]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/thermal/gov_power_allocator.c
xen/events: Fix race in set_evtchn_to_irq
[mirror_ubuntu-hirsute-kernel.git] / drivers / thermal / gov_power_allocator.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * A power allocator to manage temperature
4 *
5 * Copyright (C) 2014 ARM Ltd.
6 *
7 */
8
9 #define pr_fmt(fmt) "Power allocator: " fmt
10
11 #include <linux/rculist.h>
12 #include <linux/slab.h>
13 #include <linux/thermal.h>
14
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/thermal_power_allocator.h>
17
18 #include "thermal_core.h"
19
20 #define INVALID_TRIP -1
21
22 #define FRAC_BITS 10
23 #define int_to_frac(x) ((x) << FRAC_BITS)
24 #define frac_to_int(x) ((x) >> FRAC_BITS)
25
26 /**
27 * mul_frac() - multiply two fixed-point numbers
28 * @x: first multiplicand
29 * @y: second multiplicand
30 *
31 * Return: the result of multiplying two fixed-point numbers. The
32 * result is also a fixed-point number.
33 */
34 static inline s64 mul_frac(s64 x, s64 y)
35 {
36 return (x * y) >> FRAC_BITS;
37 }
38
39 /**
40 * div_frac() - divide two fixed-point numbers
41 * @x: the dividend
42 * @y: the divisor
43 *
44 * Return: the result of dividing two fixed-point numbers. The
45 * result is also a fixed-point number.
46 */
47 static inline s64 div_frac(s64 x, s64 y)
48 {
49 return div_s64(x << FRAC_BITS, y);
50 }
51
52 /**
53 * struct power_allocator_params - parameters for the power allocator governor
54 * @allocated_tzp: whether we have allocated tzp for this thermal zone and
55 * it needs to be freed on unbind
56 * @err_integral: accumulated error in the PID controller.
57 * @prev_err: error in the previous iteration of the PID controller.
58 * Used to calculate the derivative term.
59 * @trip_switch_on: first passive trip point of the thermal zone. The
60 * governor switches on when this trip point is crossed.
61 * If the thermal zone only has one passive trip point,
62 * @trip_switch_on should be INVALID_TRIP.
63 * @trip_max_desired_temperature: last passive trip point of the thermal
64 * zone. The temperature we are
65 * controlling for.
66 * @sustainable_power: Sustainable power (heat) that this thermal zone can
67 * dissipate
68 */
69 struct power_allocator_params {
70 bool allocated_tzp;
71 s64 err_integral;
72 s32 prev_err;
73 int trip_switch_on;
74 int trip_max_desired_temperature;
75 u32 sustainable_power;
76 };
77
78 /**
79 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
80 * @tz: thermal zone we are operating in
81 *
82 * For thermal zones that don't provide a sustainable_power in their
83 * thermal_zone_params, estimate one. Calculate it using the minimum
84 * power of all the cooling devices as that gives a valid value that
85 * can give some degree of functionality. For optimal performance of
86 * this governor, provide a sustainable_power in the thermal zone's
87 * thermal_zone_params.
88 */
89 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
90 {
91 u32 sustainable_power = 0;
92 struct thermal_instance *instance;
93 struct power_allocator_params *params = tz->governor_data;
94
95 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
96 struct thermal_cooling_device *cdev = instance->cdev;
97 u32 min_power;
98
99 if (instance->trip != params->trip_max_desired_temperature)
100 continue;
101
102 if (!cdev_is_power_actor(cdev))
103 continue;
104
105 if (cdev->ops->state2power(cdev, instance->upper, &min_power))
106 continue;
107
108 sustainable_power += min_power;
109 }
110
111 return sustainable_power;
112 }
113
114 /**
115 * estimate_pid_constants() - Estimate the constants for the PID controller
116 * @tz: thermal zone for which to estimate the constants
117 * @sustainable_power: sustainable power for the thermal zone
118 * @trip_switch_on: trip point number for the switch on temperature
119 * @control_temp: target temperature for the power allocator governor
120 *
121 * This function is used to update the estimation of the PID
122 * controller constants in struct thermal_zone_parameters.
