]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/target/target_core_transport.c
Merge branch 'for-3.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[mirror_ubuntu-artful-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2012 RisingTide Systems LLC.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54
55 static struct workqueue_struct *target_completion_wq;
56 static struct kmem_cache *se_sess_cache;
57 struct kmem_cache *se_ua_cache;
58 struct kmem_cache *t10_pr_reg_cache;
59 struct kmem_cache *t10_alua_lu_gp_cache;
60 struct kmem_cache *t10_alua_lu_gp_mem_cache;
61 struct kmem_cache *t10_alua_tg_pt_gp_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
63
64 static void transport_complete_task_attr(struct se_cmd *cmd);
65 static void transport_handle_queue_full(struct se_cmd *cmd,
66 struct se_device *dev);
67 static int transport_generic_get_mem(struct se_cmd *cmd);
68 static int transport_put_cmd(struct se_cmd *cmd);
69 static void target_complete_ok_work(struct work_struct *work);
70
71 int init_se_kmem_caches(void)
72 {
73 se_sess_cache = kmem_cache_create("se_sess_cache",
74 sizeof(struct se_session), __alignof__(struct se_session),
75 0, NULL);
76 if (!se_sess_cache) {
77 pr_err("kmem_cache_create() for struct se_session"
78 " failed\n");
79 goto out;
80 }
81 se_ua_cache = kmem_cache_create("se_ua_cache",
82 sizeof(struct se_ua), __alignof__(struct se_ua),
83 0, NULL);
84 if (!se_ua_cache) {
85 pr_err("kmem_cache_create() for struct se_ua failed\n");
86 goto out_free_sess_cache;
87 }
88 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
89 sizeof(struct t10_pr_registration),
90 __alignof__(struct t10_pr_registration), 0, NULL);
91 if (!t10_pr_reg_cache) {
92 pr_err("kmem_cache_create() for struct t10_pr_registration"
93 " failed\n");
94 goto out_free_ua_cache;
95 }
96 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
97 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
98 0, NULL);
99 if (!t10_alua_lu_gp_cache) {
100 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
101 " failed\n");
102 goto out_free_pr_reg_cache;
103 }
104 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
105 sizeof(struct t10_alua_lu_gp_member),
106 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
107 if (!t10_alua_lu_gp_mem_cache) {
108 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
109 "cache failed\n");
110 goto out_free_lu_gp_cache;
111 }
112 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
113 sizeof(struct t10_alua_tg_pt_gp),
114 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
115 if (!t10_alua_tg_pt_gp_cache) {
116 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
117 "cache failed\n");
118 goto out_free_lu_gp_mem_cache;
119 }
120 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
121 "t10_alua_tg_pt_gp_mem_cache",
122 sizeof(struct t10_alua_tg_pt_gp_member),
123 __alignof__(struct t10_alua_tg_pt_gp_member),
124 0, NULL);
125 if (!t10_alua_tg_pt_gp_mem_cache) {
126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
127 "mem_t failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130
131 target_completion_wq = alloc_workqueue("target_completion",
132 WQ_MEM_RECLAIM, 0);
133 if (!target_completion_wq)
134 goto out_free_tg_pt_gp_mem_cache;
135
136 return 0;
137
138 out_free_tg_pt_gp_mem_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
140 out_free_tg_pt_gp_cache:
141 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
142 out_free_lu_gp_mem_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
144 out_free_lu_gp_cache:
145 kmem_cache_destroy(t10_alua_lu_gp_cache);
146 out_free_pr_reg_cache:
147 kmem_cache_destroy(t10_pr_reg_cache);
148 out_free_ua_cache:
149 kmem_cache_destroy(se_ua_cache);
150 out_free_sess_cache:
151 kmem_cache_destroy(se_sess_cache);
152 out:
153 return -ENOMEM;
154 }
155
156 void release_se_kmem_caches(void)
157 {
158 destroy_workqueue(target_completion_wq);
159 kmem_cache_destroy(se_sess_cache);
160 kmem_cache_destroy(se_ua_cache);
161 kmem_cache_destroy(t10_pr_reg_cache);
162 kmem_cache_destroy(t10_alua_lu_gp_cache);
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
165 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
166 }
167
168 /* This code ensures unique mib indexes are handed out. */
169 static DEFINE_SPINLOCK(scsi_mib_index_lock);
170 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
171
172 /*
173 * Allocate a new row index for the entry type specified
174 */
175 u32 scsi_get_new_index(scsi_index_t type)
176 {
177 u32 new_index;
178
179 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
180
181 spin_lock(&scsi_mib_index_lock);
182 new_index = ++scsi_mib_index[type];
183 spin_unlock(&scsi_mib_index_lock);
184
185 return new_index;
186 }
187
188 void transport_subsystem_check_init(void)
189 {
190 int ret;
191 static int sub_api_initialized;
192
193 if (sub_api_initialized)
194 return;
195
196 ret = request_module("target_core_iblock");
197 if (ret != 0)
198 pr_err("Unable to load target_core_iblock\n");
199
200 ret = request_module("target_core_file");
201 if (ret != 0)
202 pr_err("Unable to load target_core_file\n");
203
204 ret = request_module("target_core_pscsi");
205 if (ret != 0)
206 pr_err("Unable to load target_core_pscsi\n");
207
208 sub_api_initialized = 1;
209 }
210
211 struct se_session *transport_init_session(void)
212 {
213 struct se_session *se_sess;
214
215 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
216 if (!se_sess) {
217 pr_err("Unable to allocate struct se_session from"
218 " se_sess_cache\n");
219 return ERR_PTR(-ENOMEM);
220 }
221 INIT_LIST_HEAD(&se_sess->sess_list);
222 INIT_LIST_HEAD(&se_sess->sess_acl_list);
223 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
224 INIT_LIST_HEAD(&se_sess->sess_wait_list);
225 spin_lock_init(&se_sess->sess_cmd_lock);
226 kref_init(&se_sess->sess_kref);
227
228 return se_sess;
229 }
230 EXPORT_SYMBOL(transport_init_session);
231
232 /*
233 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
234 */
235 void __transport_register_session(
236 struct se_portal_group *se_tpg,
237 struct se_node_acl *se_nacl,
238 struct se_session *se_sess,
239 void *fabric_sess_ptr)
240 {
241 unsigned char buf[PR_REG_ISID_LEN];
242
243 se_sess->se_tpg = se_tpg;
244 se_sess->fabric_sess_ptr = fabric_sess_ptr;
245 /*
246 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
247 *
248 * Only set for struct se_session's that will actually be moving I/O.
249 * eg: *NOT* discovery sessions.
250 */
251 if (se_nacl) {
252 /*
253 * If the fabric module supports an ISID based TransportID,
254 * save this value in binary from the fabric I_T Nexus now.
255 */
256 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
257 memset(&buf[0], 0, PR_REG_ISID_LEN);
258 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
259 &buf[0], PR_REG_ISID_LEN);
260 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
261 }
262 kref_get(&se_nacl->acl_kref);
263
264 spin_lock_irq(&se_nacl->nacl_sess_lock);
265 /*
266 * The se_nacl->nacl_sess pointer will be set to the
267 * last active I_T Nexus for each struct se_node_acl.
268 */
269 se_nacl->nacl_sess = se_sess;
270
271 list_add_tail(&se_sess->sess_acl_list,
272 &se_nacl->acl_sess_list);
273 spin_unlock_irq(&se_nacl->nacl_sess_lock);
274 }
275 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
276
277 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
278 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
279 }
280 EXPORT_SYMBOL(__transport_register_session);
281
282 void transport_register_session(
283 struct se_portal_group *se_tpg,
284 struct se_node_acl *se_nacl,
285 struct se_session *se_sess,
286 void *fabric_sess_ptr)
287 {
288 unsigned long flags;
289
290 spin_lock_irqsave(&se_tpg->session_lock, flags);
291 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
292 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
293 }
294 EXPORT_SYMBOL(transport_register_session);
295
296 static void target_release_session(struct kref *kref)
297 {
298 struct se_session *se_sess = container_of(kref,
299 struct se_session, sess_kref);
300 struct se_portal_group *se_tpg = se_sess->se_tpg;
301
302 se_tpg->se_tpg_tfo->close_session(se_sess);
303 }
304
305 void target_get_session(struct se_session *se_sess)
306 {
307 kref_get(&se_sess->sess_kref);
308 }
309 EXPORT_SYMBOL(target_get_session);
310
311 void target_put_session(struct se_session *se_sess)
312 {
313 struct se_portal_group *tpg = se_sess->se_tpg;
314
315 if (tpg->se_tpg_tfo->put_session != NULL) {
316 tpg->se_tpg_tfo->put_session(se_sess);
317 return;
318 }
319 kref_put(&se_sess->sess_kref, target_release_session);
320 }
321 EXPORT_SYMBOL(target_put_session);
322
323 static void target_complete_nacl(struct kref *kref)
324 {
325 struct se_node_acl *nacl = container_of(kref,
326 struct se_node_acl, acl_kref);
327
328 complete(&nacl->acl_free_comp);
329 }
330
331 void target_put_nacl(struct se_node_acl *nacl)
332 {
333 kref_put(&nacl->acl_kref, target_complete_nacl);
334 }
335
336 void transport_deregister_session_configfs(struct se_session *se_sess)
337 {
338 struct se_node_acl *se_nacl;
339 unsigned long flags;
340 /*
341 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
342 */
343 se_nacl = se_sess->se_node_acl;
344 if (se_nacl) {
345 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
346 if (se_nacl->acl_stop == 0)
347 list_del(&se_sess->sess_acl_list);
348 /*
349 * If the session list is empty, then clear the pointer.
350 * Otherwise, set the struct se_session pointer from the tail
351 * element of the per struct se_node_acl active session list.
352 */
353 if (list_empty(&se_nacl->acl_sess_list))
354 se_nacl->nacl_sess = NULL;
355 else {
356 se_nacl->nacl_sess = container_of(
357 se_nacl->acl_sess_list.prev,
358 struct se_session, sess_acl_list);
359 }
360 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
361 }
362 }
363 EXPORT_SYMBOL(transport_deregister_session_configfs);
364
365 void transport_free_session(struct se_session *se_sess)
366 {
367 kmem_cache_free(se_sess_cache, se_sess);
368 }
369 EXPORT_SYMBOL(transport_free_session);
370
371 void transport_deregister_session(struct se_session *se_sess)
372 {
373 struct se_portal_group *se_tpg = se_sess->se_tpg;
374 struct target_core_fabric_ops *se_tfo;
375 struct se_node_acl *se_nacl;
376 unsigned long flags;
377 bool comp_nacl = true;
378
379 if (!se_tpg) {
380 transport_free_session(se_sess);
381 return;
382 }
383 se_tfo = se_tpg->se_tpg_tfo;
384
385 spin_lock_irqsave(&se_tpg->session_lock, flags);
386 list_del(&se_sess->sess_list);
387 se_sess->se_tpg = NULL;
388 se_sess->fabric_sess_ptr = NULL;
389 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
390
391 /*
392 * Determine if we need to do extra work for this initiator node's
393 * struct se_node_acl if it had been previously dynamically generated.
