]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/thunderbolt/switch.c
5668a44e0653b2685825ddb1b9105110d021590c
[mirror_ubuntu-hirsute-kernel.git] / drivers / thunderbolt / switch.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 #include "tb.h"
19
20 /* Switch NVM support */
21
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
26
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
29
30 static DEFINE_IDA(nvm_ida);
31
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36 };
37
38 /*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56 }
57
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67 }
68
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92 }
93
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105 }
106
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168
169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 int ret;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 ret = tb_domain_disconnect_all_paths(sw->tb);
180 if (ret)
181 return ret;
182 /*
183 * The host controller goes away pretty soon after this if
184 * everything goes well so getting timeout is expected.
185 */
186 ret = dma_port_flash_update_auth(sw->dma_port);
187 return ret == -ETIMEDOUT ? 0 : ret;
188 }
189
190 /*
191 * From safe mode we can get out by just power cycling the
192 * switch.
193 */
194 dma_port_power_cycle(sw->dma_port);
195 return 0;
196 }
197
198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 int ret, retries = 10;
201
202 ret = dma_port_flash_update_auth(sw->dma_port);
203 if (ret && ret != -ETIMEDOUT)
204 return ret;
205
206 /*
207 * Poll here for the authentication status. It takes some time
208 * for the device to respond (we get timeout for a while). Once
209 * we get response the device needs to be power cycled in order
210 * to the new NVM to be taken into use.
211 */
212 do {
213 u32 status;
214
215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 if (ret < 0 && ret != -ETIMEDOUT)
217 return ret;
218 if (ret > 0) {
219 if (status) {
220 tb_sw_warn(sw, "failed to authenticate NVM\n");
221 nvm_set_auth_status(sw, status);
222 }
223
224 tb_sw_info(sw, "power cycling the switch now\n");
225 dma_port_power_cycle(sw->dma_port);
226 return 0;
227 }
228
229 msleep(500);
230 } while (--retries);
231
232 return -ETIMEDOUT;
233 }
234
235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 size_t bytes)
237 {
238 struct tb_switch *sw = priv;
239 int ret;
240
241 pm_runtime_get_sync(&sw->dev);
242
243 if (!mutex_trylock(&sw->tb->lock)) {
244 ret = restart_syscall();
245 goto out;
246 }
247
248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
249 mutex_unlock(&sw->tb->lock);
250
251 out:
252 pm_runtime_mark_last_busy(&sw->dev);
253 pm_runtime_put_autosuspend(&sw->dev);
254
255 return ret;
256 }
257
258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
259 size_t bytes)
260 {
261 struct tb_switch *sw = priv;
262 int ret = 0;
263
264 if (!mutex_trylock(&sw->tb->lock))
265 return restart_syscall();
266
267 /*
268 * Since writing the NVM image might require some special steps,
269 * for example when CSS headers are written, we cache the image
270 * locally here and handle the special cases when the user asks
271 * us to authenticate the image.
272 */
273 if (!sw->nvm->buf) {
274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
275 if (!sw->nvm->buf) {
276 ret = -ENOMEM;
277 goto unlock;
278 }
279 }
280
281 sw->nvm->buf_data_size = offset + bytes;
282 memcpy(sw->nvm->buf + offset, val, bytes);
283
284 unlock:
285 mutex_unlock(&sw->tb->lock);
286
287 return ret;
288 }
289
290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
291 size_t size, bool active)
292 {
293 struct nvmem_config config;
294
295 memset(&config, 0, sizeof(config));
296
297 if (active) {
298 config.name = "nvm_active";
299 config.reg_read = tb_switch_nvm_read;
300 config.read_only = true;
301 } else {
302 config.name = "nvm_non_active";
303 config.reg_write = tb_switch_nvm_write;
304 config.root_only = true;
305 }
306
307 config.id = id;
308 config.stride = 4;
309 config.word_size = 4;
310 config.size = size;
311 config.dev = &sw->dev;
312 config.owner = THIS_MODULE;
313 config.priv = sw;
314
315 return nvmem_register(&config);
316 }
317
318 static int tb_switch_nvm_add(struct tb_switch *sw)
319 {
320 struct nvmem_device *nvm_dev;
321 struct tb_switch_nvm *nvm;
322 u32 val;
323 int ret;
324
325 if (!sw->dma_port)
326 return 0;
327
328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
329 if (!nvm)
330 return -ENOMEM;
331
332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
333
334 /*
335 * If the switch is in safe-mode the only accessible portion of
336 * the NVM is the non-active one where userspace is expected to
337 * write new functional NVM.
338 */
339 if (!sw->safe_mode) {
340 u32 nvm_size, hdr_size;
341
342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
343 sizeof(val));
344 if (ret)
345 goto err_ida;
346
347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
348 nvm_size = (SZ_1M << (val & 7)) / 8;
349 nvm_size = (nvm_size - hdr_size) / 2;
350
351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
352 sizeof(val));
353 if (ret)
354 goto err_ida;
355
356 nvm->major = val >> 16;
357 nvm->minor = val >> 8;
358
359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
360 if (IS_ERR(nvm_dev)) {
361 ret = PTR_ERR(nvm_dev);
362 goto err_ida;
363 }
364 nvm->active = nvm_dev;
365 }
366
367 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
368 if (IS_ERR(nvm_dev)) {
369 ret = PTR_ERR(nvm_dev);
370 goto err_nvm_active;
371 }
372 nvm->non_active = nvm_dev;
373
374 sw->nvm = nvm;
375 return 0;
376
377 err_nvm_active:
378 if (nvm->active)
379 nvmem_unregister(nvm->active);
380 err_ida:
381 ida_simple_remove(&nvm_ida, nvm->id);
382 kfree(nvm);
383
384 return ret;
385 }
386
387 static void tb_switch_nvm_remove(struct tb_switch *sw)
388 {
389 struct tb_switch_nvm *nvm;
390
391 nvm = sw->nvm;
392 sw->nvm = NULL;
393
394 if (!nvm)
395 return;
396
397 /* Remove authentication status in case the switch is unplugged */
398 if (!nvm->authenticating)
399 nvm_clear_auth_status(sw);
400
401 nvmem_unregister(nvm->non_active);
402 if (nvm->active)
403 nvmem_unregister(nvm->active);
404 ida_simple_remove(&nvm_ida, nvm->id);
405 vfree(nvm->buf);
406 kfree(nvm);
407 }
408
409 /* port utility functions */
410
411 static const char *tb_port_type(struct tb_regs_port_header *port)
412 {
413 switch (port->type >> 16) {
414 case 0:
415 switch ((u8) port->type) {
416 case 0:
417 return "Inactive";
418 case 1:
419 return "Port";
420 case 2:
421 return "NHI";
422 default:
423 return "unknown";
424 }
425 case 0x2:
426 return "Ethernet";
427 case 0x8:
428 return "SATA";
429 case 0xe:
430 return "DP/HDMI";
431 case 0x10:
432 return "PCIe";
433 case 0x20:
434 return "USB";
435 default:
436 return "unknown";
437 }
438 }
439
440 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
441 {
442 tb_dbg(tb,
443 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
444 port->port_number, port->vendor_id, port->device_id,
445 port->revision, port->thunderbolt_version, tb_port_type(port),
446 port->type);
447 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
448 port->max_in_hop_id, port->max_out_hop_id);
449 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
450 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
451 }
452
453 /**
454 * tb_port_state() - get connectedness state of a port
455 *
456 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
457 *
458 * Return: Returns an enum tb_port_state on success or an error code on failure.
