]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/thunderbolt/switch.c
powerpc: sys_pkey_alloc() and sys_pkey_free() system calls
[mirror_ubuntu-bionic-kernel.git] / drivers / thunderbolt / switch.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt Cactus Ridge driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 */
7
8 #include <linux/delay.h>
9 #include <linux/idr.h>
10 #include <linux/nvmem-provider.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sizes.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15
16 #include "tb.h"
17
18 /* Switch authorization from userspace is serialized by this lock */
19 static DEFINE_MUTEX(switch_lock);
20
21 /* Switch NVM support */
22
23 #define NVM_DEVID 0x05
24 #define NVM_VERSION 0x08
25 #define NVM_CSS 0x10
26 #define NVM_FLASH_SIZE 0x45
27
28 #define NVM_MIN_SIZE SZ_32K
29 #define NVM_MAX_SIZE SZ_512K
30
31 static DEFINE_IDA(nvm_ida);
32
33 struct nvm_auth_status {
34 struct list_head list;
35 uuid_t uuid;
36 u32 status;
37 };
38
39 /*
40 * Hold NVM authentication failure status per switch This information
41 * needs to stay around even when the switch gets power cycled so we
42 * keep it separately.
43 */
44 static LIST_HEAD(nvm_auth_status_cache);
45 static DEFINE_MUTEX(nvm_auth_status_lock);
46
47 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
48 {
49 struct nvm_auth_status *st;
50
51 list_for_each_entry(st, &nvm_auth_status_cache, list) {
52 if (uuid_equal(&st->uuid, sw->uuid))
53 return st;
54 }
55
56 return NULL;
57 }
58
59 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
60 {
61 struct nvm_auth_status *st;
62
63 mutex_lock(&nvm_auth_status_lock);
64 st = __nvm_get_auth_status(sw);
65 mutex_unlock(&nvm_auth_status_lock);
66
67 *status = st ? st->status : 0;
68 }
69
70 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
71 {
72 struct nvm_auth_status *st;
73
74 if (WARN_ON(!sw->uuid))
75 return;
76
77 mutex_lock(&nvm_auth_status_lock);
78 st = __nvm_get_auth_status(sw);
79
80 if (!st) {
81 st = kzalloc(sizeof(*st), GFP_KERNEL);
82 if (!st)
83 goto unlock;
84
85 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
86 INIT_LIST_HEAD(&st->list);
87 list_add_tail(&st->list, &nvm_auth_status_cache);
88 }
89
90 st->status = status;
91 unlock:
92 mutex_unlock(&nvm_auth_status_lock);
93 }
94
95 static void nvm_clear_auth_status(const struct tb_switch *sw)
96 {
97 struct nvm_auth_status *st;
98
99 mutex_lock(&nvm_auth_status_lock);
100 st = __nvm_get_auth_status(sw);
101 if (st) {
102 list_del(&st->list);
103 kfree(st);
104 }
105 mutex_unlock(&nvm_auth_status_lock);
106 }
107
108 static int nvm_validate_and_write(struct tb_switch *sw)
109 {
110 unsigned int image_size, hdr_size;
111 const u8 *buf = sw->nvm->buf;
112 u16 ds_size;
113 int ret;
114
115 if (!buf)
116 return -EINVAL;
117
118 image_size = sw->nvm->buf_data_size;
119 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
120 return -EINVAL;
121
122 /*
123 * FARB pointer must point inside the image and must at least
124 * contain parts of the digital section we will be reading here.
125 */
126 hdr_size = (*(u32 *)buf) & 0xffffff;
127 if (hdr_size + NVM_DEVID + 2 >= image_size)
128 return -EINVAL;
129
130 /* Digital section start should be aligned to 4k page */
131 if (!IS_ALIGNED(hdr_size, SZ_4K))
132 return -EINVAL;
133
134 /*
135 * Read digital section size and check that it also fits inside
136 * the image.
137 */
138 ds_size = *(u16 *)(buf + hdr_size);
139 if (ds_size >= image_size)
140 return -EINVAL;
141
142 if (!sw->safe_mode) {
143 u16 device_id;
144
145 /*
146 * Make sure the device ID in the image matches the one
147 * we read from the switch config space.
148 */
149 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
150 if (device_id != sw->config.device_id)
151 return -EINVAL;
152
153 if (sw->generation < 3) {
154 /* Write CSS headers first */
155 ret = dma_port_flash_write(sw->dma_port,
156 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
157 DMA_PORT_CSS_MAX_SIZE);
158 if (ret)
159 return ret;
160 }
161
162 /* Skip headers in the image */
163 buf += hdr_size;
164 image_size -= hdr_size;
165 }
166
167 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
168 }
169
170 static int nvm_authenticate_host(struct tb_switch *sw)
171 {
172 int ret;
173
174 /*
175 * Root switch NVM upgrade requires that we disconnect the
176 * existing paths first (in case it is not in safe mode
177 * already).
178 */
179 if (!sw->safe_mode) {
180 ret = tb_domain_disconnect_all_paths(sw->tb);
181 if (ret)
182 return ret;
183 /*
184 * The host controller goes away pretty soon after this if
185 * everything goes well so getting timeout is expected.