394 */
395 se_nacl = se_sess->se_node_acl;
396
397 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 if (se_nacl && se_nacl->dynamic_node_acl) {
399 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
400 list_del(&se_nacl->acl_list);
401 se_tpg->num_node_acls--;
402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
403 core_tpg_wait_for_nacl_pr_ref(se_nacl);
404 core_free_device_list_for_node(se_nacl, se_tpg);
405 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
406
407 comp_nacl = false;
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 }
410 }
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412
413 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
414 se_tpg->se_tpg_tfo->get_fabric_name());
415 /*
416 * If last kref is dropping now for an explict NodeACL, awake sleeping
417 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
418 * removal context.
419 */
420 if (se_nacl && comp_nacl == true)
421 target_put_nacl(se_nacl);
422
423 transport_free_session(se_sess);
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428 * Called with cmd->t_state_lock held.
429 */
430 static void target_remove_from_state_list(struct se_cmd *cmd)
431 {
432 struct se_device *dev = cmd->se_dev;
433 unsigned long flags;
434
435 if (!dev)
436 return;
437
438 if (cmd->transport_state & CMD_T_BUSY)
439 return;
440
441 spin_lock_irqsave(&dev->execute_task_lock, flags);
442 if (cmd->state_active) {
443 list_del(&cmd->state_list);
444 cmd->state_active = false;
445 }
446 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
447 }
448
449 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
450 {
451 unsigned long flags;
452
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
454 /*
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
457 */
458 if (cmd->transport_state & CMD_T_LUN_STOP) {
459 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
460 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
461
462 cmd->transport_state &= ~CMD_T_ACTIVE;
463 if (remove_from_lists)
464 target_remove_from_state_list(cmd);
465 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
466
467 complete(&cmd->transport_lun_stop_comp);
468 return 1;
469 }
470
471 if (remove_from_lists) {
472 target_remove_from_state_list(cmd);
473
474 /*
475 * Clear struct se_cmd->se_lun before the handoff to FE.
476 */
477 cmd->se_lun = NULL;
478 }
479
480 /*
481 * Determine if frontend context caller is requesting the stopping of
482 * this command for frontend exceptions.
483 */
484 if (cmd->transport_state & CMD_T_STOP) {
485 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
486 __func__, __LINE__,
487 cmd->se_tfo->get_task_tag(cmd));
488
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
493 }
494
495 cmd->transport_state &= ~CMD_T_ACTIVE;
496 if (remove_from_lists) {
497 /*
498 * Some fabric modules like tcm_loop can release
499 * their internally allocated I/O reference now and
500 * struct se_cmd now.
501 *
502 * Fabric modules are expected to return '1' here if the
503 * se_cmd being passed is released at this point,
504 * or zero if not being released.
505 */
506 if (cmd->se_tfo->check_stop_free != NULL) {
507 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
508 return cmd->se_tfo->check_stop_free(cmd);
509 }
510 }
511
512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513 return 0;
514 }
515
516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
517 {
518 return transport_cmd_check_stop(cmd, true);
519 }
520
521 static void transport_lun_remove_cmd(struct se_cmd *cmd)
522 {
523 struct se_lun *lun = cmd->se_lun;
524 unsigned long flags;
525
526 if (!lun)
527 return;
528
529 spin_lock_irqsave(&cmd->t_state_lock, flags);
530 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
531 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
532 target_remove_from_state_list(cmd);
533 }
534 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537 if (!list_empty(&cmd->se_lun_node))
538 list_del_init(&cmd->se_lun_node);
539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544 if (transport_cmd_check_stop_to_fabric(cmd))
545 return;
546 if (remove)
547 transport_put_cmd(cmd);
548 }
549
550 static void target_complete_failure_work(struct work_struct *work)
551 {
552 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
553
554 transport_generic_request_failure(cmd,
555 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
556 }
557
558 /*
559 * Used when asking transport to copy Sense Data from the underlying
560 * Linux/SCSI struct scsi_cmnd
561 */
562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
563 {
564 struct se_device *dev = cmd->se_dev;
565
566 WARN_ON(!cmd->se_lun);
567
568 if (!dev)
569 return NULL;
570
571 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
572 return NULL;
573
574 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
575
576 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
577 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
578 return cmd->sense_buffer;
579 }
580
581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
582 {
583 struct se_device *dev = cmd->se_dev;
584 int success = scsi_status == GOOD;
585 unsigned long flags;
586
587 cmd->scsi_status = scsi_status;
588
589
590 spin_lock_irqsave(&cmd->t_state_lock, flags);
591 cmd->transport_state &= ~CMD_T_BUSY;
592
593 if (dev && dev->transport->transport_complete) {
594 dev->transport->transport_complete(cmd,
595 cmd->t_data_sg,
596 transport_get_sense_buffer(cmd));
597 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
598 success = 1;
599 }
600
601 /*
602 * See if we are waiting to complete for an exception condition.
603 */
604 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606 complete(&cmd->task_stop_comp);
607 return;
608 }
609
610 if (!success)
611 cmd->transport_state |= CMD_T_FAILED;
612
613 /*
614 * Check for case where an explict ABORT_TASK has been received
615 * and transport_wait_for_tasks() will be waiting for completion..
616 */
617 if (cmd->transport_state & CMD_T_ABORTED &&
618 cmd->transport_state & CMD_T_STOP) {
619 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
620 complete(&cmd->t_transport_stop_comp);
621 return;
622 } else if (cmd->transport_state & CMD_T_FAILED) {
623 INIT_WORK(&cmd->work, target_complete_failure_work);
624 } else {
625 INIT_WORK(&cmd->work, target_complete_ok_work);
626 }
627
628 cmd->t_state = TRANSPORT_COMPLETE;
629 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631
632 queue_work(target_completion_wq, &cmd->work);
633 }
634 EXPORT_SYMBOL(target_complete_cmd);
635
636 static void target_add_to_state_list(struct se_cmd *cmd)
637 {
638 struct se_device *dev = cmd->se_dev;
639 unsigned long flags;
640
641 spin_lock_irqsave(&dev->execute_task_lock, flags);
642 if (!cmd->state_active) {
643 list_add_tail(&cmd->state_list, &dev->state_list);
644 cmd->state_active = true;
645 }
646 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
647 }
648
649 /*
650 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
651 */
652 static void transport_write_pending_qf(struct se_cmd *cmd);
653 static void transport_complete_qf(struct se_cmd *cmd);
654
655 void target_qf_do_work(struct work_struct *work)
656 {
657 struct se_device *dev = container_of(work, struct se_device,
658 qf_work_queue);
659 LIST_HEAD(qf_cmd_list);
660 struct se_cmd *cmd, *cmd_tmp;
661
662 spin_lock_irq(&dev->qf_cmd_lock);
663 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
664 spin_unlock_irq(&dev->qf_cmd_lock);
665
666 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
667 list_del(&cmd->se_qf_node);
668 atomic_dec(&dev->dev_qf_count);
669 smp_mb__after_atomic_dec();
670
671 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
672 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
673 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
674 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
675 : "UNKNOWN");
676
677 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
678 transport_write_pending_qf(cmd);
679 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
680 transport_complete_qf(cmd);
681 }
682 }
683
684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
685 {
686 switch (cmd->data_direction) {
687 case DMA_NONE:
688 return "NONE";
689 case DMA_FROM_DEVICE:
690 return "READ";
691 case DMA_TO_DEVICE:
692 return "WRITE";
693 case DMA_BIDIRECTIONAL:
694 return "BIDI";
695 default:
696 break;
697 }
698
699 return "UNKNOWN";
700 }
701
702 void transport_dump_dev_state(
703 struct se_device *dev,
704 char *b,
705 int *bl)
706 {
707 *bl += sprintf(b + *bl, "Status: ");
708 if (dev->export_count)
709 *bl += sprintf(b + *bl, "ACTIVATED");
710 else
711 *bl += sprintf(b + *bl, "DEACTIVATED");
712
713 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
714 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
715 dev->dev_attrib.block_size,
716 dev->dev_attrib.hw_max_sectors);
717 *bl += sprintf(b + *bl, " ");
718 }
719
720 void transport_dump_vpd_proto_id(
721 struct t10_vpd *vpd,
722 unsigned char *p_buf,
723 int p_buf_len)
724 {
725 unsigned char buf[VPD_TMP_BUF_SIZE];
726 int len;
727
728 memset(buf, 0, VPD_TMP_BUF_SIZE);
729 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
730
731 switch (vpd->protocol_identifier) {
732 case 0x00:
733 sprintf(buf+len, "Fibre Channel\n");
734 break;
735 case 0x10:
736 sprintf(buf+len, "Parallel SCSI\n");
737 break;
738 case 0x20:
739 sprintf(buf+len, "SSA\n");
740 break;
741 case 0x30:
742 sprintf(buf+len, "IEEE 1394\n");
743 break;
744 case 0x40:
745 sprintf(buf+len, "SCSI Remote Direct Memory Access"
746 " Protocol\n");
747 break;
748 case 0x50:
749 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
750 break;
751 case 0x60:
752 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
753 break;
754 case 0x70:
755 sprintf(buf+len, "Automation/Drive Interface Transport"
756 " Protocol\n");
757 break;
758 case 0x80:
759 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
760 break;
761 default:
762 sprintf(buf+len, "Unknown 0x%02x\n",
763 vpd->protocol_identifier);
764 break;
765 }
766
767 if (p_buf)
768 strncpy(p_buf, buf, p_buf_len);
769 else
770 pr_debug("%s", buf);
771 }
772
773 void
774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
775 {
776 /*
777 * Check if the Protocol Identifier Valid (PIV) bit is set..
