]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/thermal/devfreq_cooling.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-hirsute-kernel.git] / drivers / thermal / devfreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * devfreq_cooling: Thermal cooling device implementation for devices using
4 * devfreq
5 *
6 * Copyright (C) 2014-2015 ARM Limited
7 *
8 * TODO:
9 * - If OPPs are added or removed after devfreq cooling has
10 * registered, the devfreq cooling won't react to it.
11 */
12
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/pm_opp.h>
20 #include <linux/pm_qos.h>
21 #include <linux/thermal.h>
22
23 #include <trace/events/thermal.h>
24
25 #define HZ_PER_KHZ 1000
26 #define SCALE_ERROR_MITIGATION 100
27
28 static DEFINE_IDA(devfreq_ida);
29
30 /**
31 * struct devfreq_cooling_device - Devfreq cooling device
32 * @id: unique integer value corresponding to each
33 * devfreq_cooling_device registered.
34 * @cdev: Pointer to associated thermal cooling device.
35 * @devfreq: Pointer to associated devfreq device.
36 * @cooling_state: Current cooling state.
37 * @freq_table: Pointer to a table with the frequencies sorted in descending
38 * order. You can index the table by cooling device state
39 * @max_state: It is the last index, that is, one less than the number of the
40 * OPPs
41 * @power_ops: Pointer to devfreq_cooling_power, a more precised model.
42 * @res_util: Resource utilization scaling factor for the power.
43 * It is multiplied by 100 to minimize the error. It is used
44 * for estimation of the power budget instead of using
45 * 'utilization' (which is 'busy_time' / 'total_time').
46 * The 'res_util' range is from 100 to power * 100 for the
47 * corresponding 'state'.
48 * @capped_state: index to cooling state with in dynamic power budget
49 * @req_max_freq: PM QoS request for limiting the maximum frequency
50 * of the devfreq device.
51 * @em_pd: Energy Model for the associated Devfreq device
52 */
53 struct devfreq_cooling_device {
54 int id;
55 struct thermal_cooling_device *cdev;
56 struct devfreq *devfreq;
57 unsigned long cooling_state;
58 u32 *freq_table;
59 size_t max_state;
60 struct devfreq_cooling_power *power_ops;
61 u32 res_util;
62 int capped_state;
63 struct dev_pm_qos_request req_max_freq;
64 struct em_perf_domain *em_pd;
65 };
66
67 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
68 unsigned long *state)
69 {
70 struct devfreq_cooling_device *dfc = cdev->devdata;
71
72 *state = dfc->max_state;
73
74 return 0;
75 }
76
77 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
78 unsigned long *state)
79 {
80 struct devfreq_cooling_device *dfc = cdev->devdata;
81
82 *state = dfc->cooling_state;
83
84 return 0;
85 }
86
87 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
88 unsigned long state)
89 {
90 struct devfreq_cooling_device *dfc = cdev->devdata;
91 struct devfreq *df = dfc->devfreq;
92 struct device *dev = df->dev.parent;
93 unsigned long freq;
94 int perf_idx;
95
96 if (state == dfc->cooling_state)
97 return 0;
98
99 dev_dbg(dev, "Setting cooling state %lu\n", state);
100
101 if (state > dfc->max_state)
102 return -EINVAL;
103
104 if (dfc->em_pd) {
105 perf_idx = dfc->max_state - state;
106 freq = dfc->em_pd->table[perf_idx].frequency * 1000;
107 } else {
108 freq = dfc->freq_table[state];
109 }
110
111 dev_pm_qos_update_request(&dfc->req_max_freq,
112 DIV_ROUND_UP(freq, HZ_PER_KHZ));
113
114 dfc->cooling_state = state;
115
116 return 0;
117 }
118
119 /**
120 * get_perf_idx() - get the performance index corresponding to a frequency
121 * @em_pd: Pointer to device's Energy Model
122 * @freq: frequency in kHz
123 *
124 * Return: the performance index associated with the @freq, or
125 * -EINVAL if it wasn't found.