123 */
124 static void estimate_pid_constants(struct thermal_zone_device *tz,
125 u32 sustainable_power, int trip_switch_on,
126 int control_temp)
127 {
128 int ret;
129 int switch_on_temp;
130 u32 temperature_threshold;
131 s32 k_i;
132
133 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
134 if (ret)
135 switch_on_temp = 0;
136
137 temperature_threshold = control_temp - switch_on_temp;
138 /*
139 * estimate_pid_constants() tries to find appropriate default
140 * values for thermal zones that don't provide them. If a
141 * system integrator has configured a thermal zone with two
142 * passive trip points at the same temperature, that person
143 * hasn't put any effort to set up the thermal zone properly
144 * so just give up.
145 */
146 if (!temperature_threshold)
147 return;
148
149 tz->tzp->k_po = int_to_frac(sustainable_power) /
150 temperature_threshold;
151
152 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
153 temperature_threshold;
154
155 k_i = tz->tzp->k_pu / 10;
156 tz->tzp->k_i = k_i > 0 ? k_i : 1;
157
158 /*
159 * The default for k_d and integral_cutoff is 0, so we can
160 * leave them as they are.
161 */
162 }
163
164 /**
165 * get_sustainable_power() - Get the right sustainable power
166 * @tz: thermal zone for which to estimate the constants
167 * @params: parameters for the power allocator governor
168 * @control_temp: target temperature for the power allocator governor
169 *
170 * This function is used for getting the proper sustainable power value based
171 * on variables which might be updated by the user sysfs interface. If that
172 * happen the new value is going to be estimated and updated. It is also used
173 * after thermal zone binding, where the initial values where set to 0.
174 */
175 static u32 get_sustainable_power(struct thermal_zone_device *tz,
176 struct power_allocator_params *params,
177 int control_temp)
178 {
179 u32 sustainable_power;
180
181 if (!tz->tzp->sustainable_power)
182 sustainable_power = estimate_sustainable_power(tz);
183 else
184 sustainable_power = tz->tzp->sustainable_power;
185
186 /* Check if it's init value 0 or there was update via sysfs */
187 if (sustainable_power != params->sustainable_power) {
188 estimate_pid_constants(tz, sustainable_power,
189 params->trip_switch_on, control_temp);
190
191 /* Do the estimation only once and make available in sysfs */
192 tz->tzp->sustainable_power = sustainable_power;
193 params->sustainable_power = sustainable_power;
194 }
195
196 return sustainable_power;
197 }
198
199 /**
200 * pid_controller() - PID controller
201 * @tz: thermal zone we are operating in
202 * @control_temp: the target temperature in millicelsius
203 * @max_allocatable_power: maximum allocatable power for this thermal zone
204 *
205 * This PID controller increases the available power budget so that the
206 * temperature of the thermal zone gets as close as possible to
207 * @control_temp and limits the power if it exceeds it. k_po is the
208 * proportional term when we are overshooting, k_pu is the
209 * proportional term when we are undershooting. integral_cutoff is a
210 * threshold below which we stop accumulating the error. The
211 * accumulated error is only valid if the requested power will make
212 * the system warmer. If the system is mostly idle, there's no point
213 * in accumulating positive error.
214 *
215 * Return: The power budget for the next period.
216 */
217 static u32 pid_controller(struct thermal_zone_device *tz,
218 int control_temp,
219 u32 max_allocatable_power)
220 {
221 s64 p, i, d, power_range;
222 s32 err, max_power_frac;
223 u32 sustainable_power;
224 struct power_allocator_params *params = tz->governor_data;
225
226 max_power_frac = int_to_frac(max_allocatable_power);
227
228 sustainable_power = get_sustainable_power(tz, params, control_temp);
229
230 err = control_temp - tz->temperature;
231 err = int_to_frac(err);
232
233 /* Calculate the proportional term */
234 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
235
236 /*
237 * Calculate the integral term
238 *
239 * if the error is less than cut off allow integration (but
240 * the integral is limited to max power)
241 */
242 i = mul_frac(tz->tzp->k_i, params->err_integral);
243
244 if (err < int_to_frac(tz->tzp->integral_cutoff)) {
245 s64 i_next = i + mul_frac(tz->tzp->k_i, err);
246
247 if (abs(i_next) < max_power_frac) {
248 i = i_next;
249 params->err_integral += err;
250 }
251 }
252
253 /*
254 * Calculate the derivative term
255 *
256 * We do err - prev_err, so with a positive k_d, a decreasing
257 * error (i.e. driving closer to the line) results in less
258 * power being applied, slowing down the controller)
259 */
260 d = mul_frac(tz->tzp->k_d, err - params->prev_err);
261 d = div_frac(d, tz->passive_delay);
262 params->prev_err = err;
263
264 power_range = p + i + d;
265
266 /* feed-forward the known sustainable dissipatable power */
267 power_range = sustainable_power + frac_to_int(power_range);
268
269 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
270
271 trace_thermal_power_allocator_pid(tz, frac_to_int(err),
272 frac_to_int(params->err_integral),
273 frac_to_int(p), frac_to_int(i),
274 frac_to_int(d), power_range);
275
276 return power_range;
277 }
278
279 /**
280 * power_actor_set_power() - limit the maximum power a cooling device consumes
281 * @cdev: pointer to &thermal_cooling_device
282 * @instance: thermal instance to update
283 * @power: the power in milliwatts
284 *
285 * Set the cooling device to consume at most @power milliwatts. The limit is
286 * expected to be a cap at the maximum power consumption.
