]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/thunderbolt/nhi.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-hirsute-kernel.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Thunderbolt driver - NHI driver
4 *
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
7 *
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
10 */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28 #define RING_FIRST_USABLE_HOPID 1
29
30 /*
31 * Minimal number of vectors when we use MSI-X. Two for control channel
32 * Rx/Tx and the rest four are for cross domain DMA paths.
33 */
34 #define MSIX_MIN_VECS 6
35 #define MSIX_MAX_VECS 16
36
37 #define NHI_MAILBOX_TIMEOUT 500 /* ms */
38
39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41 int bit = ring->hop;
42 if (!ring->is_tx)
43 bit += ring->nhi->hop_count;
44 return bit;
45 }
46
47 /**
48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49 *
50 * ring->nhi->lock must be held.
51 */
52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54 int reg = REG_RING_INTERRUPT_BASE +
55 ring_interrupt_index(ring) / 32 * 4;
56 int bit = ring_interrupt_index(ring) & 31;
57 int mask = 1 << bit;
58 u32 old, new;
59
60 if (ring->irq > 0) {
61 u32 step, shift, ivr, misc;
62 void __iomem *ivr_base;
63 int index;
64
65 if (ring->is_tx)
66 index = ring->hop;
67 else
68 index = ring->hop + ring->nhi->hop_count;
69
70 /*
71 * Ask the hardware to clear interrupt status bits automatically
72 * since we already know which interrupt was triggered.
73 */
74 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76 misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78 }
79
80 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83 ivr = ioread32(ivr_base + step);
84 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85 if (active)
86 ivr |= ring->vector << shift;
87 iowrite32(ivr, ivr_base + step);
88 }
89
90 old = ioread32(ring->nhi->iobase + reg);
91 if (active)
92 new = old | mask;
93 else
94 new = old & ~mask;
95
96 dev_dbg(&ring->nhi->pdev->dev,
97 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98 active ? "enabling" : "disabling", reg, bit, old, new);
99
100 if (new == old)
101 dev_WARN(&ring->nhi->pdev->dev,
102 "interrupt for %s %d is already %s\n",
103 RING_TYPE(ring), ring->hop,
104 active ? "enabled" : "disabled");
105 iowrite32(new, ring->nhi->iobase + reg);
106 }
107
108 /**
109 * nhi_disable_interrupts() - disable interrupts for all rings
110 *
111 * Use only during init and shutdown.
112 */
113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115 int i = 0;
116 /* disable interrupts */
117 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120 /* clear interrupt status bits */
121 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124
125 /* ring helper methods */
126
127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129 void __iomem *io = ring->nhi->iobase;
130 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131 io += ring->hop * 16;
132 return io;
133 }
134
135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137 void __iomem *io = ring->nhi->iobase;
138 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139 io += ring->hop * 32;
140 return io;
141 }
142
143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145 /*
146 * The other 16-bits in the register is read-only and writes to it
147 * are ignored by the hardware so we can save one ioread32() by
148 * filling the read-only bits with zeroes.
149 */
150 iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152
153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155 /* See ring_iowrite_cons() above for explanation */
156 iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158
159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161 iowrite32(value, ring_desc_base(ring) + offset);
162 }
163
164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166 iowrite32(value, ring_desc_base(ring) + offset);
167 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169
170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172 iowrite32(value, ring_options_base(ring) + offset);
173 }
174
175 static bool ring_full(struct tb_ring *ring)
176 {
177 return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179
180 static bool ring_empty(struct tb_ring *ring)
181 {
182 return ring->head == ring->tail;
183 }
184
185 /**
186 * ring_write_descriptors() - post frames from ring->queue to the controller
187 *
188 * ring->lock is held.
189 */
190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192 struct ring_frame *frame, *n;
193 struct ring_desc *descriptor;
194 list_for_each_entry_safe(frame, n, &ring->queue, list) {
195 if (ring_full(ring))
196 break;
197 list_move_tail(&frame->list, &ring->in_flight);
198 descriptor = &ring->descriptors[ring->head];
199 descriptor->phys = frame->buffer_phy;
200 descriptor->time = 0;
201 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202 if (ring->is_tx) {
203 descriptor->length = frame->size;
204 descriptor->eof = frame->eof;
205 descriptor->sof = frame->sof;
206 }
207 ring->head = (ring->head + 1) % ring->size;
208 if (ring->is_tx)
209 ring_iowrite_prod(ring, ring->head);
210 else
211 ring_iowrite_cons(ring, ring->head);
212 }
213 }
214
215 /**
216 * ring_work() - progress completed frames
217 *
218 * If the ring is shutting down then all frames are marked as canceled and
219 * their callbacks are invoked.
220 *
221 * Otherwise we collect all completed frame from the ring buffer, write new
222 * frame to the ring buffer and invoke the callbacks for the completed frames.
