]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/thermal/devfreq_cooling.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / thermal / devfreq_cooling.c
1 /*
2 * devfreq_cooling: Thermal cooling device implementation for devices using
3 * devfreq
4 *
5 * Copyright (C) 2014-2015 ARM Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * TODO:
17 * - If OPPs are added or removed after devfreq cooling has
18 * registered, the devfreq cooling won't react to it.
19 */
20
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/pm_opp.h>
26 #include <linux/thermal.h>
27
28 #include <trace/events/thermal.h>
29
30 static DEFINE_MUTEX(devfreq_lock);
31 static DEFINE_IDR(devfreq_idr);
32
33 /**
34 * struct devfreq_cooling_device - Devfreq cooling device
35 * @id: unique integer value corresponding to each
36 * devfreq_cooling_device registered.
37 * @cdev: Pointer to associated thermal cooling device.
38 * @devfreq: Pointer to associated devfreq device.
39 * @cooling_state: Current cooling state.
40 * @power_table: Pointer to table with maximum power draw for each
41 * cooling state. State is the index into the table, and
42 * the power is in mW.
43 * @freq_table: Pointer to a table with the frequencies sorted in descending
44 * order. You can index the table by cooling device state
45 * @freq_table_size: Size of the @freq_table and @power_table
46 * @power_ops: Pointer to devfreq_cooling_power, used to generate the
47 * @power_table.
48 */
49 struct devfreq_cooling_device {
50 int id;
51 struct thermal_cooling_device *cdev;
52 struct devfreq *devfreq;
53 unsigned long cooling_state;
54 u32 *power_table;
55 u32 *freq_table;
56 size_t freq_table_size;
57 struct devfreq_cooling_power *power_ops;
58 };
59
60 /**
61 * get_idr - function to get a unique id.
62 * @idr: struct idr * handle used to create a id.
63 * @id: int * value generated by this function.
64 *
65 * This function will populate @id with an unique
66 * id, using the idr API.
67 *
68 * Return: 0 on success, an error code on failure.
69 */
70 static int get_idr(struct idr *idr, int *id)
71 {
72 int ret;
73
74 mutex_lock(&devfreq_lock);
75 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
76 mutex_unlock(&devfreq_lock);
77 if (unlikely(ret < 0))
78 return ret;
79 *id = ret;
80
81 return 0;
82 }
83
84 /**
85 * release_idr - function to free the unique id.
86 * @idr: struct idr * handle used for creating the id.
87 * @id: int value representing the unique id.
88 */
89 static void release_idr(struct idr *idr, int id)
90 {
91 mutex_lock(&devfreq_lock);
92 idr_remove(idr, id);
93 mutex_unlock(&devfreq_lock);
94 }
95
96 /**
97 * partition_enable_opps() - disable all opps above a given state
98 * @dfc: Pointer to devfreq we are operating on
99 * @cdev_state: cooling device state we're setting
100 *
101 * Go through the OPPs of the device, enabling all OPPs until
102 * @cdev_state and disabling those frequencies above it.