459 */
460 static int tb_port_state(struct tb_port *port)
461 {
462 struct tb_cap_phy phy;
463 int res;
464 if (port->cap_phy == 0) {
465 tb_port_WARN(port, "does not have a PHY\n");
466 return -EINVAL;
467 }
468 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
469 if (res)
470 return res;
471 return phy.state;
472 }
473
474 /**
475 * tb_wait_for_port() - wait for a port to become ready
476 *
477 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
478 * wait_if_unplugged is set then we also wait if the port is in state
479 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
480 * switch resume). Otherwise we only wait if a device is registered but the link
481 * has not yet been established.
482 *
483 * Return: Returns an error code on failure. Returns 0 if the port is not
484 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
485 * if the port is connected and in state TB_PORT_UP.
486 */
487 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
488 {
489 int retries = 10;
490 int state;
491 if (!port->cap_phy) {
492 tb_port_WARN(port, "does not have PHY\n");
493 return -EINVAL;
494 }
495 if (tb_is_upstream_port(port)) {
496 tb_port_WARN(port, "is the upstream port\n");
497 return -EINVAL;
498 }
499
500 while (retries--) {
501 state = tb_port_state(port);
502 if (state < 0)
503 return state;
504 if (state == TB_PORT_DISABLED) {
505 tb_port_dbg(port, "is disabled (state: 0)\n");
506 return 0;
507 }
508 if (state == TB_PORT_UNPLUGGED) {
509 if (wait_if_unplugged) {
510 /* used during resume */
511 tb_port_dbg(port,
512 "is unplugged (state: 7), retrying...\n");
513 msleep(100);
514 continue;
515 }
516 tb_port_dbg(port, "is unplugged (state: 7)\n");
517 return 0;
518 }
519 if (state == TB_PORT_UP) {
520 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
521 return 1;
522 }
523
524 /*
525 * After plug-in the state is TB_PORT_CONNECTING. Give it some
526 * time.
527 */
528 tb_port_dbg(port,
529 "is connected, link is not up (state: %d), retrying...\n",
530 state);
531 msleep(100);
532 }
533 tb_port_warn(port,
534 "failed to reach state TB_PORT_UP. Ignoring port...\n");
535 return 0;
536 }
537
538 /**
539 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
540 *
541 * Change the number of NFC credits allocated to @port by @credits. To remove
542 * NFC credits pass a negative amount of credits.
543 *
544 * Return: Returns 0 on success or an error code on failure.
545 */
546 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
547 {
548 u32 nfc_credits;
549
550 if (credits == 0 || port->sw->is_unplugged)
551 return 0;
552
553 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
554 nfc_credits += credits;
555
556 tb_port_dbg(port, "adding %d NFC credits to %lu",
557 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
558
559 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
560 port->config.nfc_credits |= nfc_credits;
561
562 return tb_port_write(port, &port->config.nfc_credits,
563 TB_CFG_PORT, 4, 1);
564 }
565
566 /**
567 * tb_port_set_initial_credits() - Set initial port link credits allocated
568 * @port: Port to set the initial credits
569 * @credits: Number of credits to to allocate
570 *
571 * Set initial credits value to be used for ingress shared buffering.
572 */
573 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
574 {
575 u32 data;
576 int ret;
577
578 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
579 if (ret)
580 return ret;
581
582 data &= ~TB_PORT_LCA_MASK;
583 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
584
585 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
586 }
587
588 /**
589 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
590 *
591 * Return: Returns 0 on success or an error code on failure.
592 */
593 int tb_port_clear_counter(struct tb_port *port, int counter)
594 {
595 u32 zero[3] = { 0, 0, 0 };
596 tb_port_dbg(port, "clearing counter %d\n", counter);
597 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
598 }
599
600 /**
601 * tb_init_port() - initialize a port
602 *
603 * This is a helper method for tb_switch_alloc. Does not check or initialize
604 * any downstream switches.
605 *
606 * Return: Returns 0 on success or an error code on failure.
607 */
608 static int tb_init_port(struct tb_port *port)
609 {
610 int res;
611 int cap;
612
613 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
614 if (res)
615 return res;
616
617 /* Port 0 is the switch itself and has no PHY. */
618 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
619 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
620
621 if (cap > 0)
622 port->cap_phy = cap;
623 else
624 tb_port_WARN(port, "non switch port without a PHY\n");
625 } else if (port->port != 0) {
626 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
627 if (cap > 0)
628 port->cap_adap = cap;
629 }
630
631 tb_dump_port(port->sw->tb, &port->config);
632
633 /* Control port does not need HopID allocation */
634 if (port->port) {
635 ida_init(&port->in_hopids);
636 ida_init(&port->out_hopids);
637 }
638
639 return 0;
640
641 }
642
643 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
644 int max_hopid)
645 {
646 int port_max_hopid;
647 struct ida *ida;
648
649 if (in) {
650 port_max_hopid = port->config.max_in_hop_id;
651 ida = &port->in_hopids;
652 } else {
653 port_max_hopid = port->config.max_out_hop_id;
654 ida = &port->out_hopids;
655 }
656
657 /* HopIDs 0-7 are reserved */
658 if (min_hopid < TB_PATH_MIN_HOPID)
659 min_hopid = TB_PATH_MIN_HOPID;
660
661 if (max_hopid < 0 || max_hopid > port_max_hopid)
662 max_hopid = port_max_hopid;
663
664 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
665 }
666
667 /**
668 * tb_port_alloc_in_hopid() - Allocate input HopID from port
669 * @port: Port to allocate HopID for
670 * @min_hopid: Minimum acceptable input HopID
671 * @max_hopid: Maximum acceptable input HopID
672 *
673 * Return: HopID between @min_hopid and @max_hopid or negative errno in
674 * case of error.
