;
2435
2436 kt = kthread_run(transport_clear_lun_thread, lun,
2437 "tcm_cl_%u", lun->unpacked_lun);
2438 if (IS_ERR(kt)) {
2439 pr_err("Unable to start clear_lun thread\n");
2440 return PTR_ERR(kt);
2441 }
2442 wait_for_completion(&lun->lun_shutdown_comp);
2443
2444 return 0;
2445 }
2446
2447 /**
2448 * transport_wait_for_tasks - wait for completion to occur
2449 * @cmd: command to wait
2450 *
2451 * Called from frontend fabric context to wait for storage engine
2452 * to pause and/or release frontend generated struct se_cmd.
2453 */
2454 bool transport_wait_for_tasks(struct se_cmd *cmd)
2455 {
2456 unsigned long flags;
2457
2458 spin_lock_irqsave(&cmd->t_state_lock, flags);
2459 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2460 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2461 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2462 return false;
2463 }
2464
2465 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2466 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2467 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2468 return false;
2469 }
2470 /*
2471 * If we are already stopped due to an external event (ie: LUN shutdown)
2472 * sleep until the connection can have the passed struct se_cmd back.
2473 * The cmd->transport_lun_stopped_sem will be upped by
2474 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2475 * has completed its operation on the struct se_cmd.
2476 */
2477 if (cmd->transport_state & CMD_T_LUN_STOP) {
2478 pr_debug("wait_for_tasks: Stopping"
2479 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2480 "_stop_comp); for ITT: 0x%08x\n",
2481 cmd->se_tfo->get_task_tag(cmd));
2482 /*
2483 * There is a special case for WRITES where a FE exception +
2484 * LUN shutdown means ConfigFS context is still sleeping on
2485 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2486 * We go ahead and up transport_lun_stop_comp just to be sure
2487 * here.
2488 */
2489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2490 complete(&cmd->transport_lun_stop_comp);
2491 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2492 spin_lock_irqsave(&cmd->t_state_lock, flags);
2493
2494 target_remove_from_state_list(cmd);
2495 /*
2496 * At this point, the frontend who was the originator of this
2497 * struct se_cmd, now owns the structure and can be released through
2498 * normal means below.
2499 */
2500 pr_debug("wait_for_tasks: Stopped"
2501 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2502 "stop_comp); for ITT: 0x%08x\n",
2503 cmd->se_tfo->get_task_tag(cmd));
2504
2505 cmd->transport_state &= ~CMD_T_LUN_STOP;
2506 }
2507
2508 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2509 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2510 return false;
2511 }
2512
2513 cmd->transport_state |= CMD_T_STOP;
2514
2515 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2516 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2517 cmd, cmd->se_tfo->get_task_tag(cmd),
2518 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2519
2520 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2521
2522 wait_for_completion(&cmd->t_transport_stop_comp);
2523
2524 spin_lock_irqsave(&cmd->t_state_lock, flags);
2525 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2526
2527 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2528 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2529 cmd->se_tfo->get_task_tag(cmd));
2530
2531 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2532
2533 return true;
2534 }
2535 EXPORT_SYMBOL(transport_wait_for_tasks);
2536
2537 static int transport_get_sense_codes(
2538 struct se_cmd *cmd,
2539 u8 *asc,
2540 u8 *ascq)
2541 {
2542 *asc = cmd->scsi_asc;
2543 *ascq = cmd->scsi_ascq;
2544
2545 return 0;
2546 }
2547
2548 int
2549 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2550 sense_reason_t reason, int from_transport)
2551 {
2552 unsigned char *buffer = cmd->sense_buffer;
2553 unsigned long flags;
2554 u8 asc = 0, ascq = 0;
2555
2556 spin_lock_irqsave(&cmd->t_state_lock, flags);
2557 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2558 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2559 return 0;
2560 }
2561 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2562 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2563
2564 if (!reason && from_transport)
2565 goto after_reason;
2566
2567 if (!from_transport)
2568 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2569
2570 /*
2571 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2572 * SENSE KEY values from include/scsi/scsi.h
2573 */
2574 switch (reason) {
2575 case TCM_NO_SENSE:
2576 /* CURRENT ERROR */
2577 buffer[0] = 0x70;
2578 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2579 /* Not Ready */
2580 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2581 /* NO ADDITIONAL SENSE INFORMATION */
2582 buffer[SPC_ASC_KEY_OFFSET] = 0;
2583 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2584 break;
2585 case TCM_NON_EXISTENT_LUN:
2586 /* CURRENT ERROR */
2587 buffer[0] = 0x70;
2588 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2589 /* ILLEGAL REQUEST */
2590 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2591 /* LOGICAL UNIT NOT SUPPORTED */
2592 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2593 break;
2594 case TCM_UNSUPPORTED_SCSI_OPCODE:
2595 case TCM_SECTOR_COUNT_TOO_MANY:
2596 /* CURRENT ERROR */
2597 buffer[0] = 0x70;
2598 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2599 /* ILLEGAL REQUEST */