126 */
127 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
128 {
129 int i;
130
131 for (i = 0; i < em_pd->nr_perf_states; i++) {
132 if (em_pd->table[i].frequency == freq)
133 return i;
134 }
135
136 return -EINVAL;
137 }
138
139 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
140 {
141 struct device *dev = df->dev.parent;
142 unsigned long voltage;
143 struct dev_pm_opp *opp;
144
145 opp = dev_pm_opp_find_freq_exact(dev, freq, true);
146 if (PTR_ERR(opp) == -ERANGE)
147 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
148
149 if (IS_ERR(opp)) {
150 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
151 freq, PTR_ERR(opp));
152 return 0;
153 }
154
155 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
156 dev_pm_opp_put(opp);
157
158 if (voltage == 0) {
159 dev_err_ratelimited(dev,
160 "Failed to get voltage for frequency %lu\n",
161 freq);
162 }
163
164 return voltage;
165 }
166
167 static void _normalize_load(struct devfreq_dev_status *status)
168 {
169 if (status->total_time > 0xfffff) {
170 status->total_time >>= 10;
171 status->busy_time >>= 10;
172 }
173
174 status->busy_time <<= 10;
175 status->busy_time /= status->total_time ? : 1;
176
177 status->busy_time = status->busy_time ? : 1;
178 status->total_time = 1024;
179 }
180
181 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
182 u32 *power)
183 {
184 struct devfreq_cooling_device *dfc = cdev->devdata;
185 struct devfreq *df = dfc->devfreq;
186 struct devfreq_dev_status status;
187 unsigned long state;
188 unsigned long freq;
189 unsigned long voltage;
190 int res, perf_idx;
191
192 mutex_lock(&df->lock);
193 status = df->last_status;
194 mutex_unlock(&df->lock);
195
196 freq = status.current_frequency;
197
198 if (dfc->power_ops && dfc->power_ops->get_real_power) {
199 voltage = get_voltage(df, freq);
200 if (voltage == 0) {
201 res = -EINVAL;
202 goto fail;
203 }
204
205 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
206 if (!res) {
207 state = dfc->capped_state;
208 dfc->res_util = dfc->em_pd->table[state].power;
209 dfc->res_util *= SCALE_ERROR_MITIGATION;
210
211 if (*power > 1)
212 dfc->res_util /= *power;
213 } else {
214 goto fail;
215 }
216 } else {
217 /* Energy Model frequencies are in kHz */
218 perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
219 if (perf_idx < 0) {
220 res = -EAGAIN;
221 goto fail;
222 }
223
224 _normalize_load(&status);
225
226 /* Scale power for utilization */
227 *power = dfc->em_pd->table[perf_idx].power;
228 *power *= status.busy_time;
229 *power >>= 10;
230 }
231
232 trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
233
234 return 0;
235 fail:
236 /* It is safe to set max in this case */
237 dfc->res_util = SCALE_ERROR_MITIGATION;
238 return res;
239 }
240
241 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
242 unsigned long state, u32 *power)
243 {
244 struct devfreq_cooling_device *dfc = cdev->devdata;
245 int perf_idx;
246
247 if (state > dfc->max_state)
248 return -EINVAL;
249
250 perf_idx = dfc->max_state - state;
251 *power = dfc->em_pd->table[perf_idx].power;
252
253 return 0;
254 }
255
256 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
257 u32 power, unsigned long *state)
258 {
259 struct devfreq_cooling_device *dfc = cdev->devdata;
260 struct devfreq *df = dfc->devfreq;
261 struct devfreq_dev_status status;
262 unsigned long freq;
263 s32 est_power;
264 int i;
265
266 mutex_lock(&df->lock);
267 status = df->last_status;
268 mutex_unlock(&df->lock);
269
270 freq = status.current_frequency;
271
272 if (dfc->power_ops && dfc->power_ops->get_real_power) {
273 /* Scale for resource utilization */
274 est_power = power * dfc->res_util;
275 est_power /= SCALE_ERROR_MITIGATION;
276 } else {
277 /* Scale dynamic power for utilization */
278 _normalize_load(&status);
279 est_power = power << 10;
280 est_power /= status.busy_time;
281 }
282
283 /*
284 * Find the first cooling state that is within the power
285 * budget. The EM power table is sorted ascending.
