]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/thermal/intel/intel_powerclamp.c
79d214b7291c78b121c6b5a7d97823e0a5a39a2b
[mirror_ubuntu-eoan-kernel.git] / drivers / thermal / intel / intel_powerclamp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_powerclamp.c - package c-state idle injection
4 *
5 * Copyright (c) 2012, Intel Corporation.
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 *
11 * TODO:
12 * 1. better handle wakeup from external interrupts, currently a fixed
13 * compensation is added to clamping duration when excessive amount
14 * of wakeups are observed during idle time. the reason is that in
15 * case of external interrupts without need for ack, clamping down
16 * cpu in non-irq context does not reduce irq. for majority of the
17 * cases, clamping down cpu does help reduce irq as well, we should
18 * be able to differentiate the two cases and give a quantitative
19 * solution for the irqs that we can control. perhaps based on
20 * get_cpu_iowait_time_us()
21 *
22 * 2. synchronization with other hw blocks
23 */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/cpu.h>
32 #include <linux/thermal.h>
33 #include <linux/slab.h>
34 #include <linux/tick.h>
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39
40 #include <asm/nmi.h>
41 #include <asm/msr.h>
42 #include <asm/mwait.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/hardirq.h>
45
46 #define MAX_TARGET_RATIO (50U)
47 /* For each undisturbed clamping period (no extra wake ups during idle time),
48 * we increment the confidence counter for the given target ratio.
49 * CONFIDENCE_OK defines the level where runtime calibration results are
50 * valid.
51 */
52 #define CONFIDENCE_OK (3)
53 /* Default idle injection duration, driver adjust sleep time to meet target
54 * idle ratio. Similar to frequency modulation.
55 */
56 #define DEFAULT_DURATION_JIFFIES (6)
57
58 static unsigned int target_mwait;
59 static struct dentry *debug_dir;
60
61 /* user selected target */
62 static unsigned int set_target_ratio;
63 static unsigned int current_ratio;
64 static bool should_skip;
65 static bool reduce_irq;
66 static atomic_t idle_wakeup_counter;
67 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
68 * control parameters. default to BSP but BSP
69 * can be offlined.
70 */
71 static bool clamping;
72
73 static const struct sched_param sparam = {
74 .sched_priority = MAX_USER_RT_PRIO / 2,
75 };
76 struct powerclamp_worker_data {
77 struct kthread_worker *worker;
78 struct kthread_work balancing_work;
79 struct kthread_delayed_work idle_injection_work;
80 unsigned int cpu;
81 unsigned int count;
82 unsigned int guard;
83 unsigned int window_size_now;
84 unsigned int target_ratio;
85 unsigned int duration_jiffies;
86 bool clamping;
87 };
88
89 static struct powerclamp_worker_data __percpu *worker_data;
90 static struct thermal_cooling_device *cooling_dev;
91 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
92 * clamping kthread worker
93 */
94
95 static unsigned int duration;
96 static unsigned int pkg_cstate_ratio_cur;
97 static unsigned int window_size;
98
99 static int duration_set(const char *arg, const struct kernel_param *kp)
100 {
101 int ret = 0;
102 unsigned long new_duration;
103
104 ret = kstrtoul(arg, 10, &new_duration);
105 if (ret)
106 goto exit;
107 if (new_duration > 25 || new_duration < 6) {
108 pr_err("Out of recommended range %lu, between 6-25ms\n",
109 new_duration);
110 ret = -EINVAL;
111 }
112
113 duration = clamp(new_duration, 6ul, 25ul);
114 smp_mb();
115
116 exit:
117
118 return ret;
119 }
120
121 static const struct kernel_param_ops duration_ops = {
122 .set = duration_set,
123 .get = param_get_int,
124 };
125
126
127 module_param_cb(duration, &duration_ops, &duration, 0644);
128 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
129
130 struct powerclamp_calibration_data {
131 unsigned long confidence; /* used for calibration, basically a counter
132 * gets incremented each time a clamping
133 * period is completed without extra wakeups
134 * once that counter is reached given level,
135 * compensation is deemed usable.
136 */
137 unsigned long steady_comp; /* steady state compensation used when
138 * no extra wakeups occurred.
139 */
140 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
141 * mostly from external interrupts.
