]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/thermal/cpu_cooling.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / thermal / cpu_cooling.c
1 /*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/idr.h>
30 #include <linux/pm_opp.h>
31 #include <linux/slab.h>
32 #include <linux/cpu.h>
33 #include <linux/cpu_cooling.h>
34
35 #include <trace/events/thermal.h>
36
37 /*
38 * Cooling state <-> CPUFreq frequency
39 *
40 * Cooling states are translated to frequencies throughout this driver and this
41 * is the relation between them.
42 *
43 * Highest cooling state corresponds to lowest possible frequency.
44 *
45 * i.e.
46 * level 0 --> 1st Max Freq
47 * level 1 --> 2nd Max Freq
48 * ...
49 */
50
51 /**
52 * struct freq_table - frequency table along with power entries
53 * @frequency: frequency in KHz
54 * @power: power in mW
55 *
56 * This structure is built when the cooling device registers and helps
57 * in translating frequency to power and vice versa.
58 */
59 struct freq_table {
60 u32 frequency;
61 u32 power;
62 };
63
64 /**
65 * struct time_in_idle - Idle time stats
66 * @time: previous reading of the absolute time that this cpu was idle
67 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
68 */
69 struct time_in_idle {
70 u64 time;
71 u64 timestamp;
72 };
73
74 /**
75 * struct cpufreq_cooling_device - data for cooling device with cpufreq
76 * @id: unique integer value corresponding to each cpufreq_cooling_device
77 * registered.
78 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
79 * @cpufreq_state: integer value representing the current state of cpufreq
80 * cooling devices.
81 * @clipped_freq: integer value representing the absolute value of the clipped
82 * frequency.
83 * @max_level: maximum cooling level. One less than total number of valid
84 * cpufreq frequencies.
85 * @freq_table: Freq table in descending order of frequencies
86 * @cdev: thermal_cooling_device pointer to keep track of the
87 * registered cooling device.
88 * @policy: cpufreq policy.
89 * @node: list_head to link all cpufreq_cooling_device together.
90 * @idle_time: idle time stats
91 * @plat_get_static_power: callback to calculate the static power
92 *
93 * This structure is required for keeping information of each registered
94 * cpufreq_cooling_device.
95 */
96 struct cpufreq_cooling_device {
97 int id;
98 u32 last_load;
99 unsigned int cpufreq_state;
100 unsigned int clipped_freq;
101 unsigned int max_level;
102 struct freq_table *freq_table; /* In descending order */
103 struct thermal_cooling_device *cdev;
104 struct cpufreq_policy *policy;
105 struct list_head node;
106 struct time_in_idle *idle_time;
107 get_static_t plat_get_static_power;
108 };
109
110 static DEFINE_IDA(cpufreq_ida);
111 static DEFINE_MUTEX(cooling_list_lock);
112 static LIST_HEAD(cpufreq_cdev_list);
113
114 /* Below code defines functions to be used for cpufreq as cooling device */
115
116 /**
117 * get_level: Find the level for a particular frequency
118 * @cpufreq_cdev: cpufreq_cdev for which the property is required
119 * @freq: Frequency
120 *
121 * Return: level corresponding to the frequency.
122 */
123 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
124 unsigned int freq)
125 {
126 struct freq_table *freq_table = cpufreq_cdev->freq_table;
127 unsigned long level;
128
129 for (level = 1; level <= cpufreq_cdev->max_level; level++)
130 if (freq > freq_table[level].frequency)
131 break;
132
133 return level - 1;
134 }
135
136 /**
137 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
138 * @nb: struct notifier_block * with callback info.
139 * @event: value showing cpufreq event for which this function invoked.
140 * @data: callback-specific data
141 *
142 * Callback to hijack the notification on cpufreq policy transition.
143 * Every time there is a change in policy, we will intercept and
144 * update the cpufreq policy with thermal constraints.
145 *
146 * Return: 0 (success)
147 */
148 static int cpufreq_thermal_notifier(struct notifier_block *nb,
149 unsigned long event, void *data)
150 {
151 struct cpufreq_policy *policy = data;
152 unsigned long clipped_freq;
153 struct cpufreq_cooling_device *cpufreq_cdev;
154
155 if (event != CPUFREQ_ADJUST)
156 return NOTIFY_DONE;
157
158 mutex_lock(&cooling_list_lock);
159 list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
160 /*
161 * A new copy of the policy is sent to the notifier and can't
162 * compare that directly.
