]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/thermal/devfreq_cooling.c
Merge tag 'timers-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / thermal / devfreq_cooling.c
1 /*
2 * devfreq_cooling: Thermal cooling device implementation for devices using
3 * devfreq
4 *
5 * Copyright (C) 2014-2015 ARM Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * TODO:
17 * - If OPPs are added or removed after devfreq cooling has
18 * registered, the devfreq cooling won't react to it.
19 */
20
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/thermal.h>
28
29 #include <trace/events/thermal.h>
30
31 #define SCALE_ERROR_MITIGATION 100
32
33 static DEFINE_IDA(devfreq_ida);
34
35 /**
36 * struct devfreq_cooling_device - Devfreq cooling device
37 * @id: unique integer value corresponding to each
38 * devfreq_cooling_device registered.
39 * @cdev: Pointer to associated thermal cooling device.
40 * @devfreq: Pointer to associated devfreq device.
41 * @cooling_state: Current cooling state.
42 * @power_table: Pointer to table with maximum power draw for each
43 * cooling state. State is the index into the table, and
44 * the power is in mW.
45 * @freq_table: Pointer to a table with the frequencies sorted in descending
46 * order. You can index the table by cooling device state
47 * @freq_table_size: Size of the @freq_table and @power_table
48 * @power_ops: Pointer to devfreq_cooling_power, used to generate the
49 * @power_table.
50 * @res_util: Resource utilization scaling factor for the power.
51 * It is multiplied by 100 to minimize the error. It is used
52 * for estimation of the power budget instead of using
53 * 'utilization' (which is 'busy_time / 'total_time').
54 * The 'res_util' range is from 100 to (power_table[state] * 100)
55 * for the corresponding 'state'.
56 * @capped_state: index to cooling state with in dynamic power budget
57 */
58 struct devfreq_cooling_device {
59 int id;
60 struct thermal_cooling_device *cdev;
61 struct devfreq *devfreq;
62 unsigned long cooling_state;
63 u32 *power_table;
64 u32 *freq_table;
65 size_t freq_table_size;
66 struct devfreq_cooling_power *power_ops;
67 u32 res_util;
68 int capped_state;
69 };
70
71 /**
72 * partition_enable_opps() - disable all opps above a given state
73 * @dfc: Pointer to devfreq we are operating on
74 * @cdev_state: cooling device state we're setting
75 *
76 * Go through the OPPs of the device, enabling all OPPs until
77 * @cdev_state and disabling those frequencies above it.
78 */
79 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
80 unsigned long cdev_state)
81 {
82 int i;
83 struct device *dev = dfc->devfreq->dev.parent;
84
85 for (i = 0; i < dfc->freq_table_size; i++) {
86 struct dev_pm_opp *opp;
87 int ret = 0;
88 unsigned int freq = dfc->freq_table[i];
89 bool want_enable = i >= cdev_state ? true : false;
90
91 opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
92
93 if (PTR_ERR(opp) == -ERANGE)
94 continue;
95 else if (IS_ERR(opp))
96 return PTR_ERR(opp);
97
98 dev_pm_opp_put(opp);
99
100 if (want_enable)
101 ret = dev_pm_opp_enable(dev, freq);
102 else
103 ret = dev_pm_opp_disable(dev, freq);
104
105 if (ret)
106 return ret;
107 }
108
109 return 0;
110 }
111
112 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
113 unsigned long *state)
114 {
115 struct devfreq_cooling_device *dfc = cdev->devdata;
116
117 *state = dfc->freq_table_size - 1;
118
119 return 0;
120 }
121
122 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
123 unsigned long *state)
124 {
125 struct devfreq_cooling_device *dfc = cdev->devdata;
126
127 *state = dfc->cooling_state;
128
129 return 0;
130 }
131
132 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
133 unsigned long state)
134 {
135 struct devfreq_cooling_device *dfc = cdev->devdata;
136 struct devfreq *df = dfc->devfreq;
137 struct device *dev = df->dev.parent;
138 int ret;
139
140 if (state == dfc->cooling_state)
141 return 0;
142
143 dev_dbg(dev, "Setting cooling state %lu\n", state);
144
145 if (state >= dfc->freq_table_size)
146 return -EINVAL;
147
148 ret = partition_enable_opps(dfc, state);
149 if (ret)
150 return ret;
151
152 dfc->cooling_state = state;
153
154 return 0;
155 }
156
157 /**
158 * freq_get_state() - get the cooling state corresponding to a frequency
159 * @dfc: Pointer to devfreq cooling device
160 * @freq: frequency in Hz
161 *
162 * Return: the cooling state associated with the @freq, or
163 * THERMAL_CSTATE_INVALID if it wasn't found.