287 *
288 * Return: 0 on success, -EINVAL if the cooling device does not
289 * implement the power actor API or -E* for other failures.
290 */
291 static int
292 power_actor_set_power(struct thermal_cooling_device *cdev,
293 struct thermal_instance *instance, u32 power)
294 {
295 unsigned long state;
296 int ret;
297
298 ret = cdev->ops->power2state(cdev, power, &state);
299 if (ret)
300 return ret;
301
302 instance->target = clamp_val(state, instance->lower, instance->upper);
303 mutex_lock(&cdev->lock);
304 cdev->updated = false;
305 mutex_unlock(&cdev->lock);
306 thermal_cdev_update(cdev);
307
308 return 0;
309 }
310
311 /**
312 * divvy_up_power() - divvy the allocated power between the actors
313 * @req_power: each actor's requested power
314 * @max_power: each actor's maximum available power
315 * @num_actors: size of the @req_power, @max_power and @granted_power's array
316 * @total_req_power: sum of @req_power
317 * @power_range: total allocated power
318 * @granted_power: output array: each actor's granted power
319 * @extra_actor_power: an appropriately sized array to be used in the
320 * function as temporary storage of the extra power given
321 * to the actors
322 *
323 * This function divides the total allocated power (@power_range)
324 * fairly between the actors. It first tries to give each actor a
325 * share of the @power_range according to how much power it requested
326 * compared to the rest of the actors. For example, if only one actor
327 * requests power, then it receives all the @power_range. If
328 * three actors each requests 1mW, each receives a third of the
329 * @power_range.
330 *
331 * If any actor received more than their maximum power, then that
332 * surplus is re-divvied among the actors based on how far they are
333 * from their respective maximums.
334 *
335 * Granted power for each actor is written to @granted_power, which
336 * should've been allocated by the calling function.
337 */
338 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
339 u32 total_req_power, u32 power_range,
340 u32 *granted_power, u32 *extra_actor_power)
341 {
342 u32 extra_power, capped_extra_power;
343 int i;
344
345 /*
346 * Prevent division by 0 if none of the actors request power.
347 */
348 if (!total_req_power)
349 total_req_power = 1;
350
351 capped_extra_power = 0;
352 extra_power = 0;
353 for (i = 0; i < num_actors; i++) {
354 u64 req_range = (u64)req_power[i] * power_range;
355
356 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
357 total_req_power);
358
359 if (granted_power[i] > max_power[i]) {
360 extra_power += granted_power[i] - max_power[i];
361 granted_power[i] = max_power[i];
362 }
363
364 extra_actor_power[i] = max_power[i] - granted_power[i];
365 capped_extra_power += extra_actor_power[i];
366 }
367
368 if (!extra_power)
369 return;
370
371 /*
372 * Re-divvy the reclaimed extra among actors based on
373 * how far they are from the max
374 */
375 extra_power = min(extra_power, capped_extra_power);
376 if (capped_extra_power > 0)
377 for (i = 0; i < num_actors; i++)
378 granted_power[i] += (extra_actor_power[i] *
379 extra_power) / capped_extra_power;
380 }
381
382 static int allocate_power(struct thermal_zone_device *tz,
383 int control_temp)
384 {
385 struct thermal_instance *instance;
386 struct power_allocator_params *params = tz->governor_data;
387 u32 *req_power, *max_power, *granted_power, *extra_actor_power;
388 u32 *weighted_req_power;
389 u32 total_req_power, max_allocatable_power, total_weighted_req_power;
390 u32 total_granted_power, power_range;
391 int i, num_actors, total_weight, ret = 0;
392 int trip_max_desired_temperature = params->trip_max_desired_temperature;
393
394 mutex_lock(&tz->lock);
395
396 num_actors = 0;
397 total_weight = 0;
398 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
399 if ((instance->trip == trip_max_desired_temperature) &&
400 cdev_is_power_actor(instance->cdev)) {
401 num_actors++;
402 total_weight += instance->weight;
403 }
404 }
405
406 if (!num_actors) {
407 ret = -ENODEV;
408 goto unlock;
409 }
410
411 /*
412 * We need to allocate five arrays of the same size:
413 * req_power, max_power, granted_power, extra_actor_power and
414 * weighted_req_power. They are going to be needed until this
415 * function returns. Allocate them all in one go to simplify
416 * the allocation and deallocation logic.