163 */
164 if (policy->cpu != cpufreq_cdev->policy->cpu)
165 continue;
166
167 /*
168 * policy->max is the maximum allowed frequency defined by user
169 * and clipped_freq is the maximum that thermal constraints
170 * allow.
171 *
172 * If clipped_freq is lower than policy->max, then we need to
173 * readjust policy->max.
174 *
175 * But, if clipped_freq is greater than policy->max, we don't
176 * need to do anything.
177 */
178 clipped_freq = cpufreq_cdev->clipped_freq;
179
180 if (policy->max > clipped_freq)
181 cpufreq_verify_within_limits(policy, 0, clipped_freq);
182 break;
183 }
184 mutex_unlock(&cooling_list_lock);
185
186 return NOTIFY_OK;
187 }
188
189 /**
190 * update_freq_table() - Update the freq table with power numbers
191 * @cpufreq_cdev: the cpufreq cooling device in which to update the table
192 * @capacitance: dynamic power coefficient for these cpus
193 *
194 * Update the freq table with power numbers. This table will be used in
195 * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and
196 * frequency efficiently. Power is stored in mW, frequency in KHz. The
197 * resulting table is in descending order.
198 *
199 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
200 * or -ENOMEM if we run out of memory.
201 */
202 static int update_freq_table(struct cpufreq_cooling_device *cpufreq_cdev,
203 u32 capacitance)
204 {
205 struct freq_table *freq_table = cpufreq_cdev->freq_table;
206 struct dev_pm_opp *opp;
207 struct device *dev = NULL;
208 int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i;
209
210 dev = get_cpu_device(cpu);
211 if (unlikely(!dev)) {
212 dev_warn(&cpufreq_cdev->cdev->device,
213 "No cpu device for cpu %d\n", cpu);
214 return -ENODEV;
215 }
216
217 num_opps = dev_pm_opp_get_opp_count(dev);
218 if (num_opps < 0)
219 return num_opps;
220
221 /*
222 * The cpufreq table is also built from the OPP table and so the count
223 * should match.
224 */
225 if (num_opps != cpufreq_cdev->max_level + 1) {
226 dev_warn(dev, "Number of OPPs not matching with max_levels\n");
227 return -EINVAL;
228 }
229
230 for (i = 0; i <= cpufreq_cdev->max_level; i++) {
231 unsigned long freq = freq_table[i].frequency * 1000;
232 u32 freq_mhz = freq_table[i].frequency / 1000;
233 u64 power;
234 u32 voltage_mv;
235
236 /*
237 * Find ceil frequency as 'freq' may be slightly lower than OPP
238 * freq due to truncation while converting to kHz.
239 */
240 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
241 if (IS_ERR(opp)) {
242 dev_err(dev, "failed to get opp for %lu frequency\n",
243 freq);
244 return -EINVAL;
245 }
246
247 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
248 dev_pm_opp_put(opp);
249
250 /*
251 * Do the multiplication with MHz and millivolt so as
252 * to not overflow.
253 */
254 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
255 do_div(power, 1000000000);
256
257 /* power is stored in mW */
258 freq_table[i].power = power;
259 }
260
261 return 0;
262 }
263
264 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
265 u32 freq)
266 {
267 int i;
268 struct freq_table *freq_table = cpufreq_cdev->freq_table;
269
270 for (i = 1; i <= cpufreq_cdev->max_level; i++)
271 if (freq > freq_table[i].frequency)
272 break;
273
274 return freq_table[i - 1].power;
275 }
276
277 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
278 u32 power)
279 {
280 int i;
281 struct freq_table *freq_table = cpufreq_cdev->freq_table;
282
283 for (i = 1; i <= cpufreq_cdev->max_level; i++)
284 if (power > freq_table[i].power)
285 break;
286
287 return freq_table[i - 1].frequency;
288 }
289
290 /**
291 * get_load() - get load for a cpu since last updated
292 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
293 * @cpu: cpu number
294 * @cpu_idx: index of the cpu in time_in_idle*
295 *
296 * Return: The average load of cpu @cpu in percentage since this
297 * function was last called.