186 */
187 ret = dma_port_flash_update_auth(sw->dma_port);
188 return ret == -ETIMEDOUT ? 0 : ret;
189 }
190
191 /*
192 * From safe mode we can get out by just power cycling the
193 * switch.
194 */
195 dma_port_power_cycle(sw->dma_port);
196 return 0;
197 }
198
199 static int nvm_authenticate_device(struct tb_switch *sw)
200 {
201 int ret, retries = 10;
202
203 ret = dma_port_flash_update_auth(sw->dma_port);
204 if (ret && ret != -ETIMEDOUT)
205 return ret;
206
207 /*
208 * Poll here for the authentication status. It takes some time
209 * for the device to respond (we get timeout for a while). Once
210 * we get response the device needs to be power cycled in order
211 * to the new NVM to be taken into use.
212 */
213 do {
214 u32 status;
215
216 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
217 if (ret < 0 && ret != -ETIMEDOUT)
218 return ret;
219 if (ret > 0) {
220 if (status) {
221 tb_sw_warn(sw, "failed to authenticate NVM\n");
222 nvm_set_auth_status(sw, status);
223 }
224
225 tb_sw_info(sw, "power cycling the switch now\n");
226 dma_port_power_cycle(sw->dma_port);
227 return 0;
228 }
229
230 msleep(500);
231 } while (--retries);
232
233 return -ETIMEDOUT;
234 }
235
236 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
237 size_t bytes)
238 {
239 struct tb_switch *sw = priv;
240 int ret;
241
242 pm_runtime_get_sync(&sw->dev);
243 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
244 pm_runtime_mark_last_busy(&sw->dev);
245 pm_runtime_put_autosuspend(&sw->dev);
246
247 return ret;
248 }
249
250 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
251 size_t bytes)
252 {
253 struct tb_switch *sw = priv;
254 int ret = 0;
255
256 if (mutex_lock_interruptible(&switch_lock))
257 return -ERESTARTSYS;
258
259 /*
260 * Since writing the NVM image might require some special steps,
261 * for example when CSS headers are written, we cache the image
262 * locally here and handle the special cases when the user asks
263 * us to authenticate the image.
264 */
265 if (!sw->nvm->buf) {
266 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
267 if (!sw->nvm->buf) {
268 ret = -ENOMEM;
269 goto unlock;
270 }
271 }
272
273 sw->nvm->buf_data_size = offset + bytes;
274 memcpy(sw->nvm->buf + offset, val, bytes);
275
276 unlock:
277 mutex_unlock(&switch_lock);
278
279 return ret;
280 }
281
282 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
283 size_t size, bool active)
284 {
285 struct nvmem_config config;
286
287 memset(&config, 0, sizeof(config));
288
289 if (active) {
290 config.name = "nvm_active";
291 config.reg_read = tb_switch_nvm_read;
292 config.read_only = true;
293 } else {
294 config.name = "nvm_non_active";
295 config.reg_write = tb_switch_nvm_write;
296 config.root_only = true;
297 }
298
299 config.id = id;
300 config.stride = 4;
301 config.word_size = 4;
302 config.size = size;
303 config.dev = &sw->dev;
304 config.owner = THIS_MODULE;
305 config.priv = sw;
306
307 return nvmem_register(&config);
308 }
309
310 static int tb_switch_nvm_add(struct tb_switch *sw)
311 {
312 struct nvmem_device *nvm_dev;
313 struct tb_switch_nvm *nvm;
314 u32 val;
315 int ret;
316
317 if (!sw->dma_port)
318 return 0;
319
320 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
321 if (!nvm)
322 return -ENOMEM;
323
324 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
325
326 /*
327 * If the switch is in safe-mode the only accessible portion of
328 * the NVM is the non-active one where userspace is expected to
329 * write new functional NVM.
330 */
331 if (!sw->safe_mode) {
332 u32 nvm_size, hdr_size;
333
334 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
335 sizeof(val));
336 if (ret)
337 goto err_ida;
338
339 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
340 nvm_size = (SZ_1M << (val & 7)) / 8;
341 nvm_size = (nvm_size - hdr_size) / 2;
342
343 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
344 sizeof(val));
345 if (ret)
346 goto err_ida;
347
348 nvm->major = val >> 16;
349 nvm->minor = val >> 8;
350
351 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
352 if (IS_ERR(nvm_dev)) {
353 ret = PTR_ERR(nvm_dev);
354 goto err_ida;
355 }
356 nvm->active = nvm_dev;
357 }
358
359 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
360 if (IS_ERR(nvm_dev)) {
361 ret = PTR_ERR(nvm_dev);
362 goto err_nvm_active;
363 }
364 nvm->non_active = nvm_dev;
365
366 mutex_lock(&switch_lock);
367 sw->nvm = nvm;
368 mutex_unlock(&switch_lock);
369
370 return 0;
371
372 err_nvm_active:
373 if (nvm->active)
374 nvmem_unregister(nvm->active);
375 err_ida:
376 ida_simple_remove(&nvm_ida, nvm->id);
377 kfree(nvm);
378
379 return ret;
380 }
381
382 static void tb_switch_nvm_remove(struct tb_switch *sw)
383 {
384 struct tb_switch_nvm *nvm;
385
386 mutex_lock(&switch_lock);
387 nvm = sw->nvm;
388 sw->nvm = NULL;
389 mutex_unlock(&switch_lock);
390
391 if (!nvm)
392 return;
393
394 /* Remove authentication status in case the switch is unplugged */