417 */
418 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
419 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
420 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
421 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
422 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
423 if (!req_power) {
424 ret = -ENOMEM;
425 goto unlock;
426 }
427
428 max_power = &req_power[num_actors];
429 granted_power = &req_power[2 * num_actors];
430 extra_actor_power = &req_power[3 * num_actors];
431 weighted_req_power = &req_power[4 * num_actors];
432
433 i = 0;
434 total_weighted_req_power = 0;
435 total_req_power = 0;
436 max_allocatable_power = 0;
437
438 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
439 int weight;
440 struct thermal_cooling_device *cdev = instance->cdev;
441
442 if (instance->trip != trip_max_desired_temperature)
443 continue;
444
445 if (!cdev_is_power_actor(cdev))
446 continue;
447
448 if (cdev->ops->get_requested_power(cdev, &req_power[i]))
449 continue;
450
451 if (!total_weight)
452 weight = 1 << FRAC_BITS;
453 else
454 weight = instance->weight;
455
456 weighted_req_power[i] = frac_to_int(weight * req_power[i]);
457
458 if (cdev->ops->state2power(cdev, instance->lower,
459 &max_power[i]))
460 continue;
461
462 total_req_power += req_power[i];
463 max_allocatable_power += max_power[i];
464 total_weighted_req_power += weighted_req_power[i];
465
466 i++;
467 }
468
469 power_range = pid_controller(tz, control_temp, max_allocatable_power);
470
471 divvy_up_power(weighted_req_power, max_power, num_actors,
472 total_weighted_req_power, power_range, granted_power,
473 extra_actor_power);
474
475 total_granted_power = 0;
476 i = 0;
477 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
478 if (instance->trip != trip_max_desired_temperature)
479 continue;
480
481 if (!cdev_is_power_actor(instance->cdev))
482 continue;
483
484 power_actor_set_power(instance->cdev, instance,
485 granted_power[i]);
486 total_granted_power += granted_power[i];
487
488 i++;
489 }
490
491 trace_thermal_power_allocator(tz, req_power, total_req_power,
492 granted_power, total_granted_power,
493 num_actors, power_range,
494 max_allocatable_power, tz->temperature,
495 control_temp - tz->temperature);
496
497 kfree(req_power);
498 unlock:
499 mutex_unlock(&tz->lock);
500
501 return ret;
502 }
503
504 /**
505 * get_governor_trips() - get the number of the two trip points that are key for this governor
506 * @tz: thermal zone to operate on
507 * @params: pointer to private data for this governor
508 *
509 * The power allocator governor works optimally with two trips points:
510 * a "switch on" trip point and a "maximum desired temperature". These
511 * are defined as the first and last passive trip points.
512 *
513 * If there is only one trip point, then that's considered to be the
514 * "maximum desired temperature" trip point and the governor is always
515 * on. If there are no passive or active trip points, then the
516 * governor won't do anything. In fact, its throttle function
517 * won't be called at all.