778 *
779 * from spc3r23.pdf section 7.5.1
780 */
781 if (page_83[1] & 0x80) {
782 vpd->protocol_identifier = (page_83[0] & 0xf0);
783 vpd->protocol_identifier_set = 1;
784 transport_dump_vpd_proto_id(vpd, NULL, 0);
785 }
786 }
787 EXPORT_SYMBOL(transport_set_vpd_proto_id);
788
789 int transport_dump_vpd_assoc(
790 struct t10_vpd *vpd,
791 unsigned char *p_buf,
792 int p_buf_len)
793 {
794 unsigned char buf[VPD_TMP_BUF_SIZE];
795 int ret = 0;
796 int len;
797
798 memset(buf, 0, VPD_TMP_BUF_SIZE);
799 len = sprintf(buf, "T10 VPD Identifier Association: ");
800
801 switch (vpd->association) {
802 case 0x00:
803 sprintf(buf+len, "addressed logical unit\n");
804 break;
805 case 0x10:
806 sprintf(buf+len, "target port\n");
807 break;
808 case 0x20:
809 sprintf(buf+len, "SCSI target device\n");
810 break;
811 default:
812 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
813 ret = -EINVAL;
814 break;
815 }
816
817 if (p_buf)
818 strncpy(p_buf, buf, p_buf_len);
819 else
820 pr_debug("%s", buf);
821
822 return ret;
823 }
824
825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
826 {
827 /*
828 * The VPD identification association..
829 *
830 * from spc3r23.pdf Section 7.6.3.1 Table 297
831 */
832 vpd->association = (page_83[1] & 0x30);
833 return transport_dump_vpd_assoc(vpd, NULL, 0);
834 }
835 EXPORT_SYMBOL(transport_set_vpd_assoc);
836
837 int transport_dump_vpd_ident_type(
838 struct t10_vpd *vpd,
839 unsigned char *p_buf,
840 int p_buf_len)
841 {
842 unsigned char buf[VPD_TMP_BUF_SIZE];
843 int ret = 0;
844 int len;
845
846 memset(buf, 0, VPD_TMP_BUF_SIZE);
847 len = sprintf(buf, "T10 VPD Identifier Type: ");
848
849 switch (vpd->device_identifier_type) {
850 case 0x00:
851 sprintf(buf+len, "Vendor specific\n");
852 break;
853 case 0x01:
854 sprintf(buf+len, "T10 Vendor ID based\n");
855 break;
856 case 0x02:
857 sprintf(buf+len, "EUI-64 based\n");
858 break;
859 case 0x03:
860 sprintf(buf+len, "NAA\n");
861 break;
862 case 0x04:
863 sprintf(buf+len, "Relative target port identifier\n");
864 break;
865 case 0x08:
866 sprintf(buf+len, "SCSI name string\n");
867 break;
868 default:
869 sprintf(buf+len, "Unsupported: 0x%02x\n",
870 vpd->device_identifier_type);
871 ret = -EINVAL;
872 break;
873 }
874
875 if (p_buf) {
876 if (p_buf_len < strlen(buf)+1)
877 return -EINVAL;
878 strncpy(p_buf, buf, p_buf_len);
879 } else {
880 pr_debug("%s", buf);
881 }
882
883 return ret;
884 }
885
886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
887 {
888 /*
889 * The VPD identifier type..
890 *
891 * from spc3r23.pdf Section 7.6.3.1 Table 298
892 */
893 vpd->device_identifier_type = (page_83[1] & 0x0f);
894 return transport_dump_vpd_ident_type(vpd, NULL, 0);
895 }
896 EXPORT_SYMBOL(transport_set_vpd_ident_type);
897
898 int transport_dump_vpd_ident(
899 struct t10_vpd *vpd,
900 unsigned char *p_buf,
901 int p_buf_len)
902 {
903 unsigned char buf[VPD_TMP_BUF_SIZE];
904 int ret = 0;
905
906 memset(buf, 0, VPD_TMP_BUF_SIZE);
907
908 switch (vpd->device_identifier_code_set) {
909 case 0x01: /* Binary */
910 snprintf(buf, sizeof(buf),
911 "T10 VPD Binary Device Identifier: %s\n",
912 &vpd->device_identifier[0]);
913 break;
914 case 0x02: /* ASCII */
915 snprintf(buf, sizeof(buf),
916 "T10 VPD ASCII Device Identifier: %s\n",
917 &vpd->device_identifier[0]);
918 break;
919 case 0x03: /* UTF-8 */
920 snprintf(buf, sizeof(buf),
921 "T10 VPD UTF-8 Device Identifier: %s\n",
922 &vpd->device_identifier[0]);
923 break;
924 default:
925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
926 " 0x%02x", vpd->device_identifier_code_set);
927 ret = -EINVAL;
928 break;
929 }
930
931 if (p_buf)
932 strncpy(p_buf, buf, p_buf_len);
933 else
934 pr_debug("%s", buf);
935
936 return ret;
937 }
938
939 int
940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
941 {
942 static const char hex_str[] = "0123456789abcdef";
943 int j = 0, i = 4; /* offset to start of the identifier */
944
945 /*
946 * The VPD Code Set (encoding)
947 *
948 * from spc3r23.pdf Section 7.6.3.1 Table 296
949 */
950 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
951 switch (vpd->device_identifier_code_set) {
952 case 0x01: /* Binary */
953 vpd->device_identifier[j++] =
954 hex_str[vpd->device_identifier_type];
955 while (i < (4 + page_83[3])) {
956 vpd->device_identifier[j++] =
957 hex_str[(page_83[i] & 0xf0) >> 4];
958 vpd->device_identifier[j++] =
959 hex_str[page_83[i] & 0x0f];
960 i++;
961 }
962 break;
963 case 0x02: /* ASCII */
964 case 0x03: /* UTF-8 */
965 while (i < (4 + page_83[3]))
966 vpd->device_identifier[j++] = page_83[i++];
967 break;
968 default:
969 break;
970 }
971
972 return transport_dump_vpd_ident(vpd, NULL, 0);
973 }
974 EXPORT_SYMBOL(transport_set_vpd_ident);
975
976 sense_reason_t
977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
978 {
979 struct se_device *dev = cmd->se_dev;
980
981 if (cmd->unknown_data_length) {
982 cmd->data_length = size;
983 } else if (size != cmd->data_length) {
984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
985 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
987 cmd->data_length, size, cmd->t_task_cdb[0]);
988
989 if (cmd->data_direction == DMA_TO_DEVICE) {
990 pr_err("Rejecting underflow/overflow"
991 " WRITE data\n");
992 return TCM_INVALID_CDB_FIELD;
993 }
994 /*
995 * Reject READ_* or WRITE_* with overflow/underflow for
996 * type SCF_SCSI_DATA_CDB.
997 */
998 if (dev->dev_attrib.block_size != 512) {
999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1000 " CDB on non 512-byte sector setup subsystem"
1001 " plugin: %s\n", dev->transport->name);
1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1003 return TCM_INVALID_CDB_FIELD;
1004 }
1005 /*
1006 * For the overflow case keep the existing fabric provided
1007 * ->data_length. Otherwise for the underflow case, reset
1008 * ->data_length to the smaller SCSI expected data transfer
1009 * length.
1010 */
1011 if (size > cmd->data_length) {
1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1013 cmd->residual_count = (size - cmd->data_length);
1014 } else {
1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1016 cmd->residual_count = (cmd->data_length - size);
1017 cmd->data_length = size;
1018 }
1019 }
1020
1021 return 0;
1022
1023 }
1024
1025 /*
1026 * Used by fabric modules containing a local struct se_cmd within their
1027 * fabric dependent per I/O descriptor.
1028 */
1029 void transport_init_se_cmd(
1030 struct se_cmd *cmd,
1031 struct target_core_fabric_ops *tfo,
1032 struct se_session *se_sess,
1033 u32 data_length,
1034 int data_direction,
1035 int task_attr,
1036 unsigned char *sense_buffer)
1037 {
1038 INIT_LIST_HEAD(&cmd->se_lun_node);
1039 INIT_LIST_HEAD(&cmd->se_delayed_node);
1040 INIT_LIST_HEAD(&cmd->se_qf_node);
1041 INIT_LIST_HEAD(&cmd->se_cmd_list);
1042 INIT_LIST_HEAD(&cmd->state_list);
1043 init_completion(&cmd->transport_lun_fe_stop_comp);
1044 init_completion(&cmd->transport_lun_stop_comp);
1045 init_completion(&cmd->t_transport_stop_comp);
1046 init_completion(&cmd->cmd_wait_comp);
1047 init_completion(&cmd->task_stop_comp);
1048 spin_lock_init(&cmd->t_state_lock);
1049 cmd->transport_state = CMD_T_DEV_ACTIVE;
1050
1051 cmd->se_tfo = tfo;
1052 cmd->se_sess = se_sess;
1053 cmd->data_length = data_length;
1054 cmd->data_direction = data_direction;
1055 cmd->sam_task_attr = task_attr;
1056 cmd->sense_buffer = sense_buffer;
1057
1058 cmd->state_active = false;
1059 }
1060 EXPORT_SYMBOL(transport_init_se_cmd);
1061
1062 static sense_reason_t
1063 transport_check_alloc_task_attr(struct se_cmd *cmd)
1064 {
1065 struct se_device *dev = cmd->se_dev;
1066
1067 /*
1068 * Check if SAM Task Attribute emulation is enabled for this
1069 * struct se_device storage object
1070 */
1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1072 return 0;
1073
1074 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1075 pr_debug("SAM Task Attribute ACA"
1076 " emulation is not supported\n");
1077 return TCM_INVALID_CDB_FIELD;
1078 }
1079 /*
1080 * Used to determine when ORDERED commands should go from
1081 * Dormant to Active status.
1082 */
1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1084 smp_mb__after_atomic_inc();
1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1086 cmd->se_ordered_id, cmd->sam_task_attr,
1087 dev->transport->name);
1088 return 0;
1089 }
1090
1091 sense_reason_t
1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1093 {
1094 struct se_device *dev = cmd->se_dev;
1095 unsigned long flags;
1096 sense_reason_t ret;
1097
1098 /*
1099 * Ensure that the received CDB is less than the max (252 + 8) bytes
1100 * for VARIABLE_LENGTH_CMD
1101 */
1102 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1103 pr_err("Received SCSI CDB with command_size: %d that"
1104 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1105 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1106 return TCM_INVALID_CDB_FIELD;
1107 }
1108 /*
1109 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1110 * allocate the additional extended CDB buffer now.. Otherwise
1111 * setup the pointer from __t_task_cdb to t_task_cdb.