395 if (!nvm->authenticating)
396 nvm_clear_auth_status(sw);
397
398 nvmem_unregister(nvm->non_active);
399 if (nvm->active)
400 nvmem_unregister(nvm->active);
401 ida_simple_remove(&nvm_ida, nvm->id);
402 vfree(nvm->buf);
403 kfree(nvm);
404 }
405
406 /* port utility functions */
407
408 static const char *tb_port_type(struct tb_regs_port_header *port)
409 {
410 switch (port->type >> 16) {
411 case 0:
412 switch ((u8) port->type) {
413 case 0:
414 return "Inactive";
415 case 1:
416 return "Port";
417 case 2:
418 return "NHI";
419 default:
420 return "unknown";
421 }
422 case 0x2:
423 return "Ethernet";
424 case 0x8:
425 return "SATA";
426 case 0xe:
427 return "DP/HDMI";
428 case 0x10:
429 return "PCIe";
430 case 0x20:
431 return "USB";
432 default:
433 return "unknown";
434 }
435 }
436
437 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
438 {
439 tb_info(tb,
440 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
441 port->port_number, port->vendor_id, port->device_id,
442 port->revision, port->thunderbolt_version, tb_port_type(port),
443 port->type);
444 tb_info(tb, " Max hop id (in/out): %d/%d\n",
445 port->max_in_hop_id, port->max_out_hop_id);
446 tb_info(tb, " Max counters: %d\n", port->max_counters);
447 tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits);
448 }
449
450 /**
451 * tb_port_state() - get connectedness state of a port
452 *
453 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
454 *
455 * Return: Returns an enum tb_port_state on success or an error code on failure.
456 */
457 static int tb_port_state(struct tb_port *port)
458 {
459 struct tb_cap_phy phy;
460 int res;
461 if (port->cap_phy == 0) {
462 tb_port_WARN(port, "does not have a PHY\n");
463 return -EINVAL;
464 }
465 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
466 if (res)
467 return res;
468 return phy.state;
469 }
470
471 /**
472 * tb_wait_for_port() - wait for a port to become ready
473 *
474 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
475 * wait_if_unplugged is set then we also wait if the port is in state
476 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
477 * switch resume). Otherwise we only wait if a device is registered but the link
478 * has not yet been established.
479 *
480 * Return: Returns an error code on failure. Returns 0 if the port is not
481 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
482 * if the port is connected and in state TB_PORT_UP.
483 */
484 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
485 {
486 int retries = 10;
487 int state;
488 if (!port->cap_phy) {
489 tb_port_WARN(port, "does not have PHY\n");
490 return -EINVAL;
491 }
492 if (tb_is_upstream_port(port)) {
493 tb_port_WARN(port, "is the upstream port\n");
494 return -EINVAL;
495 }
496
497 while (retries--) {
498 state = tb_port_state(port);
499 if (state < 0)
500 return state;
501 if (state == TB_PORT_DISABLED) {
502 tb_port_info(port, "is disabled (state: 0)\n");
503 return 0;
504 }
505 if (state == TB_PORT_UNPLUGGED) {
506 if (wait_if_unplugged) {
507 /* used during resume */
508 tb_port_info(port,
509 "is unplugged (state: 7), retrying...\n");
510 msleep(100);
511 continue;
512 }
513 tb_port_info(port, "is unplugged (state: 7)\n");
514 return 0;
515 }
516 if (state == TB_PORT_UP) {
517 tb_port_info(port,
518 "is connected, link is up (state: 2)\n");
519 return 1;
520 }
521
522 /*
523 * After plug-in the state is TB_PORT_CONNECTING. Give it some
524 * time.
525 */
526 tb_port_info(port,
527 "is connected, link is not up (state: %d), retrying...\n",
528 state);
529 msleep(100);
530 }
531 tb_port_warn(port,
532 "failed to reach state TB_PORT_UP. Ignoring port...\n");
533 return 0;
534 }
535
536 /**
537 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
538 *
539 * Change the number of NFC credits allocated to @port by @credits. To remove
540 * NFC credits pass a negative amount of credits.
541 *
542 * Return: Returns 0 on success or an error code on failure.
543 */
544 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
545 {
546 if (credits == 0)
547 return 0;
548 tb_port_info(port,
549 "adding %#x NFC credits (%#x -> %#x)",
550 credits,
551 port->config.nfc_credits,
552 port->config.nfc_credits + credits);
553 port->config.nfc_credits += credits;
554 return tb_port_write(port, &port->config.nfc_credits,
555 TB_CFG_PORT, 4, 1);
556 }
557
558 /**
559 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
560 *
561 * Return: Returns 0 on success or an error code on failure.
562 */
563 int tb_port_clear_counter(struct tb_port *port, int counter)
564 {
565 u32 zero[3] = { 0, 0, 0 };
566 tb_port_info(port, "clearing counter %d\n", counter);
567 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
568 }
569
570 /**
571 * tb_init_port() - initialize a port
572 *
573 * This is a helper method for tb_switch_alloc. Does not check or initialize
574 * any downstream switches.
575 *
576 * Return: Returns 0 on success or an error code on failure.