2600 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2601 /* INVALID COMMAND OPERATION CODE */
2602 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2603 break;
2604 case TCM_UNKNOWN_MODE_PAGE:
2605 /* CURRENT ERROR */
2606 buffer[0] = 0x70;
2607 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2608 /* ILLEGAL REQUEST */
2609 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2610 /* INVALID FIELD IN CDB */
2611 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2612 break;
2613 case TCM_CHECK_CONDITION_ABORT_CMD:
2614 /* CURRENT ERROR */
2615 buffer[0] = 0x70;
2616 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2617 /* ABORTED COMMAND */
2618 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2619 /* BUS DEVICE RESET FUNCTION OCCURRED */
2620 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2621 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2622 break;
2623 case TCM_INCORRECT_AMOUNT_OF_DATA:
2624 /* CURRENT ERROR */
2625 buffer[0] = 0x70;
2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2627 /* ABORTED COMMAND */
2628 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2629 /* WRITE ERROR */
2630 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2631 /* NOT ENOUGH UNSOLICITED DATA */
2632 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2633 break;
2634 case TCM_INVALID_CDB_FIELD:
2635 /* CURRENT ERROR */
2636 buffer[0] = 0x70;
2637 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2638 /* ILLEGAL REQUEST */
2639 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2640 /* INVALID FIELD IN CDB */
2641 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2642 break;
2643 case TCM_INVALID_PARAMETER_LIST:
2644 /* CURRENT ERROR */
2645 buffer[0] = 0x70;
2646 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2647 /* ILLEGAL REQUEST */
2648 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2649 /* INVALID FIELD IN PARAMETER LIST */
2650 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2651 break;
2652 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2653 /* CURRENT ERROR */
2654 buffer[0] = 0x70;
2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2656 /* ILLEGAL REQUEST */
2657 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2658 /* PARAMETER LIST LENGTH ERROR */
2659 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2660 break;
2661 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2662 /* CURRENT ERROR */
2663 buffer[0] = 0x70;
2664 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2665 /* ABORTED COMMAND */
2666 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2667 /* WRITE ERROR */
2668 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2669 /* UNEXPECTED_UNSOLICITED_DATA */
2670 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2671 break;
2672 case TCM_SERVICE_CRC_ERROR:
2673 /* CURRENT ERROR */
2674 buffer[0] = 0x70;
2675 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2676 /* ABORTED COMMAND */
2677 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2678 /* PROTOCOL SERVICE CRC ERROR */
2679 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2680 /* N/A */
2681 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2682 break;
2683 case TCM_SNACK_REJECTED:
2684 /* CURRENT ERROR */
2685 buffer[0] = 0x70;
2686 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2687 /* ABORTED COMMAND */
2688 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2689 /* READ ERROR */
2690 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2691 /* FAILED RETRANSMISSION REQUEST */
2692 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2693 break;
2694 case TCM_WRITE_PROTECTED:
2695 /* CURRENT ERROR */
2696 buffer[0] = 0x70;
2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2698 /* DATA PROTECT */
2699 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2700 /* WRITE PROTECTED */
2701 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2702 break;
2703 case TCM_ADDRESS_OUT_OF_RANGE:
2704 /* CURRENT ERROR */
2705 buffer[0] = 0x70;
2706 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2707 /* ILLEGAL REQUEST */
2708 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2709 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2710 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2711 break;
2712 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2713 /* CURRENT ERROR */
2714 buffer[0] = 0x70;
2715 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2716 /* UNIT ATTENTION */
2717 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2718 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2719 buffer[SPC_ASC_KEY_OFFSET] = asc;
2720 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2721 break;
2722 case TCM_CHECK_CONDITION_NOT_READY:
2723 /* CURRENT ERROR */
2724 buffer[0] = 0x70;
2725 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2726 /* Not Ready */
2727 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2728 transport_get_sense_codes(cmd, &asc, &ascq);
2729 buffer[SPC_ASC_KEY_OFFSET] = asc;
2730 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2731 break;
2732 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2733 default:
2734 /* CURRENT ERROR */
2735 buffer[0] = 0x70;
2736 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2737 /*
2738 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2739 * Solaris initiators. Returning NOT READY instead means the
2740 * operations will be retried a finite number of times and we
2741 * can survive intermittent errors.