164 */
165 static unsigned long
166 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
167 {
168 int i;
169
170 for (i = 0; i < dfc->freq_table_size; i++) {
171 if (dfc->freq_table[i] == freq)
172 return i;
173 }
174
175 return THERMAL_CSTATE_INVALID;
176 }
177
178 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
179 {
180 struct device *dev = df->dev.parent;
181 unsigned long voltage;
182 struct dev_pm_opp *opp;
183
184 opp = dev_pm_opp_find_freq_exact(dev, freq, true);
185 if (PTR_ERR(opp) == -ERANGE)
186 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
187
188 if (IS_ERR(opp)) {
189 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
190 freq, PTR_ERR(opp));
191 return 0;
192 }
193
194 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
195 dev_pm_opp_put(opp);
196
197 if (voltage == 0) {
198 dev_err_ratelimited(dev,
199 "Failed to get voltage for frequency %lu\n",
200 freq);
201 }
202
203 return voltage;
204 }
205
206 /**
207 * get_static_power() - calculate the static power
208 * @dfc: Pointer to devfreq cooling device
209 * @freq: Frequency in Hz
210 *
211 * Calculate the static power in milliwatts using the supplied
212 * get_static_power(). The current voltage is calculated using the
213 * OPP library. If no get_static_power() was supplied, assume the
214 * static power is negligible.
215 */
216 static unsigned long
217 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
218 {
219 struct devfreq *df = dfc->devfreq;
220 unsigned long voltage;
221
222 if (!dfc->power_ops->get_static_power)
223 return 0;
224
225 voltage = get_voltage(df, freq);
226
227 if (voltage == 0)
228 return 0;
229
230 return dfc->power_ops->get_static_power(df, voltage);
231 }
232
233 /**
234 * get_dynamic_power - calculate the dynamic power
235 * @dfc: Pointer to devfreq cooling device
236 * @freq: Frequency in Hz
237 * @voltage: Voltage in millivolts
238 *
239 * Calculate the dynamic power in milliwatts consumed by the device at
240 * frequency @freq and voltage @voltage. If the get_dynamic_power()
241 * was supplied as part of the devfreq_cooling_power struct, then that
242 * function is used. Otherwise, a simple power model (Pdyn = Coeff *
243 * Voltage^2 * Frequency) is used.
244 */
245 static unsigned long
246 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
247 unsigned long voltage)
248 {
249 u64 power;
250 u32 freq_mhz;
251 struct devfreq_cooling_power *dfc_power = dfc->power_ops;
252
253 if (dfc_power->get_dynamic_power)
254 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
255 voltage);
256
257 freq_mhz = freq / 1000000;
258 power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
259 do_div(power, 1000000000);
260
261 return power;
262 }
263
264
265 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
266 unsigned long freq,
267 unsigned long voltage)
268 {
269 return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
270 voltage);
271 }
272
273
274 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
275 struct thermal_zone_device *tz,
276 u32 *power)
277 {
278 struct devfreq_cooling_device *dfc = cdev->devdata;
279 struct devfreq *df = dfc->devfreq;
280 struct devfreq_dev_status *status = &df->last_status;
281 unsigned long state;
282 unsigned long freq = status->current_frequency;
283 unsigned long voltage;
284 u32 dyn_power = 0;
285 u32 static_power = 0;
286 int res;
287
288 state = freq_get_state(dfc, freq);
289 if (state == THERMAL_CSTATE_INVALID) {
290 res = -EAGAIN;
291 goto fail;
292 }
293
294 if (dfc->power_ops->get_real_power) {
295 voltage = get_voltage(df, freq);
296 if (voltage == 0) {
297 res = -EINVAL;