675 */
676 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
677 {
678 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
679 }
680
681 /**
682 * tb_port_alloc_out_hopid() - Allocate output HopID from port
683 * @port: Port to allocate HopID for
684 * @min_hopid: Minimum acceptable output HopID
685 * @max_hopid: Maximum acceptable output HopID
686 *
687 * Return: HopID between @min_hopid and @max_hopid or negative errno in
688 * case of error.
689 */
690 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
691 {
692 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
693 }
694
695 /**
696 * tb_port_release_in_hopid() - Release allocated input HopID from port
697 * @port: Port whose HopID to release
698 * @hopid: HopID to release
699 */
700 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
701 {
702 ida_simple_remove(&port->in_hopids, hopid);
703 }
704
705 /**
706 * tb_port_release_out_hopid() - Release allocated output HopID from port
707 * @port: Port whose HopID to release
708 * @hopid: HopID to release
709 */
710 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
711 {
712 ida_simple_remove(&port->out_hopids, hopid);
713 }
714
715 /**
716 * tb_next_port_on_path() - Return next port for given port on a path
717 * @start: Start port of the walk
718 * @end: End port of the walk
719 * @prev: Previous port (%NULL if this is the first)
720 *
721 * This function can be used to walk from one port to another if they
722 * are connected through zero or more switches. If the @prev is dual
723 * link port, the function follows that link and returns another end on
724 * that same link.
725 *
726 * If the @end port has been reached, return %NULL.
727 *
728 * Domain tb->lock must be held when this function is called.
729 */
730 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
731 struct tb_port *prev)
732 {
733 struct tb_port *next;
734
735 if (!prev)
736 return start;
737
738 if (prev->sw == end->sw) {
739 if (prev == end)
740 return NULL;
741 return end;
742 }
743
744 if (start->sw->config.depth < end->sw->config.depth) {
745 if (prev->remote &&
746 prev->remote->sw->config.depth > prev->sw->config.depth)
747 next = prev->remote;
748 else
749 next = tb_port_at(tb_route(end->sw), prev->sw);
750 } else {
751 if (tb_is_upstream_port(prev)) {
752 next = prev->remote;
753 } else {
754 next = tb_upstream_port(prev->sw);
755 /*
756 * Keep the same link if prev and next are both
757 * dual link ports.
758 */
759 if (next->dual_link_port &&
760 next->link_nr != prev->link_nr) {
761 next = next->dual_link_port;
762 }
763 }
764 }
765
766 return next;
767 }
768
769 /**
770 * tb_port_is_enabled() - Is the adapter port enabled
771 * @port: Port to check
772 */
773 bool tb_port_is_enabled(struct tb_port *port)
774 {
775 switch (port->config.type) {
776 case TB_TYPE_PCIE_UP:
777 case TB_TYPE_PCIE_DOWN:
778 return tb_pci_port_is_enabled(port);
779
780 case TB_TYPE_DP_HDMI_IN:
781 case TB_TYPE_DP_HDMI_OUT:
782 return tb_dp_port_is_enabled(port);
783
784 default:
785 return false;
786 }
787 }
788
789 /**
790 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
791 * @port: PCIe port to check
792 */
793 bool tb_pci_port_is_enabled(struct tb_port *port)
794 {
795 u32 data;
796
797 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
798 return false;
799
800 return !!(data & TB_PCI_EN);
801 }
802
803 /**
804 * tb_pci_port_enable() - Enable PCIe adapter port
805 * @port: PCIe port to enable
806 * @enable: Enable/disable the PCIe adapter
807 */
808 int tb_pci_port_enable(struct tb_port *port, bool enable)
809 {
810 u32 word = enable ? TB_PCI_EN : 0x0;
811 if (!port->cap_adap)
812 return -ENXIO;
813 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
814 }
815
816 /**
817 * tb_dp_port_hpd_is_active() - Is HPD already active
818 * @port: DP out port to check
819 *
820 * Checks if the DP OUT adapter port has HDP bit already set.
821 */
822 int tb_dp_port_hpd_is_active(struct tb_port *port)
823 {
824 u32 data;
825 int ret;
826
827 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
828 if (ret)
829 return ret;
830
831 return !!(data & TB_DP_HDP);
832 }
833
834 /**
835 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
836 * @port: Port to clear HPD
837 *
838 * If the DP IN port has HDP set, this function can be used to clear it.
839 */
840 int tb_dp_port_hpd_clear(struct tb_port *port)
841 {
842 u32 data;
843 int ret;
844
845 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
846 if (ret)
847 return ret;
848
849 data |= TB_DP_HPDC;
850 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
851 }
852
853 /**
854 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
855 * @port: DP IN/OUT port to set hops
856 * @video: Video Hop ID
857 * @aux_tx: AUX TX Hop ID
858 * @aux_rx: AUX RX Hop ID
859 *
860 * Programs specified Hop IDs for DP IN/OUT port.
861 */
862 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
863 unsigned int aux_tx, unsigned int aux_rx)
864 {
865 u32 data[2];
866 int ret;
867
868 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
869 ARRAY_SIZE(data));
870 if (ret)
871 return ret;
872
873 data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
874 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
875
876 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
877 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
878 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
879
880 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
881 ARRAY_SIZE(data));
882 }
883
884 /**
885 * tb_dp_port_is_enabled() - Is DP adapter port enabled
886 * @port: DP adapter port to check
887 */
888 bool tb_dp_port_is_enabled(struct tb_port *port)
889 {
890 u32 data;
891
892 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
893 return false;
894
895 return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
896 }
897
898 /**
899 * tb_dp_port_enable() - Enables/disables DP paths of a port
900 * @port: DP IN/OUT port
901 * @enable: Enable/disable DP path
902 *
903 * Once Hop IDs are programmed DP paths can be enabled or disabled by
904 * calling this function.
905 */
906 int tb_dp_port_enable(struct tb_port *port, bool enable)
907 {
908 u32 data;
909 int ret;
910
911 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1);
912 if (ret)
913 return ret;
914
915 if (enable)
916 data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
917 else
918 data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
919
920 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1);
921 }
922
923 /* switch utility functions */
924
925 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
926 {
927 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
928 sw->vendor_id, sw->device_id, sw->revision,
929 sw->thunderbolt_version);
930 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
931 tb_dbg(tb, " Config:\n");
932 tb_dbg(tb,
933 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
934 sw->upstream_port_number, sw->depth,
935 (((u64) sw->route_hi) << 32) | sw->route_lo,
936 sw->enabled, sw->plug_events_delay);
937 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
938 sw->__unknown1, sw->__unknown4);
939 }
940
941 /**
942 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
943 *
944 * Return: Returns 0 on success or an error code on failure.
