]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/thunderbolt/nhi.c
Merge tag 'drm-next-2021-04-30' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-jammy-kernel.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Thunderbolt driver - NHI driver
4 *
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
7 *
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
10 */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28 #define RING_FIRST_USABLE_HOPID 1
29
30 /*
31 * Minimal number of vectors when we use MSI-X. Two for control channel
32 * Rx/Tx and the rest four are for cross domain DMA paths.
33 */
34 #define MSIX_MIN_VECS 6
35 #define MSIX_MAX_VECS 16
36
37 #define NHI_MAILBOX_TIMEOUT 500 /* ms */
38
39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41 int bit = ring->hop;
42 if (!ring->is_tx)
43 bit += ring->nhi->hop_count;
44 return bit;
45 }
46
47 /*
48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49 *
50 * ring->nhi->lock must be held.
51 */
52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54 int reg = REG_RING_INTERRUPT_BASE +
55 ring_interrupt_index(ring) / 32 * 4;
56 int bit = ring_interrupt_index(ring) & 31;
57 int mask = 1 << bit;
58 u32 old, new;
59
60 if (ring->irq > 0) {
61 u32 step, shift, ivr, misc;
62 void __iomem *ivr_base;
63 int index;
64
65 if (ring->is_tx)
66 index = ring->hop;
67 else
68 index = ring->hop + ring->nhi->hop_count;
69
70 /*
71 * Ask the hardware to clear interrupt status bits automatically
72 * since we already know which interrupt was triggered.
73 */
74 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76 misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78 }
79
80 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83 ivr = ioread32(ivr_base + step);
84 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85 if (active)
86 ivr |= ring->vector << shift;
87 iowrite32(ivr, ivr_base + step);
88 }
89
90 old = ioread32(ring->nhi->iobase + reg);
91 if (active)
92 new = old | mask;
93 else
94 new = old & ~mask;
95
96 dev_dbg(&ring->nhi->pdev->dev,
97 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98 active ? "enabling" : "disabling", reg, bit, old, new);
99
100 if (new == old)
101 dev_WARN(&ring->nhi->pdev->dev,
102 "interrupt for %s %d is already %s\n",
103 RING_TYPE(ring), ring->hop,
104 active ? "enabled" : "disabled");
105 iowrite32(new, ring->nhi->iobase + reg);
106 }
107
108 /*
109 * nhi_disable_interrupts() - disable interrupts for all rings
110 *
111 * Use only during init and shutdown.
112 */
113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115 int i = 0;
116 /* disable interrupts */
117 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120 /* clear interrupt status bits */
121 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124
125 /* ring helper methods */
126
127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129 void __iomem *io = ring->nhi->iobase;
130 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131 io += ring->hop * 16;
132 return io;
133 }
134
135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137 void __iomem *io = ring->nhi->iobase;
138 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139 io += ring->hop * 32;
140 return io;
141 }
142
143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145 /*
146 * The other 16-bits in the register is read-only and writes to it
147 * are ignored by the hardware so we can save one ioread32() by
148 * filling the read-only bits with zeroes.
149 */
150 iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152
153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155 /* See ring_iowrite_cons() above for explanation */
156 iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158
159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161 iowrite32(value, ring_desc_base(ring) + offset);
162 }
163
164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166 iowrite32(value, ring_desc_base(ring) + offset);
167 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169
170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172 iowrite32(value, ring_options_base(ring) + offset);
173 }
174
175 static bool ring_full(struct tb_ring *ring)
176 {
177 return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179
180 static bool ring_empty(struct tb_ring *ring)
181 {
182 return ring->head == ring->tail;
183 }
184
185 /*
186 * ring_write_descriptors() - post frames from ring->queue to the controller
187 *
188 * ring->lock is held.
189 */
190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192 struct ring_frame *frame, *n;
193 struct ring_desc *descriptor;
194 list_for_each_entry_safe(frame, n, &ring->queue, list) {
195 if (ring_full(ring))
196 break;
197 list_move_tail(&frame->list, &ring->in_flight);
198 descriptor = &ring->descriptors[ring->head];
199 descriptor->phys = frame->buffer_phy;
200 descriptor->time = 0;
201 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202 if (ring->is_tx) {
203 descriptor->length = frame->size;
204 descriptor->eof = frame->eof;
205 descriptor->sof = frame->sof;
206 }
207 ring->head = (ring->head + 1) % ring->size;
208 if (ring->is_tx)
209 ring_iowrite_prod(ring, ring->head);
210 else
211 ring_iowrite_cons(ring, ring->head);
212 }
213 }
214
215 /*
216 * ring_work() - progress completed frames
217 *
218 * If the ring is shutting down then all frames are marked as canceled and
219 * their callbacks are invoked.
220 *
221 * Otherwise we collect all completed frame from the ring buffer, write new
222 * frame to the ring buffer and invoke the callbacks for the completed frames.