223 */
224 static void ring_work(struct work_struct *work)
225 {
226 struct tb_ring *ring = container_of(work, typeof(*ring), work);
227 struct ring_frame *frame;
228 bool canceled = false;
229 unsigned long flags;
230 LIST_HEAD(done);
231
232 spin_lock_irqsave(&ring->lock, flags);
233
234 if (!ring->running) {
235 /* Move all frames to done and mark them as canceled. */
236 list_splice_tail_init(&ring->in_flight, &done);
237 list_splice_tail_init(&ring->queue, &done);
238 canceled = true;
239 goto invoke_callback;
240 }
241
242 while (!ring_empty(ring)) {
243 if (!(ring->descriptors[ring->tail].flags
244 & RING_DESC_COMPLETED))
245 break;
246 frame = list_first_entry(&ring->in_flight, typeof(*frame),
247 list);
248 list_move_tail(&frame->list, &done);
249 if (!ring->is_tx) {
250 frame->size = ring->descriptors[ring->tail].length;
251 frame->eof = ring->descriptors[ring->tail].eof;
252 frame->sof = ring->descriptors[ring->tail].sof;
253 frame->flags = ring->descriptors[ring->tail].flags;
254 }
255 ring->tail = (ring->tail + 1) % ring->size;
256 }
257 ring_write_descriptors(ring);
258
259 invoke_callback:
260 /* allow callbacks to schedule new work */
261 spin_unlock_irqrestore(&ring->lock, flags);
262 while (!list_empty(&done)) {
263 frame = list_first_entry(&done, typeof(*frame), list);
264 /*
265 * The callback may reenqueue or delete frame.
266 * Do not hold on to it.
267 */
268 list_del_init(&frame->list);
269 if (frame->callback)
270 frame->callback(ring, frame, canceled);
271 }
272 }
273
274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276 unsigned long flags;
277 int ret = 0;
278
279 spin_lock_irqsave(&ring->lock, flags);
280 if (ring->running) {
281 list_add_tail(&frame->list, &ring->queue);
282 ring_write_descriptors(ring);
283 } else {
284 ret = -ESHUTDOWN;
285 }
286 spin_unlock_irqrestore(&ring->lock, flags);
287 return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291 /**
292 * tb_ring_poll() - Poll one completed frame from the ring
293 * @ring: Ring to poll
294 *
295 * This function can be called when @start_poll callback of the @ring
296 * has been called. It will read one completed frame from the ring and
297 * return it to the caller. Returns %NULL if there is no more completed
298 * frames.
299 */
300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302 struct ring_frame *frame = NULL;
303 unsigned long flags;
304
305 spin_lock_irqsave(&ring->lock, flags);
306 if (!ring->running)
307 goto unlock;
308 if (ring_empty(ring))
309 goto unlock;
310
311 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312 frame = list_first_entry(&ring->in_flight, typeof(*frame),
313 list);
314 list_del_init(&frame->list);
315
316 if (!ring->is_tx) {
317 frame->size = ring->descriptors[ring->tail].length;
318 frame->eof = ring->descriptors[ring->tail].eof;
319 frame->sof = ring->descriptors[ring->tail].sof;
320 frame->flags = ring->descriptors[ring->tail].flags;
321 }
322
323 ring->tail = (ring->tail + 1) % ring->size;
324 }
325
326 unlock:
327 spin_unlock_irqrestore(&ring->lock, flags);
328 return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331
332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334 int idx = ring_interrupt_index(ring);
335 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336 int bit = idx % 32;
337 u32 val;
338
339 val = ioread32(ring->nhi->iobase + reg);
340 if (mask)
341 val &= ~BIT(bit);
342 else
343 val |= BIT(bit);
344 iowrite32(val, ring->nhi->iobase + reg);
345 }
346
347 /* Both @nhi->lock and @ring->lock should be held */
348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350 if (!ring->running)
351 return;
352
353 if (ring->start_poll) {
354 __ring_interrupt_mask(ring, true);
355 ring->start_poll(ring->poll_data);
356 } else {
357 schedule_work(&ring->work);
358 }
359 }
360
361 /**
362 * tb_ring_poll_complete() - Re-start interrupt for the ring
363 * @ring: Ring to re-start the interrupt
364 *
365 * This will re-start (unmask) the ring interrupt once the user is done
366 * with polling.