298 goto fail;
299 }
300
301 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
302 if (!res) {
303 state = dfc->capped_state;
304 dfc->res_util = dfc->power_table[state];
305 dfc->res_util *= SCALE_ERROR_MITIGATION;
306
307 if (*power > 1)
308 dfc->res_util /= *power;
309 } else {
310 goto fail;
311 }
312 } else {
313 dyn_power = dfc->power_table[state];
314
315 /* Scale dynamic power for utilization */
316 dyn_power *= status->busy_time;
317 dyn_power /= status->total_time;
318 /* Get static power */
319 static_power = get_static_power(dfc, freq);
320
321 *power = dyn_power + static_power;
322 }
323
324 trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
325 static_power, *power);
326
327 return 0;
328 fail:
329 /* It is safe to set max in this case */
330 dfc->res_util = SCALE_ERROR_MITIGATION;
331 return res;
332 }
333
334 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
335 struct thermal_zone_device *tz,
336 unsigned long state,
337 u32 *power)
338 {
339 struct devfreq_cooling_device *dfc = cdev->devdata;
340 unsigned long freq;
341 u32 static_power;
342
343 if (state >= dfc->freq_table_size)
344 return -EINVAL;
345
346 freq = dfc->freq_table[state];
347 static_power = get_static_power(dfc, freq);
348
349 *power = dfc->power_table[state] + static_power;
350 return 0;
351 }
352
353 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
354 struct thermal_zone_device *tz,
355 u32 power, unsigned long *state)
356 {
357 struct devfreq_cooling_device *dfc = cdev->devdata;
358 struct devfreq *df = dfc->devfreq;
359 struct devfreq_dev_status *status = &df->last_status;
360 unsigned long freq = status->current_frequency;
361 unsigned long busy_time;
362 s32 dyn_power;
363 u32 static_power;
364 s32 est_power;
365 int i;
366
367 if (dfc->power_ops->get_real_power) {
368 /* Scale for resource utilization */
369 est_power = power * dfc->res_util;
370 est_power /= SCALE_ERROR_MITIGATION;
371 } else {
372 static_power = get_static_power(dfc, freq);
373
374 dyn_power = power - static_power;
375 dyn_power = dyn_power > 0 ? dyn_power : 0;
376
377 /* Scale dynamic power for utilization */
378 busy_time = status->busy_time ?: 1;
379 est_power = (dyn_power * status->total_time) / busy_time;
380 }
381
382 /*
383 * Find the first cooling state that is within the power
384 * budget for dynamic power.
385 */
386 for (i = 0; i < dfc->freq_table_size - 1; i++)
387 if (est_power >= dfc->power_table[i])
388 break;
389
390 *state = i;
391 dfc->capped_state = i;
392 trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
393 return 0;
394 }
395
396 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
397 .get_max_state = devfreq_cooling_get_max_state,
398 .get_cur_state = devfreq_cooling_get_cur_state,
399 .set_cur_state = devfreq_cooling_set_cur_state,
400 };
401
402 /**
403 * devfreq_cooling_gen_tables() - Generate power and freq tables.
404 * @dfc: Pointer to devfreq cooling device.
405 *
406 * Generate power and frequency tables: the power table hold the
407 * device's maximum power usage at each cooling state (OPP). The
408 * static and dynamic power using the appropriate voltage and
409 * frequency for the state, is acquired from the struct
410 * devfreq_cooling_power, and summed to make the maximum power draw.
411 *
412 * The frequency table holds the frequencies in descending order.
413 * That way its indexed by cooling device state.
414 *
415 * The tables are malloced, and pointers put in dfc. They must be
416 * freed when unregistering the devfreq cooling device.
417 *
418 * Return: 0 on success, negative error code on failure.