945 */
946 int tb_switch_reset(struct tb *tb, u64 route)
947 {
948 struct tb_cfg_result res;
949 struct tb_regs_switch_header header = {
950 header.route_hi = route >> 32,
951 header.route_lo = route,
952 header.enabled = true,
953 };
954 tb_dbg(tb, "resetting switch at %llx\n", route);
955 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
956 0, 2, 2, 2);
957 if (res.err)
958 return res.err;
959 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
960 if (res.err > 0)
961 return -EIO;
962 return res.err;
963 }
964
965 /**
966 * tb_plug_events_active() - enable/disable plug events on a switch
967 *
968 * Also configures a sane plug_events_delay of 255ms.
969 *
970 * Return: Returns 0 on success or an error code on failure.
971 */
972 static int tb_plug_events_active(struct tb_switch *sw, bool active)
973 {
974 u32 data;
975 int res;
976
977 if (!sw->config.enabled)
978 return 0;
979
980 sw->config.plug_events_delay = 0xff;
981 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
982 if (res)
983 return res;
984
985 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
986 if (res)
987 return res;
988
989 if (active) {
990 data = data & 0xFFFFFF83;
991 switch (sw->config.device_id) {
992 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
993 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
994 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
995 break;
996 default:
997 data |= 4;
998 }
999 } else {
1000 data = data | 0x7c;
1001 }
1002 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1003 sw->cap_plug_events + 1, 1);
1004 }
1005
1006 static ssize_t authorized_show(struct device *dev,
1007 struct device_attribute *attr,
1008 char *buf)
1009 {
1010 struct tb_switch *sw = tb_to_switch(dev);
1011
1012 return sprintf(buf, "%u\n", sw->authorized);
1013 }
1014
1015 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1016 {
1017 int ret = -EINVAL;
1018
1019 if (!mutex_trylock(&sw->tb->lock))
1020 return restart_syscall();
1021
1022 if (sw->authorized)
1023 goto unlock;
1024
1025 /*
1026 * Make sure there is no PCIe rescan ongoing when a new PCIe
1027 * tunnel is created. Otherwise the PCIe rescan code might find
1028 * the new tunnel too early.
1029 */
1030 pci_lock_rescan_remove();
1031
1032 switch (val) {
1033 /* Approve switch */
1034 case 1:
1035 if (sw->key)
1036 ret = tb_domain_approve_switch_key(sw->tb, sw);
1037 else
1038 ret = tb_domain_approve_switch(sw->tb, sw);
1039 break;
1040
1041 /* Challenge switch */
1042 case 2:
1043 if (sw->key)
1044 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1045 break;
1046
1047 default:
1048 break;
1049 }
1050
1051 pci_unlock_rescan_remove();
1052
1053 if (!ret) {
1054 sw->authorized = val;
1055 /* Notify status change to the userspace */
1056 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1057 }
1058
1059 unlock:
1060 mutex_unlock(&sw->tb->lock);
1061 return ret;
1062 }
1063
1064 static ssize_t authorized_store(struct device *dev,
1065 struct device_attribute *attr,
1066 const char *buf, size_t count)
1067 {
1068 struct tb_switch *sw = tb_to_switch(dev);
1069 unsigned int val;
1070 ssize_t ret;
1071
1072 ret = kstrtouint(buf, 0, &val);
1073 if (ret)
1074 return ret;
1075 if (val > 2)
1076 return -EINVAL;
1077
1078 pm_runtime_get_sync(&sw->dev);
1079 ret = tb_switch_set_authorized(sw, val);
1080 pm_runtime_mark_last_busy(&sw->dev);
1081 pm_runtime_put_autosuspend(&sw->dev);
1082
1083 return ret ? ret : count;
1084 }
1085 static DEVICE_ATTR_RW(authorized);
1086
1087 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1088 char *buf)
1089 {
1090 struct tb_switch *sw = tb_to_switch(dev);
1091
1092 return sprintf(buf, "%u\n", sw->boot);
1093 }
1094 static DEVICE_ATTR_RO(boot);
1095
1096 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1097 char *buf)
1098 {
1099 struct tb_switch *sw = tb_to_switch(dev);
1100
1101 return sprintf(buf, "%#x\n", sw->device);
1102 }
1103 static DEVICE_ATTR_RO(device);
1104
1105 static ssize_t
1106 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1107 {
1108 struct tb_switch *sw = tb_to_switch(dev);
1109
1110 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1111 }
1112 static DEVICE_ATTR_RO(device_name);
1113
1114 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1115 char *buf)
1116 {
1117 struct tb_switch *sw = tb_to_switch(dev);
1118 ssize_t ret;
1119
1120 if (!mutex_trylock(&sw->tb->lock))
1121 return restart_syscall();
1122
1123 if (sw->key)
1124 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1125 else
1126 ret = sprintf(buf, "\n");
1127
1128 mutex_unlock(&sw->tb->lock);
1129 return ret;
1130 }
1131
1132 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1133 const char *buf, size_t count)
1134 {
1135 struct tb_switch *sw = tb_to_switch(dev);
1136 u8 key[TB_SWITCH_KEY_SIZE];
1137 ssize_t ret = count;
1138 bool clear = false;
1139
1140 if (!strcmp(buf, "\n"))
1141 clear = true;
1142 else if (hex2bin(key, buf, sizeof(key)))
1143 return -EINVAL;
1144
1145 if (!mutex_trylock(&sw->tb->lock))
1146 return restart_syscall();
1147
1148 if (sw->authorized) {
1149 ret = -EBUSY;
1150 } else {
1151 kfree(sw->key);
1152 if (clear) {
1153 sw->key = NULL;
1154 } else {
1155 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1156 if (!sw->key)
1157 ret = -ENOMEM;
1158 }
1159 }
1160
1161 mutex_unlock(&sw->tb->lock);
1162 return ret;
1163 }
1164 static DEVICE_ATTR(key, 0600, key_show, key_store);
1165
1166 static void nvm_authenticate_start(struct tb_switch *sw)
1167 {
1168 struct pci_dev *root_port;
1169
1170 /*
1171 * During host router NVM upgrade we should not allow root port to
1172 * go into D3cold because some root ports cannot trigger PME
1173 * itself. To be on the safe side keep the root port in D0 during
1174 * the whole upgrade process.