142 */
143 };
144
145 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
146
147 static int window_size_set(const char *arg, const struct kernel_param *kp)
148 {
149 int ret = 0;
150 unsigned long new_window_size;
151
152 ret = kstrtoul(arg, 10, &new_window_size);
153 if (ret)
154 goto exit_win;
155 if (new_window_size > 10 || new_window_size < 2) {
156 pr_err("Out of recommended window size %lu, between 2-10\n",
157 new_window_size);
158 ret = -EINVAL;
159 }
160
161 window_size = clamp(new_window_size, 2ul, 10ul);
162 smp_mb();
163
164 exit_win:
165
166 return ret;
167 }
168
169 static const struct kernel_param_ops window_size_ops = {
170 .set = window_size_set,
171 .get = param_get_int,
172 };
173
174 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
175 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
176 "\tpowerclamp controls idle ratio within this window. larger\n"
177 "\twindow size results in slower response time but more smooth\n"
178 "\tclamping results. default to 2.");
179
180 static void find_target_mwait(void)
181 {
182 unsigned int eax, ebx, ecx, edx;
183 unsigned int highest_cstate = 0;
184 unsigned int highest_subcstate = 0;
185 int i;
186
187 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
188 return;
189
190 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
191
192 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
193 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
194 return;
195
196 edx >>= MWAIT_SUBSTATE_SIZE;
197 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
198 if (edx & MWAIT_SUBSTATE_MASK) {
199 highest_cstate = i;
200 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
201 }
202 }
203 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
204 (highest_subcstate - 1);
205
206 }
207
208 struct pkg_cstate_info {
209 bool skip;
210 int msr_index;
211 int cstate_id;
212 };
213
214 #define PKG_CSTATE_INIT(id) { \
215 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
216 .cstate_id = id \
217 }
218
219 static struct pkg_cstate_info pkg_cstates[] = {
220 PKG_CSTATE_INIT(2),
221 PKG_CSTATE_INIT(3),
222 PKG_CSTATE_INIT(6),
223 PKG_CSTATE_INIT(7),
224 PKG_CSTATE_INIT(8),
225 PKG_CSTATE_INIT(9),
226 PKG_CSTATE_INIT(10),
227 {NULL},
228 };
229
230 static bool has_pkg_state_counter(void)
231 {
232 u64 val;
233 struct pkg_cstate_info *info = pkg_cstates;
234
235 /* check if any one of the counter msrs exists */
236 while (info->msr_index) {
237 if (!rdmsrl_safe(info->msr_index, &val))
238 return true;
239 info++;
240 }
241
242 return false;
243 }
244
245 static u64 pkg_state_counter(void)
246 {
247 u64 val;
248 u64 count = 0;
249 struct pkg_cstate_info *info = pkg_cstates;
250
251 while (info->msr_index) {
252 if (!info->skip) {
253 if (!rdmsrl_safe(info->msr_index, &val))
254 count += val;
255 else
256 info->skip = true;
257 }
258 info++;
259 }
260
261 return count;
262 }
263
264 static unsigned int get_compensation(int ratio)
265 {
266 unsigned int comp = 0;
267
268 /* we only use compensation if all adjacent ones are good */
269 if (ratio == 1 &&
270 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273 comp = (cal_data[ratio].steady_comp +
274 cal_data[ratio + 1].steady_comp +
275 cal_data[ratio + 2].steady_comp) / 3;
276 } else if (ratio == MAX_TARGET_RATIO - 1 &&
277 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280 comp = (cal_data[ratio].steady_comp +
281 cal_data[ratio - 1].steady_comp +
282 cal_data[ratio - 2].steady_comp) / 3;
283 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio + 1].steady_comp) / 3;
289 }
290
291 /* REVISIT: simple penalty of double idle injection */
292 if (reduce_irq)
293 comp = ratio;
294 /* do not exceed limit */
295 if (comp + ratio >= MAX_TARGET_RATIO)
296 comp = MAX_TARGET_RATIO - ratio - 1;
297
298 return comp;
299 }
300
301 static void adjust_compensation(int target_ratio, unsigned int win)
302 {
303 int delta;
304 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
305
306 /*
307 * adjust compensations if confidence level has not been reached or
308 * there are too many wakeups during the last idle injection period, we
309 * cannot trust the data for compensation.