1112 */
1113 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1114 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1115 GFP_KERNEL);
1116 if (!cmd->t_task_cdb) {
1117 pr_err("Unable to allocate cmd->t_task_cdb"
1118 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1119 scsi_command_size(cdb),
1120 (unsigned long)sizeof(cmd->__t_task_cdb));
1121 return TCM_OUT_OF_RESOURCES;
1122 }
1123 } else
1124 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1125 /*
1126 * Copy the original CDB into cmd->
1127 */
1128 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1129
1130 /*
1131 * Check for an existing UNIT ATTENTION condition
1132 */
1133 ret = target_scsi3_ua_check(cmd);
1134 if (ret)
1135 return ret;
1136
1137 ret = target_alua_state_check(cmd);
1138 if (ret)
1139 return ret;
1140
1141 ret = target_check_reservation(cmd);
1142 if (ret) {
1143 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1144 return ret;
1145 }
1146
1147 ret = dev->transport->parse_cdb(cmd);
1148 if (ret)
1149 return ret;
1150
1151 ret = transport_check_alloc_task_attr(cmd);
1152 if (ret)
1153 return ret;
1154
1155 spin_lock_irqsave(&cmd->t_state_lock, flags);
1156 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1157 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1158
1159 spin_lock(&cmd->se_lun->lun_sep_lock);
1160 if (cmd->se_lun->lun_sep)
1161 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1162 spin_unlock(&cmd->se_lun->lun_sep_lock);
1163 return 0;
1164 }
1165 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1166
1167 /*
1168 * Used by fabric module frontends to queue tasks directly.
1169 * Many only be used from process context only
1170 */
1171 int transport_handle_cdb_direct(
1172 struct se_cmd *cmd)
1173 {
1174 sense_reason_t ret;
1175
1176 if (!cmd->se_lun) {
1177 dump_stack();
1178 pr_err("cmd->se_lun is NULL\n");
1179 return -EINVAL;
1180 }
1181 if (in_interrupt()) {
1182 dump_stack();
1183 pr_err("transport_generic_handle_cdb cannot be called"
1184 " from interrupt context\n");
1185 return -EINVAL;
1186 }
1187 /*
1188 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1189 * outstanding descriptors are handled correctly during shutdown via
1190 * transport_wait_for_tasks()
1191 *
1192 * Also, we don't take cmd->t_state_lock here as we only expect
1193 * this to be called for initial descriptor submission.
1194 */
1195 cmd->t_state = TRANSPORT_NEW_CMD;
1196 cmd->transport_state |= CMD_T_ACTIVE;
1197
1198 /*
1199 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1200 * so follow TRANSPORT_NEW_CMD processing thread context usage
1201 * and call transport_generic_request_failure() if necessary..
1202 */
1203 ret = transport_generic_new_cmd(cmd);
1204 if (ret)
1205 transport_generic_request_failure(cmd, ret);
1206 return 0;
1207 }
1208 EXPORT_SYMBOL(transport_handle_cdb_direct);
1209
1210 static sense_reason_t
1211 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1212 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1213 {
1214 if (!sgl || !sgl_count)
1215 return 0;
1216
1217 /*
1218 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1219 * scatterlists already have been set to follow what the fabric
1220 * passes for the original expected data transfer length.
1221 */
1222 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1223 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1224 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1225 return TCM_INVALID_CDB_FIELD;
1226 }
1227
1228 cmd->t_data_sg = sgl;
1229 cmd->t_data_nents = sgl_count;
1230
1231 if (sgl_bidi && sgl_bidi_count) {
1232 cmd->t_bidi_data_sg = sgl_bidi;
1233 cmd->t_bidi_data_nents = sgl_bidi_count;
1234 }
1235 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1236 return 0;
1237 }
1238
1239 /*
1240 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1241 * se_cmd + use pre-allocated SGL memory.
1242 *
1243 * @se_cmd: command descriptor to submit
1244 * @se_sess: associated se_sess for endpoint
1245 * @cdb: pointer to SCSI CDB
1246 * @sense: pointer to SCSI sense buffer
1247 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1248 * @data_length: fabric expected data transfer length
1249 * @task_addr: SAM task attribute
1250 * @data_dir: DMA data direction
1251 * @flags: flags for command submission from target_sc_flags_tables
1252 * @sgl: struct scatterlist memory for unidirectional mapping
1253 * @sgl_count: scatterlist count for unidirectional mapping
1254 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1255 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1256 *
1257 * Returns non zero to signal active I/O shutdown failure. All other
1258 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1259 * but still return zero here.
1260 *
1261 * This may only be called from process context, and also currently
1262 * assumes internal allocation of fabric payload buffer by target-core.
1263 */
1264 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1265 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1266 u32 data_length, int task_attr, int data_dir, int flags,
1267 struct scatterlist *sgl, u32 sgl_count,
1268 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1269 {
1270 struct se_portal_group *se_tpg;
1271 sense_reason_t rc;
1272 int ret;
1273
1274 se_tpg = se_sess->se_tpg;
1275 BUG_ON(!se_tpg);
1276 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1277 BUG_ON(in_interrupt());
1278 /*
1279 * Initialize se_cmd for target operation. From this point
1280 * exceptions are handled by sending exception status via
1281 * target_core_fabric_ops->queue_status() callback
1282 */
1283 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1284 data_length, data_dir, task_attr, sense);
1285 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1286 se_cmd->unknown_data_length = 1;
1287 /*
1288 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1289 * se_sess->sess_cmd_list. A second kref_get here is necessary
1290 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1291 * kref_put() to happen during fabric packet acknowledgement.
1292 */
1293 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1294 if (ret)
1295 return ret;
1296 /*
1297 * Signal bidirectional data payloads to target-core
1298 */
1299 if (flags & TARGET_SCF_BIDI_OP)
1300 se_cmd->se_cmd_flags |= SCF_BIDI;
1301 /*
1302 * Locate se_lun pointer and attach it to struct se_cmd
1303 */
1304 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1305 if (rc) {
1306 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1307 target_put_sess_cmd(se_sess, se_cmd);
1308 return 0;
1309 }
1310
1311 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1312 if (rc != 0) {
1313 transport_generic_request_failure(se_cmd, rc);
1314 return 0;
1315 }
1316 /*
1317 * When a non zero sgl_count has been passed perform SGL passthrough
1318 * mapping for pre-allocated fabric memory instead of having target
1319 * core perform an internal SGL allocation..
1320 */
1321 if (sgl_count != 0) {
1322 BUG_ON(!sgl);
1323
1324 /*
1325 * A work-around for tcm_loop as some userspace code via
1326 * scsi-generic do not memset their associated read buffers,
1327 * so go ahead and do that here for type non-data CDBs. Also
1328 * note that this is currently guaranteed to be a single SGL
1329 * for this case by target core in target_setup_cmd_from_cdb()
1330 * -> transport_generic_cmd_sequencer().
1331 */
1332 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1333 se_cmd->data_direction == DMA_FROM_DEVICE) {
1334 unsigned char *buf = NULL;
1335
1336 if (sgl)
1337 buf = kmap(sg_page(sgl)) + sgl->offset;
1338
1339 if (buf) {
1340 memset(buf, 0, sgl->length);
1341 kunmap(sg_page(sgl));
1342 }
1343 }
1344
1345 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1346 sgl_bidi, sgl_bidi_count);
1347 if (rc != 0) {
1348 transport_generic_request_failure(se_cmd, rc);
1349 return 0;
1350 }
1351 }
1352 /*
1353 * Check if we need to delay processing because of ALUA
1354 * Active/NonOptimized primary access state..
1355 */
1356 core_alua_check_nonop_delay(se_cmd);
1357
1358 transport_handle_cdb_direct(se_cmd);
1359 return 0;
1360 }
1361 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1362
1363 /*
1364 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1365 *
1366 * @se_cmd: command descriptor to submit
1367 * @se_sess: associated se_sess for endpoint
1368 * @cdb: pointer to SCSI CDB
1369 * @sense: pointer to SCSI sense buffer
1370 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1371 * @data_length: fabric expected data transfer length
1372 * @task_addr: SAM task attribute
1373 * @data_dir: DMA data direction
1374 * @flags: flags for command submission from target_sc_flags_tables
1375 *
1376 * Returns non zero to signal active I/O shutdown failure. All other
1377 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1378 * but still return zero here.
1379 *
1380 * This may only be called from process context, and also currently
1381 * assumes internal allocation of fabric payload buffer by target-core.
1382 *
1383 * It also assumes interal target core SGL memory allocation.
1384 */
1385 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1386 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1387 u32 data_length, int task_attr, int data_dir, int flags)
1388 {
1389 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1390 unpacked_lun, data_length, task_attr, data_dir,
1391 flags, NULL, 0, NULL, 0);
1392 }
1393 EXPORT_SYMBOL(target_submit_cmd);
1394
1395 static void target_complete_tmr_failure(struct work_struct *work)
1396 {
1397 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1398
1399 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1400 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1401
1402 transport_cmd_check_stop_to_fabric(se_cmd);
1403 }
1404
1405 /**
1406 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1407 * for TMR CDBs
1408 *
1409 * @se_cmd: command descriptor to submit
1410 * @se_sess: associated se_sess for endpoint
1411 * @sense: pointer to SCSI sense buffer
1412 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1413 * @fabric_context: fabric context for TMR req
1414 * @tm_type: Type of TM request
1415 * @gfp: gfp type for caller
1416 * @tag: referenced task tag for TMR_ABORT_TASK
1417 * @flags: submit cmd flags
1418 *
1419 * Callable from all contexts.
1420 **/
1421
1422 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1423 unsigned char *sense, u32 unpacked_lun,
1424 void *fabric_tmr_ptr, unsigned char tm_type,
1425 gfp_t gfp, unsigned int tag, int flags)
1426 {
1427 struct se_portal_group *se_tpg;
1428 int ret;
1429
1430 se_tpg = se_sess->se_tpg;
1431 BUG_ON(!se_tpg);
1432
1433 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1434 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1435 /*
1436 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1437 * allocation failure.
1438 */
1439 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1440 if (ret < 0)
1441 return -ENOMEM;
1442
1443 if (tm_type == TMR_ABORT_TASK)
1444 se_cmd->se_tmr_req->ref_task_tag = tag;
1445
1446 /* See target_submit_cmd for commentary */
1447 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1448 if (ret) {
1449 core_tmr_release_req(se_cmd->se_tmr_req);
1450 return ret;
1451 }
1452
1453 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1454 if (ret) {
1455 /*
1456 * For callback during failure handling, push this work off
1457 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1458 */
1459 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1460 schedule_work(&se_cmd->work);
1461 return 0;
1462 }
1463 transport_generic_handle_tmr(se_cmd);
1464 return 0;
1465 }
1466 EXPORT_SYMBOL(target_submit_tmr);
1467
1468 /*
1469 * If the cmd is active, request it to be stopped and sleep until it
1470 * has completed.