577 */
578 static int tb_init_port(struct tb_port *port)
579 {
580 int res;
581 int cap;
582
583 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
584 if (res)
585 return res;
586
587 /* Port 0 is the switch itself and has no PHY. */
588 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
589 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
590
591 if (cap > 0)
592 port->cap_phy = cap;
593 else
594 tb_port_WARN(port, "non switch port without a PHY\n");
595 }
596
597 tb_dump_port(port->sw->tb, &port->config);
598
599 /* TODO: Read dual link port, DP port and more from EEPROM. */
600 return 0;
601
602 }
603
604 /* switch utility functions */
605
606 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
607 {
608 tb_info(tb,
609 " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
610 sw->vendor_id, sw->device_id, sw->revision,
611 sw->thunderbolt_version);
612 tb_info(tb, " Max Port Number: %d\n", sw->max_port_number);
613 tb_info(tb, " Config:\n");
614 tb_info(tb,
615 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
616 sw->upstream_port_number, sw->depth,
617 (((u64) sw->route_hi) << 32) | sw->route_lo,
618 sw->enabled, sw->plug_events_delay);
619 tb_info(tb,
620 " unknown1: %#x unknown4: %#x\n",
621 sw->__unknown1, sw->__unknown4);
622 }
623
624 /**
625 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
626 *
627 * Return: Returns 0 on success or an error code on failure.
628 */
629 int tb_switch_reset(struct tb *tb, u64 route)
630 {
631 struct tb_cfg_result res;
632 struct tb_regs_switch_header header = {
633 header.route_hi = route >> 32,
634 header.route_lo = route,
635 header.enabled = true,
636 };
637 tb_info(tb, "resetting switch at %llx\n", route);
638 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
639 0, 2, 2, 2);
640 if (res.err)
641 return res.err;
642 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
643 if (res.err > 0)
644 return -EIO;
645 return res.err;
646 }
647
648 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route)
649 {
650 u8 next_port = route; /*
651 * Routes use a stride of 8 bits,
652 * eventhough a port index has 6 bits at most.
653 * */
654 if (route == 0)
655 return sw;
656 if (next_port > sw->config.max_port_number)
657 return NULL;
658 if (tb_is_upstream_port(&sw->ports[next_port]))
659 return NULL;
660 if (!sw->ports[next_port].remote)
661 return NULL;
662 return get_switch_at_route(sw->ports[next_port].remote->sw,
663 route >> TB_ROUTE_SHIFT);
664 }
665
666 /**
667 * tb_plug_events_active() - enable/disable plug events on a switch
668 *
669 * Also configures a sane plug_events_delay of 255ms.
670 *
671 * Return: Returns 0 on success or an error code on failure.
672 */
673 static int tb_plug_events_active(struct tb_switch *sw, bool active)
674 {
675 u32 data;
676 int res;
677
678 if (!sw->config.enabled)
679 return 0;
680
681 sw->config.plug_events_delay = 0xff;
682 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
683 if (res)
684 return res;
685
686 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
687 if (res)
688 return res;
689
690 if (active) {
691 data = data & 0xFFFFFF83;
692 switch (sw->config.device_id) {
693 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
694 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
695 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
696 break;
697 default:
698 data |= 4;
699 }
700 } else {
701 data = data | 0x7c;
702 }
703 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
704 sw->cap_plug_events + 1, 1);
705 }
706
707 static ssize_t authorized_show(struct device *dev,
708 struct device_attribute *attr,
709 char *buf)
710 {
711 struct tb_switch *sw = tb_to_switch(dev);
712
713 return sprintf(buf, "%u\n", sw->authorized);
714 }
715
716 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
717 {
718 int ret = -EINVAL;
719
720 if (mutex_lock_interruptible(&switch_lock))
721 return -ERESTARTSYS;
722
723 if (sw->authorized)
724 goto unlock;
725
726 /*
727 * Make sure there is no PCIe rescan ongoing when a new PCIe
728 * tunnel is created. Otherwise the PCIe rescan code might find
729 * the new tunnel too early.