286 */
287 for (i = dfc->max_state; i > 0; i--)
288 if (est_power >= dfc->em_pd->table[i].power)
289 break;
290
291 *state = dfc->max_state - i;
292 dfc->capped_state = *state;
293
294 trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
295 return 0;
296 }
297
298 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
299 .get_max_state = devfreq_cooling_get_max_state,
300 .get_cur_state = devfreq_cooling_get_cur_state,
301 .set_cur_state = devfreq_cooling_set_cur_state,
302 };
303
304 /**
305 * devfreq_cooling_gen_tables() - Generate frequency table.
306 * @dfc: Pointer to devfreq cooling device.
307 * @num_opps: Number of OPPs
308 *
309 * Generate frequency table which holds the frequencies in descending
310 * order. That way its indexed by cooling device state. This is for
311 * compatibility with drivers which do not register Energy Model.
312 *
313 * Return: 0 on success, negative error code on failure.
314 */
315 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
316 int num_opps)
317 {
318 struct devfreq *df = dfc->devfreq;
319 struct device *dev = df->dev.parent;
320 unsigned long freq;
321 int i;
322
323 dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
324 GFP_KERNEL);
325 if (!dfc->freq_table)
326 return -ENOMEM;
327
328 for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
329 struct dev_pm_opp *opp;
330
331 opp = dev_pm_opp_find_freq_floor(dev, &freq);
332 if (IS_ERR(opp)) {
333 kfree(dfc->freq_table);
334 return PTR_ERR(opp);
335 }
336
337 dev_pm_opp_put(opp);
338 dfc->freq_table[i] = freq;
339 }
340
341 return 0;
342 }
343
344 /**
345 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
346 * with OF and power information.
347 * @np: Pointer to OF device_node.
348 * @df: Pointer to devfreq device.
349 * @dfc_power: Pointer to devfreq_cooling_power.
350 *
351 * Register a devfreq cooling device. The available OPPs must be
352 * registered on the device.
353 *
354 * If @dfc_power is provided, the cooling device is registered with the
355 * power extensions. For the power extensions to work correctly,
356 * devfreq should use the simple_ondemand governor, other governors
357 * are not currently supported.
358 */
359 struct thermal_cooling_device *
360 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
361 struct devfreq_cooling_power *dfc_power)
362 {
363 struct thermal_cooling_device *cdev;
364 struct device *dev = df->dev.parent;
365 struct devfreq_cooling_device *dfc;
366 char dev_name[THERMAL_NAME_LENGTH];
367 int err, num_opps;
368
369 dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
370 if (!dfc)
371 return ERR_PTR(-ENOMEM);
372
373 dfc->devfreq = df;
374
375 dfc->em_pd = em_pd_get(dev);
376 if (dfc->em_pd) {
377 devfreq_cooling_ops.get_requested_power =
378 devfreq_cooling_get_requested_power;
379 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
380 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
381
382 dfc->power_ops = dfc_power;
383
384 num_opps = em_pd_nr_perf_states(dfc->em_pd);
385 } else {
386 /* Backward compatibility for drivers which do not use IPA */
387 dev_dbg(dev, "missing EM for cooling device\n");
388
389 num_opps = dev_pm_opp_get_opp_count(dev);
390
391 err = devfreq_cooling_gen_tables(dfc, num_opps);
392 if (err)
393 goto free_dfc;
394 }
395
396 if (num_opps <= 0) {
397 err = -EINVAL;
398 goto free_dfc;
399 }
400
401 /* max_state is an index, not a counter */
402 dfc->max_state = num_opps - 1;
403
404 err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
405 DEV_PM_QOS_MAX_FREQUENCY,
406 PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
407 if (err < 0)
408 goto free_table;
409
410 err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