367 */
368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370 unsigned long flags;
371
372 spin_lock_irqsave(&ring->nhi->lock, flags);
373 spin_lock(&ring->lock);
374 if (ring->start_poll)
375 __ring_interrupt_mask(ring, false);
376 spin_unlock(&ring->lock);
377 spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383 struct tb_ring *ring = data;
384
385 spin_lock(&ring->nhi->lock);
386 spin_lock(&ring->lock);
387 __ring_interrupt(ring);
388 spin_unlock(&ring->lock);
389 spin_unlock(&ring->nhi->lock);
390
391 return IRQ_HANDLED;
392 }
393
394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396 struct tb_nhi *nhi = ring->nhi;
397 unsigned long irqflags;
398 int ret;
399
400 if (!nhi->pdev->msix_enabled)
401 return 0;
402
403 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404 if (ret < 0)
405 return ret;
406
407 ring->vector = ret;
408
409 ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
410 if (ret < 0)
411 goto err_ida_remove;
412
413 ring->irq = ret;
414
415 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
416 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
417 if (ret)
418 goto err_ida_remove;
419
420 return 0;
421
422 err_ida_remove:
423 ida_simple_remove(&nhi->msix_ida, ring->vector);
424
425 return ret;
426 }
427
428 static void ring_release_msix(struct tb_ring *ring)
429 {
430 if (ring->irq <= 0)
431 return;
432
433 free_irq(ring->irq, ring);
434 ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
435 ring->vector = 0;
436 ring->irq = 0;
437 }
438
439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
440 {
441 int ret = 0;
442
443 spin_lock_irq(&nhi->lock);
444
445 if (ring->hop < 0) {
446 unsigned int i;
447
448 /*
449 * Automatically allocate HopID from the non-reserved
450 * range 1 .. hop_count - 1.
451 */
452 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
453 if (ring->is_tx) {
454 if (!nhi->tx_rings[i]) {
455 ring->hop = i;
456 break;
457 }
458 } else {
459 if (!nhi->rx_rings[i]) {
460 ring->hop = i;
461 break;
462 }
463 }
464 }
465 }
466
467 if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
468 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
469 ret = -EINVAL;
470 goto err_unlock;
471 }
472 if (ring->is_tx && nhi->tx_rings[ring->hop]) {
473 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
474 ring->hop);
475 ret = -EBUSY;
476 goto err_unlock;
477 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
478 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
479 ring->hop);
480 ret = -EBUSY;
481 goto err_unlock;
482 }
483
484 if (ring->is_tx)
485 nhi->tx_rings[ring->hop] = ring;
486 else
487 nhi->rx_rings[ring->hop] = ring;
488
489 err_unlock:
490 spin_unlock_irq(&nhi->lock);
491
492 return ret;
493 }
494
495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
496 bool transmit, unsigned int flags,
497 int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
498 void (*start_poll)(void *),
499 void *poll_data)
500 {
501 struct tb_ring *ring = NULL;
502
503 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
504 transmit ? "TX" : "RX", hop, size);
505
506 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
507 if (!ring)
508 return NULL;
509
510 spin_lock_init(&ring->lock);
511 INIT_LIST_HEAD(&ring->queue);
512 INIT_LIST_HEAD(&ring->in_flight);
513 INIT_WORK(&ring->work, ring_work);
514
515 ring->nhi = nhi;
516 ring->hop = hop;
517 ring->is_tx = transmit;
518 ring->size = size;
519 ring->flags = flags;
520 ring->e2e_tx_hop = e2e_tx_hop;
521 ring->sof_mask = sof_mask;
522 ring->eof_mask = eof_mask;
523 ring->head = 0;
524 ring->tail = 0;
525 ring->running = false;
526 ring->start_poll = start_poll;
527 ring->poll_data = poll_data;
528
529 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
530 size * sizeof(*ring->descriptors),
531 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
532 if (!ring->descriptors)
533 goto err_free_ring;
534
535 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
536 goto err_free_descs;
537
538 if (nhi_alloc_hop(nhi, ring))
539 goto err_release_msix;
540
541 return ring;
542
543 err_release_msix:
544 ring_release_msix(ring);
545 err_free_descs:
546 dma_free_coherent(&ring->nhi->pdev->dev,
547 ring->size * sizeof(*ring->descriptors),
548 ring->descriptors, ring->descriptors_dma);
549 err_free_ring:
550 kfree(ring);
551
552 return NULL;
553 }
554
555 /**
556 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
557 * @nhi: Pointer to the NHI the ring is to be allocated
558 * @hop: HopID (ring) to allocate
559 * @size: Number of entries in the ring
560 * @flags: Flags for the ring
561 */
562 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
563 unsigned int flags)
564 {
565 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
566 }
567 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
568
569 /**
570 * tb_ring_alloc_rx() - Allocate DMA ring for receive
571 * @nhi: Pointer to the NHI the ring is to be allocated
572 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
573 * @size: Number of entries in the ring
574 * @flags: Flags for the ring
575 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
576 * @sof_mask: Mask of PDF values that start a frame
577 * @eof_mask: Mask of PDF values that end a frame
578 * @start_poll: If not %NULL the ring will call this function when an
579 * interrupt is triggered and masked, instead of callback
580 * in each Rx frame.