298 */
299 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
300 int cpu_idx)
301 {
302 u32 load;
303 u64 now, now_idle, delta_time, delta_idle;
304 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
305
306 now_idle = get_cpu_idle_time(cpu, &now, 0);
307 delta_idle = now_idle - idle_time->time;
308 delta_time = now - idle_time->timestamp;
309
310 if (delta_time <= delta_idle)
311 load = 0;
312 else
313 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
314
315 idle_time->time = now_idle;
316 idle_time->timestamp = now;
317
318 return load;
319 }
320
321 /**
322 * get_static_power() - calculate the static power consumed by the cpus
323 * @cpufreq_cdev: struct &cpufreq_cooling_device for this cpu cdev
324 * @tz: thermal zone device in which we're operating
325 * @freq: frequency in KHz
326 * @power: pointer in which to store the calculated static power
327 *
328 * Calculate the static power consumed by the cpus described by
329 * @cpu_actor running at frequency @freq. This function relies on a
330 * platform specific function that should have been provided when the
331 * actor was registered. If it wasn't, the static power is assumed to
332 * be negligible. The calculated static power is stored in @power.
333 *
334 * Return: 0 on success, -E* on failure.
335 */
336 static int get_static_power(struct cpufreq_cooling_device *cpufreq_cdev,
337 struct thermal_zone_device *tz, unsigned long freq,
338 u32 *power)
339 {
340 struct dev_pm_opp *opp;
341 unsigned long voltage;
342 struct cpufreq_policy *policy = cpufreq_cdev->policy;
343 struct cpumask *cpumask = policy->related_cpus;
344 unsigned long freq_hz = freq * 1000;
345 struct device *dev;
346
347 if (!cpufreq_cdev->plat_get_static_power) {
348 *power = 0;
349 return 0;
350 }
351
352 dev = get_cpu_device(policy->cpu);
353 WARN_ON(!dev);
354
355 opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true);
356 if (IS_ERR(opp)) {
357 dev_warn_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
358 freq_hz, PTR_ERR(opp));
359 return -EINVAL;
360 }
361
362 voltage = dev_pm_opp_get_voltage(opp);
363 dev_pm_opp_put(opp);
364
365 if (voltage == 0) {
366 dev_err_ratelimited(dev, "Failed to get voltage for frequency %lu\n",
367 freq_hz);
368 return -EINVAL;
369 }
370
371 return cpufreq_cdev->plat_get_static_power(cpumask, tz->passive_delay,
372 voltage, power);
373 }
374
375 /**
376 * get_dynamic_power() - calculate the dynamic power
377 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
378 * @freq: current frequency
379 *
380 * Return: the dynamic power consumed by the cpus described by
381 * @cpufreq_cdev.
382 */
383 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
384 unsigned long freq)
385 {
386 u32 raw_cpu_power;
387
388 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
389 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
390 }
391
392 /* cpufreq cooling device callback functions are defined below */
393
394 /**
395 * cpufreq_get_max_state - callback function to get the max cooling state.
396 * @cdev: thermal cooling device pointer.
397 * @state: fill this variable with the max cooling state.
398 *
399 * Callback for the thermal cooling device to return the cpufreq
400 * max cooling state.
401 *
402 * Return: 0 on success, an error code otherwise.
403 */
404 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
405 unsigned long *state)
406 {
407 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
408
409 *state = cpufreq_cdev->max_level;
410 return 0;
411 }
412
413 /**
414 * cpufreq_get_cur_state - callback function to get the current cooling state.
415 * @cdev: thermal cooling device pointer.
416 * @state: fill this variable with the current cooling state.
417 *
418 * Callback for the thermal cooling device to return the cpufreq
419 * current cooling state.
420 *
421 * Return: 0 on success, an error code otherwise.
422 */
423 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
424 unsigned long *state)
425 {
426 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
427
428 *state = cpufreq_cdev->cpufreq_state;
429
430 return 0;
431 }
432
433 /**
434 * cpufreq_set_cur_state - callback function to set the current cooling state.
435 * @cdev: thermal cooling device pointer.
436 * @state: set this variable to the current cooling state.