223 */
224 static void ring_work(struct work_struct *work)
225 {
226 struct tb_ring *ring = container_of(work, typeof(*ring), work);
227 struct ring_frame *frame;
228 bool canceled = false;
229 unsigned long flags;
230 LIST_HEAD(done);
231
232 spin_lock_irqsave(&ring->lock, flags);
233
234 if (!ring->running) {
235 /* Move all frames to done and mark them as canceled. */
236 list_splice_tail_init(&ring->in_flight, &done);
237 list_splice_tail_init(&ring->queue, &done);
238 canceled = true;
239 goto invoke_callback;
240 }
241
242 while (!ring_empty(ring)) {
243 if (!(ring->descriptors[ring->tail].flags
244 & RING_DESC_COMPLETED))
245 break;
246 frame = list_first_entry(&ring->in_flight, typeof(*frame),
247 list);
248 list_move_tail(&frame->list, &done);
249 if (!ring->is_tx) {
250 frame->size = ring->descriptors[ring->tail].length;
251 frame->eof = ring->descriptors[ring->tail].eof;
252 frame->sof = ring->descriptors[ring->tail].sof;
253 frame->flags = ring->descriptors[ring->tail].flags;
254 }
255 ring->tail = (ring->tail + 1) % ring->size;
256 }
257 ring_write_descriptors(ring);
258
259 invoke_callback:
260 /* allow callbacks to schedule new work */
261 spin_unlock_irqrestore(&ring->lock, flags);
262 while (!list_empty(&done)) {
263 frame = list_first_entry(&done, typeof(*frame), list);
264 /*
265 * The callback may reenqueue or delete frame.
266 * Do not hold on to it.
267 */
268 list_del_init(&frame->list);
269 if (frame->callback)
270 frame->callback(ring, frame, canceled);
271 }
272 }
273
274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276 unsigned long flags;
277 int ret = 0;
278
279 spin_lock_irqsave(&ring->lock, flags);
280 if (ring->running) {
281 list_add_tail(&frame->list, &ring->queue);
282 ring_write_descriptors(ring);
283 } else {
284 ret = -ESHUTDOWN;
285 }
286 spin_unlock_irqrestore(&ring->lock, flags);
287 return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291 /**
292 * tb_ring_poll() - Poll one completed frame from the ring
293 * @ring: Ring to poll
294 *
295 * This function can be called when @start_poll callback of the @ring
296 * has been called. It will read one completed frame from the ring and
297 * return it to the caller. Returns %NULL if there is no more completed
298 * frames.
299 */
300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302 struct ring_frame *frame = NULL;
303 unsigned long flags;
304
305 spin_lock_irqsave(&ring->lock, flags);
306 if (!ring->running)
307 goto unlock;
308 if (ring_empty(ring))
309 goto unlock;
310
311 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312 frame = list_first_entry(&ring->in_flight, typeof(*frame),
313 list);
314 list_del_init(&frame->list);
315
316 if (!ring->is_tx) {
317 frame->size = ring->descriptors[ring->tail].length;
318 frame->eof = ring->descriptors[ring->tail].eof;
319 frame->sof = ring->descriptors[ring->tail].sof;
320 frame->flags = ring->descriptors[ring->tail].flags;
321 }
322
323 ring->tail = (ring->tail + 1) % ring->size;
324 }
325
326 unlock:
327 spin_unlock_irqrestore(&ring->lock, flags);
328 return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331
332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334 int idx = ring_interrupt_index(ring);
335 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336 int bit = idx % 32;
337 u32 val;
338
339 val = ioread32(ring->nhi->iobase + reg);
340 if (mask)
341 val &= ~BIT(bit);
342 else
343 val |= BIT(bit);
344 iowrite32(val, ring->nhi->iobase + reg);
345 }
346
347 /* Both @nhi->lock and @ring->lock should be held */
348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350 if (!ring->running)
351 return;
352
353 if (ring->start_poll) {
354 __ring_interrupt_mask(ring, true);
355 ring->start_poll(ring->poll_data);
356 } else {
357 schedule_work(&ring->work);
358 }
359 }
360
361 /**
362 * tb_ring_poll_complete() - Re-start interrupt for the ring
363 * @ring: Ring to re-start the interrupt
364 *
365 * This will re-start (unmask) the ring interrupt once the user is done
366 * with polling.