730 */
731 pci_lock_rescan_remove();
732 pm_runtime_get_sync(&sw->dev);
733
734 switch (val) {
735 /* Approve switch */
736 case 1:
737 if (sw->key)
738 ret = tb_domain_approve_switch_key(sw->tb, sw);
739 else
740 ret = tb_domain_approve_switch(sw->tb, sw);
741 break;
742
743 /* Challenge switch */
744 case 2:
745 if (sw->key)
746 ret = tb_domain_challenge_switch_key(sw->tb, sw);
747 break;
748
749 default:
750 break;
751 }
752
753 pm_runtime_mark_last_busy(&sw->dev);
754 pm_runtime_put_autosuspend(&sw->dev);
755 pci_unlock_rescan_remove();
756
757 if (!ret) {
758 sw->authorized = val;
759 /* Notify status change to the userspace */
760 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
761 }
762
763 unlock:
764 mutex_unlock(&switch_lock);
765 return ret;
766 }
767
768 static ssize_t authorized_store(struct device *dev,
769 struct device_attribute *attr,
770 const char *buf, size_t count)
771 {
772 struct tb_switch *sw = tb_to_switch(dev);
773 unsigned int val;
774 ssize_t ret;
775
776 ret = kstrtouint(buf, 0, &val);
777 if (ret)
778 return ret;
779 if (val > 2)
780 return -EINVAL;
781
782 ret = tb_switch_set_authorized(sw, val);
783
784 return ret ? ret : count;
785 }
786 static DEVICE_ATTR_RW(authorized);
787
788 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
789 char *buf)
790 {
791 struct tb_switch *sw = tb_to_switch(dev);
792
793 return sprintf(buf, "%u\n", sw->boot);
794 }
795 static DEVICE_ATTR_RO(boot);
796
797 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
798 char *buf)
799 {
800 struct tb_switch *sw = tb_to_switch(dev);
801
802 return sprintf(buf, "%#x\n", sw->device);
803 }
804 static DEVICE_ATTR_RO(device);
805
806 static ssize_t
807 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
808 {
809 struct tb_switch *sw = tb_to_switch(dev);
810
811 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
812 }
813 static DEVICE_ATTR_RO(device_name);
814
815 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
816 char *buf)
817 {
818 struct tb_switch *sw = tb_to_switch(dev);
819 ssize_t ret;
820
821 if (mutex_lock_interruptible(&switch_lock))
822 return -ERESTARTSYS;
823
824 if (sw->key)
825 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
826 else
827 ret = sprintf(buf, "\n");
828
829 mutex_unlock(&switch_lock);
830 return ret;
831 }
832
833 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
834 const char *buf, size_t count)
835 {
836 struct tb_switch *sw = tb_to_switch(dev);
837 u8 key[TB_SWITCH_KEY_SIZE];
838 ssize_t ret = count;
839 bool clear = false;
840
841 if (!strcmp(buf, "\n"))
842 clear = true;
843 else if (hex2bin(key, buf, sizeof(key)))
844 return -EINVAL;
845
846 if (mutex_lock_interruptible(&switch_lock))
847 return -ERESTARTSYS;
848
849 if (sw->authorized) {
850 ret = -EBUSY;
851 } else {
852 kfree(sw->key);
853 if (clear) {
854 sw->key = NULL;
855 } else {
856 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
857 if (!sw->key)
858 ret = -ENOMEM;
859 }
860 }
861
862 mutex_unlock(&switch_lock);
863 return ret;
864 }
865 static DEVICE_ATTR(key, 0600, key_show, key_store);
866
867 static ssize_t nvm_authenticate_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct tb_switch *sw = tb_to_switch(dev);
871 u32 status;
872
873 nvm_get_auth_status(sw, &status);
874 return sprintf(buf, "%#x\n", status);
875 }
876
877 static ssize_t nvm_authenticate_store(struct device *dev,
878 struct device_attribute *attr, const char *buf, size_t count)
879 {
880 struct tb_switch *sw = tb_to_switch(dev);
881 bool val;
882 int ret;
883
884 if (mutex_lock_interruptible(&switch_lock))
885 return -ERESTARTSYS;
886
887 /* If NVMem devices are not yet added */
888 if (!sw->nvm) {
889 ret = -EAGAIN;
890 goto exit_unlock;
891 }
892
893 ret = kstrtobool(buf, &val);
894 if (ret)
895 goto exit_unlock;
896
897 /* Always clear the authentication status */
898 nvm_clear_auth_status(sw);
899
900 if (val) {
901 if (!sw->nvm->buf) {
902 ret = -EINVAL;
903 goto exit_unlock;
904 }
905
906 pm_runtime_get_sync(&sw->dev);
907 ret = nvm_validate_and_write(sw);
908 if (ret) {
909 pm_runtime_mark_last_busy(&sw->dev);
910 pm_runtime_put_autosuspend(&sw->dev);
911 goto exit_unlock;
912 }
913
914 sw->nvm->authenticating = true;
915
916 if (!tb_route(sw))
917 ret = nvm_authenticate_host(sw);
918 else
919 ret = nvm_authenticate_device(sw);
920 pm_runtime_mark_last_busy(&sw->dev);
921 pm_runtime_put_autosuspend(&sw->dev);
922 }
923
924 exit_unlock:
925 mutex_unlock(&switch_lock);
926
927 if (ret)
928 return ret;
929 return count;
930 }
931 static DEVICE_ATTR_RW(nvm_authenticate);
932
933 static ssize_t nvm_version_show(struct device *dev,
934 struct device_attribute *attr, char *buf)
935 {
936 struct tb_switch *sw = tb_to_switch(dev);
937 int ret;
938
939 if (mutex_lock_interruptible(&switch_lock))
940 return -ERESTARTSYS;
941
942 if (sw->safe_mode)
943 ret = -ENODATA;
944 else if (!sw->nvm)
945 ret = -EAGAIN;
946 else
947 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
948
949 mutex_unlock(&switch_lock);
950
951 return ret;
952 }
953 static DEVICE_ATTR_RO(nvm_version);
954
955 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
956 char *buf)
957 {
958 struct tb_switch *sw = tb_to_switch(dev);
959
960 return sprintf(buf, "%#x\n", sw->vendor);
961 }
962 static DEVICE_ATTR_RO(vendor);
963
964 static ssize_t
965 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
966 {
967 struct tb_switch *sw = tb_to_switch(dev);
968
969 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
970 }
971 static DEVICE_ATTR_RO(vendor_name);
972
973 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
974 char *buf)
975 {
976 struct tb_switch *sw = tb_to_switch(dev);
977
978 return sprintf(buf, "%pUb\n", sw->uuid);
979 }
980 static DEVICE_ATTR_RO(unique_id);
981
982 static struct attribute *switch_attrs[] = {
983 &dev_attr_authorized.attr,
984 &dev_attr_boot.attr,
985 &dev_attr_device.attr,
986 &dev_attr_device_name.attr,
987 &dev_attr_key.attr,
988 &dev_attr_nvm_authenticate.attr,
989 &dev_attr_nvm_version.attr,
990 &dev_attr_vendor.attr,
991 &dev_attr_vendor_name.attr,
992 &dev_attr_unique_id.attr,
993 NULL,
994 };
995
996 static umode_t switch_attr_is_visible(struct kobject *kobj,