581 * @poll_data: Optional data passed to @start_poll
582 */
583 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
584 unsigned int flags, int e2e_tx_hop,
585 u16 sof_mask, u16 eof_mask,
586 void (*start_poll)(void *), void *poll_data)
587 {
588 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
589 start_poll, poll_data);
590 }
591 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
592
593 /**
594 * tb_ring_start() - enable a ring
595 *
596 * Must not be invoked in parallel with tb_ring_stop().
597 */
598 void tb_ring_start(struct tb_ring *ring)
599 {
600 u16 frame_size;
601 u32 flags;
602
603 spin_lock_irq(&ring->nhi->lock);
604 spin_lock(&ring->lock);
605 if (ring->nhi->going_away)
606 goto err;
607 if (ring->running) {
608 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
609 goto err;
610 }
611 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
612 RING_TYPE(ring), ring->hop);
613
614 if (ring->flags & RING_FLAG_FRAME) {
615 /* Means 4096 */
616 frame_size = 0;
617 flags = RING_FLAG_ENABLE;
618 } else {
619 frame_size = TB_FRAME_SIZE;
620 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
621 }
622
623 ring_iowrite64desc(ring, ring->descriptors_dma, 0);
624 if (ring->is_tx) {
625 ring_iowrite32desc(ring, ring->size, 12);
626 ring_iowrite32options(ring, 0, 4); /* time releated ? */
627 ring_iowrite32options(ring, flags, 0);
628 } else {
629 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
630
631 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
632 ring_iowrite32options(ring, sof_eof_mask, 4);
633 ring_iowrite32options(ring, flags, 0);
634 }
635
636 /*
637 * Now that the ring valid bit is set we can configure E2E if
638 * enabled for the ring.
639 */
640 if (ring->flags & RING_FLAG_E2E) {
641 if (!ring->is_tx) {
642 u32 hop;
643
644 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
645 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
646 flags |= hop;
647
648 dev_dbg(&ring->nhi->pdev->dev,
649 "enabling E2E for %s %d with TX HopID %d\n",
650 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
651 } else {
652 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
653 RING_TYPE(ring), ring->hop);
654 }
655
656 flags |= RING_FLAG_E2E_FLOW_CONTROL;
657 ring_iowrite32options(ring, flags, 0);
658 }
659
660 ring_interrupt_active(ring, true);
661 ring->running = true;
662 err:
663 spin_unlock(&ring->lock);
664 spin_unlock_irq(&ring->nhi->lock);
665 }
666 EXPORT_SYMBOL_GPL(tb_ring_start);
667
668 /**
669 * tb_ring_stop() - shutdown a ring
670 *
671 * Must not be invoked from a callback.
672 *
673 * This method will disable the ring. Further calls to
674 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
675 * called.
676 *
677 * All enqueued frames will be canceled and their callbacks will be executed
678 * with frame->canceled set to true (on the callback thread). This method
679 * returns only after all callback invocations have finished.
680 */
681 void tb_ring_stop(struct tb_ring *ring)
682 {
683 spin_lock_irq(&ring->nhi->lock);
684 spin_lock(&ring->lock);
685 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
686 RING_TYPE(ring), ring->hop);
687 if (ring->nhi->going_away)
688 goto err;
689 if (!ring->running) {
690 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
691 RING_TYPE(ring), ring->hop);
692 goto err;
693 }
694 ring_interrupt_active(ring, false);
695
696 ring_iowrite32options(ring, 0, 0);
697 ring_iowrite64desc(ring, 0, 0);
698 ring_iowrite32desc(ring, 0, 8);
699 ring_iowrite32desc(ring, 0, 12);
700 ring->head = 0;
701 ring->tail = 0;
702 ring->running = false;
703
704 err:
705 spin_unlock(&ring->lock);
706 spin_unlock_irq(&ring->nhi->lock);
707
708 /*
709 * schedule ring->work to invoke callbacks on all remaining frames.
710 */
711 schedule_work(&ring->work);
712 flush_work(&ring->work);
713 }
714 EXPORT_SYMBOL_GPL(tb_ring_stop);
715
716 /*
717 * tb_ring_free() - free ring
718 *
719 * When this method returns all invocations of ring->callback will have
720 * finished.
721 *
722 * Ring must be stopped.
723 *
724 * Must NOT be called from ring_frame->callback!
725 */
726 void tb_ring_free(struct tb_ring *ring)
727 {
728 spin_lock_irq(&ring->nhi->lock);
729 /*
730 * Dissociate the ring from the NHI. This also ensures that
731 * nhi_interrupt_work cannot reschedule ring->work.