310 */
311 if (d->confidence >= CONFIDENCE_OK ||
312 atomic_read(&idle_wakeup_counter) >
313 win * num_online_cpus())
314 return;
315
316 delta = set_target_ratio - current_ratio;
317 /* filter out bad data */
318 if (delta >= 0 && delta <= (1+target_ratio/10)) {
319 if (d->steady_comp)
320 d->steady_comp =
321 roundup(delta+d->steady_comp, 2)/2;
322 else
323 d->steady_comp = delta;
324 d->confidence++;
325 }
326 }
327
328 static bool powerclamp_adjust_controls(unsigned int target_ratio,
329 unsigned int guard, unsigned int win)
330 {
331 static u64 msr_last, tsc_last;
332 u64 msr_now, tsc_now;
333 u64 val64;
334
335 /* check result for the last window */
336 msr_now = pkg_state_counter();
337 tsc_now = rdtsc();
338
339 /* calculate pkg cstate vs tsc ratio */
340 if (!msr_last || !tsc_last)
341 current_ratio = 1;
342 else if (tsc_now-tsc_last) {
343 val64 = 100*(msr_now-msr_last);
344 do_div(val64, (tsc_now-tsc_last));
345 current_ratio = val64;
346 }
347
348 /* update record */
349 msr_last = msr_now;
350 tsc_last = tsc_now;
351
352 adjust_compensation(target_ratio, win);
353 /*
354 * too many external interrupts, set flag such
355 * that we can take measure later.
356 */
357 reduce_irq = atomic_read(&idle_wakeup_counter) >=
358 2 * win * num_online_cpus();
359
360 atomic_set(&idle_wakeup_counter, 0);
361 /* if we are above target+guard, skip */
362 return set_target_ratio + guard <= current_ratio;
363 }
364
365 static void clamp_balancing_func(struct kthread_work *work)
366 {
367 struct powerclamp_worker_data *w_data;
368 int sleeptime;
369 unsigned long target_jiffies;
370 unsigned int compensated_ratio;
371 int interval; /* jiffies to sleep for each attempt */
372
373 w_data = container_of(work, struct powerclamp_worker_data,
374 balancing_work);
375
376 /*
377 * make sure user selected ratio does not take effect until
378 * the next round. adjust target_ratio if user has changed
379 * target such that we can converge quickly.
380 */
381 w_data->target_ratio = READ_ONCE(set_target_ratio);
382 w_data->guard = 1 + w_data->target_ratio / 20;
383 w_data->window_size_now = window_size;
384 w_data->duration_jiffies = msecs_to_jiffies(duration);
385 w_data->count++;
386
387 /*
388 * systems may have different ability to enter package level
389 * c-states, thus we need to compensate the injected idle ratio
390 * to achieve the actual target reported by the HW.
391 */
392 compensated_ratio = w_data->target_ratio +
393 get_compensation(w_data->target_ratio);
394 if (compensated_ratio <= 0)
395 compensated_ratio = 1;
396 interval = w_data->duration_jiffies * 100 / compensated_ratio;
397
398 /* align idle time */
399 target_jiffies = roundup(jiffies, interval);
400 sleeptime = target_jiffies - jiffies;
401 if (sleeptime <= 0)
402 sleeptime = 1;
403
404 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
405 kthread_queue_delayed_work(w_data->worker,
406 &w_data->idle_injection_work,
407 sleeptime);
408 }
409
410 static void clamp_idle_injection_func(struct kthread_work *work)
411 {
412 struct powerclamp_worker_data *w_data;
413
414 w_data = container_of(work, struct powerclamp_worker_data,
415 idle_injection_work.work);
416
417 /*
418 * only elected controlling cpu can collect stats and update
419 * control parameters.
420 */
421 if (w_data->cpu == control_cpu &&
422 !(w_data->count % w_data->window_size_now)) {
423 should_skip =
424 powerclamp_adjust_controls(w_data->target_ratio,
425 w_data->guard,
426 w_data->window_size_now);
427 smp_mb();
428 }
429
430 if (should_skip)
431 goto balance;
432
433 play_idle(jiffies_to_msecs(w_data->duration_jiffies));
434
435 balance:
436 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
437 kthread_queue_work(w_data->worker, &w_data->balancing_work);
438 }
439
440 /*
441 * 1 HZ polling while clamping is active, useful for userspace
442 * to monitor actual idle ratio.