997 struct attribute *attr, int n)
998 {
999 struct device *dev = container_of(kobj, struct device, kobj);
1000 struct tb_switch *sw = tb_to_switch(dev);
1001
1002 if (attr == &dev_attr_key.attr) {
1003 if (tb_route(sw) &&
1004 sw->tb->security_level == TB_SECURITY_SECURE &&
1005 sw->security_level == TB_SECURITY_SECURE)
1006 return attr->mode;
1007 return 0;
1008 } else if (attr == &dev_attr_nvm_authenticate.attr ||
1009 attr == &dev_attr_nvm_version.attr) {
1010 if (sw->dma_port)
1011 return attr->mode;
1012 return 0;
1013 } else if (attr == &dev_attr_boot.attr) {
1014 if (tb_route(sw))
1015 return attr->mode;
1016 return 0;
1017 }
1018
1019 return sw->safe_mode ? 0 : attr->mode;
1020 }
1021
1022 static struct attribute_group switch_group = {
1023 .is_visible = switch_attr_is_visible,
1024 .attrs = switch_attrs,
1025 };
1026
1027 static const struct attribute_group *switch_groups[] = {
1028 &switch_group,
1029 NULL,
1030 };
1031
1032 static void tb_switch_release(struct device *dev)
1033 {
1034 struct tb_switch *sw = tb_to_switch(dev);
1035
1036 dma_port_free(sw->dma_port);
1037
1038 kfree(sw->uuid);
1039 kfree(sw->device_name);
1040 kfree(sw->vendor_name);
1041 kfree(sw->ports);
1042 kfree(sw->drom);
1043 kfree(sw->key);
1044 kfree(sw);
1045 }
1046
1047 /*
1048 * Currently only need to provide the callbacks. Everything else is handled
1049 * in the connection manager.
1050 */
1051 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1052 {
1053 return 0;
1054 }
1055
1056 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1057 {
1058 return 0;
1059 }
1060
1061 static const struct dev_pm_ops tb_switch_pm_ops = {
1062 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1063 NULL)
1064 };
1065
1066 struct device_type tb_switch_type = {
1067 .name = "thunderbolt_device",
1068 .release = tb_switch_release,
1069 .pm = &tb_switch_pm_ops,
1070 };
1071
1072 static int tb_switch_get_generation(struct tb_switch *sw)
1073 {
1074 switch (sw->config.device_id) {
1075 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1076 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1077 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1078 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1079 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1080 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1081 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1082 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1083 return 1;
1084
1085 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1086 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1087 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1088 return 2;
1089
1090 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1091 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1092 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1093 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1094 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1095 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1096 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1097 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1098 return 3;
1099
1100 default:
1101 /*
1102 * For unknown switches assume generation to be 1 to be
1103 * on the safe side.
1104 */
1105 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1106 sw->config.device_id);
1107 return 1;
1108 }
1109 }
1110
1111 /**
1112 * tb_switch_alloc() - allocate a switch
1113 * @tb: Pointer to the owning domain
1114 * @parent: Parent device for this switch
1115 * @route: Route string for this switch
1116 *
1117 * Allocates and initializes a switch. Will not upload configuration to
1118 * the switch. For that you need to call tb_switch_configure()
1119 * separately. The returned switch should be released by calling
1120 * tb_switch_put().
1121 *
1122 * Return: Pointer to the allocated switch or %NULL in case of failure
1123 */
1124 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1125 u64 route)
1126 {
1127 int i;
1128 int cap;
1129 struct tb_switch *sw;
1130 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1131 if (upstream_port < 0)
1132 return NULL;
1133
1134 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1135 if (!sw)
1136 return NULL;
1137
1138 sw->tb = tb;
1139 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1140 goto err_free_sw_ports;
1141
1142 tb_info(tb, "current switch config:\n");
1143 tb_dump_switch(tb, &sw->config);
1144
1145 /* configure switch */
1146 sw->config.upstream_port_number = upstream_port;
1147 sw->config.depth = tb_route_length(route);
1148 sw->config.route_lo = route;
1149 sw->config.route_hi = route >> 32;
1150 sw->config.enabled = 0;
1151
1152 /* initialize ports */
1153 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1154 GFP_KERNEL);
1155 if (!sw->ports)
1156 goto err_free_sw_ports;
1157
1158 for (i = 0; i <= sw->config.max_port_number; i++) {
1159 /* minimum setup for tb_find_cap and tb_drom_read to work */
1160 sw->ports[i].sw = sw;
1161 sw->ports[i].port = i;
1162 }
1163
1164 sw->generation = tb_switch_get_generation(sw);
1165
1166 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1167 if (cap < 0) {
1168 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1169 goto err_free_sw_ports;
1170 }
1171 sw->cap_plug_events = cap;
1172
1173 /* Root switch is always authorized */
1174 if (!route)
1175 sw->authorized = true;
1176
1177 device_initialize(&sw->dev);
1178 sw->dev.parent = parent;
1179 sw->dev.bus = &tb_bus_type;
1180 sw->dev.type = &tb_switch_type;
1181 sw->dev.groups = switch_groups;
1182 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1183
1184 return sw;
1185
1186 err_free_sw_ports:
1187 kfree(sw->ports);
1188 kfree(sw);
1189
1190 return NULL;
1191 }
1192
1193 /**
1194 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1195 * @tb: Pointer to the owning domain
1196 * @parent: Parent device for this switch
1197 * @route: Route string for this switch
1198 *
1199 * This creates a switch in safe mode. This means the switch pretty much
1200 * lacks all capabilities except DMA configuration port before it is
1201 * flashed with a valid NVM firmware.