1471 */
1472 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1473 {
1474 bool was_active = false;
1475
1476 if (cmd->transport_state & CMD_T_BUSY) {
1477 cmd->transport_state |= CMD_T_REQUEST_STOP;
1478 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1479
1480 pr_debug("cmd %p waiting to complete\n", cmd);
1481 wait_for_completion(&cmd->task_stop_comp);
1482 pr_debug("cmd %p stopped successfully\n", cmd);
1483
1484 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1485 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1486 cmd->transport_state &= ~CMD_T_BUSY;
1487 was_active = true;
1488 }
1489
1490 return was_active;
1491 }
1492
1493 /*
1494 * Handle SAM-esque emulation for generic transport request failures.
1495 */
1496 void transport_generic_request_failure(struct se_cmd *cmd,
1497 sense_reason_t sense_reason)
1498 {
1499 int ret = 0;
1500
1501 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1502 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1503 cmd->t_task_cdb[0]);
1504 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1505 cmd->se_tfo->get_cmd_state(cmd),
1506 cmd->t_state, sense_reason);
1507 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1508 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1509 (cmd->transport_state & CMD_T_STOP) != 0,
1510 (cmd->transport_state & CMD_T_SENT) != 0);
1511
1512 /*
1513 * For SAM Task Attribute emulation for failed struct se_cmd
1514 */
1515 transport_complete_task_attr(cmd);
1516
1517 switch (sense_reason) {
1518 case TCM_NON_EXISTENT_LUN:
1519 case TCM_UNSUPPORTED_SCSI_OPCODE:
1520 case TCM_INVALID_CDB_FIELD:
1521 case TCM_INVALID_PARAMETER_LIST:
1522 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1523 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1524 case TCM_UNKNOWN_MODE_PAGE:
1525 case TCM_WRITE_PROTECTED:
1526 case TCM_ADDRESS_OUT_OF_RANGE:
1527 case TCM_CHECK_CONDITION_ABORT_CMD:
1528 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1529 case TCM_CHECK_CONDITION_NOT_READY:
1530 break;
1531 case TCM_OUT_OF_RESOURCES:
1532 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1533 break;
1534 case TCM_RESERVATION_CONFLICT:
1535 /*
1536 * No SENSE Data payload for this case, set SCSI Status
1537 * and queue the response to $FABRIC_MOD.
1538 *
1539 * Uses linux/include/scsi/scsi.h SAM status codes defs
1540 */
1541 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1542 /*
1543 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1544 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1545 * CONFLICT STATUS.
1546 *
1547 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1548 */
1549 if (cmd->se_sess &&
1550 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1551 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1552 cmd->orig_fe_lun, 0x2C,
1553 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1554
1555 ret = cmd->se_tfo->queue_status(cmd);
1556 if (ret == -EAGAIN || ret == -ENOMEM)
1557 goto queue_full;
1558 goto check_stop;
1559 default:
1560 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1561 cmd->t_task_cdb[0], sense_reason);
1562 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1563 break;
1564 }
1565
1566 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1567 if (ret == -EAGAIN || ret == -ENOMEM)
1568 goto queue_full;
1569
1570 check_stop:
1571 transport_lun_remove_cmd(cmd);
1572 if (!transport_cmd_check_stop_to_fabric(cmd))
1573 ;
1574 return;
1575
1576 queue_full:
1577 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1578 transport_handle_queue_full(cmd, cmd->se_dev);
1579 }
1580 EXPORT_SYMBOL(transport_generic_request_failure);
1581
1582 static void __target_execute_cmd(struct se_cmd *cmd)
1583 {
1584 sense_reason_t ret;
1585
1586 spin_lock_irq(&cmd->t_state_lock);
1587 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1588 spin_unlock_irq(&cmd->t_state_lock);
1589
1590 if (cmd->execute_cmd) {
1591 ret = cmd->execute_cmd(cmd);
1592 if (ret) {
1593 spin_lock_irq(&cmd->t_state_lock);
1594 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1595 spin_unlock_irq(&cmd->t_state_lock);
1596
1597 transport_generic_request_failure(cmd, ret);
1598 }
1599 }
1600 }
1601
1602 static bool target_handle_task_attr(struct se_cmd *cmd)
1603 {
1604 struct se_device *dev = cmd->se_dev;
1605
1606 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1607 return false;
1608
1609 /*
1610 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1611 * to allow the passed struct se_cmd list of tasks to the front of the list.
1612 */
1613 switch (cmd->sam_task_attr) {
1614 case MSG_HEAD_TAG:
1615 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1616 "se_ordered_id: %u\n",
1617 cmd->t_task_cdb[0], cmd->se_ordered_id);
1618 return false;
1619 case MSG_ORDERED_TAG:
1620 atomic_inc(&dev->dev_ordered_sync);
1621 smp_mb__after_atomic_inc();
1622
1623 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1624 " se_ordered_id: %u\n",
1625 cmd->t_task_cdb[0], cmd->se_ordered_id);
1626
1627 /*
1628 * Execute an ORDERED command if no other older commands
1629 * exist that need to be completed first.
1630 */
1631 if (!atomic_read(&dev->simple_cmds))
1632 return false;
1633 break;
1634 default:
1635 /*
1636 * For SIMPLE and UNTAGGED Task Attribute commands
1637 */
1638 atomic_inc(&dev->simple_cmds);
1639 smp_mb__after_atomic_inc();
1640 break;
1641 }
1642
1643 if (atomic_read(&dev->dev_ordered_sync) == 0)
1644 return false;
1645
1646 spin_lock(&dev->delayed_cmd_lock);
1647 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1648 spin_unlock(&dev->delayed_cmd_lock);
1649
1650 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1651 " delayed CMD list, se_ordered_id: %u\n",
1652 cmd->t_task_cdb[0], cmd->sam_task_attr,
1653 cmd->se_ordered_id);
1654 return true;
1655 }
1656
1657 void target_execute_cmd(struct se_cmd *cmd)
1658 {
1659 /*
1660 * If the received CDB has aleady been aborted stop processing it here.
1661 */
1662 if (transport_check_aborted_status(cmd, 1)) {
1663 complete(&cmd->transport_lun_stop_comp);
1664 return;
1665 }
1666
1667 /*
1668 * Determine if IOCTL context caller in requesting the stopping of this
1669 * command for LUN shutdown purposes.
1670 */
1671 spin_lock_irq(&cmd->t_state_lock);
1672 if (cmd->transport_state & CMD_T_LUN_STOP) {
1673 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1674 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1675
1676 cmd->transport_state &= ~CMD_T_ACTIVE;
1677 spin_unlock_irq(&cmd->t_state_lock);
1678 complete(&cmd->transport_lun_stop_comp);
1679 return;
1680 }
1681 /*
1682 * Determine if frontend context caller is requesting the stopping of
1683 * this command for frontend exceptions.
1684 */
1685 if (cmd->transport_state & CMD_T_STOP) {
1686 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1687 __func__, __LINE__,
1688 cmd->se_tfo->get_task_tag(cmd));
1689
1690 spin_unlock_irq(&cmd->t_state_lock);
1691 complete(&cmd->t_transport_stop_comp);
1692 return;
1693 }
1694
1695 cmd->t_state = TRANSPORT_PROCESSING;
1696 cmd->transport_state |= CMD_T_ACTIVE;
1697 spin_unlock_irq(&cmd->t_state_lock);
1698
1699 if (!target_handle_task_attr(cmd))
1700 __target_execute_cmd(cmd);
1701 }
1702 EXPORT_SYMBOL(target_execute_cmd);
1703
1704 /*
1705 * Process all commands up to the last received ORDERED task attribute which
1706 * requires another blocking boundary
1707 */
1708 static void target_restart_delayed_cmds(struct se_device *dev)
1709 {
1710 for (;;) {
1711 struct se_cmd *cmd;
1712
1713 spin_lock(&dev->delayed_cmd_lock);
1714 if (list_empty(&dev->delayed_cmd_list)) {
1715 spin_unlock(&dev->delayed_cmd_lock);
1716 break;
1717 }
1718
1719 cmd = list_entry(dev->delayed_cmd_list.next,
1720 struct se_cmd, se_delayed_node);
1721 list_del(&cmd->se_delayed_node);
1722 spin_unlock(&dev->delayed_cmd_lock);
1723
1724 __target_execute_cmd(cmd);
1725
1726 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1727 break;
1728 }
1729 }
1730
1731 /*
1732 * Called from I/O completion to determine which dormant/delayed
1733 * and ordered cmds need to have their tasks added to the execution queue.
1734 */
1735 static void transport_complete_task_attr(struct se_cmd *cmd)
1736 {
1737 struct se_device *dev = cmd->se_dev;
1738
1739 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1740 return;
1741
1742 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1743 atomic_dec(&dev->simple_cmds);
1744 smp_mb__after_atomic_dec();
1745 dev->dev_cur_ordered_id++;
1746 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1747 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1748 cmd->se_ordered_id);
1749 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1750 dev->dev_cur_ordered_id++;
1751 pr_debug("Incremented dev_cur_ordered_id: %u for"
1752 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1753 cmd->se_ordered_id);
1754 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1755 atomic_dec(&dev->dev_ordered_sync);
1756 smp_mb__after_atomic_dec();
1757
1758 dev->dev_cur_ordered_id++;
1759 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1760 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1761 }
1762
1763 target_restart_delayed_cmds(dev);
1764 }
1765
1766 static void transport_complete_qf(struct se_cmd *cmd)
1767 {
1768 int ret = 0;
1769
1770 transport_complete_task_attr(cmd);
1771
1772 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1773 ret = cmd->se_tfo->queue_status(cmd);
1774 if (ret)
1775 goto out;
1776 }
1777
1778 switch (cmd->data_direction) {
1779 case DMA_FROM_DEVICE:
1780 ret = cmd->se_tfo->queue_data_in(cmd);
1781 break;
1782 case DMA_TO_DEVICE:
1783 if (cmd->t_bidi_data_sg) {
1784 ret = cmd->se_tfo->queue_data_in(cmd);
1785 if (ret < 0)
1786 break;
1787 }
1788 /* Fall through for DMA_TO_DEVICE */
1789 case DMA_NONE:
1790 ret = cmd->se_tfo->queue_status(cmd);
1791 break;
1792 default:
1793 break;
1794 }
1795
1796 out:
1797 if (ret < 0) {
1798 transport_handle_queue_full(cmd, cmd->se_dev);
1799 return;
1800 }
1801 transport_lun_remove_cmd(cmd);
1802 transport_cmd_check_stop_to_fabric(cmd);
1803 }
1804
1805 static void transport_handle_queue_full(
1806 struct se_cmd *cmd,
1807 struct se_device *dev)
1808 {
1809 spin_lock_irq(&dev->qf_cmd_lock);
1810 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1811 atomic_inc(&dev->dev_qf_count);
1812 smp_mb__after_atomic_inc();
1813 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1814
1815 schedule_work(&cmd->se_dev->qf_work_queue);
1816 }
1817
1818 static void target_complete_ok_work(struct work_struct *work)
1819 {
1820 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1821 int ret;
1822
1823 /*
1824 * Check if we need to move delayed/dormant tasks from cmds on the
1825 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1826 * Attribute.