103 */
104 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
105 unsigned long cdev_state)
106 {
107 int i;
108 struct device *dev = dfc->devfreq->dev.parent;
109
110 for (i = 0; i < dfc->freq_table_size; i++) {
111 struct dev_pm_opp *opp;
112 int ret = 0;
113 unsigned int freq = dfc->freq_table[i];
114 bool want_enable = i >= cdev_state ? true : false;
115
116 rcu_read_lock();
117 opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
118 rcu_read_unlock();
119
120 if (PTR_ERR(opp) == -ERANGE)
121 continue;
122 else if (IS_ERR(opp))
123 return PTR_ERR(opp);
124
125 if (want_enable)
126 ret = dev_pm_opp_enable(dev, freq);
127 else
128 ret = dev_pm_opp_disable(dev, freq);
129
130 if (ret)
131 return ret;
132 }
133
134 return 0;
135 }
136
137 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
138 unsigned long *state)
139 {
140 struct devfreq_cooling_device *dfc = cdev->devdata;
141
142 *state = dfc->freq_table_size - 1;
143
144 return 0;
145 }
146
147 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
148 unsigned long *state)
149 {
150 struct devfreq_cooling_device *dfc = cdev->devdata;
151
152 *state = dfc->cooling_state;
153
154 return 0;
155 }
156
157 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
158 unsigned long state)
159 {
160 struct devfreq_cooling_device *dfc = cdev->devdata;
161 struct devfreq *df = dfc->devfreq;
162 struct device *dev = df->dev.parent;
163 int ret;
164
165 if (state == dfc->cooling_state)
166 return 0;
167
168 dev_dbg(dev, "Setting cooling state %lu\n", state);
169
170 if (state >= dfc->freq_table_size)
171 return -EINVAL;
172
173 ret = partition_enable_opps(dfc, state);
174 if (ret)
175 return ret;
176
177 dfc->cooling_state = state;
178
179 return 0;
180 }
181
182 /**
183 * freq_get_state() - get the cooling state corresponding to a frequency
184 * @dfc: Pointer to devfreq cooling device
185 * @freq: frequency in Hz
186 *
187 * Return: the cooling state associated with the @freq, or
188 * THERMAL_CSTATE_INVALID if it wasn't found.
189 */
190 static unsigned long
191 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
192 {
193 int i;
194
195 for (i = 0; i < dfc->freq_table_size; i++) {
196 if (dfc->freq_table[i] == freq)
197 return i;
198 }
199
200 return THERMAL_CSTATE_INVALID;
201 }
202
203 /**
204 * get_static_power() - calculate the static power
205 * @dfc: Pointer to devfreq cooling device
206 * @freq: Frequency in Hz
207 *
208 * Calculate the static power in milliwatts using the supplied
209 * get_static_power(). The current voltage is calculated using the
210 * OPP library. If no get_static_power() was supplied, assume the
211 * static power is negligible.
212 */
213 static unsigned long
214 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
215 {
216 struct devfreq *df = dfc->devfreq;
217 struct device *dev = df->dev.parent;
218 unsigned long voltage;
219 struct dev_pm_opp *opp;
220
221 if (!dfc->power_ops->get_static_power)
222 return 0;
223
224 rcu_read_lock();
225
226 opp = dev_pm_opp_find_freq_exact(dev, freq, true);
227 if (IS_ERR(opp) && (PTR_ERR(opp) == -ERANGE))
228 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
229
230 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
231
232 rcu_read_unlock();
233
234 if (voltage == 0) {
235 dev_warn_ratelimited(dev,
236 "Failed to get voltage for frequency %lu: %ld\n",
237 freq, IS_ERR(opp) ? PTR_ERR(opp) : 0);
238 return 0;
239 }
240
241 return dfc->power_ops->get_static_power(df, voltage);
242 }
243
244 /**
245 * get_dynamic_power - calculate the dynamic power
246 * @dfc: Pointer to devfreq cooling device
247 * @freq: Frequency in Hz
248 * @voltage: Voltage in millivolts
249 *
250 * Calculate the dynamic power in milliwatts consumed by the device at
251 * frequency @freq and voltage @voltage. If the get_dynamic_power()
252 * was supplied as part of the devfreq_cooling_power struct, then that
253 * function is used. Otherwise, a simple power model (Pdyn = Coeff *
254 * Voltage^2 * Frequency) is used.