367 */
368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370 unsigned long flags;
371
372 spin_lock_irqsave(&ring->nhi->lock, flags);
373 spin_lock(&ring->lock);
374 if (ring->start_poll)
375 __ring_interrupt_mask(ring, false);
376 spin_unlock(&ring->lock);
377 spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383 struct tb_ring *ring = data;
384
385 spin_lock(&ring->nhi->lock);
386 spin_lock(&ring->lock);
387 __ring_interrupt(ring);
388 spin_unlock(&ring->lock);
389 spin_unlock(&ring->nhi->lock);
390
391 return IRQ_HANDLED;
392 }
393
394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396 struct tb_nhi *nhi = ring->nhi;
397 unsigned long irqflags;
398 int ret;
399
400 if (!nhi->pdev->msix_enabled)
401 return 0;
402
403 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404 if (ret < 0)
405 return ret;
406
407 ring->vector = ret;
408
409 ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
410 if (ret < 0)
411 goto err_ida_remove;
412
413 ring->irq = ret;
414
415 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
416 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
417 if (ret)
418 goto err_ida_remove;
419
420 return 0;
421
422 err_ida_remove:
423 ida_simple_remove(&nhi->msix_ida, ring->vector);
424
425 return ret;
426 }
427
428 static void ring_release_msix(struct tb_ring *ring)
429 {
430 if (ring->irq <= 0)
431 return;
432
433 free_irq(ring->irq, ring);
434 ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
435 ring->vector = 0;
436 ring->irq = 0;
437 }
438
439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
440 {
441 int ret = 0;
442
443 spin_lock_irq(&nhi->lock);
444
445 if (ring->hop < 0) {
446 unsigned int i;
447
448 /*
449 * Automatically allocate HopID from the non-reserved
450 * range 1 .. hop_count - 1.
451 */
452 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
453 if (ring->is_tx) {
454 if (!nhi->tx_rings[i]) {
455 ring->hop = i;
456 break;
457 }
458 } else {
459 if (!nhi->rx_rings[i]) {
460 ring->hop = i;
461 break;
462 }
463 }
464 }
465 }
466
467 if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
468 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
469 ret = -EINVAL;
470 goto err_unlock;
471 }
472 if (ring->is_tx && nhi->tx_rings[ring->hop]) {
473 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
474 ring->hop);
475 ret = -EBUSY;
476 goto err_unlock;
477 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
478 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
479 ring->hop);
480 ret = -EBUSY;
481 goto err_unlock;
482 }
483
484 if (ring->is_tx)
485 nhi->tx_rings[ring->hop] = ring;
486 else
487 nhi->rx_rings[ring->hop] = ring;
488
489 err_unlock:
490 spin_unlock_irq(&nhi->lock);
491
492 return ret;
493 }
494
495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
496 bool transmit, unsigned int flags,
497 int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
498 void (*start_poll)(void *),
499 void *poll_data)
500 {
501 struct tb_ring *ring = NULL;
502
503 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
504 transmit ? "TX" : "RX", hop, size);
505
506 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
507 if (!ring)
508 return NULL;
509
510 spin_lock_init(&ring->lock);
511 INIT_LIST_HEAD(&ring->queue);
512 INIT_LIST_HEAD(&ring->in_flight);
513 INIT_WORK(&ring->work, ring_work);
514
515 ring->nhi = nhi;
516 ring->hop = hop;
517 ring->is_tx = transmit;
518 ring->size = size;
519 ring->flags = flags;
520 ring->e2e_tx_hop = e2e_tx_hop;
521 ring->sof_mask = sof_mask;
522 ring->eof_mask = eof_mask;
523 ring->head = 0;
524 ring->tail = 0;
525 ring->running = false;
526 ring->start_poll = start_poll;
527 ring->poll_data = poll_data;
528
529 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
530 size * sizeof(*ring->descriptors),
531 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
532 if (!ring->descriptors)
533 goto err_free_ring;
534
535 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
536 goto err_free_descs;
537
538 if (nhi_alloc_hop(nhi, ring))
539 goto err_release_msix;
540
541 return ring;
542
543 err_release_msix:
544 ring_release_msix(ring);
545 err_free_descs:
546 dma_free_coherent(&ring->nhi->pdev->dev,
547 ring->size * sizeof(*ring->descriptors),
548 ring->descriptors, ring->descriptors_dma);
549 err_free_ring:
550 kfree(ring);
551
552 return NULL;
553 }
554
555 /**
556 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
557 * @nhi: Pointer to the NHI the ring is to be allocated
558 * @hop: HopID (ring) to allocate
559 * @size: Number of entries in the ring
560 * @flags: Flags for the ring
561 */
562 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
563 unsigned int flags)
564 {
565 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
566 }
567 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
568
569 /**
570 * tb_ring_alloc_rx() - Allocate DMA ring for receive
571 * @nhi: Pointer to the NHI the ring is to be allocated
572 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
573 * @size: Number of entries in the ring
574 * @flags: Flags for the ring
575 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
576 * @sof_mask: Mask of PDF values that start a frame
577 * @eof_mask: Mask of PDF values that end a frame
578 * @start_poll: If not %NULL the ring will call this function when an
579 * interrupt is triggered and masked, instead of callback
580 * in each Rx frame.
581 * @poll_data: Optional data passed to @start_poll
582 */
583 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
584 unsigned int flags, int e2e_tx_hop,
585 u16 sof_mask, u16 eof_mask,
586 void (*start_poll)(void *), void *poll_data)
587 {
588 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
589 start_poll, poll_data);
590 }
591 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
592
593 /**
594 * tb_ring_start() - enable a ring
595 * @ring: Ring to start
596 *
597 * Must not be invoked in parallel with tb_ring_stop().