437 *
438 * Callback for the thermal cooling device to change the cpufreq
439 * current cooling state.
440 *
441 * Return: 0 on success, an error code otherwise.
442 */
443 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
444 unsigned long state)
445 {
446 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
447 unsigned int clip_freq;
448
449 /* Request state should be less than max_level */
450 if (WARN_ON(state > cpufreq_cdev->max_level))
451 return -EINVAL;
452
453 /* Check if the old cooling action is same as new cooling action */
454 if (cpufreq_cdev->cpufreq_state == state)
455 return 0;
456
457 clip_freq = cpufreq_cdev->freq_table[state].frequency;
458 cpufreq_cdev->cpufreq_state = state;
459 cpufreq_cdev->clipped_freq = clip_freq;
460
461 cpufreq_update_policy(cpufreq_cdev->policy->cpu);
462
463 return 0;
464 }
465
466 /**
467 * cpufreq_get_requested_power() - get the current power
468 * @cdev: &thermal_cooling_device pointer
469 * @tz: a valid thermal zone device pointer
470 * @power: pointer in which to store the resulting power
471 *
472 * Calculate the current power consumption of the cpus in milliwatts
473 * and store it in @power. This function should actually calculate
474 * the requested power, but it's hard to get the frequency that
475 * cpufreq would have assigned if there were no thermal limits.
476 * Instead, we calculate the current power on the assumption that the
477 * immediate future will look like the immediate past.
478 *
479 * We use the current frequency and the average load since this
480 * function was last called. In reality, there could have been
481 * multiple opps since this function was last called and that affects
482 * the load calculation. While it's not perfectly accurate, this
483 * simplification is good enough and works. REVISIT this, as more
484 * complex code may be needed if experiments show that it's not
485 * accurate enough.
486 *
487 * Return: 0 on success, -E* if getting the static power failed.
488 */
489 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
490 struct thermal_zone_device *tz,
491 u32 *power)
492 {
493 unsigned long freq;
494 int i = 0, cpu, ret;
495 u32 static_power, dynamic_power, total_load = 0;
496 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
497 struct cpufreq_policy *policy = cpufreq_cdev->policy;
498 u32 *load_cpu = NULL;
499
500 freq = cpufreq_quick_get(policy->cpu);
501
502 if (trace_thermal_power_cpu_get_power_enabled()) {
503 u32 ncpus = cpumask_weight(policy->related_cpus);
504
505 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
506 }
507
508 for_each_cpu(cpu, policy->related_cpus) {
509 u32 load;
510
511 if (cpu_online(cpu))
512 load = get_load(cpufreq_cdev, cpu, i);
513 else
514 load = 0;
515
516 total_load += load;
517 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
518 load_cpu[i] = load;
519
520 i++;
521 }
522
523 cpufreq_cdev->last_load = total_load;
524
525 dynamic_power = get_dynamic_power(cpufreq_cdev, freq);
526 ret = get_static_power(cpufreq_cdev, tz, freq, &static_power);
527 if (ret) {
528 kfree(load_cpu);
529 return ret;
530 }
531
532 if (load_cpu) {
533 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
534 load_cpu, i, dynamic_power,
535 static_power);
536
537 kfree(load_cpu);
538 }
539
540 *power = static_power + dynamic_power;
541 return 0;
542 }
543
544 /**
545 * cpufreq_state2power() - convert a cpu cdev state to power consumed
546 * @cdev: &thermal_cooling_device pointer
547 * @tz: a valid thermal zone device pointer
548 * @state: cooling device state to be converted
549 * @power: pointer in which to store the resulting power
550 *
551 * Convert cooling device state @state into power consumption in
552 * milliwatts assuming 100% load. Store the calculated power in
553 * @power.
554 *
555 * Return: 0 on success, -EINVAL if the cooling device state could not
556 * be converted into a frequency or other -E* if there was an error
557 * when calculating the static power.
