]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/thermal/intel_powerclamp.c
Merge powerclamp driver updates (that depend on cpuidle material) for v4.10.
[mirror_ubuntu-focal-kernel.git] / drivers / thermal / intel_powerclamp.c
1 /*
2 * intel_powerclamp.c - package c-state idle injection
3 *
4 * Copyright (c) 2012, Intel Corporation.
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22 *
23 *
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
34 *
35 * 2. synchronization with other hw blocks
36 *
37 *
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/cpu.h>
47 #include <linux/thermal.h>
48 #include <linux/slab.h>
49 #include <linux/tick.h>
50 #include <linux/debugfs.h>
51 #include <linux/seq_file.h>
52 #include <linux/sched/rt.h>
53
54 #include <asm/nmi.h>
55 #include <asm/msr.h>
56 #include <asm/mwait.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/idle.h>
59 #include <asm/hardirq.h>
60
61 #define MAX_TARGET_RATIO (50U)
62 /* For each undisturbed clamping period (no extra wake ups during idle time),
63 * we increment the confidence counter for the given target ratio.
64 * CONFIDENCE_OK defines the level where runtime calibration results are
65 * valid.
66 */
67 #define CONFIDENCE_OK (3)
68 /* Default idle injection duration, driver adjust sleep time to meet target
69 * idle ratio. Similar to frequency modulation.
70 */
71 #define DEFAULT_DURATION_JIFFIES (6)
72
73 static unsigned int target_mwait;
74 static struct dentry *debug_dir;
75
76 /* user selected target */
77 static unsigned int set_target_ratio;
78 static unsigned int current_ratio;
79 static bool should_skip;
80 static bool reduce_irq;
81 static atomic_t idle_wakeup_counter;
82 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
83 * control parameters. default to BSP but BSP
84 * can be offlined.
85 */
86 static bool clamping;
87
88 static const struct sched_param sparam = {
89 .sched_priority = MAX_USER_RT_PRIO / 2,
90 };
91 struct powerclamp_worker_data {
92 struct kthread_worker *worker;
93 struct kthread_work balancing_work;
94 struct kthread_delayed_work idle_injection_work;
95 unsigned int cpu;
96 unsigned int count;
97 unsigned int guard;
98 unsigned int window_size_now;
99 unsigned int target_ratio;
100 unsigned int duration_jiffies;
101 bool clamping;
102 };
103
104 static struct powerclamp_worker_data * __percpu worker_data;
105 static struct thermal_cooling_device *cooling_dev;
106 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
107 * clamping kthread worker
108 */
109
110 static unsigned int duration;
111 static unsigned int pkg_cstate_ratio_cur;
112 static unsigned int window_size;
113
114 static int duration_set(const char *arg, const struct kernel_param *kp)
115 {
116 int ret = 0;
117 unsigned long new_duration;
118
119 ret = kstrtoul(arg, 10, &new_duration);
120 if (ret)
121 goto exit;
122 if (new_duration > 25 || new_duration < 6) {
123 pr_err("Out of recommended range %lu, between 6-25ms\n",
124 new_duration);
125 ret = -EINVAL;
126 }
127
128 duration = clamp(new_duration, 6ul, 25ul);
129 smp_mb();
130
131 exit:
132
133 return ret;
134 }
135
136 static const struct kernel_param_ops duration_ops = {
137 .set = duration_set,
138 .get = param_get_int,
139 };
140
141
142 module_param_cb(duration, &duration_ops, &duration, 0644);
143 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
144
145 struct powerclamp_calibration_data {
146 unsigned long confidence; /* used for calibration, basically a counter
147 * gets incremented each time a clamping
148 * period is completed without extra wakeups
149 * once that counter is reached given level,
150 * compensation is deemed usable.
151 */
152 unsigned long steady_comp; /* steady state compensation used when
153 * no extra wakeups occurred.
154 */
155 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
156 * mostly from external interrupts.