598 */
599 void tb_ring_start(struct tb_ring *ring)
600 {
601 u16 frame_size;
602 u32 flags;
603
604 spin_lock_irq(&ring->nhi->lock);
605 spin_lock(&ring->lock);
606 if (ring->nhi->going_away)
607 goto err;
608 if (ring->running) {
609 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
610 goto err;
611 }
612 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
613 RING_TYPE(ring), ring->hop);
614
615 if (ring->flags & RING_FLAG_FRAME) {
616 /* Means 4096 */
617 frame_size = 0;
618 flags = RING_FLAG_ENABLE;
619 } else {
620 frame_size = TB_FRAME_SIZE;
621 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
622 }
623
624 ring_iowrite64desc(ring, ring->descriptors_dma, 0);
625 if (ring->is_tx) {
626 ring_iowrite32desc(ring, ring->size, 12);
627 ring_iowrite32options(ring, 0, 4); /* time releated ? */
628 ring_iowrite32options(ring, flags, 0);
629 } else {
630 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
631
632 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
633 ring_iowrite32options(ring, sof_eof_mask, 4);
634 ring_iowrite32options(ring, flags, 0);
635 }
636
637 /*
638 * Now that the ring valid bit is set we can configure E2E if
639 * enabled for the ring.
640 */
641 if (ring->flags & RING_FLAG_E2E) {
642 if (!ring->is_tx) {
643 u32 hop;
644
645 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
646 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
647 flags |= hop;
648
649 dev_dbg(&ring->nhi->pdev->dev,
650 "enabling E2E for %s %d with TX HopID %d\n",
651 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
652 } else {
653 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
654 RING_TYPE(ring), ring->hop);
655 }
656
657 flags |= RING_FLAG_E2E_FLOW_CONTROL;
658 ring_iowrite32options(ring, flags, 0);
659 }
660
661 ring_interrupt_active(ring, true);
662 ring->running = true;
663 err:
664 spin_unlock(&ring->lock);
665 spin_unlock_irq(&ring->nhi->lock);
666 }
667 EXPORT_SYMBOL_GPL(tb_ring_start);
668
669 /**
670 * tb_ring_stop() - shutdown a ring
671 * @ring: Ring to stop
672 *
673 * Must not be invoked from a callback.
674 *
675 * This method will disable the ring. Further calls to
676 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
677 * called.
678 *
679 * All enqueued frames will be canceled and their callbacks will be executed
680 * with frame->canceled set to true (on the callback thread). This method
681 * returns only after all callback invocations have finished.
682 */
683 void tb_ring_stop(struct tb_ring *ring)
684 {
685 spin_lock_irq(&ring->nhi->lock);
686 spin_lock(&ring->lock);
687 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
688 RING_TYPE(ring), ring->hop);
689 if (ring->nhi->going_away)
690 goto err;
691 if (!ring->running) {
692 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
693 RING_TYPE(ring), ring->hop);
694 goto err;
695 }
696 ring_interrupt_active(ring, false);
697
698 ring_iowrite32options(ring, 0, 0);
699 ring_iowrite64desc(ring, 0, 0);
700 ring_iowrite32desc(ring, 0, 8);
701 ring_iowrite32desc(ring, 0, 12);
702 ring->head = 0;
703 ring->tail = 0;
704 ring->running = false;
705
706 err:
707 spin_unlock(&ring->lock);
708 spin_unlock_irq(&ring->nhi->lock);
709
710 /*
711 * schedule ring->work to invoke callbacks on all remaining frames.
712 */
713 schedule_work(&ring->work);
714 flush_work(&ring->work);
715 }
716 EXPORT_SYMBOL_GPL(tb_ring_stop);
717
718 /*
719 * tb_ring_free() - free ring
720 *
721 * When this method returns all invocations of ring->callback will have
722 * finished.
723 *
724 * Ring must be stopped.
725 *
726 * Must NOT be called from ring_frame->callback!
727 */
728 void tb_ring_free(struct tb_ring *ring)
729 {
730 spin_lock_irq(&ring->nhi->lock);
731 /*
732 * Dissociate the ring from the NHI. This also ensures that
733 * nhi_interrupt_work cannot reschedule ring->work.
734 */
735 if (ring->is_tx)
736 ring->nhi->tx_rings[ring->hop] = NULL;
737 else
738 ring->nhi->rx_rings[ring->hop] = NULL;
739
740 if (ring->running) {
741 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
742 RING_TYPE(ring), ring->hop);
743 }
744 spin_unlock_irq(&ring->nhi->lock);
745
746 ring_release_msix(ring);
747
748 dma_free_coherent(&ring->nhi->pdev->dev,
749 ring->size * sizeof(*ring->descriptors),
750 ring->descriptors, ring->descriptors_dma);
751
752 ring->descriptors = NULL;
753 ring->descriptors_dma = 0;
754
755
756 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
757 ring->hop);
758
759 /*
760 * ring->work can no longer be scheduled (it is scheduled only
761 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
762 * to finish before freeing the ring.