1202 *
1203 * The returned switch must be released by calling tb_switch_put().
1204 *
1205 * Return: Pointer to the allocated switch or %NULL in case of failure
1206 */
1207 struct tb_switch *
1208 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1209 {
1210 struct tb_switch *sw;
1211
1212 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1213 if (!sw)
1214 return NULL;
1215
1216 sw->tb = tb;
1217 sw->config.depth = tb_route_length(route);
1218 sw->config.route_hi = upper_32_bits(route);
1219 sw->config.route_lo = lower_32_bits(route);
1220 sw->safe_mode = true;
1221
1222 device_initialize(&sw->dev);
1223 sw->dev.parent = parent;
1224 sw->dev.bus = &tb_bus_type;
1225 sw->dev.type = &tb_switch_type;
1226 sw->dev.groups = switch_groups;
1227 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1228
1229 return sw;
1230 }
1231
1232 /**
1233 * tb_switch_configure() - Uploads configuration to the switch
1234 * @sw: Switch to configure
1235 *
1236 * Call this function before the switch is added to the system. It will
1237 * upload configuration to the switch and makes it available for the
1238 * connection manager to use.
1239 *
1240 * Return: %0 in case of success and negative errno in case of failure
1241 */
1242 int tb_switch_configure(struct tb_switch *sw)
1243 {
1244 struct tb *tb = sw->tb;
1245 u64 route;
1246 int ret;
1247
1248 route = tb_route(sw);
1249 tb_info(tb,
1250 "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1251 route, tb_route_length(route), sw->config.upstream_port_number);
1252
1253 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1254 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1255 sw->config.vendor_id);
1256
1257 sw->config.enabled = 1;
1258
1259 /* upload configuration */
1260 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1261 if (ret)
1262 return ret;
1263
1264 return tb_plug_events_active(sw, true);
1265 }
1266
1267 static void tb_switch_set_uuid(struct tb_switch *sw)
1268 {
1269 u32 uuid[4];
1270 int cap;
1271
1272 if (sw->uuid)
1273 return;
1274
1275 /*
1276 * The newer controllers include fused UUID as part of link
1277 * controller specific registers
1278 */
1279 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1280 if (cap > 0) {
1281 tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1282 } else {
1283 /*
1284 * ICM generates UUID based on UID and fills the upper
1285 * two words with ones. This is not strictly following
1286 * UUID format but we want to be compatible with it so
1287 * we do the same here.
1288 */
1289 uuid[0] = sw->uid & 0xffffffff;
1290 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1291 uuid[2] = 0xffffffff;
1292 uuid[3] = 0xffffffff;
1293 }
1294
1295 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1296 }
1297
1298 static int tb_switch_add_dma_port(struct tb_switch *sw)
1299 {
1300 u32 status;
1301 int ret;
1302
1303 switch (sw->generation) {
1304 case 3:
1305 break;
1306
1307 case 2:
1308 /* Only root switch can be upgraded */
1309 if (tb_route(sw))
1310 return 0;
1311 break;
1312
1313 default:
1314 /*
1315 * DMA port is the only thing available when the switch
1316 * is in safe mode.
1317 */
1318 if (!sw->safe_mode)
1319 return 0;
1320 break;
1321 }
1322
1323 if (sw->no_nvm_upgrade)
1324 return 0;
1325
1326 sw->dma_port = dma_port_alloc(sw);
1327 if (!sw->dma_port)
1328 return 0;
1329
1330 /*
1331 * Check status of the previous flash authentication. If there
1332 * is one we need to power cycle the switch in any case to make
1333 * it functional again.
1334 */
1335 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1336 if (ret <= 0)
1337 return ret;
1338
1339 if (status) {
1340 tb_sw_info(sw, "switch flash authentication failed\n");
1341 tb_switch_set_uuid(sw);
1342 nvm_set_auth_status(sw, status);
1343 }
1344
1345 tb_sw_info(sw, "power cycling the switch now\n");
1346 dma_port_power_cycle(sw->dma_port);
1347
1348 /*
1349 * We return error here which causes the switch adding failure.
1350 * It should appear back after power cycle is complete.