443 */
444 static void poll_pkg_cstate(struct work_struct *dummy);
445 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
446 static void poll_pkg_cstate(struct work_struct *dummy)
447 {
448 static u64 msr_last;
449 static u64 tsc_last;
450
451 u64 msr_now;
452 u64 tsc_now;
453 u64 val64;
454
455 msr_now = pkg_state_counter();
456 tsc_now = rdtsc();
457
458 /* calculate pkg cstate vs tsc ratio */
459 if (!msr_last || !tsc_last)
460 pkg_cstate_ratio_cur = 1;
461 else {
462 if (tsc_now - tsc_last) {
463 val64 = 100 * (msr_now - msr_last);
464 do_div(val64, (tsc_now - tsc_last));
465 pkg_cstate_ratio_cur = val64;
466 }
467 }
468
469 /* update record */
470 msr_last = msr_now;
471 tsc_last = tsc_now;
472
473 if (true == clamping)
474 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
475 }
476
477 static void start_power_clamp_worker(unsigned long cpu)
478 {
479 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
480 struct kthread_worker *worker;
481
482 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu);
483 if (IS_ERR(worker))
484 return;
485
486 w_data->worker = worker;
487 w_data->count = 0;
488 w_data->cpu = cpu;
489 w_data->clamping = true;
490 set_bit(cpu, cpu_clamping_mask);
491 sched_setscheduler(worker->task, SCHED_FIFO, &sparam);
492 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
493 kthread_init_delayed_work(&w_data->idle_injection_work,
494 clamp_idle_injection_func);
495 kthread_queue_work(w_data->worker, &w_data->balancing_work);
496 }
497
498 static void stop_power_clamp_worker(unsigned long cpu)
499 {
500 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
501
502 if (!w_data->worker)
503 return;
504
505 w_data->clamping = false;
506 /*
507 * Make sure that all works that get queued after this point see
508 * the clamping disabled. The counter part is not needed because
509 * there is an implicit memory barrier when the queued work
510 * is proceed.
511 */
512 smp_wmb();
513 kthread_cancel_work_sync(&w_data->balancing_work);
514 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
515 /*
516 * The balancing work still might be queued here because
517 * the handling of the "clapming" variable, cancel, and queue
518 * operations are not synchronized via a lock. But it is not
519 * a big deal. The balancing work is fast and destroy kthread
520 * will wait for it.
521 */
522 clear_bit(w_data->cpu, cpu_clamping_mask);
523 kthread_destroy_worker(w_data->worker);
524
525 w_data->worker = NULL;
526 }
527
528 static int start_power_clamp(void)
529 {
530 unsigned long cpu;
531
532 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
533 /* prevent cpu hotplug */
534 get_online_cpus();
535
536 /* prefer BSP */
537 control_cpu = 0;
538 if (!cpu_online(control_cpu))
539 control_cpu = smp_processor_id();
540
541 clamping = true;
542 schedule_delayed_work(&poll_pkg_cstate_work, 0);
543
544 /* start one kthread worker per online cpu */
545 for_each_online_cpu(cpu) {
546 start_power_clamp_worker(cpu);
547 }
548 put_online_cpus();
549
550 return 0;
551 }
552
553 static void end_power_clamp(void)
554 {
555 int i;
556
557 /*
558 * Block requeuing in all the kthread workers. They will flush and
559 * stop faster.
560 */
561 clamping = false;
562 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
563 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
564 pr_debug("clamping worker for cpu %d alive, destroy\n",
565 i);
566 stop_power_clamp_worker(i);
567 }
568 }
569 }
570
571 static int powerclamp_cpu_online(unsigned int cpu)
572 {
573 if (clamping == false)
574 return 0;
575 start_power_clamp_worker(cpu);
576 /* prefer BSP as controlling CPU */
577 if (cpu == 0) {
578 control_cpu = 0;
579 smp_mb();
580 }
581 return 0;
582 }
583
584 static int powerclamp_cpu_predown(unsigned int cpu)
585 {
586 if (clamping == false)
587 return 0;
588
589 stop_power_clamp_worker(cpu);
590 if (cpu != control_cpu)
591 return 0;
592
593 control_cpu = cpumask_first(cpu_online_mask);
594 if (control_cpu == cpu)
595 control_cpu = cpumask_next(cpu, cpu_online_mask);
596 smp_mb();
597 return 0;
598 }
599
600 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
601 unsigned long *state)
602 {
603 *state = MAX_TARGET_RATIO;
604
605 return 0;
606 }
607
608 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
609 unsigned long *state)
610 {
611 if (true == clamping)
612 *state = pkg_cstate_ratio_cur;
613 else
614 /* to save power, do not poll idle ratio while not clamping */
615 *state = -1; /* indicates invalid state */
616
617 return 0;
618 }
619