763 */
764 flush_work(&ring->work);
765 kfree(ring);
766 }
767 EXPORT_SYMBOL_GPL(tb_ring_free);
768
769 /**
770 * nhi_mailbox_cmd() - Send a command through NHI mailbox
771 * @nhi: Pointer to the NHI structure
772 * @cmd: Command to send
773 * @data: Data to be send with the command
774 *
775 * Sends mailbox command to the firmware running on NHI. Returns %0 in
776 * case of success and negative errno in case of failure.
777 */
778 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
779 {
780 ktime_t timeout;
781 u32 val;
782
783 iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
784
785 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
786 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
787 val |= REG_INMAIL_OP_REQUEST | cmd;
788 iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
789
790 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
791 do {
792 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
793 if (!(val & REG_INMAIL_OP_REQUEST))
794 break;
795 usleep_range(10, 20);
796 } while (ktime_before(ktime_get(), timeout));
797
798 if (val & REG_INMAIL_OP_REQUEST)
799 return -ETIMEDOUT;
800 if (val & REG_INMAIL_ERROR)
801 return -EIO;
802
803 return 0;
804 }
805
806 /**
807 * nhi_mailbox_mode() - Return current firmware operation mode
808 * @nhi: Pointer to the NHI structure
809 *
810 * The function reads current firmware operation mode using NHI mailbox
811 * registers and returns it to the caller.
812 */
813 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
814 {
815 u32 val;
816
817 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
818 val &= REG_OUTMAIL_CMD_OPMODE_MASK;
819 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
820
821 return (enum nhi_fw_mode)val;
822 }
823
824 static void nhi_interrupt_work(struct work_struct *work)
825 {
826 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
827 int value = 0; /* Suppress uninitialized usage warning. */
828 int bit;
829 int hop = -1;
830 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
831 struct tb_ring *ring;
832
833 spin_lock_irq(&nhi->lock);
834
835 /*
836 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
837 * (TX, RX, RX overflow). We iterate over the bits and read a new
838 * dwords as required. The registers are cleared on read.
839 */
840 for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
841 if (bit % 32 == 0)
842 value = ioread32(nhi->iobase
843 + REG_RING_NOTIFY_BASE
844 + 4 * (bit / 32));
845 if (++hop == nhi->hop_count) {
846 hop = 0;
847 type++;
848 }
849 if ((value & (1 << (bit % 32))) == 0)
850 continue;
851 if (type == 2) {
852 dev_warn(&nhi->pdev->dev,
853 "RX overflow for ring %d\n",
854 hop);
855 continue;
856 }
857 if (type == 0)
858 ring = nhi->tx_rings[hop];
859 else
860 ring = nhi->rx_rings[hop];
861 if (ring == NULL) {
862 dev_warn(&nhi->pdev->dev,
863 "got interrupt for inactive %s ring %d\n",
864 type ? "RX" : "TX",
865 hop);
866 continue;
867 }
868
869 spin_lock(&ring->lock);
870 __ring_interrupt(ring);
871 spin_unlock(&ring->lock);
872 }
873 spin_unlock_irq(&nhi->lock);
874 }
875
876 static irqreturn_t nhi_msi(int irq, void *data)
877 {
878 struct tb_nhi *nhi = data;
879 schedule_work(&nhi->interrupt_work);
880 return IRQ_HANDLED;
881 }
882
883 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
884 {
885 struct pci_dev *pdev = to_pci_dev(dev);
886 struct tb *tb = pci_get_drvdata(pdev);
887 struct tb_nhi *nhi = tb->nhi;
888 int ret;
889
890 ret = tb_domain_suspend_noirq(tb);
891 if (ret)
892 return ret;
893
894 if (nhi->ops && nhi->ops->suspend_noirq) {
895 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
896 if (ret)
897 return ret;
898 }
899
900 return 0;
901 }
902
903 static int nhi_suspend_noirq(struct device *dev)
904 {
905 return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
906 }
907
908 static int nhi_freeze_noirq(struct device *dev)
909 {
910 struct pci_dev *pdev = to_pci_dev(dev);
911 struct tb *tb = pci_get_drvdata(pdev);
912
913 return tb_domain_freeze_noirq(tb);
914 }
915
916 static int nhi_thaw_noirq(struct device *dev)
917 {
918 struct pci_dev *pdev = to_pci_dev(dev);
919 struct tb *tb = pci_get_drvdata(pdev);
920
921 return tb_domain_thaw_noirq(tb);
922 }
923
924 static bool nhi_wake_supported(struct pci_dev *pdev)
925 {
926 u8 val;
927
928 /*
929 * If power rails are sustainable for wakeup from S4 this
930 * property is set by the BIOS.