157 */
158 };
159
160 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
161
162 static int window_size_set(const char *arg, const struct kernel_param *kp)
163 {
164 int ret = 0;
165 unsigned long new_window_size;
166
167 ret = kstrtoul(arg, 10, &new_window_size);
168 if (ret)
169 goto exit_win;
170 if (new_window_size > 10 || new_window_size < 2) {
171 pr_err("Out of recommended window size %lu, between 2-10\n",
172 new_window_size);
173 ret = -EINVAL;
174 }
175
176 window_size = clamp(new_window_size, 2ul, 10ul);
177 smp_mb();
178
179 exit_win:
180
181 return ret;
182 }
183
184 static const struct kernel_param_ops window_size_ops = {
185 .set = window_size_set,
186 .get = param_get_int,
187 };
188
189 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
190 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
191 "\tpowerclamp controls idle ratio within this window. larger\n"
192 "\twindow size results in slower response time but more smooth\n"
193 "\tclamping results. default to 2.");
194
195 static void find_target_mwait(void)
196 {
197 unsigned int eax, ebx, ecx, edx;
198 unsigned int highest_cstate = 0;
199 unsigned int highest_subcstate = 0;
200 int i;
201
202 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
203 return;
204
205 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
206
207 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
208 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
209 return;
210
211 edx >>= MWAIT_SUBSTATE_SIZE;
212 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
213 if (edx & MWAIT_SUBSTATE_MASK) {
214 highest_cstate = i;
215 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
216 }
217 }
218 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
219 (highest_subcstate - 1);
220
221 }
222
223 struct pkg_cstate_info {
224 bool skip;
225 int msr_index;
226 int cstate_id;
227 };
228
229 #define PKG_CSTATE_INIT(id) { \
230 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
231 .cstate_id = id \
232 }
233
234 static struct pkg_cstate_info pkg_cstates[] = {
235 PKG_CSTATE_INIT(2),
236 PKG_CSTATE_INIT(3),
237 PKG_CSTATE_INIT(6),
238 PKG_CSTATE_INIT(7),
239 PKG_CSTATE_INIT(8),
240 PKG_CSTATE_INIT(9),
241 PKG_CSTATE_INIT(10),
242 {NULL},
243 };
244
245 static bool has_pkg_state_counter(void)
246 {
247 u64 val;
248 struct pkg_cstate_info *info = pkg_cstates;
249
250 /* check if any one of the counter msrs exists */
251 while (info->msr_index) {
252 if (!rdmsrl_safe(info->msr_index, &val))
253 return true;
254 info++;
255 }
256
257 return false;
258 }
259
260 static u64 pkg_state_counter(void)
261 {
262 u64 val;
263 u64 count = 0;
264 struct pkg_cstate_info *info = pkg_cstates;
265
266 while (info->msr_index) {
267 if (!info->skip) {
268 if (!rdmsrl_safe(info->msr_index, &val))
269 count += val;
270 else
271 info->skip = true;
272 }
273 info++;
274 }
275
276 return count;
277 }
278
279 static unsigned int get_compensation(int ratio)
280 {
281 unsigned int comp = 0;
282
283 /* we only use compensation if all adjacent ones are good */
284 if (ratio == 1 &&
285 cal_data[ratio].confidence >= CONFIDENCE_OK &&
286 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
287 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
288 comp = (cal_data[ratio].steady_comp +
289 cal_data[ratio + 1].steady_comp +
290 cal_data[ratio + 2].steady_comp) / 3;
291 } else if (ratio == MAX_TARGET_RATIO - 1 &&
292 cal_data[ratio].confidence >= CONFIDENCE_OK &&
293 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
294 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
295 comp = (cal_data[ratio].steady_comp +
296 cal_data[ratio - 1].steady_comp +
297 cal_data[ratio - 2].steady_comp) / 3;
298 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
299 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
300 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
301 comp = (cal_data[ratio].steady_comp +
302 cal_data[ratio - 1].steady_comp +
303 cal_data[ratio + 1].steady_comp) / 3;
304 }
305
306 /* REVISIT: simple penalty of double idle injection */
307 if (reduce_irq)
308 comp = ratio;
309 /* do not exceed limit */
310 if (comp + ratio >= MAX_TARGET_RATIO)
311 comp = MAX_TARGET_RATIO - ratio - 1;
312
313 return comp;
314 }
315
316 static void adjust_compensation(int target_ratio, unsigned int win)
317 {
318 int delta;
319 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
320
321 /*
322 * adjust compensations if confidence level has not been reached or
323 * there are too many wakeups during the last idle injection period, we
324 * cannot trust the data for compensation.