2742 */
2743 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2744 /* LOGICAL UNIT COMMUNICATION FAILURE */
2745 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2746 break;
2747 }
2748 /*
2749 * This code uses linux/include/scsi/scsi.h SAM status codes!
2750 */
2751 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2752 /*
2753 * Automatically padded, this value is encoded in the fabric's
2754 * data_length response PDU containing the SCSI defined sense data.
2755 */
2756 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2757
2758 after_reason:
2759 trace_target_cmd_complete(cmd);
2760 return cmd->se_tfo->queue_status(cmd);
2761 }
2762 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2763
2764 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2765 {
2766 if (!(cmd->transport_state & CMD_T_ABORTED))
2767 return 0;
2768
2769 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2770 return 1;
2771
2772 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2773 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2774
2775 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2776 trace_target_cmd_complete(cmd);
2777 cmd->se_tfo->queue_status(cmd);
2778
2779 return 1;
2780 }
2781 EXPORT_SYMBOL(transport_check_aborted_status);
2782
2783 void transport_send_task_abort(struct se_cmd *cmd)
2784 {
2785 unsigned long flags;
2786
2787 spin_lock_irqsave(&cmd->t_state_lock, flags);
2788 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2789 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2790 return;
2791 }
2792 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2793
2794 /*
2795 * If there are still expected incoming fabric WRITEs, we wait
2796 * until until they have completed before sending a TASK_ABORTED
2797 * response. This response with TASK_ABORTED status will be
2798 * queued back to fabric module by transport_check_aborted_status().
2799 */
2800 if (cmd->data_direction == DMA_TO_DEVICE) {
2801 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2802 cmd->transport_state |= CMD_T_ABORTED;
2803 smp_mb__after_atomic_inc();
2804 }
2805 }
2806 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2807
2808 transport_lun_remove_cmd(cmd);
2809
2810 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2811 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2812 cmd->se_tfo->get_task_tag(cmd));
2813
2814 trace_target_cmd_complete(cmd);
2815 cmd->se_tfo->queue_status(cmd);
2816 }
2817
2818 static void target_tmr_work(struct work_struct *work)
2819 {
2820 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2821 struct se_device *dev = cmd->se_dev;
2822 struct se_tmr_req *tmr = cmd->se_tmr_req;
2823 int ret;
2824
2825 switch (tmr->function) {
2826 case TMR_ABORT_TASK:
2827 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2828 break;
2829 case TMR_ABORT_TASK_SET:
2830 case TMR_CLEAR_ACA:
2831 case TMR_CLEAR_TASK_SET:
2832 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2833 break;
2834 case TMR_LUN_RESET:
2835 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2836 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2837 TMR_FUNCTION_REJECTED;
2838 break;
2839 case TMR_TARGET_WARM_RESET:
2840 tmr->response = TMR_FUNCTION_REJECTED;
2841 break;
2842 case TMR_TARGET_COLD_RESET:
2843 tmr->response = TMR_FUNCTION_REJECTED;
2844 break;
2845 default:
2846 pr_err("Uknown TMR function: 0x%02x.\n",
2847 tmr->function);
2848 tmr->response = TMR_FUNCTION_REJECTED;
2849 break;
2850 }
2851
2852 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2853 cmd->se_tfo->queue_tm_rsp(cmd);
2854
2855 transport_cmd_check_stop_to_fabric(cmd);
2856 }
2857
2858 int transport_generic_handle_tmr(
2859 struct se_cmd *cmd)
2860 {
2861 INIT_WORK(&cmd->work, target_tmr_work);
2862 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2863 return 0;
2864 }
2865 EXPORT_SYMBOL(transport_generic_handle_tmr);