419 */
420 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
421 {
422 struct devfreq *df = dfc->devfreq;
423 struct device *dev = df->dev.parent;
424 int ret, num_opps;
425 unsigned long freq;
426 u32 *power_table = NULL;
427 u32 *freq_table;
428 int i;
429
430 num_opps = dev_pm_opp_get_opp_count(dev);
431
432 if (dfc->power_ops) {
433 power_table = kcalloc(num_opps, sizeof(*power_table),
434 GFP_KERNEL);
435 if (!power_table)
436 return -ENOMEM;
437 }
438
439 freq_table = kcalloc(num_opps, sizeof(*freq_table),
440 GFP_KERNEL);
441 if (!freq_table) {
442 ret = -ENOMEM;
443 goto free_power_table;
444 }
445
446 for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
447 unsigned long power, voltage;
448 struct dev_pm_opp *opp;
449
450 opp = dev_pm_opp_find_freq_floor(dev, &freq);
451 if (IS_ERR(opp)) {
452 ret = PTR_ERR(opp);
453 goto free_tables;
454 }
455
456 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
457 dev_pm_opp_put(opp);
458
459 if (dfc->power_ops) {
460 if (dfc->power_ops->get_real_power)
461 power = get_total_power(dfc, freq, voltage);
462 else
463 power = get_dynamic_power(dfc, freq, voltage);
464
465 dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
466 freq / 1000000, voltage, power, power);
467
468 power_table[i] = power;
469 }
470
471 freq_table[i] = freq;
472 }
473
474 if (dfc->power_ops)
475 dfc->power_table = power_table;
476
477 dfc->freq_table = freq_table;
478 dfc->freq_table_size = num_opps;
479
480 return 0;
481
482 free_tables:
483 kfree(freq_table);
484 free_power_table:
485 kfree(power_table);
486
487 return ret;
488 }
489
490 /**
491 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
492 * with OF and power information.
493 * @np: Pointer to OF device_node.
494 * @df: Pointer to devfreq device.
495 * @dfc_power: Pointer to devfreq_cooling_power.
496 *
497 * Register a devfreq cooling device. The available OPPs must be
498 * registered on the device.
499 *
500 * If @dfc_power is provided, the cooling device is registered with the
501 * power extensions. For the power extensions to work correctly,
502 * devfreq should use the simple_ondemand governor, other governors
503 * are not currently supported.
504 */
505 struct thermal_cooling_device *
506 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
507 struct devfreq_cooling_power *dfc_power)
508 {
509 struct thermal_cooling_device *cdev;
510 struct devfreq_cooling_device *dfc;
511 char dev_name[THERMAL_NAME_LENGTH];
512 int err;
513
514 dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
515 if (!dfc)
516 return ERR_PTR(-ENOMEM);
517
518 dfc->devfreq = df;
519
520 if (dfc_power) {
521 dfc->power_ops = dfc_power;
522
523 devfreq_cooling_ops.get_requested_power =
524 devfreq_cooling_get_requested_power;
525 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
526 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
527 }
528
529 err = devfreq_cooling_gen_tables(dfc);
530 if (err)
531 goto free_dfc;
532
533 err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
534 if (err < 0)
535 goto free_tables;
536 dfc->id = err;
537
538 snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
539
540 cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
541 &devfreq_cooling_ops);
542 if (IS_ERR(cdev)) {
543 err = PTR_ERR(cdev);
544 dev_err(df->dev.parent,
545 "Failed to register devfreq cooling device (%d)\n",
546 err);
547 goto release_ida;
548 }
549
550 dfc->cdev = cdev;
551
552 return cdev;
553
554 release_ida:
555 ida_simple_remove(&devfreq_ida, dfc->id);
556 free_tables:
557 kfree(dfc->power_table);
558 kfree(dfc->freq_table);
559 free_dfc:
560 kfree(dfc);
561
562 return ERR_PTR(err);
563 }
564 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
565
566 /**
567 * of_devfreq_cooling_register() - Register devfreq cooling device,
568 * with OF information.
569 * @np: Pointer to OF device_node.
570 * @df: Pointer to devfreq device.
571 */
572 struct thermal_cooling_device *
573 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
574 {
575 return of_devfreq_cooling_register_power(np, df, NULL);
576 }
577 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
578
579 /**
580 * devfreq_cooling_register() - Register devfreq cooling device.
581 * @df: Pointer to devfreq device.
582 */
583 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
584 {
585 return of_devfreq_cooling_register(NULL, df);
586 }
587 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
588
589 /**
590 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
591 * @cdev: Pointer to devfreq cooling device to unregister.
592 */
593 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
594 {
595 struct devfreq_cooling_device *dfc;
596
597 if (!cdev)
598 return;
599
600 dfc = cdev->devdata;
601
602 thermal_cooling_device_unregister(dfc->cdev);
603 ida_simple_remove(&devfreq_ida, dfc->id);
604 kfree(dfc->power_table);
605 kfree(dfc->freq_table);
606
607 kfree(dfc);
608 }
609 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);