325 */
326 if (d->confidence >= CONFIDENCE_OK ||
327 atomic_read(&idle_wakeup_counter) >
328 win * num_online_cpus())
329 return;
330
331 delta = set_target_ratio - current_ratio;
332 /* filter out bad data */
333 if (delta >= 0 && delta <= (1+target_ratio/10)) {
334 if (d->steady_comp)
335 d->steady_comp =
336 roundup(delta+d->steady_comp, 2)/2;
337 else
338 d->steady_comp = delta;
339 d->confidence++;
340 }
341 }
342
343 static bool powerclamp_adjust_controls(unsigned int target_ratio,
344 unsigned int guard, unsigned int win)
345 {
346 static u64 msr_last, tsc_last;
347 u64 msr_now, tsc_now;
348 u64 val64;
349
350 /* check result for the last window */
351 msr_now = pkg_state_counter();
352 tsc_now = rdtsc();
353
354 /* calculate pkg cstate vs tsc ratio */
355 if (!msr_last || !tsc_last)
356 current_ratio = 1;
357 else if (tsc_now-tsc_last) {
358 val64 = 100*(msr_now-msr_last);
359 do_div(val64, (tsc_now-tsc_last));
360 current_ratio = val64;
361 }
362
363 /* update record */
364 msr_last = msr_now;
365 tsc_last = tsc_now;
366
367 adjust_compensation(target_ratio, win);
368 /*
369 * too many external interrupts, set flag such
370 * that we can take measure later.
371 */
372 reduce_irq = atomic_read(&idle_wakeup_counter) >=
373 2 * win * num_online_cpus();
374
375 atomic_set(&idle_wakeup_counter, 0);
376 /* if we are above target+guard, skip */
377 return set_target_ratio + guard <= current_ratio;
378 }
379
380 static void clamp_balancing_func(struct kthread_work *work)
381 {
382 struct powerclamp_worker_data *w_data;
383 int sleeptime;
384 unsigned long target_jiffies;
385 unsigned int compensated_ratio;
386 int interval; /* jiffies to sleep for each attempt */
387
388 w_data = container_of(work, struct powerclamp_worker_data,
389 balancing_work);
390
391 /*
392 * make sure user selected ratio does not take effect until
393 * the next round. adjust target_ratio if user has changed
394 * target such that we can converge quickly.
395 */
396 w_data->target_ratio = READ_ONCE(set_target_ratio);
397 w_data->guard = 1 + w_data->target_ratio / 20;
398 w_data->window_size_now = window_size;
399 w_data->duration_jiffies = msecs_to_jiffies(duration);
400 w_data->count++;
401
402 /*
403 * systems may have different ability to enter package level
404 * c-states, thus we need to compensate the injected idle ratio
405 * to achieve the actual target reported by the HW.
406 */
407 compensated_ratio = w_data->target_ratio +
408 get_compensation(w_data->target_ratio);
409 if (compensated_ratio <= 0)
410 compensated_ratio = 1;
411 interval = w_data->duration_jiffies * 100 / compensated_ratio;
412
413 /* align idle time */
414 target_jiffies = roundup(jiffies, interval);
415 sleeptime = target_jiffies - jiffies;
416 if (sleeptime <= 0)
417 sleeptime = 1;
418
419 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
420 kthread_queue_delayed_work(w_data->worker,
421 &w_data->idle_injection_work,
422 sleeptime);
423 }
424
425 static void clamp_idle_injection_func(struct kthread_work *work)
426 {
427 struct powerclamp_worker_data *w_data;
428
429 w_data = container_of(work, struct powerclamp_worker_data,
430 idle_injection_work.work);
431
432 /*
433 * only elected controlling cpu can collect stats and update
434 * control parameters.
435 */
436 if (w_data->cpu == control_cpu &&
437 !(w_data->count % w_data->window_size_now)) {
438 should_skip =
439 powerclamp_adjust_controls(w_data->target_ratio,
440 w_data->guard,
441 w_data->window_size_now);
442 smp_mb();
443 }
444
445 if (should_skip)
446 goto balance;
447
448 play_idle(jiffies_to_msecs(w_data->duration_jiffies));
449
450 balance:
451 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
452 kthread_queue_work(w_data->worker, &w_data->balancing_work);
453 }
454
455 /*
456 * 1 HZ polling while clamping is active, useful for userspace
457 * to monitor actual idle ratio.