518 */
519 static void get_governor_trips(struct thermal_zone_device *tz,
520 struct power_allocator_params *params)
521 {
522 int i, last_active, last_passive;
523 bool found_first_passive;
524
525 found_first_passive = false;
526 last_active = INVALID_TRIP;
527 last_passive = INVALID_TRIP;
528
529 for (i = 0; i < tz->trips; i++) {
530 enum thermal_trip_type type;
531 int ret;
532
533 ret = tz->ops->get_trip_type(tz, i, &type);
534 if (ret) {
535 dev_warn(&tz->device,
536 "Failed to get trip point %d type: %d\n", i,
537 ret);
538 continue;
539 }
540
541 if (type == THERMAL_TRIP_PASSIVE) {
542 if (!found_first_passive) {
543 params->trip_switch_on = i;
544 found_first_passive = true;
545 } else {
546 last_passive = i;
547 }
548 } else if (type == THERMAL_TRIP_ACTIVE) {
549 last_active = i;
550 } else {
551 break;
552 }
553 }
554
555 if (last_passive != INVALID_TRIP) {
556 params->trip_max_desired_temperature = last_passive;
557 } else if (found_first_passive) {
558 params->trip_max_desired_temperature = params->trip_switch_on;
559 params->trip_switch_on = INVALID_TRIP;
560 } else {
561 params->trip_switch_on = INVALID_TRIP;
562 params->trip_max_desired_temperature = last_active;
563 }
564 }
565
566 static void reset_pid_controller(struct power_allocator_params *params)
567 {
568 params->err_integral = 0;
569 params->prev_err = 0;
570 }
571
572 static void allow_maximum_power(struct thermal_zone_device *tz)
573 {
574 struct thermal_instance *instance;
575 struct power_allocator_params *params = tz->governor_data;
576
577 mutex_lock(&tz->lock);
578 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
579 if ((instance->trip != params->trip_max_desired_temperature) ||
580 (!cdev_is_power_actor(instance->cdev)))
581 continue;
582
583 instance->target = 0;
584 mutex_lock(&instance->cdev->lock);
585 instance->cdev->updated = false;
586 mutex_unlock(&instance->cdev->lock);
587 thermal_cdev_update(instance->cdev);
588 }
589 mutex_unlock(&tz->lock);
590 }
591
592 /**
593 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
594 * @tz: thermal zone to bind it to
595 *
596 * Initialize the PID controller parameters and bind it to the thermal
597 * zone.
598 *
599 * Return: 0 on success, or -ENOMEM if we ran out of memory.
600 */
601 static int power_allocator_bind(struct thermal_zone_device *tz)
602 {
603 int ret;
604 struct power_allocator_params *params;
605 int control_temp;
606
607 params = kzalloc(sizeof(*params), GFP_KERNEL);
608 if (!params)
609 return -ENOMEM;
610
611 if (!tz->tzp) {
612 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
613 if (!tz->tzp) {
614 ret = -ENOMEM;
615 goto free_params;
616 }
617
618 params->allocated_tzp = true;
619 }
620
621 if (!tz->tzp->sustainable_power)
622 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
623
624 get_governor_trips(tz, params);
625
626 if (tz->trips > 0) {
627 ret = tz->ops->get_trip_temp(tz,
628 params->trip_max_desired_temperature,
629 &control_temp);
630 if (!ret)
631 estimate_pid_constants(tz, tz->tzp->sustainable_power,
632 params->trip_switch_on,
633 control_temp);
634 }
635
636 reset_pid_controller(params);
637
638 tz->governor_data = params;
639
640 return 0;
641
642 free_params:
643 kfree(params);
644
645 return ret;
646 }
647
648 static void power_allocator_unbind(struct thermal_zone_device *tz)
649 {
650 struct power_allocator_params *params = tz->governor_data;
651
652 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
653
654 if (params->allocated_tzp) {
655 kfree(tz->tzp);
656 tz->tzp = NULL;
657 }
658
659 kfree(tz->governor_data);
660 tz->governor_data = NULL;
661 }
662
663 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
664 {
665 int ret;
666 int switch_on_temp, control_temp;
667 struct power_allocator_params *params = tz->governor_data;
668
669 /*
670 * We get called for every trip point but we only need to do
671 * our calculations once
672 */
673 if (trip != params->trip_max_desired_temperature)
674 return 0;
675
676 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
677 &switch_on_temp);
678 if (!ret && (tz->temperature < switch_on_temp)) {
679 tz->passive = 0;
680 reset_pid_controller(params);
681 allow_maximum_power(tz);
682 return 0;
683 }
684
685 tz->passive = 1;
686
687 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
688 &control_temp);
689 if (ret) {
690 dev_warn(&tz->device,
691 "Failed to get the maximum desired temperature: %d\n",
692 ret);
693 return ret;
694 }
695
696 return allocate_power(tz, control_temp);
697 }
698
699 static struct thermal_governor thermal_gov_power_allocator = {
700 .name = "power_allocator",
701 .bind_to_tz = power_allocator_bind,
702 .unbind_from_tz = power_allocator_unbind,
703 .throttle = power_allocator_throttle,
704 };
705 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);