931 */
932 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
933 return !!val;
934
935 return true;
936 }
937
938 static int nhi_poweroff_noirq(struct device *dev)
939 {
940 struct pci_dev *pdev = to_pci_dev(dev);
941 bool wakeup;
942
943 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
944 return __nhi_suspend_noirq(dev, wakeup);
945 }
946
947 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
948 {
949 /* Throttling is specified in 256ns increments */
950 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
951 unsigned int i;
952
953 /*
954 * Configure interrupt throttling for all vectors even if we
955 * only use few.
956 */
957 for (i = 0; i < MSIX_MAX_VECS; i++) {
958 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
959 iowrite32(throttle, nhi->iobase + reg);
960 }
961 }
962
963 static int nhi_resume_noirq(struct device *dev)
964 {
965 struct pci_dev *pdev = to_pci_dev(dev);
966 struct tb *tb = pci_get_drvdata(pdev);
967 struct tb_nhi *nhi = tb->nhi;
968 int ret;
969
970 /*
971 * Check that the device is still there. It may be that the user
972 * unplugged last device which causes the host controller to go
973 * away on PCs.
974 */
975 if (!pci_device_is_present(pdev)) {
976 nhi->going_away = true;
977 } else {
978 if (nhi->ops && nhi->ops->resume_noirq) {
979 ret = nhi->ops->resume_noirq(nhi);
980 if (ret)
981 return ret;
982 }
983 nhi_enable_int_throttling(tb->nhi);
984 }
985
986 return tb_domain_resume_noirq(tb);
987 }
988
989 static int nhi_suspend(struct device *dev)
990 {
991 struct pci_dev *pdev = to_pci_dev(dev);
992 struct tb *tb = pci_get_drvdata(pdev);
993
994 return tb_domain_suspend(tb);
995 }
996
997 static void nhi_complete(struct device *dev)
998 {
999 struct pci_dev *pdev = to_pci_dev(dev);
1000 struct tb *tb = pci_get_drvdata(pdev);
1001
1002 /*
1003 * If we were runtime suspended when system suspend started,
1004 * schedule runtime resume now. It should bring the domain back
1005 * to functional state.
1006 */
1007 if (pm_runtime_suspended(&pdev->dev))
1008 pm_runtime_resume(&pdev->dev);
1009 else
1010 tb_domain_complete(tb);
1011 }
1012
1013 static int nhi_runtime_suspend(struct device *dev)
1014 {
1015 struct pci_dev *pdev = to_pci_dev(dev);
1016 struct tb *tb = pci_get_drvdata(pdev);
1017 struct tb_nhi *nhi = tb->nhi;
1018 int ret;
1019
1020 ret = tb_domain_runtime_suspend(tb);
1021 if (ret)
1022 return ret;
1023
1024 if (nhi->ops && nhi->ops->runtime_suspend) {
1025 ret = nhi->ops->runtime_suspend(tb->nhi);
1026 if (ret)
1027 return ret;
1028 }
1029 return 0;
1030 }
1031
1032 static int nhi_runtime_resume(struct device *dev)
1033 {
1034 struct pci_dev *pdev = to_pci_dev(dev);
1035 struct tb *tb = pci_get_drvdata(pdev);
1036 struct tb_nhi *nhi = tb->nhi;
1037 int ret;
1038
1039 if (nhi->ops && nhi->ops->runtime_resume) {
1040 ret = nhi->ops->runtime_resume(nhi);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 nhi_enable_int_throttling(nhi);
1046 return tb_domain_runtime_resume(tb);
1047 }
1048
1049 static void nhi_shutdown(struct tb_nhi *nhi)
1050 {
1051 int i;
1052
1053 dev_dbg(&nhi->pdev->dev, "shutdown\n");
1054
1055 for (i = 0; i < nhi->hop_count; i++) {
1056 if (nhi->tx_rings[i])
1057 dev_WARN(&nhi->pdev->dev,
1058 "TX ring %d is still active\n", i);
1059 if (nhi->rx_rings[i])
1060 dev_WARN(&nhi->pdev->dev,
1061 "RX ring %d is still active\n", i);
1062 }
1063 nhi_disable_interrupts(nhi);
1064 /*
1065 * We have to release the irq before calling flush_work. Otherwise an
1066 * already executing IRQ handler could call schedule_work again.
1067 */
1068 if (!nhi->pdev->msix_enabled) {
1069 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1070 flush_work(&nhi->interrupt_work);
1071 }
1072 ida_destroy(&nhi->msix_ida);
1073
1074 if (nhi->ops && nhi->ops->shutdown)
1075 nhi->ops->shutdown(nhi);
1076 }
1077
1078 static int nhi_init_msi(struct tb_nhi *nhi)
1079 {
1080 struct pci_dev *pdev = nhi->pdev;
1081 int res, irq, nvec;
1082
1083 /* In case someone left them on. */
1084 nhi_disable_interrupts(nhi);
1085
1086 nhi_enable_int_throttling(nhi);
1087
1088 ida_init(&nhi->msix_ida);
1089
1090 /*
1091 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1092 * get all MSI-X vectors and if we succeed, each ring will have
1093 * one MSI-X. If for some reason that does not work out, we
1094 * fallback to a single MSI.