558 */
559 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
560 struct thermal_zone_device *tz,
561 unsigned long state, u32 *power)
562 {
563 unsigned int freq, num_cpus;
564 u32 static_power, dynamic_power;
565 int ret;
566 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
567
568 /* Request state should be less than max_level */
569 if (WARN_ON(state > cpufreq_cdev->max_level))
570 return -EINVAL;
571
572 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
573
574 freq = cpufreq_cdev->freq_table[state].frequency;
575 dynamic_power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
576 ret = get_static_power(cpufreq_cdev, tz, freq, &static_power);
577 if (ret)
578 return ret;
579
580 *power = static_power + dynamic_power;
581 return ret;
582 }
583
584 /**
585 * cpufreq_power2state() - convert power to a cooling device state
586 * @cdev: &thermal_cooling_device pointer
587 * @tz: a valid thermal zone device pointer
588 * @power: power in milliwatts to be converted
589 * @state: pointer in which to store the resulting state
590 *
591 * Calculate a cooling device state for the cpus described by @cdev
592 * that would allow them to consume at most @power mW and store it in
593 * @state. Note that this calculation depends on external factors
594 * such as the cpu load or the current static power. Calling this
595 * function with the same power as input can yield different cooling
596 * device states depending on those external factors.
597 *
598 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
599 * the calculated frequency could not be converted to a valid state.
600 * The latter should not happen unless the frequencies available to
601 * cpufreq have changed since the initialization of the cpu cooling
602 * device.
603 */
604 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
605 struct thermal_zone_device *tz, u32 power,
606 unsigned long *state)
607 {
608 unsigned int cur_freq, target_freq;
609 int ret;
610 s32 dyn_power;
611 u32 last_load, normalised_power, static_power;
612 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
613 struct cpufreq_policy *policy = cpufreq_cdev->policy;
614
615 cur_freq = cpufreq_quick_get(policy->cpu);
616 ret = get_static_power(cpufreq_cdev, tz, cur_freq, &static_power);
617 if (ret)
618 return ret;
619
620 dyn_power = power - static_power;
621 dyn_power = dyn_power > 0 ? dyn_power : 0;
622 last_load = cpufreq_cdev->last_load ?: 1;
623 normalised_power = (dyn_power * 100) / last_load;
624 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
625
626 *state = get_level(cpufreq_cdev, target_freq);
627 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
628 power);
629 return 0;
630 }
631
632 /* Bind cpufreq callbacks to thermal cooling device ops */
633
634 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
635 .get_max_state = cpufreq_get_max_state,
636 .get_cur_state = cpufreq_get_cur_state,
637 .set_cur_state = cpufreq_set_cur_state,
638 };
639
640 static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
641 .get_max_state = cpufreq_get_max_state,
642 .get_cur_state = cpufreq_get_cur_state,
643 .set_cur_state = cpufreq_set_cur_state,
644 .get_requested_power = cpufreq_get_requested_power,
645 .state2power = cpufreq_state2power,
646 .power2state = cpufreq_power2state,
647 };
648
649 /* Notifier for cpufreq policy change */
650 static struct notifier_block thermal_cpufreq_notifier_block = {
651 .notifier_call = cpufreq_thermal_notifier,
652 };
653
654 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
655 unsigned int prev_max)
656 {
657 struct cpufreq_frequency_table *pos;
658 unsigned int max = 0;
659
660 cpufreq_for_each_valid_entry(pos, table) {
661 if (pos->frequency > max && pos->frequency < prev_max)
662 max = pos->frequency;
663 }
664
665 return max;
666 }
667
668 /**
669 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
670 * @np: a valid struct device_node to the cooling device device tree node
671 * @policy: cpufreq policy
672 * Normally this should be same as cpufreq policy->related_cpus.
673 * @capacitance: dynamic power coefficient for these cpus
674 * @plat_static_func: function to calculate the static power consumed by these
675 * cpus (optional)
676 *
677 * This interface function registers the cpufreq cooling device with the name
678 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
679 * cooling devices. It also gives the opportunity to link the cooling device
680 * with a device tree node, in order to bind it via the thermal DT code.
681 *
682 * Return: a valid struct thermal_cooling_device pointer on success,
683 * on failure, it returns a corresponding ERR_PTR().