1827 */
1828 transport_complete_task_attr(cmd);
1829
1830 /*
1831 * Check to schedule QUEUE_FULL work, or execute an existing
1832 * cmd->transport_qf_callback()
1833 */
1834 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1835 schedule_work(&cmd->se_dev->qf_work_queue);
1836
1837 /*
1838 * Check if we need to send a sense buffer from
1839 * the struct se_cmd in question.
1840 */
1841 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1842 WARN_ON(!cmd->scsi_status);
1843 ret = transport_send_check_condition_and_sense(
1844 cmd, 0, 1);
1845 if (ret == -EAGAIN || ret == -ENOMEM)
1846 goto queue_full;
1847
1848 transport_lun_remove_cmd(cmd);
1849 transport_cmd_check_stop_to_fabric(cmd);
1850 return;
1851 }
1852 /*
1853 * Check for a callback, used by amongst other things
1854 * XDWRITE_READ_10 emulation.
1855 */
1856 if (cmd->transport_complete_callback)
1857 cmd->transport_complete_callback(cmd);
1858
1859 switch (cmd->data_direction) {
1860 case DMA_FROM_DEVICE:
1861 spin_lock(&cmd->se_lun->lun_sep_lock);
1862 if (cmd->se_lun->lun_sep) {
1863 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1864 cmd->data_length;
1865 }
1866 spin_unlock(&cmd->se_lun->lun_sep_lock);
1867
1868 ret = cmd->se_tfo->queue_data_in(cmd);
1869 if (ret == -EAGAIN || ret == -ENOMEM)
1870 goto queue_full;
1871 break;
1872 case DMA_TO_DEVICE:
1873 spin_lock(&cmd->se_lun->lun_sep_lock);
1874 if (cmd->se_lun->lun_sep) {
1875 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1876 cmd->data_length;
1877 }
1878 spin_unlock(&cmd->se_lun->lun_sep_lock);
1879 /*
1880 * Check if we need to send READ payload for BIDI-COMMAND
1881 */
1882 if (cmd->t_bidi_data_sg) {
1883 spin_lock(&cmd->se_lun->lun_sep_lock);
1884 if (cmd->se_lun->lun_sep) {
1885 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1886 cmd->data_length;
1887 }
1888 spin_unlock(&cmd->se_lun->lun_sep_lock);
1889 ret = cmd->se_tfo->queue_data_in(cmd);
1890 if (ret == -EAGAIN || ret == -ENOMEM)
1891 goto queue_full;
1892 break;
1893 }
1894 /* Fall through for DMA_TO_DEVICE */
1895 case DMA_NONE:
1896 ret = cmd->se_tfo->queue_status(cmd);
1897 if (ret == -EAGAIN || ret == -ENOMEM)
1898 goto queue_full;
1899 break;
1900 default:
1901 break;
1902 }
1903
1904 transport_lun_remove_cmd(cmd);
1905 transport_cmd_check_stop_to_fabric(cmd);
1906 return;
1907
1908 queue_full:
1909 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1910 " data_direction: %d\n", cmd, cmd->data_direction);
1911 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1912 transport_handle_queue_full(cmd, cmd->se_dev);
1913 }
1914
1915 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1916 {
1917 struct scatterlist *sg;
1918 int count;
1919
1920 for_each_sg(sgl, sg, nents, count)
1921 __free_page(sg_page(sg));
1922
1923 kfree(sgl);
1924 }
1925
1926 static inline void transport_free_pages(struct se_cmd *cmd)
1927 {
1928 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
1929 return;
1930
1931 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1932 cmd->t_data_sg = NULL;
1933 cmd->t_data_nents = 0;
1934
1935 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1936 cmd->t_bidi_data_sg = NULL;
1937 cmd->t_bidi_data_nents = 0;
1938 }
1939
1940 /**
1941 * transport_release_cmd - free a command
1942 * @cmd: command to free
1943 *
1944 * This routine unconditionally frees a command, and reference counting
1945 * or list removal must be done in the caller.
1946 */
1947 static int transport_release_cmd(struct se_cmd *cmd)
1948 {
1949 BUG_ON(!cmd->se_tfo);
1950
1951 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1952 core_tmr_release_req(cmd->se_tmr_req);
1953 if (cmd->t_task_cdb != cmd->__t_task_cdb)
1954 kfree(cmd->t_task_cdb);
1955 /*
1956 * If this cmd has been setup with target_get_sess_cmd(), drop
1957 * the kref and call ->release_cmd() in kref callback.
1958 */
1959 if (cmd->check_release != 0)
1960 return target_put_sess_cmd(cmd->se_sess, cmd);
1961
1962 cmd->se_tfo->release_cmd(cmd);
1963 return 1;
1964 }
1965
1966 /**
1967 * transport_put_cmd - release a reference to a command
1968 * @cmd: command to release
1969 *
1970 * This routine releases our reference to the command and frees it if possible.
1971 */
1972 static int transport_put_cmd(struct se_cmd *cmd)
1973 {
1974 unsigned long flags;
1975
1976 spin_lock_irqsave(&cmd->t_state_lock, flags);
1977 if (atomic_read(&cmd->t_fe_count) &&
1978 !atomic_dec_and_test(&cmd->t_fe_count)) {
1979 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1980 return 0;
1981 }
1982
1983 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
1984 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
1985 target_remove_from_state_list(cmd);
1986 }
1987 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1988
1989 transport_free_pages(cmd);
1990 return transport_release_cmd(cmd);
1991 }
1992
1993 void *transport_kmap_data_sg(struct se_cmd *cmd)
1994 {
1995 struct scatterlist *sg = cmd->t_data_sg;
1996 struct page **pages;
1997 int i;
1998
1999 /*
2000 * We need to take into account a possible offset here for fabrics like
2001 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2002 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2003 */
2004 if (!cmd->t_data_nents)
2005 return NULL;
2006
2007 BUG_ON(!sg);
2008 if (cmd->t_data_nents == 1)
2009 return kmap(sg_page(sg)) + sg->offset;
2010
2011 /* >1 page. use vmap */
2012 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2013 if (!pages)
2014 return NULL;
2015
2016 /* convert sg[] to pages[] */
2017 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2018 pages[i] = sg_page(sg);
2019 }
2020
2021 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2022 kfree(pages);
2023 if (!cmd->t_data_vmap)
2024 return NULL;
2025
2026 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2027 }
2028 EXPORT_SYMBOL(transport_kmap_data_sg);
2029
2030 void transport_kunmap_data_sg(struct se_cmd *cmd)
2031 {
2032 if (!cmd->t_data_nents) {
2033 return;
2034 } else if (cmd->t_data_nents == 1) {
2035 kunmap(sg_page(cmd->t_data_sg));
2036 return;
2037 }
2038
2039 vunmap(cmd->t_data_vmap);
2040 cmd->t_data_vmap = NULL;
2041 }
2042 EXPORT_SYMBOL(transport_kunmap_data_sg);
2043
2044 static int
2045 transport_generic_get_mem(struct se_cmd *cmd)
2046 {
2047 u32 length = cmd->data_length;
2048 unsigned int nents;
2049 struct page *page;
2050 gfp_t zero_flag;
2051 int i = 0;
2052
2053 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2054 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2055 if (!cmd->t_data_sg)
2056 return -ENOMEM;
2057
2058 cmd->t_data_nents = nents;
2059 sg_init_table(cmd->t_data_sg, nents);
2060
2061 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2062
2063 while (length) {
2064 u32 page_len = min_t(u32, length, PAGE_SIZE);
2065 page = alloc_page(GFP_KERNEL | zero_flag);
2066 if (!page)
2067 goto out;
2068
2069 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2070 length -= page_len;
2071 i++;
2072 }
2073 return 0;
2074
2075 out:
2076 while (i > 0) {
2077 i--;
2078 __free_page(sg_page(&cmd->t_data_sg[i]));
2079 }
2080 kfree(cmd->t_data_sg);
2081 cmd->t_data_sg = NULL;
2082 return -ENOMEM;
2083 }
2084
2085 /*
2086 * Allocate any required resources to execute the command. For writes we
2087 * might not have the payload yet, so notify the fabric via a call to
2088 * ->write_pending instead. Otherwise place it on the execution queue.
2089 */
2090 sense_reason_t
2091 transport_generic_new_cmd(struct se_cmd *cmd)
2092 {
2093 int ret = 0;
2094
2095 /*
2096 * Determine is the TCM fabric module has already allocated physical
2097 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2098 * beforehand.
2099 */
2100 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2101 cmd->data_length) {
2102 ret = transport_generic_get_mem(cmd);
2103 if (ret < 0)
2104 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2105 }
2106
2107 atomic_inc(&cmd->t_fe_count);
2108
2109 /*
2110 * If this command is not a write we can execute it right here,
2111 * for write buffers we need to notify the fabric driver first
2112 * and let it call back once the write buffers are ready.
2113 */
2114 target_add_to_state_list(cmd);
2115 if (cmd->data_direction != DMA_TO_DEVICE) {
2116 target_execute_cmd(cmd);
2117 return 0;
2118 }
2119
2120 spin_lock_irq(&cmd->t_state_lock);
2121 cmd->t_state = TRANSPORT_WRITE_PENDING;
2122 spin_unlock_irq(&cmd->t_state_lock);
2123
2124 transport_cmd_check_stop(cmd, false);
2125
2126 ret = cmd->se_tfo->write_pending(cmd);
2127 if (ret == -EAGAIN || ret == -ENOMEM)
2128 goto queue_full;
2129
2130 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2131 WARN_ON(ret);
2132
2133 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2134
2135 queue_full:
2136 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2137 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2138 transport_handle_queue_full(cmd, cmd->se_dev);
2139 return 0;
2140 }
2141 EXPORT_SYMBOL(transport_generic_new_cmd);
2142
2143 static void transport_write_pending_qf(struct se_cmd *cmd)
2144 {
2145 int ret;
2146
2147 ret = cmd->se_tfo->write_pending(cmd);
2148 if (ret == -EAGAIN || ret == -ENOMEM) {
2149 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2150 cmd);
2151 transport_handle_queue_full(cmd, cmd->se_dev);
2152 }
2153 }
2154
2155 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2156 {
2157 int ret = 0;
2158
2159 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2160 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2161 transport_wait_for_tasks(cmd);
2162
2163 ret = transport_release_cmd(cmd);
2164 } else {
2165 if (wait_for_tasks)
2166 transport_wait_for_tasks(cmd);
2167
2168 if (cmd->se_lun)
2169 transport_lun_remove_cmd(cmd);
2170
2171 ret = transport_put_cmd(cmd);
2172 }
2173 return ret;
2174 }
2175 EXPORT_SYMBOL(transport_generic_free_cmd);
2176
2177 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2178 * @se_sess: session to reference
2179 * @se_cmd: command descriptor to add
2180 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2181 */
2182 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2183 bool ack_kref)
2184 {
2185 unsigned long flags;
2186 int ret = 0;
2187
2188 kref_init(&se_cmd->cmd_kref);
2189 /*
2190 * Add a second kref if the fabric caller is expecting to handle
2191 * fabric acknowledgement that requires two target_put_sess_cmd()
2192 * invocations before se_cmd descriptor release.