1095 */
1096 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1097 PCI_IRQ_MSIX);
1098 if (nvec < 0) {
1099 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1100 if (nvec < 0)
1101 return nvec;
1102
1103 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1104
1105 irq = pci_irq_vector(nhi->pdev, 0);
1106 if (irq < 0)
1107 return irq;
1108
1109 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1110 IRQF_NO_SUSPEND, "thunderbolt", nhi);
1111 if (res) {
1112 dev_err(&pdev->dev, "request_irq failed, aborting\n");
1113 return res;
1114 }
1115 }
1116
1117 return 0;
1118 }
1119
1120 static bool nhi_imr_valid(struct pci_dev *pdev)
1121 {
1122 u8 val;
1123
1124 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1125 return !!val;
1126
1127 return true;
1128 }
1129
1130 /*
1131 * During suspend the Thunderbolt controller is reset and all PCIe
1132 * tunnels are lost. The NHI driver will try to reestablish all tunnels
1133 * during resume. This adds device links between the tunneled PCIe
1134 * downstream ports and the NHI so that the device core will make sure
1135 * NHI is resumed first before the rest.
1136 */
1137 static void tb_apple_add_links(struct tb_nhi *nhi)
1138 {
1139 struct pci_dev *upstream, *pdev;
1140
1141 if (!x86_apple_machine)
1142 return;
1143
1144 switch (nhi->pdev->device) {
1145 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1146 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1147 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1148 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1149 break;
1150 default:
1151 return;
1152 }
1153
1154 upstream = pci_upstream_bridge(nhi->pdev);
1155 while (upstream) {
1156 if (!pci_is_pcie(upstream))
1157 return;
1158 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1159 break;
1160 upstream = pci_upstream_bridge(upstream);
1161 }
1162
1163 if (!upstream)
1164 return;
1165
1166 /*
1167 * For each hotplug downstream port, create add device link
1168 * back to NHI so that PCIe tunnels can be re-established after
1169 * sleep.
1170 */
1171 for_each_pci_bridge(pdev, upstream->subordinate) {
1172 const struct device_link *link;
1173
1174 if (!pci_is_pcie(pdev))
1175 continue;
1176 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1177 !pdev->is_hotplug_bridge)
1178 continue;
1179
1180 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1181 DL_FLAG_AUTOREMOVE_SUPPLIER |
1182 DL_FLAG_PM_RUNTIME);
1183 if (link) {
1184 dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1185 dev_name(&pdev->dev));
1186 } else {
1187 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1188 dev_name(&pdev->dev));
1189 }
1190 }
1191 }
1192
1193 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1194 {
1195 struct tb *tb;
1196
1197 /*
1198 * USB4 case is simple. If we got control of any of the
1199 * capabilities, we use software CM.
1200 */
1201 if (tb_acpi_is_native())
1202 return tb_probe(nhi);
1203
1204 /*
1205 * Either firmware based CM is running (we did not get control
1206 * from the firmware) or this is pre-USB4 PC so try first
1207 * firmware CM and then fallback to software CM.
1208 */
1209 tb = icm_probe(nhi);
1210 if (!tb)
1211 tb = tb_probe(nhi);
1212
1213 return tb;
1214 }
1215
1216 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1217 {
1218 struct tb_nhi *nhi;
1219 struct tb *tb;
1220 int res;
1221
1222 if (!nhi_imr_valid(pdev)) {
1223 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1224 return -ENODEV;
1225 }
1226
1227 res = pcim_enable_device(pdev);
1228 if (res) {
1229 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1230 return res;
1231 }
1232
1233 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1234 if (res) {
1235 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1236 return res;
1237 }
1238
1239 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1240 if (!nhi)
1241 return -ENOMEM;
1242
1243 nhi->pdev = pdev;
1244 nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1245 /* cannot fail - table is allocated bin pcim_iomap_regions */
1246 nhi->iobase = pcim_iomap_table(pdev)[0];
1247 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1248 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1249
1250 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1251 sizeof(*nhi->tx_rings), GFP_KERNEL);
1252 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1253 sizeof(*nhi->rx_rings), GFP_KERNEL);
1254 if (!nhi->tx_rings || !nhi->rx_rings)
1255 return -ENOMEM;
1256
1257 res = nhi_init_msi(nhi);
1258 if (res) {
1259 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1260 return res;
1261 }
1262
1263 spin_lock_init(&nhi->lock);
1264
1265 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1266 if (res)
1267 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1268 if (res) {
1269 dev_err(&pdev->dev, "failed to set DMA mask\n");
1270 return res;
1271 }
1272
1273 pci_set_master(pdev);
1274
1275 if (nhi->ops && nhi->ops->init) {
1276 res = nhi->ops->init(nhi);
1277 if (res)
1278 return res;
1279 }
1280
1281 tb_apple_add_links(nhi);
1282 tb_acpi_add_links(nhi);
1283
1284 tb = nhi_select_cm(nhi);
1285 if (!tb) {
1286 dev_err(&nhi->pdev->dev,
1287 "failed to determine connection manager, aborting\n");
1288 return -ENODEV;
1289 }
1290
1291 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1292
1293 res = tb_domain_add(tb);
1294 if (res) {
1295 /*
1296 * At this point the RX/TX rings might already have been
1297 * activated. Do a proper shutdown.