684 */
685 static struct thermal_cooling_device *
686 __cpufreq_cooling_register(struct device_node *np,
687 struct cpufreq_policy *policy, u32 capacitance,
688 get_static_t plat_static_func)
689 {
690 struct thermal_cooling_device *cdev;
691 struct cpufreq_cooling_device *cpufreq_cdev;
692 char dev_name[THERMAL_NAME_LENGTH];
693 unsigned int freq, i, num_cpus;
694 int ret;
695 struct thermal_cooling_device_ops *cooling_ops;
696 bool first;
697
698 if (IS_ERR_OR_NULL(policy)) {
699 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
700 return ERR_PTR(-EINVAL);
701 }
702
703 i = cpufreq_table_count_valid_entries(policy);
704 if (!i) {
705 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
706 __func__);
707 return ERR_PTR(-ENODEV);
708 }
709
710 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
711 if (!cpufreq_cdev)
712 return ERR_PTR(-ENOMEM);
713
714 cpufreq_cdev->policy = policy;
715 num_cpus = cpumask_weight(policy->related_cpus);
716 cpufreq_cdev->idle_time = kcalloc(num_cpus,
717 sizeof(*cpufreq_cdev->idle_time),
718 GFP_KERNEL);
719 if (!cpufreq_cdev->idle_time) {
720 cdev = ERR_PTR(-ENOMEM);
721 goto free_cdev;
722 }
723
724 /* max_level is an index, not a counter */
725 cpufreq_cdev->max_level = i - 1;
726
727 cpufreq_cdev->freq_table = kmalloc_array(i,
728 sizeof(*cpufreq_cdev->freq_table),
729 GFP_KERNEL);
730 if (!cpufreq_cdev->freq_table) {
731 cdev = ERR_PTR(-ENOMEM);
732 goto free_idle_time;
733 }
734
735 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
736 if (ret < 0) {
737 cdev = ERR_PTR(ret);
738 goto free_table;
739 }
740 cpufreq_cdev->id = ret;
741
742 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
743 cpufreq_cdev->id);
744
745 /* Fill freq-table in descending order of frequencies */
746 for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
747 freq = find_next_max(policy->freq_table, freq);
748 cpufreq_cdev->freq_table[i].frequency = freq;
749
750 /* Warn for duplicate entries */
751 if (!freq)
752 pr_warn("%s: table has duplicate entries\n", __func__);
753 else
754 pr_debug("%s: freq:%u KHz\n", __func__, freq);
755 }
756
757 if (capacitance) {
758 cpufreq_cdev->plat_get_static_power = plat_static_func;
759
760 ret = update_freq_table(cpufreq_cdev, capacitance);
761 if (ret) {
762 cdev = ERR_PTR(ret);
763 goto remove_ida;
764 }
765
766 cooling_ops = &cpufreq_power_cooling_ops;
767 } else {
768 cooling_ops = &cpufreq_cooling_ops;
769 }
770
771 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
772 cooling_ops);
773 if (IS_ERR(cdev))
774 goto remove_ida;
775
776 cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0].frequency;
777 cpufreq_cdev->cdev = cdev;
778
779 mutex_lock(&cooling_list_lock);
780 /* Register the notifier for first cpufreq cooling device */
781 first = list_empty(&cpufreq_cdev_list);
782 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
783 mutex_unlock(&cooling_list_lock);
784
785 if (first)
786 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
787 CPUFREQ_POLICY_NOTIFIER);
788
789 return cdev;
790
791 remove_ida:
792 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
793 free_table:
794 kfree(cpufreq_cdev->freq_table);
795 free_idle_time:
796 kfree(cpufreq_cdev->idle_time);
797 free_cdev:
798 kfree(cpufreq_cdev);
799 return cdev;
800 }
801
802 /**
803 * cpufreq_cooling_register - function to create cpufreq cooling device.
804 * @policy: cpufreq policy
805 *
806 * This interface function registers the cpufreq cooling device with the name
807 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
808 * cooling devices.
809 *
810 * Return: a valid struct thermal_cooling_device pointer on success,
811 * on failure, it returns a corresponding ERR_PTR().
812 */
813 struct thermal_cooling_device *
814 cpufreq_cooling_register(struct cpufreq_policy *policy)
815 {
816 return __cpufreq_cooling_register(NULL, policy, 0, NULL);
817 }
818 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
819
820 /**
821 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
822 * @np: a valid struct device_node to the cooling device device tree node
823 * @policy: cpufreq policy
824 *
825 * This interface function registers the cpufreq cooling device with the name
826 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
827 * cooling devices. Using this API, the cpufreq cooling device will be
828 * linked to the device tree node provided.