1175 */
1176 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1177 if (root_port)
1178 pm_runtime_get_noresume(&root_port->dev);
1179 }
1180
1181 static void nvm_authenticate_complete(struct tb_switch *sw)
1182 {
1183 struct pci_dev *root_port;
1184
1185 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1186 if (root_port)
1187 pm_runtime_put(&root_port->dev);
1188 }
1189
1190 static ssize_t nvm_authenticate_show(struct device *dev,
1191 struct device_attribute *attr, char *buf)
1192 {
1193 struct tb_switch *sw = tb_to_switch(dev);
1194 u32 status;
1195
1196 nvm_get_auth_status(sw, &status);
1197 return sprintf(buf, "%#x\n", status);
1198 }
1199
1200 static ssize_t nvm_authenticate_store(struct device *dev,
1201 struct device_attribute *attr, const char *buf, size_t count)
1202 {
1203 struct tb_switch *sw = tb_to_switch(dev);
1204 bool val;
1205 int ret;
1206
1207 pm_runtime_get_sync(&sw->dev);
1208
1209 if (!mutex_trylock(&sw->tb->lock)) {
1210 ret = restart_syscall();
1211 goto exit_rpm;
1212 }
1213
1214 /* If NVMem devices are not yet added */
1215 if (!sw->nvm) {
1216 ret = -EAGAIN;
1217 goto exit_unlock;
1218 }
1219
1220 ret = kstrtobool(buf, &val);
1221 if (ret)
1222 goto exit_unlock;
1223
1224 /* Always clear the authentication status */
1225 nvm_clear_auth_status(sw);
1226
1227 if (val) {
1228 if (!sw->nvm->buf) {
1229 ret = -EINVAL;
1230 goto exit_unlock;
1231 }
1232
1233 ret = nvm_validate_and_write(sw);
1234 if (ret)
1235 goto exit_unlock;
1236
1237 sw->nvm->authenticating = true;
1238
1239 if (!tb_route(sw)) {
1240 /*
1241 * Keep root port from suspending as long as the
1242 * NVM upgrade process is running.
1243 */
1244 nvm_authenticate_start(sw);
1245 ret = nvm_authenticate_host(sw);
1246 if (ret)
1247 nvm_authenticate_complete(sw);
1248 } else {
1249 ret = nvm_authenticate_device(sw);
1250 }
1251 }
1252
1253 exit_unlock:
1254 mutex_unlock(&sw->tb->lock);
1255 exit_rpm:
1256 pm_runtime_mark_last_busy(&sw->dev);
1257 pm_runtime_put_autosuspend(&sw->dev);
1258
1259 if (ret)
1260 return ret;
1261 return count;
1262 }
1263 static DEVICE_ATTR_RW(nvm_authenticate);
1264
1265 static ssize_t nvm_version_show(struct device *dev,
1266 struct device_attribute *attr, char *buf)
1267 {
1268 struct tb_switch *sw = tb_to_switch(dev);
1269 int ret;
1270
1271 if (!mutex_trylock(&sw->tb->lock))
1272 return restart_syscall();
1273
1274 if (sw->safe_mode)
1275 ret = -ENODATA;
1276 else if (!sw->nvm)
1277 ret = -EAGAIN;
1278 else
1279 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1280
1281 mutex_unlock(&sw->tb->lock);
1282
1283 return ret;
1284 }
1285 static DEVICE_ATTR_RO(nvm_version);
1286
1287 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1288 char *buf)
1289 {
1290 struct tb_switch *sw = tb_to_switch(dev);
1291
1292 return sprintf(buf, "%#x\n", sw->vendor);
1293 }
1294 static DEVICE_ATTR_RO(vendor);
1295
1296 static ssize_t
1297 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1298 {
1299 struct tb_switch *sw = tb_to_switch(dev);
1300
1301 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1302 }
1303 static DEVICE_ATTR_RO(vendor_name);
1304
1305 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1306 char *buf)
1307 {
1308 struct tb_switch *sw = tb_to_switch(dev);
1309
1310 return sprintf(buf, "%pUb\n", sw->uuid);
1311 }
1312 static DEVICE_ATTR_RO(unique_id);
1313
1314 static struct attribute *switch_attrs[] = {
1315 &dev_attr_authorized.attr,
1316 &dev_attr_boot.attr,
1317 &dev_attr_device.attr,
1318 &dev_attr_device_name.attr,
1319 &dev_attr_key.attr,
1320 &dev_attr_nvm_authenticate.attr,
1321 &dev_attr_nvm_version.attr,
1322 &dev_attr_vendor.attr,
1323 &dev_attr_vendor_name.attr,
1324 &dev_attr_unique_id.attr,
1325 NULL,
1326 };
1327
1328 static umode_t switch_attr_is_visible(struct kobject *kobj,
1329 struct attribute *attr, int n)
1330 {
1331 struct device *dev = container_of(kobj, struct device, kobj);
1332 struct tb_switch *sw = tb_to_switch(dev);
1333
1334 if (attr == &dev_attr_key.attr) {
1335 if (tb_route(sw) &&
1336 sw->tb->security_level == TB_SECURITY_SECURE &&
1337 sw->security_level == TB_SECURITY_SECURE)
1338 return attr->mode;
1339 return 0;
1340 } else if (attr == &dev_attr_nvm_authenticate.attr ||
1341 attr == &dev_attr_nvm_version.attr) {
1342 if (sw->dma_port)
1343 return attr->mode;
1344 return 0;
1345 } else if (attr == &dev_attr_boot.attr) {
1346 if (tb_route(sw))
1347 return attr->mode;
1348 return 0;
1349 }
1350
1351 return sw->safe_mode ? 0 : attr->mode;
1352 }
1353
1354 static struct attribute_group switch_group = {
1355 .is_visible = switch_attr_is_visible,
1356 .attrs = switch_attrs,
1357 };
1358
1359 static const struct attribute_group *switch_groups[] = {
1360 &switch_group,
1361 NULL,
1362 };
1363
1364 static void tb_switch_release(struct device *dev)
1365 {
1366 struct tb_switch *sw = tb_to_switch(dev);
1367 int i;
1368
1369 dma_port_free(sw->dma_port);
1370
1371 for (i = 1; i <= sw->config.max_port_number; i++) {
1372 if (!sw->ports[i].disabled) {
1373 ida_destroy(&sw->ports[i].in_hopids);
1374 ida_destroy(&sw->ports[i].out_hopids);
1375 }
1376 }
1377
1378 kfree(sw->uuid);
1379 kfree(sw->device_name);
1380 kfree(sw->vendor_name);
1381 kfree(sw->ports);
1382 kfree(sw->drom);
1383 kfree(sw->key);
1384 kfree(sw);
1385 }
1386
1387 /*
1388 * Currently only need to provide the callbacks. Everything else is handled
1389 * in the connection manager.