1298 */
1299 tb_domain_put(tb);
1300 nhi_shutdown(nhi);
1301 return res;
1302 }
1303 pci_set_drvdata(pdev, tb);
1304
1305 device_wakeup_enable(&pdev->dev);
1306
1307 pm_runtime_allow(&pdev->dev);
1308 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1309 pm_runtime_use_autosuspend(&pdev->dev);
1310 pm_runtime_put_autosuspend(&pdev->dev);
1311
1312 return 0;
1313 }
1314
1315 static void nhi_remove(struct pci_dev *pdev)
1316 {
1317 struct tb *tb = pci_get_drvdata(pdev);
1318 struct tb_nhi *nhi = tb->nhi;
1319
1320 pm_runtime_get_sync(&pdev->dev);
1321 pm_runtime_dont_use_autosuspend(&pdev->dev);
1322 pm_runtime_forbid(&pdev->dev);
1323
1324 tb_domain_remove(tb);
1325 nhi_shutdown(nhi);
1326 }
1327
1328 /*
1329 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1330 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1331 * resume_noirq until we are done.
1332 */
1333 static const struct dev_pm_ops nhi_pm_ops = {
1334 .suspend_noirq = nhi_suspend_noirq,
1335 .resume_noirq = nhi_resume_noirq,
1336 .freeze_noirq = nhi_freeze_noirq, /*
1337 * we just disable hotplug, the
1338 * pci-tunnels stay alive.
1339 */
1340 .thaw_noirq = nhi_thaw_noirq,
1341 .restore_noirq = nhi_resume_noirq,
1342 .suspend = nhi_suspend,
1343 .poweroff_noirq = nhi_poweroff_noirq,
1344 .poweroff = nhi_suspend,
1345 .complete = nhi_complete,
1346 .runtime_suspend = nhi_runtime_suspend,
1347 .runtime_resume = nhi_runtime_resume,
1348 };
1349
1350 static struct pci_device_id nhi_ids[] = {
1351 /*
1352 * We have to specify class, the TB bridges use the same device and
1353 * vendor (sub)id on gen 1 and gen 2 controllers.
1354 */
1355 {
1356 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1357 .vendor = PCI_VENDOR_ID_INTEL,
1358 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1359 .subvendor = 0x2222, .subdevice = 0x1111,
1360 },
1361 {
1362 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1363 .vendor = PCI_VENDOR_ID_INTEL,
1364 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1365 .subvendor = 0x2222, .subdevice = 0x1111,
1366 },
1367 {
1368 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1369 .vendor = PCI_VENDOR_ID_INTEL,
1370 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1371 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1372 },
1373 {
1374 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1375 .vendor = PCI_VENDOR_ID_INTEL,
1376 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1377 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1378 },
1379
1380 /* Thunderbolt 3 */
1381 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1382 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1383 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1384 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1385 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1386 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1387 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1388 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1389 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1390 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1391 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1392 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1393 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1394 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1395 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1396 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1397 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1398 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1399 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1400 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1401 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1402 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1403
1404 /* Any USB4 compliant host */
1405 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1406
1407 { 0,}
1408 };
1409
1410 MODULE_DEVICE_TABLE(pci, nhi_ids);
1411 MODULE_LICENSE("GPL");
1412
1413 static struct pci_driver nhi_driver = {
1414 .name = "thunderbolt",
1415 .id_table = nhi_ids,
1416 .probe = nhi_probe,
1417 .remove = nhi_remove,
1418 .shutdown = nhi_remove,
1419 .driver.pm = &nhi_pm_ops,
1420 };
1421
1422 static int __init nhi_init(void)
1423 {
1424 int ret;
1425
1426 ret = tb_domain_init();
1427 if (ret)
1428 return ret;
1429 ret = pci_register_driver(&nhi_driver);
1430 if (ret)
1431 tb_domain_exit();
1432 return ret;
1433 }
1434
1435 static void __exit nhi_unload(void)
1436 {
1437 pci_unregister_driver(&nhi_driver);
1438 tb_domain_exit();
1439 }
1440
1441 rootfs_initcall(nhi_init);
1442 module_exit(nhi_unload);