255 */
256 static unsigned long
257 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
258 unsigned long voltage)
259 {
260 u64 power;
261 u32 freq_mhz;
262 struct devfreq_cooling_power *dfc_power = dfc->power_ops;
263
264 if (dfc_power->get_dynamic_power)
265 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
266 voltage);
267
268 freq_mhz = freq / 1000000;
269 power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
270 do_div(power, 1000000000);
271
272 return power;
273 }
274
275 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
276 struct thermal_zone_device *tz,
277 u32 *power)
278 {
279 struct devfreq_cooling_device *dfc = cdev->devdata;
280 struct devfreq *df = dfc->devfreq;
281 struct devfreq_dev_status *status = &df->last_status;
282 unsigned long state;
283 unsigned long freq = status->current_frequency;
284 u32 dyn_power, static_power;
285
286 /* Get dynamic power for state */
287 state = freq_get_state(dfc, freq);
288 if (state == THERMAL_CSTATE_INVALID)
289 return -EAGAIN;
290
291 dyn_power = dfc->power_table[state];
292
293 /* Scale dynamic power for utilization */
294 dyn_power = (dyn_power * status->busy_time) / status->total_time;
295
296 /* Get static power */
297 static_power = get_static_power(dfc, freq);
298
299 trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
300 static_power);
301
302 *power = dyn_power + static_power;
303
304 return 0;
305 }
306
307 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
308 struct thermal_zone_device *tz,
309 unsigned long state,
310 u32 *power)
311 {
312 struct devfreq_cooling_device *dfc = cdev->devdata;
313 unsigned long freq;
314 u32 static_power;
315
316 if (state >= dfc->freq_table_size)
317 return -EINVAL;
318
319 freq = dfc->freq_table[state];
320 static_power = get_static_power(dfc, freq);
321
322 *power = dfc->power_table[state] + static_power;
323 return 0;
324 }
325
326 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
327 struct thermal_zone_device *tz,
328 u32 power, unsigned long *state)
329 {
330 struct devfreq_cooling_device *dfc = cdev->devdata;
331 struct devfreq *df = dfc->devfreq;
332 struct devfreq_dev_status *status = &df->last_status;
333 unsigned long freq = status->current_frequency;
334 unsigned long busy_time;
335 s32 dyn_power;
336 u32 static_power;
337 int i;
338
339 static_power = get_static_power(dfc, freq);
340
341 dyn_power = power - static_power;
342 dyn_power = dyn_power > 0 ? dyn_power : 0;
343
344 /* Scale dynamic power for utilization */
345 busy_time = status->busy_time ?: 1;
346 dyn_power = (dyn_power * status->total_time) / busy_time;
347
348 /*
349 * Find the first cooling state that is within the power
350 * budget for dynamic power.
351 */
352 for (i = 0; i < dfc->freq_table_size - 1; i++)
353 if (dyn_power >= dfc->power_table[i])
354 break;
355
356 *state = i;
357 trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
358 return 0;
359 }
360
361 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
362 .get_max_state = devfreq_cooling_get_max_state,
363 .get_cur_state = devfreq_cooling_get_cur_state,
364 .set_cur_state = devfreq_cooling_set_cur_state,
365 };
366
367 /**
368 * devfreq_cooling_gen_tables() - Generate power and freq tables.
369 * @dfc: Pointer to devfreq cooling device.
370 *
371 * Generate power and frequency tables: the power table hold the
372 * device's maximum power usage at each cooling state (OPP). The
373 * static and dynamic power using the appropriate voltage and
374 * frequency for the state, is acquired from the struct
375 * devfreq_cooling_power, and summed to make the maximum power draw.
376 *
377 * The frequency table holds the frequencies in descending order.
378 * That way its indexed by cooling device state.
379 *
380 * The tables are malloced, and pointers put in dfc. They must be
381 * freed when unregistering the devfreq cooling device.
382 *
383 * Return: 0 on success, negative error code on failure.
384 */
385 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
386 {
387 struct devfreq *df = dfc->devfreq;
388 struct device *dev = df->dev.parent;
389 int ret, num_opps;
390 unsigned long freq;
391 u32 *power_table = NULL;
392 u32 *freq_table;
393 int i;
394
395 num_opps = dev_pm_opp_get_opp_count(dev);
396
397 if (dfc->power_ops) {
398 power_table = kcalloc(num_opps, sizeof(*power_table),
399 GFP_KERNEL);
400 if (!power_table)
401 return -ENOMEM;
402 }
403
404 freq_table = kcalloc(num_opps, sizeof(*freq_table),
405 GFP_KERNEL);
406 if (!freq_table) {
407 ret = -ENOMEM;
408 goto free_power_table;
409 }
410
411 for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
412 unsigned long power_dyn, voltage;
413 struct dev_pm_opp *opp;
414
415 rcu_read_lock();
416
417 opp = dev_pm_opp_find_freq_floor(dev, &freq);
418 if (IS_ERR(opp)) {
419 rcu_read_unlock();
420 ret = PTR_ERR(opp);
421 goto free_tables;
422 }
423
424 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
425
426 rcu_read_unlock();
427
428 if (dfc->power_ops) {
429 power_dyn = get_dynamic_power(dfc, freq, voltage);
430
431 dev_dbg(dev, "Dynamic power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
432 freq / 1000000, voltage, power_dyn, power_dyn);
433
434 power_table[i] = power_dyn;
435 }
436
437 freq_table[i] = freq;
438 }
439
440 if (dfc->power_ops)
441 dfc->power_table = power_table;
442
443 dfc->freq_table = freq_table;
444 dfc->freq_table_size = num_opps;
445
446 return 0;
447
448 free_tables:
449 kfree(freq_table);
450 free_power_table:
451 kfree(power_table);
452
453 return ret;
454 }
455
456 /**
457 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
458 * with OF and power information.