1390 */
1391 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1392 {
1393 struct tb_switch *sw = tb_to_switch(dev);
1394 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1395
1396 if (cm_ops->runtime_suspend_switch)
1397 return cm_ops->runtime_suspend_switch(sw);
1398
1399 return 0;
1400 }
1401
1402 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1403 {
1404 struct tb_switch *sw = tb_to_switch(dev);
1405 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1406
1407 if (cm_ops->runtime_resume_switch)
1408 return cm_ops->runtime_resume_switch(sw);
1409 return 0;
1410 }
1411
1412 static const struct dev_pm_ops tb_switch_pm_ops = {
1413 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1414 NULL)
1415 };
1416
1417 struct device_type tb_switch_type = {
1418 .name = "thunderbolt_device",
1419 .release = tb_switch_release,
1420 .pm = &tb_switch_pm_ops,
1421 };
1422
1423 static int tb_switch_get_generation(struct tb_switch *sw)
1424 {
1425 switch (sw->config.device_id) {
1426 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1427 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1428 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1429 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1430 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1431 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1432 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1433 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1434 return 1;
1435
1436 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1437 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1438 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1439 return 2;
1440
1441 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1442 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1443 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1444 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1445 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1446 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1447 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1448 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1449 return 3;
1450
1451 default:
1452 /*
1453 * For unknown switches assume generation to be 1 to be
1454 * on the safe side.
1455 */
1456 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1457 sw->config.device_id);
1458 return 1;
1459 }
1460 }
1461
1462 /**
1463 * tb_switch_alloc() - allocate a switch
1464 * @tb: Pointer to the owning domain
1465 * @parent: Parent device for this switch
1466 * @route: Route string for this switch
1467 *
1468 * Allocates and initializes a switch. Will not upload configuration to
1469 * the switch. For that you need to call tb_switch_configure()
1470 * separately. The returned switch should be released by calling
1471 * tb_switch_put().
1472 *
1473 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1474 * failure.
1475 */
1476 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1477 u64 route)
1478 {
1479 struct tb_switch *sw;
1480 int upstream_port;
1481 int i, ret, depth;
1482
1483 /* Make sure we do not exceed maximum topology limit */
1484 depth = tb_route_length(route);
1485 if (depth > TB_SWITCH_MAX_DEPTH)
1486 return ERR_PTR(-EADDRNOTAVAIL);
1487
1488 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1489 if (upstream_port < 0)
1490 return ERR_PTR(upstream_port);
1491
1492 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1493 if (!sw)
1494 return ERR_PTR(-ENOMEM);
1495
1496 sw->tb = tb;
1497 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1498 if (ret)
1499 goto err_free_sw_ports;
1500
1501 tb_dbg(tb, "current switch config:\n");
1502 tb_dump_switch(tb, &sw->config);
1503
1504 /* configure switch */
1505 sw->config.upstream_port_number = upstream_port;
1506 sw->config.depth = depth;
1507 sw->config.route_hi = upper_32_bits(route);
1508 sw->config.route_lo = lower_32_bits(route);
1509 sw->config.enabled = 0;
1510
1511 /* initialize ports */
1512 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1513 GFP_KERNEL);
1514 if (!sw->ports) {
1515 ret = -ENOMEM;
1516 goto err_free_sw_ports;
1517 }
1518
1519 for (i = 0; i <= sw->config.max_port_number; i++) {
1520 /* minimum setup for tb_find_cap and tb_drom_read to work */
1521 sw->ports[i].sw = sw;
1522 sw->ports[i].port = i;
1523 }
1524
1525 sw->generation = tb_switch_get_generation(sw);
1526
1527 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1528 if (ret < 0) {
1529 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1530 goto err_free_sw_ports;
1531 }
1532 sw->cap_plug_events = ret;
1533
1534 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1535 if (ret > 0)
1536 sw->cap_lc = ret;
1537
1538 /* Root switch is always authorized */
1539 if (!route)
1540 sw->authorized = true;
1541
1542 device_initialize(&sw->dev);
1543 sw->dev.parent = parent;
1544 sw->dev.bus = &tb_bus_type;
1545 sw->dev.type = &tb_switch_type;
1546 sw->dev.groups = switch_groups;
1547 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1548
1549 return sw;
1550
1551 err_free_sw_ports:
1552 kfree(sw->ports);
1553 kfree(sw);
1554
1555 return ERR_PTR(ret);
1556 }
1557
1558 /**
1559 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1560 * @tb: Pointer to the owning domain
1561 * @parent: Parent device for this switch
1562 * @route: Route string for this switch
1563 *
1564 * This creates a switch in safe mode. This means the switch pretty much
1565 * lacks all capabilities except DMA configuration port before it is
1566 * flashed with a valid NVM firmware.
1567 *
1568 * The returned switch must be released by calling tb_switch_put().
1569 *
1570 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1571 */
1572 struct tb_switch *
1573 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1574 {
1575 struct tb_switch *sw;
1576
1577 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1578 if (!sw)
1579 return ERR_PTR(-ENOMEM);
1580
1581 sw->tb = tb;
1582 sw->config.depth = tb_route_length(route);
1583 sw->config.route_hi = upper_32_bits(route);
1584 sw->config.route_lo = lower_32_bits(route);
1585 sw->safe_mode = true;
1586
1587 device_initialize(&sw->dev);
1588 sw->dev.parent = parent;
1589 sw->dev.bus = &tb_bus_type;
1590 sw->dev.type = &tb_switch_type;
1591 sw->dev.groups = switch_groups;
1592 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1593
1594 return sw;
1595 }
1596
1597 /**
1598 * tb_switch_configure() - Uploads configuration to the switch
1599 * @sw: Switch to configure
1600 *
1601 * Call this function before the switch is added to the system. It will
1602 * upload configuration to the switch and makes it available for the
1603 * connection manager to use.
1604 *
1605 * Return: %0 in case of success and negative errno in case of failure
1606 */
1607 int tb_switch_configure(struct tb_switch *sw)
1608 {
1609 struct tb *tb = sw->tb;
1610 u64 route;
1611 int ret;
1612
1613 route = tb_route(sw);
1614 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1615 route, tb_route_length(route), sw->config.upstream_port_number);
1616
1617 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1618 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1619 sw->config.vendor_id);
1620
1621 sw->config.enabled = 1;
1622
1623 /* upload configuration */
1624 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1625 if (ret)
1626 return ret;
1627
1628 ret = tb_lc_configure_link(sw);
1629 if (ret)
1630 return ret;
1631
1632 return tb_plug_events_active(sw, true);
1633 }
1634
1635 static int tb_switch_set_uuid(struct tb_switch *sw)
1636 {
1637 u32 uuid[4];
1638 int ret;
1639
1640 if (sw->uuid)
1641 return 0;
1642
1643 /*
1644 * The newer controllers include fused UUID as part of link
1645 * controller specific registers
1646 */
1647 ret = tb_lc_read_uuid(sw, uuid);
1648 if (ret) {
1649 /*
1650 * ICM generates UUID based on UID and fills the upper
1651 * two words with ones. This is not strictly following
1652 * UUID format but we want to be compatible with it so
1653 * we do the same here.