2193 */
2194 if (ack_kref == true) {
2195 kref_get(&se_cmd->cmd_kref);
2196 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2197 }
2198
2199 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2200 if (se_sess->sess_tearing_down) {
2201 ret = -ESHUTDOWN;
2202 goto out;
2203 }
2204 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2205 se_cmd->check_release = 1;
2206
2207 out:
2208 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2209 return ret;
2210 }
2211 EXPORT_SYMBOL(target_get_sess_cmd);
2212
2213 static void target_release_cmd_kref(struct kref *kref)
2214 {
2215 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2216 struct se_session *se_sess = se_cmd->se_sess;
2217
2218 if (list_empty(&se_cmd->se_cmd_list)) {
2219 spin_unlock(&se_sess->sess_cmd_lock);
2220 se_cmd->se_tfo->release_cmd(se_cmd);
2221 return;
2222 }
2223 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2224 spin_unlock(&se_sess->sess_cmd_lock);
2225 complete(&se_cmd->cmd_wait_comp);
2226 return;
2227 }
2228 list_del(&se_cmd->se_cmd_list);
2229 spin_unlock(&se_sess->sess_cmd_lock);
2230
2231 se_cmd->se_tfo->release_cmd(se_cmd);
2232 }
2233
2234 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2235 * @se_sess: session to reference
2236 * @se_cmd: command descriptor to drop
2237 */
2238 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2239 {
2240 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2241 &se_sess->sess_cmd_lock);
2242 }
2243 EXPORT_SYMBOL(target_put_sess_cmd);
2244
2245 /* target_sess_cmd_list_set_waiting - Flag all commands in
2246 * sess_cmd_list to complete cmd_wait_comp. Set
2247 * sess_tearing_down so no more commands are queued.
2248 * @se_sess: session to flag
2249 */
2250 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2251 {
2252 struct se_cmd *se_cmd;
2253 unsigned long flags;
2254
2255 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2256 if (se_sess->sess_tearing_down) {
2257 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2258 return;
2259 }
2260 se_sess->sess_tearing_down = 1;
2261 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2262
2263 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2264 se_cmd->cmd_wait_set = 1;
2265
2266 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2267 }
2268 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2269
2270 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2271 * @se_sess: session to wait for active I/O
2272 */
2273 void target_wait_for_sess_cmds(struct se_session *se_sess)
2274 {
2275 struct se_cmd *se_cmd, *tmp_cmd;
2276 unsigned long flags;
2277
2278 list_for_each_entry_safe(se_cmd, tmp_cmd,
2279 &se_sess->sess_wait_list, se_cmd_list) {
2280 list_del(&se_cmd->se_cmd_list);
2281
2282 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2283 " %d\n", se_cmd, se_cmd->t_state,
2284 se_cmd->se_tfo->get_cmd_state(se_cmd));
2285
2286 wait_for_completion(&se_cmd->cmd_wait_comp);
2287 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2288 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2289 se_cmd->se_tfo->get_cmd_state(se_cmd));
2290
2291 se_cmd->se_tfo->release_cmd(se_cmd);
2292 }
2293
2294 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2295 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2296 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2297
2298 }
2299 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2300
2301 /* transport_lun_wait_for_tasks():
2302 *
2303 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2304 * an struct se_lun to be successfully shutdown.
2305 */
2306 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2307 {
2308 unsigned long flags;
2309 int ret = 0;
2310
2311 /*
2312 * If the frontend has already requested this struct se_cmd to
2313 * be stopped, we can safely ignore this struct se_cmd.
2314 */
2315 spin_lock_irqsave(&cmd->t_state_lock, flags);
2316 if (cmd->transport_state & CMD_T_STOP) {
2317 cmd->transport_state &= ~CMD_T_LUN_STOP;
2318
2319 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2320 cmd->se_tfo->get_task_tag(cmd));
2321 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2322 transport_cmd_check_stop(cmd, false);
2323 return -EPERM;
2324 }
2325 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2326 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2327
2328 // XXX: audit task_flags checks.
2329 spin_lock_irqsave(&cmd->t_state_lock, flags);
2330 if ((cmd->transport_state & CMD_T_BUSY) &&
2331 (cmd->transport_state & CMD_T_SENT)) {
2332 if (!target_stop_cmd(cmd, &flags))
2333 ret++;
2334 }
2335 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2336
2337 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2338 " %d\n", cmd, ret);
2339 if (!ret) {
2340 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2341 cmd->se_tfo->get_task_tag(cmd));
2342 wait_for_completion(&cmd->transport_lun_stop_comp);
2343 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2344 cmd->se_tfo->get_task_tag(cmd));
2345 }
2346
2347 return 0;
2348 }
2349
2350 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2351 {
2352 struct se_cmd *cmd = NULL;
2353 unsigned long lun_flags, cmd_flags;
2354 /*
2355 * Do exception processing and return CHECK_CONDITION status to the
2356 * Initiator Port.
2357 */
2358 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2359 while (!list_empty(&lun->lun_cmd_list)) {
2360 cmd = list_first_entry(&lun->lun_cmd_list,
2361 struct se_cmd, se_lun_node);
2362 list_del_init(&cmd->se_lun_node);
2363
2364 spin_lock(&cmd->t_state_lock);
2365 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2366 "_lun_stop for ITT: 0x%08x\n",
2367 cmd->se_lun->unpacked_lun,
2368 cmd->se_tfo->get_task_tag(cmd));
2369 cmd->transport_state |= CMD_T_LUN_STOP;
2370 spin_unlock(&cmd->t_state_lock);
2371
2372 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2373
2374 if (!cmd->se_lun) {
2375 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2376 cmd->se_tfo->get_task_tag(cmd),
2377 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2378 BUG();
2379 }
2380 /*
2381 * If the Storage engine still owns the iscsi_cmd_t, determine
2382 * and/or stop its context.
2383 */
2384 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2385 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2386 cmd->se_tfo->get_task_tag(cmd));
2387
2388 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2389 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2390 continue;
2391 }
2392
2393 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2394 "_wait_for_tasks(): SUCCESS\n",
2395 cmd->se_lun->unpacked_lun,
2396 cmd->se_tfo->get_task_tag(cmd));
2397
2398 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2399 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2400 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2401 goto check_cond;
2402 }
2403 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2404 target_remove_from_state_list(cmd);
2405 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2406
2407 /*
2408 * The Storage engine stopped this struct se_cmd before it was
2409 * send to the fabric frontend for delivery back to the
2410 * Initiator Node. Return this SCSI CDB back with an
2411 * CHECK_CONDITION status.
2412 */
2413 check_cond:
2414 transport_send_check_condition_and_sense(cmd,
2415 TCM_NON_EXISTENT_LUN, 0);
2416 /*
2417 * If the fabric frontend is waiting for this iscsi_cmd_t to
2418 * be released, notify the waiting thread now that LU has
2419 * finished accessing it.
2420 */
2421 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2422 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2423 pr_debug("SE_LUN[%d] - Detected FE stop for"
2424 " struct se_cmd: %p ITT: 0x%08x\n",
2425 lun->unpacked_lun,
2426 cmd, cmd->se_tfo->get_task_tag(cmd));
2427
2428 spin_unlock_irqrestore(&cmd->t_state_lock,
2429 cmd_flags);
2430 transport_cmd_check_stop(cmd, false);
2431 complete(&cmd->transport_lun_fe_stop_comp);
2432 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2433 continue;
2434 }
2435 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2436 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2437
2438 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2439 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2440 }
2441 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2442 }
2443
2444 static int transport_clear_lun_thread(void *p)
2445 {
2446 struct se_lun *lun = p;
2447
2448 __transport_clear_lun_from_sessions(lun);
2449 complete(&lun->lun_shutdown_comp);
2450
2451 return 0;
2452 }
2453
2454 int transport_clear_lun_from_sessions(struct se_lun *lun)
2455 {
2456 struct task_struct *kt;
2457
2458 kt = kthread_run(transport_clear_lun_thread, lun,
2459 "tcm_cl_%u", lun->unpacked_lun);
2460 if (IS_ERR(kt)) {
2461 pr_err("Unable to start clear_lun thread\n");
2462 return PTR_ERR(kt);
2463 }
2464 wait_for_completion(&lun->lun_shutdown_comp);
2465
2466 return 0;
2467 }
2468
2469 /**
2470 * transport_wait_for_tasks - wait for completion to occur
2471 * @cmd: command to wait
2472 *
2473 * Called from frontend fabric context to wait for storage engine
2474 * to pause and/or release frontend generated struct se_cmd.
2475 */
2476 bool transport_wait_for_tasks(struct se_cmd *cmd)
2477 {
2478 unsigned long flags;
2479
2480 spin_lock_irqsave(&cmd->t_state_lock, flags);
2481 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2482 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2483 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2484 return false;
2485 }
2486
2487 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2488 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2490 return false;
2491 }
2492 /*
2493 * If we are already stopped due to an external event (ie: LUN shutdown)
2494 * sleep until the connection can have the passed struct se_cmd back.
2495 * The cmd->transport_lun_stopped_sem will be upped by
2496 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2497 * has completed its operation on the struct se_cmd.
2498 */
2499 if (cmd->transport_state & CMD_T_LUN_STOP) {
2500 pr_debug("wait_for_tasks: Stopping"
2501 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2502 "_stop_comp); for ITT: 0x%08x\n",
2503 cmd->se_tfo->get_task_tag(cmd));
2504 /*
2505 * There is a special case for WRITES where a FE exception +
2506 * LUN shutdown means ConfigFS context is still sleeping on
2507 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2508 * We go ahead and up transport_lun_stop_comp just to be sure
2509 * here.