732 */
733 if (ring->is_tx)
734 ring->nhi->tx_rings[ring->hop] = NULL;
735 else
736 ring->nhi->rx_rings[ring->hop] = NULL;
737
738 if (ring->running) {
739 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
740 RING_TYPE(ring), ring->hop);
741 }
742 spin_unlock_irq(&ring->nhi->lock);
743
744 ring_release_msix(ring);
745
746 dma_free_coherent(&ring->nhi->pdev->dev,
747 ring->size * sizeof(*ring->descriptors),
748 ring->descriptors, ring->descriptors_dma);
749
750 ring->descriptors = NULL;
751 ring->descriptors_dma = 0;
752
753
754 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
755 ring->hop);
756
757 /**
758 * ring->work can no longer be scheduled (it is scheduled only
759 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
760 * to finish before freeing the ring.
761 */
762 flush_work(&ring->work);
763 kfree(ring);
764 }
765 EXPORT_SYMBOL_GPL(tb_ring_free);
766
767 /**
768 * nhi_mailbox_cmd() - Send a command through NHI mailbox
769 * @nhi: Pointer to the NHI structure
770 * @cmd: Command to send
771 * @data: Data to be send with the command
772 *
773 * Sends mailbox command to the firmware running on NHI. Returns %0 in
774 * case of success and negative errno in case of failure.
775 */
776 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
777 {
778 ktime_t timeout;
779 u32 val;
780
781 iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
782
783 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
784 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
785 val |= REG_INMAIL_OP_REQUEST | cmd;
786 iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
787
788 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
789 do {
790 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
791 if (!(val & REG_INMAIL_OP_REQUEST))
792 break;
793 usleep_range(10, 20);
794 } while (ktime_before(ktime_get(), timeout));
795
796 if (val & REG_INMAIL_OP_REQUEST)
797 return -ETIMEDOUT;
798 if (val & REG_INMAIL_ERROR)
799 return -EIO;
800
801 return 0;
802 }
803
804 /**
805 * nhi_mailbox_mode() - Return current firmware operation mode
806 * @nhi: Pointer to the NHI structure
807 *
808 * The function reads current firmware operation mode using NHI mailbox
809 * registers and returns it to the caller.
810 */
811 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
812 {
813 u32 val;
814
815 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
816 val &= REG_OUTMAIL_CMD_OPMODE_MASK;
817 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
818
819 return (enum nhi_fw_mode)val;
820 }
821
822 static void nhi_interrupt_work(struct work_struct *work)
823 {
824 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
825 int value = 0; /* Suppress uninitialized usage warning. */
826 int bit;
827 int hop = -1;
828 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
829 struct tb_ring *ring;
830
831 spin_lock_irq(&nhi->lock);
832
833 /*
834 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
835 * (TX, RX, RX overflow). We iterate over the bits and read a new
836 * dwords as required. The registers are cleared on read.
837 */
838 for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
839 if (bit % 32 == 0)
840 value = ioread32(nhi->iobase
841 + REG_RING_NOTIFY_BASE
842 + 4 * (bit / 32));
843 if (++hop == nhi->hop_count) {
844 hop = 0;
845 type++;
846 }
847 if ((value & (1 << (bit % 32))) == 0)
848 continue;
849 if (type == 2) {
850 dev_warn(&nhi->pdev->dev,
851 "RX overflow for ring %d\n",
852 hop);
853 continue;
854 }
855 if (type == 0)
856 ring = nhi->tx_rings[hop];
857 else
858 ring = nhi->rx_rings[hop];
859 if (ring == NULL) {
860 dev_warn(&nhi->pdev->dev,
861 "got interrupt for inactive %s ring %d\n",
862 type ? "RX" : "TX",
863 hop);
864 continue;
865 }
866
867 spin_lock(&ring->lock);
868 __ring_interrupt(ring);
869 spin_unlock(&ring->lock);
870 }
871 spin_unlock_irq(&nhi->lock);
872 }
873
874 static irqreturn_t nhi_msi(int irq, void *data)
875 {
876 struct tb_nhi *nhi = data;
877 schedule_work(&nhi->interrupt_work);
878 return IRQ_HANDLED;
879 }
880
881 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
882 {
883 struct pci_dev *pdev = to_pci_dev(dev);
884 struct tb *tb = pci_get_drvdata(pdev);
885 struct tb_nhi *nhi = tb->nhi;
886 int ret;
887
888 ret = tb_domain_suspend_noirq(tb);
889 if (ret)
890 return ret;
891
892 if (nhi->ops && nhi->ops->suspend_noirq) {
893 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
894 if (ret)
895 return ret;
896 }
897
898 return 0;
899 }
900
901 static int nhi_suspend_noirq(struct device *dev)
902 {
903 return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
904 }
905
906 static int nhi_freeze_noirq(struct device *dev)
907 {
908 struct pci_dev *pdev = to_pci_dev(dev);
909 struct tb *tb = pci_get_drvdata(pdev);
910
911 return tb_domain_freeze_noirq(tb);
912 }
913
914 static int nhi_thaw_noirq(struct device *dev)
915 {
916 struct pci_dev *pdev = to_pci_dev(dev);
917 struct tb *tb = pci_get_drvdata(pdev);
918
919 return tb_domain_thaw_noirq(tb);
920 }
921
922 static bool nhi_wake_supported(struct pci_dev *pdev)
923 {
924 u8 val;
925
926 /*
927 * If power rails are sustainable for wakeup from S4 this
928 * property is set by the BIOS.