1654 */
1655 uuid[0] = sw->uid & 0xffffffff;
1656 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1657 uuid[2] = 0xffffffff;
1658 uuid[3] = 0xffffffff;
1659 }
1660
1661 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1662 if (!sw->uuid)
1663 return -ENOMEM;
1664 return 0;
1665 }
1666
1667 static int tb_switch_add_dma_port(struct tb_switch *sw)
1668 {
1669 u32 status;
1670 int ret;
1671
1672 switch (sw->generation) {
1673 case 3:
1674 break;
1675
1676 case 2:
1677 /* Only root switch can be upgraded */
1678 if (tb_route(sw))
1679 return 0;
1680 break;
1681
1682 default:
1683 /*
1684 * DMA port is the only thing available when the switch
1685 * is in safe mode.
1686 */
1687 if (!sw->safe_mode)
1688 return 0;
1689 break;
1690 }
1691
1692 if (sw->no_nvm_upgrade)
1693 return 0;
1694
1695 sw->dma_port = dma_port_alloc(sw);
1696 if (!sw->dma_port)
1697 return 0;
1698
1699 /*
1700 * Check status of the previous flash authentication. If there
1701 * is one we need to power cycle the switch in any case to make
1702 * it functional again.
1703 */
1704 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1705 if (ret <= 0)
1706 return ret;
1707
1708 /* Now we can allow root port to suspend again */
1709 if (!tb_route(sw))
1710 nvm_authenticate_complete(sw);
1711
1712 if (status) {
1713 tb_sw_info(sw, "switch flash authentication failed\n");
1714 ret = tb_switch_set_uuid(sw);
1715 if (ret)
1716 return ret;
1717 nvm_set_auth_status(sw, status);
1718 }
1719
1720 tb_sw_info(sw, "power cycling the switch now\n");
1721 dma_port_power_cycle(sw->dma_port);
1722
1723 /*
1724 * We return error here which causes the switch adding failure.
1725 * It should appear back after power cycle is complete.
1726 */
1727 return -ESHUTDOWN;
1728 }
1729
1730 /**
1731 * tb_switch_add() - Add a switch to the domain
1732 * @sw: Switch to add
1733 *
1734 * This is the last step in adding switch to the domain. It will read
1735 * identification information from DROM and initializes ports so that
1736 * they can be used to connect other switches. The switch will be
1737 * exposed to the userspace when this function successfully returns. To
1738 * remove and release the switch, call tb_switch_remove().
1739 *
1740 * Return: %0 in case of success and negative errno in case of failure
1741 */
1742 int tb_switch_add(struct tb_switch *sw)
1743 {
1744 int i, ret;
1745
1746 /*
1747 * Initialize DMA control port now before we read DROM. Recent
1748 * host controllers have more complete DROM on NVM that includes
1749 * vendor and model identification strings which we then expose
1750 * to the userspace. NVM can be accessed through DMA
1751 * configuration based mailbox.
1752 */
1753 ret = tb_switch_add_dma_port(sw);
1754 if (ret)
1755 return ret;
1756
1757 if (!sw->safe_mode) {
1758 /* read drom */
1759 ret = tb_drom_read(sw);
1760 if (ret) {
1761 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1762 return ret;
1763 }
1764 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1765
1766 ret = tb_switch_set_uuid(sw);
1767 if (ret)
1768 return ret;
1769
1770 for (i = 0; i <= sw->config.max_port_number; i++) {
1771 if (sw->ports[i].disabled) {
1772 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1773 continue;
1774 }
1775 ret = tb_init_port(&sw->ports[i]);
1776 if (ret)
1777 return ret;
1778 }
1779 }
1780
1781 ret = device_add(&sw->dev);
1782 if (ret)
1783 return ret;
1784
1785 if (tb_route(sw)) {
1786 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1787 sw->vendor, sw->device);
1788 if (sw->vendor_name && sw->device_name)
1789 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1790 sw->device_name);
1791 }
1792
1793 ret = tb_switch_nvm_add(sw);
1794 if (ret) {
1795 device_del(&sw->dev);
1796 return ret;
1797 }
1798
1799 pm_runtime_set_active(&sw->dev);
1800 if (sw->rpm) {
1801 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1802 pm_runtime_use_autosuspend(&sw->dev);
1803 pm_runtime_mark_last_busy(&sw->dev);
1804 pm_runtime_enable(&sw->dev);
1805 pm_request_autosuspend(&sw->dev);
1806 }
1807
1808 return 0;
1809 }
1810
1811 /**
1812 * tb_switch_remove() - Remove and release a switch
1813 * @sw: Switch to remove
1814 *
1815 * This will remove the switch from the domain and release it after last
1816 * reference count drops to zero. If there are switches connected below
1817 * this switch, they will be removed as well.
1818 */
1819 void tb_switch_remove(struct tb_switch *sw)
1820 {
1821 int i;
1822
1823 if (sw->rpm) {
1824 pm_runtime_get_sync(&sw->dev);
1825 pm_runtime_disable(&sw->dev);
1826 }
1827
1828 /* port 0 is the switch itself and never has a remote */
1829 for (i = 1; i <= sw->config.max_port_number; i++) {
1830 if (tb_port_has_remote(&sw->ports[i])) {
1831 tb_switch_remove(sw->ports[i].remote->sw);
1832 sw->ports[i].remote = NULL;
1833 } else if (sw->ports[i].xdomain) {
1834 tb_xdomain_remove(sw->ports[i].xdomain);
1835 sw->ports[i].xdomain = NULL;
1836 }
1837 }
1838
1839 if (!sw->is_unplugged)
1840 tb_plug_events_active(sw, false);
1841 tb_lc_unconfigure_link(sw);
1842
1843 tb_switch_nvm_remove(sw);
1844
1845 if (tb_route(sw))
1846 dev_info(&sw->dev, "device disconnected\n");
1847 device_unregister(&sw->dev);
1848 }
1849
1850 /**
1851 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1852 */
1853 void tb_sw_set_unplugged(struct tb_switch *sw)
1854 {
1855 int i;
1856 if (sw == sw->tb->root_switch) {
1857 tb_sw_WARN(sw, "cannot unplug root switch\n");
1858 return;
1859 }
1860 if (sw->is_unplugged) {
1861 tb_sw_WARN(sw, "is_unplugged already set\n");
1862 return;
1863 }
1864 sw->is_unplugged = true;
1865 for (i = 0; i <= sw->config.max_port_number; i++) {
1866 if (tb_port_has_remote(&sw->ports[i]))
1867 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1868 else if (sw->ports[i].xdomain)
1869 sw->ports[i].xdomain->is_unplugged = true;
1870 }
1871 }
1872
1873 int tb_switch_resume(struct tb_switch *sw)
1874 {
1875 int i, err;
1876 tb_sw_dbg(sw, "resuming switch\n");
1877
1878 /*
1879 * Check for UID of the connected switches except for root
1880 * switch which we assume cannot be removed.