2510 */
2511 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2512 complete(&cmd->transport_lun_stop_comp);
2513 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2514 spin_lock_irqsave(&cmd->t_state_lock, flags);
2515
2516 target_remove_from_state_list(cmd);
2517 /*
2518 * At this point, the frontend who was the originator of this
2519 * struct se_cmd, now owns the structure and can be released through
2520 * normal means below.
2521 */
2522 pr_debug("wait_for_tasks: Stopped"
2523 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2524 "stop_comp); for ITT: 0x%08x\n",
2525 cmd->se_tfo->get_task_tag(cmd));
2526
2527 cmd->transport_state &= ~CMD_T_LUN_STOP;
2528 }
2529
2530 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2531 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2532 return false;
2533 }
2534
2535 cmd->transport_state |= CMD_T_STOP;
2536
2537 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2538 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2539 cmd, cmd->se_tfo->get_task_tag(cmd),
2540 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2541
2542 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2543
2544 wait_for_completion(&cmd->t_transport_stop_comp);
2545
2546 spin_lock_irqsave(&cmd->t_state_lock, flags);
2547 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2548
2549 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2550 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2551 cmd->se_tfo->get_task_tag(cmd));
2552
2553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2554
2555 return true;
2556 }
2557 EXPORT_SYMBOL(transport_wait_for_tasks);
2558
2559 static int transport_get_sense_codes(
2560 struct se_cmd *cmd,
2561 u8 *asc,
2562 u8 *ascq)
2563 {
2564 *asc = cmd->scsi_asc;
2565 *ascq = cmd->scsi_ascq;
2566
2567 return 0;
2568 }
2569
2570 int
2571 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2572 sense_reason_t reason, int from_transport)
2573 {
2574 unsigned char *buffer = cmd->sense_buffer;
2575 unsigned long flags;
2576 u8 asc = 0, ascq = 0;
2577
2578 spin_lock_irqsave(&cmd->t_state_lock, flags);
2579 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2580 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2581 return 0;
2582 }
2583 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2584 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2585
2586 if (!reason && from_transport)
2587 goto after_reason;
2588
2589 if (!from_transport)
2590 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2591
2592 /*
2593 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2594 * SENSE KEY values from include/scsi/scsi.h
2595 */
2596 switch (reason) {
2597 case TCM_NO_SENSE:
2598 /* CURRENT ERROR */
2599 buffer[0] = 0x70;
2600 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2601 /* Not Ready */
2602 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2603 /* NO ADDITIONAL SENSE INFORMATION */
2604 buffer[SPC_ASC_KEY_OFFSET] = 0;
2605 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2606 break;
2607 case TCM_NON_EXISTENT_LUN:
2608 /* CURRENT ERROR */
2609 buffer[0] = 0x70;
2610 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2611 /* ILLEGAL REQUEST */
2612 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2613 /* LOGICAL UNIT NOT SUPPORTED */
2614 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2615 break;
2616 case TCM_UNSUPPORTED_SCSI_OPCODE:
2617 case TCM_SECTOR_COUNT_TOO_MANY:
2618 /* CURRENT ERROR */
2619 buffer[0] = 0x70;
2620 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2621 /* ILLEGAL REQUEST */
2622 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2623 /* INVALID COMMAND OPERATION CODE */
2624 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2625 break;
2626 case TCM_UNKNOWN_MODE_PAGE:
2627 /* CURRENT ERROR */
2628 buffer[0] = 0x70;
2629 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2630 /* ILLEGAL REQUEST */
2631 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2632 /* INVALID FIELD IN CDB */
2633 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2634 break;
2635 case TCM_CHECK_CONDITION_ABORT_CMD:
2636 /* CURRENT ERROR */
2637 buffer[0] = 0x70;
2638 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2639 /* ABORTED COMMAND */
2640 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2641 /* BUS DEVICE RESET FUNCTION OCCURRED */
2642 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2643 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2644 break;
2645 case TCM_INCORRECT_AMOUNT_OF_DATA:
2646 /* CURRENT ERROR */
2647 buffer[0] = 0x70;
2648 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2649 /* ABORTED COMMAND */
2650 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2651 /* WRITE ERROR */
2652 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2653 /* NOT ENOUGH UNSOLICITED DATA */
2654 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2655 break;
2656 case TCM_INVALID_CDB_FIELD:
2657 /* CURRENT ERROR */
2658 buffer[0] = 0x70;
2659 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2660 /* ILLEGAL REQUEST */
2661 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2662 /* INVALID FIELD IN CDB */
2663 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2664 break;
2665 case TCM_INVALID_PARAMETER_LIST:
2666 /* CURRENT ERROR */
2667 buffer[0] = 0x70;
2668 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2669 /* ILLEGAL REQUEST */
2670 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2671 /* INVALID FIELD IN PARAMETER LIST */
2672 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2673 break;
2674 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2675 /* CURRENT ERROR */
2676 buffer[0] = 0x70;
2677 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2678 /* ILLEGAL REQUEST */
2679 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2680 /* PARAMETER LIST LENGTH ERROR */
2681 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2682 break;
2683 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2684 /* CURRENT ERROR */
2685 buffer[0] = 0x70;
2686 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2687 /* ABORTED COMMAND */
2688 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2689 /* WRITE ERROR */
2690 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2691 /* UNEXPECTED_UNSOLICITED_DATA */
2692 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2693 break;
2694 case TCM_SERVICE_CRC_ERROR:
2695 /* CURRENT ERROR */
2696 buffer[0] = 0x70;
2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2698 /* ABORTED COMMAND */
2699 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2700 /* PROTOCOL SERVICE CRC ERROR */
2701 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2702 /* N/A */
2703 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2704 break;
2705 case TCM_SNACK_REJECTED:
2706 /* CURRENT ERROR */
2707 buffer[0] = 0x70;
2708 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2709 /* ABORTED COMMAND */
2710 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2711 /* READ ERROR */
2712 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2713 /* FAILED RETRANSMISSION REQUEST */
2714 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2715 break;
2716 case TCM_WRITE_PROTECTED:
2717 /* CURRENT ERROR */
2718 buffer[0] = 0x70;
2719 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2720 /* DATA PROTECT */
2721 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2722 /* WRITE PROTECTED */
2723 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2724 break;
2725 case TCM_ADDRESS_OUT_OF_RANGE:
2726 /* CURRENT ERROR */
2727 buffer[0] = 0x70;
2728 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2729 /* ILLEGAL REQUEST */
2730 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2731 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2732 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2733 break;
2734 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2735 /* CURRENT ERROR */
2736 buffer[0] = 0x70;
2737 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2738 /* UNIT ATTENTION */
2739 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2740 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2741 buffer[SPC_ASC_KEY_OFFSET] = asc;
2742 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2743 break;
2744 case TCM_CHECK_CONDITION_NOT_READY:
2745 /* CURRENT ERROR */
2746 buffer[0] = 0x70;
2747 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2748 /* Not Ready */
2749 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2750 transport_get_sense_codes(cmd, &asc, &ascq);
2751 buffer[SPC_ASC_KEY_OFFSET] = asc;
2752 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2753 break;
2754 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2755 default:
2756 /* CURRENT ERROR */
2757 buffer[0] = 0x70;
2758 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2759 /*
2760 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2761 * Solaris initiators. Returning NOT READY instead means the
2762 * operations will be retried a finite number of times and we
2763 * can survive intermittent errors.
2764 */
2765 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2766 /* LOGICAL UNIT COMMUNICATION FAILURE */
2767 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2768 break;
2769 }
2770 /*
2771 * This code uses linux/include/scsi/scsi.h SAM status codes!
2772 */
2773 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2774 /*
2775 * Automatically padded, this value is encoded in the fabric's
2776 * data_length response PDU containing the SCSI defined sense data.
2777 */
2778 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2779
2780 after_reason:
2781 return cmd->se_tfo->queue_status(cmd);
2782 }
2783 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2784
2785 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2786 {
2787 if (!(cmd->transport_state & CMD_T_ABORTED))
2788 return 0;
2789
2790 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2791 return 1;
2792
2793 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2794 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2795
2796 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2797 cmd->se_tfo->queue_status(cmd);
2798
2799 return 1;
2800 }
2801 EXPORT_SYMBOL(transport_check_aborted_status);
2802
2803 void transport_send_task_abort(struct se_cmd *cmd)
2804 {
2805 unsigned long flags;
2806
2807 spin_lock_irqsave(&cmd->t_state_lock, flags);
2808 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2809 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2810 return;
2811 }
2812 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2813
2814 /*
2815 * If there are still expected incoming fabric WRITEs, we wait
2816 * until until they have completed before sending a TASK_ABORTED
2817 * response. This response with TASK_ABORTED status will be
2818 * queued back to fabric module by transport_check_aborted_status().
2819 */
2820 if (cmd->data_direction == DMA_TO_DEVICE) {
2821 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2822 cmd->transport_state |= CMD_T_ABORTED;
2823 smp_mb__after_atomic_inc();
2824 }
2825 }
2826 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2827
2828 transport_lun_remove_cmd(cmd);
2829
2830 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2831 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2832 cmd->se_tfo->get_task_tag(cmd));
2833
2834 cmd->se_tfo->queue_status(cmd);
2835 }
2836
2837 static void target_tmr_work(struct work_struct *work)
2838 {
2839 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2840 struct se_device *dev = cmd->se_dev;
2841 struct se_tmr_req *tmr = cmd->se_tmr_req;
2842 int ret;
2843
2844 switch (tmr->function) {
2845 case TMR_ABORT_TASK:
2846 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2847 break;
2848 case TMR_ABORT_TASK_SET:
2849 case TMR_CLEAR_ACA:
2850 case TMR_CLEAR_TASK_SET:
2851 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2852 break;
2853 case TMR_LUN_RESET:
2854 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2855 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2856 TMR_FUNCTION_REJECTED;
2857 break;
2858 case TMR_TARGET_WARM_RESET:
2859 tmr->response = TMR_FUNCTION_REJECTED;
2860 break;
2861 case TMR_TARGET_COLD_RESET:
2862 tmr->response = TMR_FUNCTION_REJECTED;
2863 break;
2864 default:
2865 pr_err("Uknown TMR function: 0x%02x.\n",
2866 tmr->function);
2867 tmr->response = TMR_FUNCTION_REJECTED;
2868 break;
2869 }
2870
2871 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2872 cmd->se_tfo->queue_tm_rsp(cmd);
2873
2874 transport_cmd_check_stop_to_fabric(cmd);
2875 }
2876
2877 int transport_generic_handle_tmr(
2878 struct se_cmd *cmd)
2879 {
2880 INIT_WORK(&cmd->work, target_tmr_work);
2881 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2882 return 0;
2883 }
2884 EXPORT_SYMBOL(transport_generic_handle_tmr);