929 */
930 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
931 return !!val;
932
933 return true;
934 }
935
936 static int nhi_poweroff_noirq(struct device *dev)
937 {
938 struct pci_dev *pdev = to_pci_dev(dev);
939 bool wakeup;
940
941 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
942 return __nhi_suspend_noirq(dev, wakeup);
943 }
944
945 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
946 {
947 /* Throttling is specified in 256ns increments */
948 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
949 unsigned int i;
950
951 /*
952 * Configure interrupt throttling for all vectors even if we
953 * only use few.
954 */
955 for (i = 0; i < MSIX_MAX_VECS; i++) {
956 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
957 iowrite32(throttle, nhi->iobase + reg);
958 }
959 }
960
961 static int nhi_resume_noirq(struct device *dev)
962 {
963 struct pci_dev *pdev = to_pci_dev(dev);
964 struct tb *tb = pci_get_drvdata(pdev);
965 struct tb_nhi *nhi = tb->nhi;
966 int ret;
967
968 /*
969 * Check that the device is still there. It may be that the user
970 * unplugged last device which causes the host controller to go
971 * away on PCs.
972 */
973 if (!pci_device_is_present(pdev)) {
974 nhi->going_away = true;
975 } else {
976 if (nhi->ops && nhi->ops->resume_noirq) {
977 ret = nhi->ops->resume_noirq(nhi);
978 if (ret)
979 return ret;
980 }
981 nhi_enable_int_throttling(tb->nhi);
982 }
983
984 return tb_domain_resume_noirq(tb);
985 }
986
987 static int nhi_suspend(struct device *dev)
988 {
989 struct pci_dev *pdev = to_pci_dev(dev);
990 struct tb *tb = pci_get_drvdata(pdev);
991
992 return tb_domain_suspend(tb);
993 }
994
995 static void nhi_complete(struct device *dev)
996 {
997 struct pci_dev *pdev = to_pci_dev(dev);
998 struct tb *tb = pci_get_drvdata(pdev);
999
1000 /*
1001 * If we were runtime suspended when system suspend started,
1002 * schedule runtime resume now. It should bring the domain back
1003 * to functional state.
1004 */
1005 if (pm_runtime_suspended(&pdev->dev))
1006 pm_runtime_resume(&pdev->dev);
1007 else
1008 tb_domain_complete(tb);
1009 }
1010
1011 static int nhi_runtime_suspend(struct device *dev)
1012 {
1013 struct pci_dev *pdev = to_pci_dev(dev);
1014 struct tb *tb = pci_get_drvdata(pdev);
1015 struct tb_nhi *nhi = tb->nhi;
1016 int ret;
1017
1018 ret = tb_domain_runtime_suspend(tb);
1019 if (ret)
1020 return ret;
1021
1022 if (nhi->ops && nhi->ops->runtime_suspend) {
1023 ret = nhi->ops->runtime_suspend(tb->nhi);
1024 if (ret)
1025 return ret;
1026 }
1027 return 0;
1028 }
1029
1030 static int nhi_runtime_resume(struct device *dev)
1031 {
1032 struct pci_dev *pdev = to_pci_dev(dev);
1033 struct tb *tb = pci_get_drvdata(pdev);
1034 struct tb_nhi *nhi = tb->nhi;
1035 int ret;
1036
1037 if (nhi->ops && nhi->ops->runtime_resume) {
1038 ret = nhi->ops->runtime_resume(nhi);
1039 if (ret)
1040 return ret;
1041 }
1042
1043 nhi_enable_int_throttling(nhi);
1044 return tb_domain_runtime_resume(tb);
1045 }
1046
1047 static void nhi_shutdown(struct tb_nhi *nhi)
1048 {
1049 int i;
1050
1051 dev_dbg(&nhi->pdev->dev, "shutdown\n");
1052
1053 for (i = 0; i < nhi->hop_count; i++) {
1054 if (nhi->tx_rings[i])
1055 dev_WARN(&nhi->pdev->dev,
1056 "TX ring %d is still active\n", i);
1057 if (nhi->rx_rings[i])
1058 dev_WARN(&nhi->pdev->dev,
1059 "RX ring %d is still active\n", i);
1060 }
1061 nhi_disable_interrupts(nhi);
1062 /*
1063 * We have to release the irq before calling flush_work. Otherwise an
1064 * already executing IRQ handler could call schedule_work again.