1881 */
1882 if (tb_route(sw)) {
1883 u64 uid;
1884
1885 /*
1886 * Check first that we can still read the switch config
1887 * space. It may be that there is now another domain
1888 * connected.
1889 */
1890 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1891 if (err < 0) {
1892 tb_sw_info(sw, "switch not present anymore\n");
1893 return err;
1894 }
1895
1896 err = tb_drom_read_uid_only(sw, &uid);
1897 if (err) {
1898 tb_sw_warn(sw, "uid read failed\n");
1899 return err;
1900 }
1901 if (sw->uid != uid) {
1902 tb_sw_info(sw,
1903 "changed while suspended (uid %#llx -> %#llx)\n",
1904 sw->uid, uid);
1905 return -ENODEV;
1906 }
1907 }
1908
1909 /* upload configuration */
1910 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1911 if (err)
1912 return err;
1913
1914 err = tb_lc_configure_link(sw);
1915 if (err)
1916 return err;
1917
1918 err = tb_plug_events_active(sw, true);
1919 if (err)
1920 return err;
1921
1922 /* check for surviving downstream switches */
1923 for (i = 1; i <= sw->config.max_port_number; i++) {
1924 struct tb_port *port = &sw->ports[i];
1925
1926 if (!tb_port_has_remote(port) && !port->xdomain)
1927 continue;
1928
1929 if (tb_wait_for_port(port, true) <= 0) {
1930 tb_port_warn(port,
1931 "lost during suspend, disconnecting\n");
1932 if (tb_port_has_remote(port))
1933 tb_sw_set_unplugged(port->remote->sw);
1934 else if (port->xdomain)
1935 port->xdomain->is_unplugged = true;
1936 } else if (tb_port_has_remote(port)) {
1937 if (tb_switch_resume(port->remote->sw)) {
1938 tb_port_warn(port,
1939 "lost during suspend, disconnecting\n");
1940 tb_sw_set_unplugged(port->remote->sw);
1941 }
1942 }
1943 }
1944 return 0;
1945 }
1946
1947 void tb_switch_suspend(struct tb_switch *sw)
1948 {
1949 int i, err;
1950 err = tb_plug_events_active(sw, false);
1951 if (err)
1952 return;
1953
1954 for (i = 1; i <= sw->config.max_port_number; i++) {
1955 if (tb_port_has_remote(&sw->ports[i]))
1956 tb_switch_suspend(sw->ports[i].remote->sw);
1957 }
1958
1959 tb_lc_set_sleep(sw);
1960 }
1961
1962 struct tb_sw_lookup {
1963 struct tb *tb;
1964 u8 link;
1965 u8 depth;
1966 const uuid_t *uuid;
1967 u64 route;
1968 };
1969
1970 static int tb_switch_match(struct device *dev, const void *data)
1971 {
1972 struct tb_switch *sw = tb_to_switch(dev);
1973 const struct tb_sw_lookup *lookup = data;
1974
1975 if (!sw)
1976 return 0;
1977 if (sw->tb != lookup->tb)
1978 return 0;
1979
1980 if (lookup->uuid)
1981 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1982
1983 if (lookup->route) {
1984 return sw->config.route_lo == lower_32_bits(lookup->route) &&
1985 sw->config.route_hi == upper_32_bits(lookup->route);
1986 }
1987
1988 /* Root switch is matched only by depth */
1989 if (!lookup->depth)
1990 return !sw->depth;
1991
1992 return sw->link == lookup->link && sw->depth == lookup->depth;
1993 }
1994
1995 /**
1996 * tb_switch_find_by_link_depth() - Find switch by link and depth
1997 * @tb: Domain the switch belongs
1998 * @link: Link number the switch is connected
1999 * @depth: Depth of the switch in link
2000 *
2001 * Returned switch has reference count increased so the caller needs to
2002 * call tb_switch_put() when done with the switch.
2003 */
2004 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2005 {
2006 struct tb_sw_lookup lookup;
2007 struct device *dev;
2008
2009 memset(&lookup, 0, sizeof(lookup));
2010 lookup.tb = tb;
2011 lookup.link = link;
2012 lookup.depth = depth;
2013
2014 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2015 if (dev)
2016 return tb_to_switch(dev);
2017
2018 return NULL;
2019 }
2020
2021 /**
2022 * tb_switch_find_by_uuid() - Find switch by UUID
2023 * @tb: Domain the switch belongs
2024 * @uuid: UUID to look for
2025 *
2026 * Returned switch has reference count increased so the caller needs to
2027 * call tb_switch_put() when done with the switch.
2028 */
2029 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2030 {
2031 struct tb_sw_lookup lookup;
2032 struct device *dev;
2033
2034 memset(&lookup, 0, sizeof(lookup));
2035 lookup.tb = tb;
2036 lookup.uuid = uuid;
2037
2038 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2039 if (dev)
2040 return tb_to_switch(dev);
2041
2042 return NULL;
2043 }
2044
2045 /**
2046 * tb_switch_find_by_route() - Find switch by route string
2047 * @tb: Domain the switch belongs
2048 * @route: Route string to look for
2049 *
2050 * Returned switch has reference count increased so the caller needs to
2051 * call tb_switch_put() when done with the switch.
2052 */
2053 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2054 {
2055 struct tb_sw_lookup lookup;
2056 struct device *dev;
2057
2058 if (!route)
2059 return tb_switch_get(tb->root_switch);
2060
2061 memset(&lookup, 0, sizeof(lookup));
2062 lookup.tb = tb;
2063 lookup.route = route;
2064
2065 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2066 if (dev)
2067 return tb_to_switch(dev);
2068
2069 return NULL;
2070 }
2071
2072 void tb_switch_exit(void)
2073 {
2074 ida_destroy(&nvm_ida);
2075 }