620 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
621 unsigned long new_target_ratio)
622 {
623 int ret = 0;
624
625 new_target_ratio = clamp(new_target_ratio, 0UL,
626 (unsigned long) (MAX_TARGET_RATIO-1));
627 if (set_target_ratio == 0 && new_target_ratio > 0) {
628 pr_info("Start idle injection to reduce power\n");
629 set_target_ratio = new_target_ratio;
630 ret = start_power_clamp();
631 goto exit_set;
632 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
633 pr_info("Stop forced idle injection\n");
634 end_power_clamp();
635 set_target_ratio = 0;
636 } else /* adjust currently running */ {
637 set_target_ratio = new_target_ratio;
638 /* make new set_target_ratio visible to other cpus */
639 smp_mb();
640 }
641
642 exit_set:
643 return ret;
644 }
645
646 /* bind to generic thermal layer as cooling device*/
647 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
648 .get_max_state = powerclamp_get_max_state,
649 .get_cur_state = powerclamp_get_cur_state,
650 .set_cur_state = powerclamp_set_cur_state,
651 };
652
653 static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
654 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
655 {}
656 };
657 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
658
659 static int __init powerclamp_probe(void)
660 {
661
662 if (!x86_match_cpu(intel_powerclamp_ids)) {
663 pr_err("CPU does not support MWAIT\n");
664 return -ENODEV;
665 }
666
667 /* The goal for idle time alignment is to achieve package cstate. */
668 if (!has_pkg_state_counter()) {
669 pr_info("No package C-state available\n");
670 return -ENODEV;
671 }
672
673 /* find the deepest mwait value */
674 find_target_mwait();
675
676 return 0;
677 }
678
679 static int powerclamp_debug_show(struct seq_file *m, void *unused)
680 {
681 int i = 0;
682
683 seq_printf(m, "controlling cpu: %d\n", control_cpu);
684 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
685 for (i = 0; i < MAX_TARGET_RATIO; i++) {
686 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
687 i,
688 cal_data[i].confidence,
689 cal_data[i].steady_comp,
690 cal_data[i].dynamic_comp);
691 }
692
693 return 0;
694 }
695
696 DEFINE_SHOW_ATTRIBUTE(powerclamp_debug);
697
698 static inline void powerclamp_create_debug_files(void)
699 {
700 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
701 if (!debug_dir)
702 return;
703
704 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
705 cal_data, &powerclamp_debug_fops))
706 goto file_error;
707
708 return;
709
710 file_error:
711 debugfs_remove_recursive(debug_dir);
712 }
713
714 static enum cpuhp_state hp_state;
715
716 static int __init powerclamp_init(void)
717 {
718 int retval;
719 int bitmap_size;
720
721 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
722 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
723 if (!cpu_clamping_mask)
724 return -ENOMEM;
725
726 /* probe cpu features and ids here */
727 retval = powerclamp_probe();
728 if (retval)
729 goto exit_free;
730
731 /* set default limit, maybe adjusted during runtime based on feedback */
732 window_size = 2;
733 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
734 "thermal/intel_powerclamp:online",
735 powerclamp_cpu_online,
736 powerclamp_cpu_predown);
737 if (retval < 0)
738 goto exit_free;
739
740 hp_state = retval;
741
742 worker_data = alloc_percpu(struct powerclamp_worker_data);
743 if (!worker_data) {
744 retval = -ENOMEM;
745 goto exit_unregister;
746 }
747
748 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
749 &powerclamp_cooling_ops);
750 if (IS_ERR(cooling_dev)) {
751 retval = -ENODEV;
752 goto exit_free_thread;
753 }
754
755 if (!duration)
756 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
757
758 powerclamp_create_debug_files();
759
760 return 0;
761
762 exit_free_thread:
763 free_percpu(worker_data);
764 exit_unregister:
765 cpuhp_remove_state_nocalls(hp_state);
766 exit_free:
767 kfree(cpu_clamping_mask);
768 return retval;
769 }
770 module_init(powerclamp_init);
771
772 static void __exit powerclamp_exit(void)
773 {
774 end_power_clamp();
775 cpuhp_remove_state_nocalls(hp_state);
776 free_percpu(worker_data);
777 thermal_cooling_device_unregister(cooling_dev);
778 kfree(cpu_clamping_mask);
779
780 cancel_delayed_work_sync(&poll_pkg_cstate_work);
781 debugfs_remove_recursive(debug_dir);
782 }
783 module_exit(powerclamp_exit);
784
785 MODULE_LICENSE("GPL");
786 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
787 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
788 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");