1065 */
1066 if (!nhi->pdev->msix_enabled) {
1067 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1068 flush_work(&nhi->interrupt_work);
1069 }
1070 ida_destroy(&nhi->msix_ida);
1071
1072 if (nhi->ops && nhi->ops->shutdown)
1073 nhi->ops->shutdown(nhi);
1074 }
1075
1076 static int nhi_init_msi(struct tb_nhi *nhi)
1077 {
1078 struct pci_dev *pdev = nhi->pdev;
1079 int res, irq, nvec;
1080
1081 /* In case someone left them on. */
1082 nhi_disable_interrupts(nhi);
1083
1084 nhi_enable_int_throttling(nhi);
1085
1086 ida_init(&nhi->msix_ida);
1087
1088 /*
1089 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1090 * get all MSI-X vectors and if we succeed, each ring will have
1091 * one MSI-X. If for some reason that does not work out, we
1092 * fallback to a single MSI.
1093 */
1094 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1095 PCI_IRQ_MSIX);
1096 if (nvec < 0) {
1097 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1098 if (nvec < 0)
1099 return nvec;
1100
1101 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1102
1103 irq = pci_irq_vector(nhi->pdev, 0);
1104 if (irq < 0)
1105 return irq;
1106
1107 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1108 IRQF_NO_SUSPEND, "thunderbolt", nhi);
1109 if (res) {
1110 dev_err(&pdev->dev, "request_irq failed, aborting\n");
1111 return res;
1112 }
1113 }
1114
1115 return 0;
1116 }
1117
1118 static bool nhi_imr_valid(struct pci_dev *pdev)
1119 {
1120 u8 val;
1121
1122 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1123 return !!val;
1124
1125 return true;
1126 }
1127
1128 /*
1129 * During suspend the Thunderbolt controller is reset and all PCIe
1130 * tunnels are lost. The NHI driver will try to reestablish all tunnels
1131 * during resume. This adds device links between the tunneled PCIe
1132 * downstream ports and the NHI so that the device core will make sure
1133 * NHI is resumed first before the rest.
1134 */
1135 static void tb_apple_add_links(struct tb_nhi *nhi)
1136 {
1137 struct pci_dev *upstream, *pdev;
1138
1139 if (!x86_apple_machine)
1140 return;
1141
1142 switch (nhi->pdev->device) {
1143 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1144 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1145 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1146 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1147 break;
1148 default:
1149 return;
1150 }
1151
1152 upstream = pci_upstream_bridge(nhi->pdev);
1153 while (upstream) {
1154 if (!pci_is_pcie(upstream))
1155 return;
1156 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1157 break;
1158 upstream = pci_upstream_bridge(upstream);
1159 }
1160
1161 if (!upstream)
1162 return;
1163
1164 /*
1165 * For each hotplug downstream port, create add device link
1166 * back to NHI so that PCIe tunnels can be re-established after
1167 * sleep.
1168 */
1169 for_each_pci_bridge(pdev, upstream->subordinate) {
1170 const struct device_link *link;
1171
1172 if (!pci_is_pcie(pdev))
1173 continue;
1174 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1175 !pdev->is_hotplug_bridge)
1176 continue;
1177
1178 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1179 DL_FLAG_AUTOREMOVE_SUPPLIER |
1180 DL_FLAG_PM_RUNTIME);
1181 if (link) {
1182 dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1183 dev_name(&pdev->dev));
1184 } else {
1185 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1186 dev_name(&pdev->dev));
1187 }
1188 }
1189 }
1190
1191 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1192 {
1193 struct tb_nhi *nhi;
1194 struct tb *tb;
1195 int res;
1196
1197 if (!nhi_imr_valid(pdev)) {
1198 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1199 return -ENODEV;
1200 }
1201
1202 res = pcim_enable_device(pdev);
1203 if (res) {
1204 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1205 return res;
1206 }
1207
1208 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1209 if (res) {
1210 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1211 return res;
1212 }
1213
1214 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1215 if (!nhi)
1216 return -ENOMEM;
1217
1218 nhi->pdev = pdev;
1219 nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1220 /* cannot fail - table is allocated bin pcim_iomap_regions */
1221 nhi->iobase = pcim_iomap_table(pdev)[0];
1222 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1223 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1224
1225 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1226 sizeof(*nhi->tx_rings), GFP_KERNEL);
1227 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1228 sizeof(*nhi->rx_rings), GFP_KERNEL);
1229 if (!nhi->tx_rings || !nhi->rx_rings)
1230 return -ENOMEM;
1231
1232 res = nhi_init_msi(nhi);
1233 if (res) {
1234 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1235 return res;
1236 }
1237
1238 spin_lock_init(&nhi->lock);
1239
1240 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1241 if (res)
1242 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1243 if (res) {
1244 dev_err(&pdev->dev, "failed to set DMA mask\n");
1245 return res;
1246 }
1247
1248 pci_set_master(pdev);
1249
1250 if (nhi->ops && nhi->ops->init) {
1251 res = nhi->ops->init(nhi);
1252 if (res)
1253 return res;
1254 }
1255
1256 tb_apple_add_links(nhi);
1257 tb_acpi_add_links(nhi);
1258
1259 tb = icm_probe(nhi);
1260 if (!tb)
1261 tb = tb_probe(nhi);
1262 if (!tb) {
1263 dev_err(&nhi->pdev->dev,
1264 "failed to determine connection manager, aborting\n");
1265 return -ENODEV;
1266 }
1267
1268 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1269
1270 res = tb_domain_add(tb);
1271 if (res) {
1272 /*
1273 * At this point the RX/TX rings might already have been
1274 * activated. Do a proper shutdown.