459 * @np: Pointer to OF device_node.
460 * @df: Pointer to devfreq device.
461 * @dfc_power: Pointer to devfreq_cooling_power.
462 *
463 * Register a devfreq cooling device. The available OPPs must be
464 * registered on the device.
465 *
466 * If @dfc_power is provided, the cooling device is registered with the
467 * power extensions. For the power extensions to work correctly,
468 * devfreq should use the simple_ondemand governor, other governors
469 * are not currently supported.
470 */
471 struct thermal_cooling_device *
472 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
473 struct devfreq_cooling_power *dfc_power)
474 {
475 struct thermal_cooling_device *cdev;
476 struct devfreq_cooling_device *dfc;
477 char dev_name[THERMAL_NAME_LENGTH];
478 int err;
479
480 dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
481 if (!dfc)
482 return ERR_PTR(-ENOMEM);
483
484 dfc->devfreq = df;
485
486 if (dfc_power) {
487 dfc->power_ops = dfc_power;
488
489 devfreq_cooling_ops.get_requested_power =
490 devfreq_cooling_get_requested_power;
491 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
492 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
493 }
494
495 err = devfreq_cooling_gen_tables(dfc);
496 if (err)
497 goto free_dfc;
498
499 err = get_idr(&devfreq_idr, &dfc->id);
500 if (err)
501 goto free_tables;
502
503 snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
504
505 cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
506 &devfreq_cooling_ops);
507 if (IS_ERR(cdev)) {
508 err = PTR_ERR(cdev);
509 dev_err(df->dev.parent,
510 "Failed to register devfreq cooling device (%d)\n",
511 err);
512 goto release_idr;
513 }
514
515 dfc->cdev = cdev;
516
517 return cdev;
518
519 release_idr:
520 release_idr(&devfreq_idr, dfc->id);
521 free_tables:
522 kfree(dfc->power_table);
523 kfree(dfc->freq_table);
524 free_dfc:
525 kfree(dfc);
526
527 return ERR_PTR(err);
528 }
529 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
530
531 /**
532 * of_devfreq_cooling_register() - Register devfreq cooling device,
533 * with OF information.
534 * @np: Pointer to OF device_node.
535 * @df: Pointer to devfreq device.
536 */
537 struct thermal_cooling_device *
538 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
539 {
540 return of_devfreq_cooling_register_power(np, df, NULL);
541 }
542 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
543
544 /**
545 * devfreq_cooling_register() - Register devfreq cooling device.
546 * @df: Pointer to devfreq device.
547 */
548 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
549 {
550 return of_devfreq_cooling_register(NULL, df);
551 }
552 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
553
554 /**
555 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
556 * @dfc: Pointer to devfreq cooling device to unregister.
557 */
558 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
559 {
560 struct devfreq_cooling_device *dfc;
561
562 if (!cdev)
563 return;
564
565 dfc = cdev->devdata;
566
567 thermal_cooling_device_unregister(dfc->cdev);
568 release_idr(&devfreq_idr, dfc->id);
569 kfree(dfc->power_table);
570 kfree(dfc->freq_table);
571
572 kfree(dfc);
573 }
574 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);