458 */
459 static void poll_pkg_cstate(struct work_struct *dummy);
460 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
461 static void poll_pkg_cstate(struct work_struct *dummy)
462 {
463 static u64 msr_last;
464 static u64 tsc_last;
465 static unsigned long jiffies_last;
466
467 u64 msr_now;
468 unsigned long jiffies_now;
469 u64 tsc_now;
470 u64 val64;
471
472 msr_now = pkg_state_counter();
473 tsc_now = rdtsc();
474 jiffies_now = jiffies;
475
476 /* calculate pkg cstate vs tsc ratio */
477 if (!msr_last || !tsc_last)
478 pkg_cstate_ratio_cur = 1;
479 else {
480 if (tsc_now - tsc_last) {
481 val64 = 100 * (msr_now - msr_last);
482 do_div(val64, (tsc_now - tsc_last));
483 pkg_cstate_ratio_cur = val64;
484 }
485 }
486
487 /* update record */
488 msr_last = msr_now;
489 jiffies_last = jiffies_now;
490 tsc_last = tsc_now;
491
492 if (true == clamping)
493 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
494 }
495
496 static void start_power_clamp_worker(unsigned long cpu)
497 {
498 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
499 struct kthread_worker *worker;
500
501 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inject/%ld", cpu);
502 if (IS_ERR(worker))
503 return;
504
505 w_data->worker = worker;
506 w_data->count = 0;
507 w_data->cpu = cpu;
508 w_data->clamping = true;
509 set_bit(cpu, cpu_clamping_mask);
510 sched_setscheduler(worker->task, SCHED_FIFO, &sparam);
511 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
512 kthread_init_delayed_work(&w_data->idle_injection_work,
513 clamp_idle_injection_func);
514 kthread_queue_work(w_data->worker, &w_data->balancing_work);
515 }
516
517 static void stop_power_clamp_worker(unsigned long cpu)
518 {
519 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
520
521 if (!w_data->worker)
522 return;
523
524 w_data->clamping = false;
525 /*
526 * Make sure that all works that get queued after this point see
527 * the clamping disabled. The counter part is not needed because
528 * there is an implicit memory barrier when the queued work
529 * is proceed.
530 */
531 smp_wmb();
532 kthread_cancel_work_sync(&w_data->balancing_work);
533 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
534 /*
535 * The balancing work still might be queued here because
536 * the handling of the "clapming" variable, cancel, and queue
537 * operations are not synchronized via a lock. But it is not
538 * a big deal. The balancing work is fast and destroy kthread
539 * will wait for it.
540 */
541 clear_bit(w_data->cpu, cpu_clamping_mask);
542 kthread_destroy_worker(w_data->worker);
543
544 w_data->worker = NULL;
545 }
546
547 static int start_power_clamp(void)
548 {
549 unsigned long cpu;
550
551 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
552 /* prevent cpu hotplug */
553 get_online_cpus();
554
555 /* prefer BSP */
556 control_cpu = 0;
557 if (!cpu_online(control_cpu))
558 control_cpu = smp_processor_id();
559
560 clamping = true;
561 schedule_delayed_work(&poll_pkg_cstate_work, 0);
562
563 /* start one kthread worker per online cpu */
564 for_each_online_cpu(cpu) {
565 start_power_clamp_worker(cpu);
566 }
567 put_online_cpus();
568
569 return 0;
570 }
571
572 static void end_power_clamp(void)
573 {
574 int i;
575
576 /*
577 * Block requeuing in all the kthread workers. They will flush and
578 * stop faster.
579 */
580 clamping = false;
581 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
582 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
583 pr_debug("clamping worker for cpu %d alive, destroy\n",
584 i);
585 stop_power_clamp_worker(i);
586 }
587 }
588 }
589
590 static int powerclamp_cpu_online(unsigned int cpu)
591 {
592 if (clamping == false)
593 return 0;
594 start_power_clamp_worker(cpu);
595 /* prefer BSP as controlling CPU */
596 if (cpu == 0) {
597 control_cpu = 0;
598 smp_mb();
599 }
600 return 0;
601 }
602
603 static int powerclamp_cpu_predown(unsigned int cpu)
604 {
605 if (clamping == false)
606 return 0;
607
608 stop_power_clamp_worker(cpu);
609 if (cpu != control_cpu)
610 return 0;
611
612 control_cpu = cpumask_first(cpu_online_mask);
613 if (control_cpu == cpu)
614 control_cpu = cpumask_next(cpu, cpu_online_mask);
615 smp_mb();
616 return 0;
617 }
618
619 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
620 unsigned long *state)
621 {
622 *state = MAX_TARGET_RATIO;
623
624 return 0;
625 }
626
627 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
628 unsigned long *state)
629 {
630 if (true == clamping)
631 *state = pkg_cstate_ratio_cur;
632 else
633 /* to save power, do not poll idle ratio while not clamping */
634 *state = -1; /* indicates invalid state */
635
636 return 0;
637 }
638
639 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
640 unsigned long new_target_ratio)
641 {