411 if (err < 0)
412 goto remove_qos_req;
413
414 dfc->id = err;
415
416 snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
417
418 cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
419 &devfreq_cooling_ops);
420 if (IS_ERR(cdev)) {
421 err = PTR_ERR(cdev);
422 dev_err(dev,
423 "Failed to register devfreq cooling device (%d)\n",
424 err);
425 goto release_ida;
426 }
427
428 dfc->cdev = cdev;
429
430 return cdev;
431
432 release_ida:
433 ida_simple_remove(&devfreq_ida, dfc->id);
434 remove_qos_req:
435 dev_pm_qos_remove_request(&dfc->req_max_freq);
436 free_table:
437 kfree(dfc->freq_table);
438 free_dfc:
439 kfree(dfc);
440
441 return ERR_PTR(err);
442 }
443 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
444
445 /**
446 * of_devfreq_cooling_register() - Register devfreq cooling device,
447 * with OF information.
448 * @np: Pointer to OF device_node.
449 * @df: Pointer to devfreq device.
450 */
451 struct thermal_cooling_device *
452 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
453 {
454 return of_devfreq_cooling_register_power(np, df, NULL);
455 }
456 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
457
458 /**
459 * devfreq_cooling_register() - Register devfreq cooling device.
460 * @df: Pointer to devfreq device.
461 */
462 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
463 {
464 return of_devfreq_cooling_register(NULL, df);
465 }
466 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
467
468 /**
469 * devfreq_cooling_em_register_power() - Register devfreq cooling device with
470 * power information and automatically register Energy Model (EM)
471 * @df: Pointer to devfreq device.
472 * @dfc_power: Pointer to devfreq_cooling_power.
473 *
474 * Register a devfreq cooling device and automatically register EM. The
475 * available OPPs must be registered for the device.
476 *
477 * If @dfc_power is provided, the cooling device is registered with the
478 * power extensions. It is using the simple Energy Model which requires
479 * "dynamic-power-coefficient" a devicetree property. To not break drivers
480 * which miss that DT property, the function won't bail out when the EM
481 * registration failed. The cooling device will be registered if everything
482 * else is OK.
483 */
484 struct thermal_cooling_device *
485 devfreq_cooling_em_register(struct devfreq *df,
486 struct devfreq_cooling_power *dfc_power)
487 {
488 struct thermal_cooling_device *cdev;
489 struct device *dev;
490 int ret;
491
492 if (IS_ERR_OR_NULL(df))
493 return ERR_PTR(-EINVAL);
494
495 dev = df->dev.parent;
496
497 ret = dev_pm_opp_of_register_em(dev, NULL);
498 if (ret)
499 dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
500 ret);
501
502 cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
503
504 if (IS_ERR_OR_NULL(cdev))
505 em_dev_unregister_perf_domain(dev);
506
507 return cdev;
508 }
509 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
510
511 /**
512 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
513 * @cdev: Pointer to devfreq cooling device to unregister.
514 *
515 * Unregisters devfreq cooling device and related Energy Model if it was
516 * present.
517 */
518 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
519 {
520 struct devfreq_cooling_device *dfc;
521 struct device *dev;
522
523 if (IS_ERR_OR_NULL(cdev))
524 return;
525
526 dfc = cdev->devdata;
527 dev = dfc->devfreq->dev.parent;
528
529 thermal_cooling_device_unregister(dfc->cdev);
530 ida_simple_remove(&devfreq_ida, dfc->id);
531 dev_pm_qos_remove_request(&dfc->req_max_freq);
532
533 em_dev_unregister_perf_domain(dev);
534
535 kfree(dfc->freq_table);
536 kfree(dfc);
537 }
538 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);