829 *
830 * Return: a valid struct thermal_cooling_device pointer on success,
831 * on failure, it returns a corresponding ERR_PTR().
832 */
833 struct thermal_cooling_device *
834 of_cpufreq_cooling_register(struct device_node *np,
835 struct cpufreq_policy *policy)
836 {
837 if (!np)
838 return ERR_PTR(-EINVAL);
839
840 return __cpufreq_cooling_register(np, policy, 0, NULL);
841 }
842 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
843
844 /**
845 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
846 * @policy: cpufreq policy
847 * @capacitance: dynamic power coefficient for these cpus
848 * @plat_static_func: function to calculate the static power consumed by these
849 * cpus (optional)
850 *
851 * This interface function registers the cpufreq cooling device with
852 * the name "thermal-cpufreq-%x". This api can support multiple
853 * instances of cpufreq cooling devices. Using this function, the
854 * cooling device will implement the power extensions by using a
855 * simple cpu power model. The cpus must have registered their OPPs
856 * using the OPP library.
857 *
858 * An optional @plat_static_func may be provided to calculate the
859 * static power consumed by these cpus. If the platform's static
860 * power consumption is unknown or negligible, make it NULL.
861 *
862 * Return: a valid struct thermal_cooling_device pointer on success,
863 * on failure, it returns a corresponding ERR_PTR().
864 */
865 struct thermal_cooling_device *
866 cpufreq_power_cooling_register(struct cpufreq_policy *policy, u32 capacitance,
867 get_static_t plat_static_func)
868 {
869 return __cpufreq_cooling_register(NULL, policy, capacitance,
870 plat_static_func);
871 }
872 EXPORT_SYMBOL(cpufreq_power_cooling_register);
873
874 /**
875 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
876 * @np: a valid struct device_node to the cooling device device tree node
877 * @policy: cpufreq policy
878 * @capacitance: dynamic power coefficient for these cpus
879 * @plat_static_func: function to calculate the static power consumed by these
880 * cpus (optional)
881 *
882 * This interface function registers the cpufreq cooling device with
883 * the name "thermal-cpufreq-%x". This api can support multiple
884 * instances of cpufreq cooling devices. Using this API, the cpufreq
885 * cooling device will be linked to the device tree node provided.
886 * Using this function, the cooling device will implement the power
887 * extensions by using a simple cpu power model. The cpus must have
888 * registered their OPPs using the OPP library.
889 *
890 * An optional @plat_static_func may be provided to calculate the
891 * static power consumed by these cpus. If the platform's static
892 * power consumption is unknown or negligible, make it NULL.
893 *
894 * Return: a valid struct thermal_cooling_device pointer on success,
895 * on failure, it returns a corresponding ERR_PTR().
896 */
897 struct thermal_cooling_device *
898 of_cpufreq_power_cooling_register(struct device_node *np,
899 struct cpufreq_policy *policy,
900 u32 capacitance,
901 get_static_t plat_static_func)
902 {
903 if (!np)
904 return ERR_PTR(-EINVAL);
905
906 return __cpufreq_cooling_register(np, policy, capacitance,
907 plat_static_func);
908 }
909 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
910
911 /**
912 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
913 * @cdev: thermal cooling device pointer.
914 *
915 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
916 */
917 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
918 {
919 struct cpufreq_cooling_device *cpufreq_cdev;
920 bool last;
921
922 if (!cdev)
923 return;
924
925 cpufreq_cdev = cdev->devdata;
926
927 mutex_lock(&cooling_list_lock);
928 list_del(&cpufreq_cdev->node);
929 /* Unregister the notifier for the last cpufreq cooling device */
930 last = list_empty(&cpufreq_cdev_list);
931 mutex_unlock(&cooling_list_lock);
932
933 if (last)
934 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
935 CPUFREQ_POLICY_NOTIFIER);
936
937 thermal_cooling_device_unregister(cpufreq_cdev->cdev);
938 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
939 kfree(cpufreq_cdev->idle_time);
940 kfree(cpufreq_cdev->freq_table);
941 kfree(cpufreq_cdev);
942 }
943 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);