1275 */
1276 tb_domain_put(tb);
1277 nhi_shutdown(nhi);
1278 return res;
1279 }
1280 pci_set_drvdata(pdev, tb);
1281
1282 device_wakeup_enable(&pdev->dev);
1283
1284 pm_runtime_allow(&pdev->dev);
1285 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1286 pm_runtime_use_autosuspend(&pdev->dev);
1287 pm_runtime_put_autosuspend(&pdev->dev);
1288
1289 return 0;
1290 }
1291
1292 static void nhi_remove(struct pci_dev *pdev)
1293 {
1294 struct tb *tb = pci_get_drvdata(pdev);
1295 struct tb_nhi *nhi = tb->nhi;
1296
1297 pm_runtime_get_sync(&pdev->dev);
1298 pm_runtime_dont_use_autosuspend(&pdev->dev);
1299 pm_runtime_forbid(&pdev->dev);
1300
1301 tb_domain_remove(tb);
1302 nhi_shutdown(nhi);
1303 }
1304
1305 /*
1306 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1307 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1308 * resume_noirq until we are done.
1309 */
1310 static const struct dev_pm_ops nhi_pm_ops = {
1311 .suspend_noirq = nhi_suspend_noirq,
1312 .resume_noirq = nhi_resume_noirq,
1313 .freeze_noirq = nhi_freeze_noirq, /*
1314 * we just disable hotplug, the
1315 * pci-tunnels stay alive.
1316 */
1317 .thaw_noirq = nhi_thaw_noirq,
1318 .restore_noirq = nhi_resume_noirq,
1319 .suspend = nhi_suspend,
1320 .poweroff_noirq = nhi_poweroff_noirq,
1321 .poweroff = nhi_suspend,
1322 .complete = nhi_complete,
1323 .runtime_suspend = nhi_runtime_suspend,
1324 .runtime_resume = nhi_runtime_resume,
1325 };
1326
1327 static struct pci_device_id nhi_ids[] = {
1328 /*
1329 * We have to specify class, the TB bridges use the same device and
1330 * vendor (sub)id on gen 1 and gen 2 controllers.
1331 */
1332 {
1333 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1334 .vendor = PCI_VENDOR_ID_INTEL,
1335 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1336 .subvendor = 0x2222, .subdevice = 0x1111,
1337 },
1338 {
1339 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1340 .vendor = PCI_VENDOR_ID_INTEL,
1341 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1342 .subvendor = 0x2222, .subdevice = 0x1111,
1343 },
1344 {
1345 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1346 .vendor = PCI_VENDOR_ID_INTEL,
1347 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1348 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1349 },
1350 {
1351 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1352 .vendor = PCI_VENDOR_ID_INTEL,
1353 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1354 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1355 },
1356
1357 /* Thunderbolt 3 */
1358 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1359 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1360 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1361 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1362 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1363 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1364 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1365 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1366 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1367 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1368 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1369 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1370 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1371 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1372 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1373 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1374 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1375 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1376 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1377 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1378 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1379 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1380
1381 /* Any USB4 compliant host */
1382 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1383
1384 { 0,}
1385 };
1386
1387 MODULE_DEVICE_TABLE(pci, nhi_ids);
1388 MODULE_LICENSE("GPL");
1389
1390 static struct pci_driver nhi_driver = {
1391 .name = "thunderbolt",
1392 .id_table = nhi_ids,
1393 .probe = nhi_probe,
1394 .remove = nhi_remove,
1395 .shutdown = nhi_remove,
1396 .driver.pm = &nhi_pm_ops,
1397 };
1398
1399 static int __init nhi_init(void)
1400 {
1401 int ret;
1402
1403 ret = tb_domain_init();
1404 if (ret)
1405 return ret;
1406 ret = pci_register_driver(&nhi_driver);
1407 if (ret)
1408 tb_domain_exit();
1409 return ret;
1410 }
1411
1412 static void __exit nhi_unload(void)
1413 {
1414 pci_unregister_driver(&nhi_driver);
1415 tb_domain_exit();
1416 }
1417
1418 rootfs_initcall(nhi_init);
1419 module_exit(nhi_unload);