642 int ret = 0;
643
644 new_target_ratio = clamp(new_target_ratio, 0UL,
645 (unsigned long) (MAX_TARGET_RATIO-1));
646 if (set_target_ratio == 0 && new_target_ratio > 0) {
647 pr_info("Start idle injection to reduce power\n");
648 set_target_ratio = new_target_ratio;
649 ret = start_power_clamp();
650 goto exit_set;
651 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
652 pr_info("Stop forced idle injection\n");
653 end_power_clamp();
654 set_target_ratio = 0;
655 } else /* adjust currently running */ {
656 set_target_ratio = new_target_ratio;
657 /* make new set_target_ratio visible to other cpus */
658 smp_mb();
659 }
660
661 exit_set:
662 return ret;
663 }
664
665 /* bind to generic thermal layer as cooling device*/
666 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
667 .get_max_state = powerclamp_get_max_state,
668 .get_cur_state = powerclamp_get_cur_state,
669 .set_cur_state = powerclamp_set_cur_state,
670 };
671
672 static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
673 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
674 {}
675 };
676 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
677
678 static int __init powerclamp_probe(void)
679 {
680
681 if (!x86_match_cpu(intel_powerclamp_ids)) {
682 pr_err("CPU does not support MWAIT");
683 return -ENODEV;
684 }
685
686 /* The goal for idle time alignment is to achieve package cstate. */
687 if (!has_pkg_state_counter()) {
688 pr_info("No package C-state available");
689 return -ENODEV;
690 }
691
692 /* find the deepest mwait value */
693 find_target_mwait();
694
695 return 0;
696 }
697
698 static int powerclamp_debug_show(struct seq_file *m, void *unused)
699 {
700 int i = 0;
701
702 seq_printf(m, "controlling cpu: %d\n", control_cpu);
703 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
704 for (i = 0; i < MAX_TARGET_RATIO; i++) {
705 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
706 i,
707 cal_data[i].confidence,
708 cal_data[i].steady_comp,
709 cal_data[i].dynamic_comp);
710 }
711
712 return 0;
713 }
714
715 static int powerclamp_debug_open(struct inode *inode,
716 struct file *file)
717 {
718 return single_open(file, powerclamp_debug_show, inode->i_private);
719 }
720
721 static const struct file_operations powerclamp_debug_fops = {
722 .open = powerclamp_debug_open,
723 .read = seq_read,
724 .llseek = seq_lseek,
725 .release = single_release,
726 .owner = THIS_MODULE,
727 };
728
729 static inline void powerclamp_create_debug_files(void)
730 {
731 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
732 if (!debug_dir)
733 return;
734
735 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
736 cal_data, &powerclamp_debug_fops))
737 goto file_error;
738
739 return;
740
741 file_error:
742 debugfs_remove_recursive(debug_dir);
743 }
744
745 static enum cpuhp_state hp_state;
746
747 static int __init powerclamp_init(void)
748 {
749 int retval;
750 int bitmap_size;
751
752 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
753 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
754 if (!cpu_clamping_mask)
755 return -ENOMEM;
756
757 /* probe cpu features and ids here */
758 retval = powerclamp_probe();
759 if (retval)
760 goto exit_free;
761
762 /* set default limit, maybe adjusted during runtime based on feedback */
763 window_size = 2;
764 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
765 "thermal/intel_powerclamp:online",
766 powerclamp_cpu_online,
767 powerclamp_cpu_predown);
768 if (retval < 0)
769 goto exit_free;
770
771 hp_state = retval;
772
773 worker_data = alloc_percpu(struct powerclamp_worker_data);
774 if (!worker_data) {
775 retval = -ENOMEM;
776 goto exit_unregister;
777 }
778
779 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
780 &powerclamp_cooling_ops);
781 if (IS_ERR(cooling_dev)) {
782 retval = -ENODEV;
783 goto exit_free_thread;
784 }
785
786 if (!duration)
787 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
788
789 powerclamp_create_debug_files();
790
791 return 0;
792
793 exit_free_thread:
794 free_percpu(worker_data);
795 exit_unregister:
796 cpuhp_remove_state_nocalls(hp_state);
797 exit_free:
798 kfree(cpu_clamping_mask);
799 return retval;
800 }
801 module_init(powerclamp_init);
802
803 static void __exit powerclamp_exit(void)
804 {
805 end_power_clamp();
806 cpuhp_remove_state_nocalls(hp_state);
807 free_percpu(worker_data);
808 thermal_cooling_device_unregister(cooling_dev);
809 kfree(cpu_clamping_mask);
810
811 cancel_delayed_work_sync(&poll_pkg_cstate_work);
812 debugfs_remove_recursive(debug_dir);
813 }
814 module_exit(powerclamp_exit);
815
816 MODULE_LICENSE("GPL");
817 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
818 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
819 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");