1351 */
1352 return -ESHUTDOWN;
1353 }
1354
1355 /**
1356 * tb_switch_add() - Add a switch to the domain
1357 * @sw: Switch to add
1358 *
1359 * This is the last step in adding switch to the domain. It will read
1360 * identification information from DROM and initializes ports so that
1361 * they can be used to connect other switches. The switch will be
1362 * exposed to the userspace when this function successfully returns. To
1363 * remove and release the switch, call tb_switch_remove().
1364 *
1365 * Return: %0 in case of success and negative errno in case of failure
1366 */
1367 int tb_switch_add(struct tb_switch *sw)
1368 {
1369 int i, ret;
1370
1371 /*
1372 * Initialize DMA control port now before we read DROM. Recent
1373 * host controllers have more complete DROM on NVM that includes
1374 * vendor and model identification strings which we then expose
1375 * to the userspace. NVM can be accessed through DMA
1376 * configuration based mailbox.
1377 */
1378 ret = tb_switch_add_dma_port(sw);
1379 if (ret)
1380 return ret;
1381
1382 if (!sw->safe_mode) {
1383 /* read drom */
1384 ret = tb_drom_read(sw);
1385 if (ret) {
1386 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1387 return ret;
1388 }
1389 tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1390
1391 tb_switch_set_uuid(sw);
1392
1393 for (i = 0; i <= sw->config.max_port_number; i++) {
1394 if (sw->ports[i].disabled) {
1395 tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1396 continue;
1397 }
1398 ret = tb_init_port(&sw->ports[i]);
1399 if (ret)
1400 return ret;
1401 }
1402 }
1403
1404 ret = device_add(&sw->dev);
1405 if (ret)
1406 return ret;
1407
1408 ret = tb_switch_nvm_add(sw);
1409 if (ret) {
1410 device_del(&sw->dev);
1411 return ret;
1412 }
1413
1414 pm_runtime_set_active(&sw->dev);
1415 if (sw->rpm) {
1416 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1417 pm_runtime_use_autosuspend(&sw->dev);
1418 pm_runtime_mark_last_busy(&sw->dev);
1419 pm_runtime_enable(&sw->dev);
1420 pm_request_autosuspend(&sw->dev);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * tb_switch_remove() - Remove and release a switch
1428 * @sw: Switch to remove
1429 *
1430 * This will remove the switch from the domain and release it after last
1431 * reference count drops to zero. If there are switches connected below
1432 * this switch, they will be removed as well.
1433 */
1434 void tb_switch_remove(struct tb_switch *sw)
1435 {
1436 int i;
1437
1438 if (sw->rpm) {
1439 pm_runtime_get_sync(&sw->dev);
1440 pm_runtime_disable(&sw->dev);
1441 }
1442
1443 /* port 0 is the switch itself and never has a remote */
1444 for (i = 1; i <= sw->config.max_port_number; i++) {
1445 if (tb_is_upstream_port(&sw->ports[i]))
1446 continue;
1447 if (sw->ports[i].remote)
1448 tb_switch_remove(sw->ports[i].remote->sw);
1449 sw->ports[i].remote = NULL;
1450 if (sw->ports[i].xdomain)
1451 tb_xdomain_remove(sw->ports[i].xdomain);
1452 sw->ports[i].xdomain = NULL;
1453 }
1454
1455 if (!sw->is_unplugged)
1456 tb_plug_events_active(sw, false);
1457
1458 tb_switch_nvm_remove(sw);
1459 device_unregister(&sw->dev);
1460 }
1461
1462 /**
1463 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1464 */
1465 void tb_sw_set_unplugged(struct tb_switch *sw)
1466 {
1467 int i;
1468 if (sw == sw->tb->root_switch) {
1469 tb_sw_WARN(sw, "cannot unplug root switch\n");
1470 return;
1471 }
1472 if (sw->is_unplugged) {
1473 tb_sw_WARN(sw, "is_unplugged already set\n");
1474 return;
1475 }
1476 sw->is_unplugged = true;
1477 for (i = 0; i <= sw->config.max_port_number; i++) {
1478 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1479 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1480 }
1481 }
1482
1483 int tb_switch_resume(struct tb_switch *sw)
1484 {
1485 int i, err;
1486 tb_sw_info(sw, "resuming switch\n");
1487
1488 /*
1489 * Check for UID of the connected switches except for root
1490 * switch which we assume cannot be removed.
1491 */
1492 if (tb_route(sw)) {
1493 u64 uid;
1494
1495 err = tb_drom_read_uid_only(sw, &uid);
1496 if (err) {
1497 tb_sw_warn(sw, "uid read failed\n");
1498 return err;
1499 }
1500 if (sw->uid != uid) {
1501 tb_sw_info(sw,
1502 "changed while suspended (uid %#llx -> %#llx)\n",
1503 sw->uid, uid);
1504 return -ENODEV;
1505 }
1506 }
1507
1508 /* upload configuration */
1509 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1510 if (err)
1511 return err;
1512
1513 err = tb_plug_events_active(sw, true);
1514 if (err)
1515 return err;
1516
1517 /* check for surviving downstream switches */
1518 for (i = 1; i <= sw->config.max_port_number; i++) {
1519 struct tb_port *port = &sw->ports[i];
1520 if (tb_is_upstream_port(port))
1521 continue;
1522 if (!port->remote)
1523 continue;
1524 if (tb_wait_for_port(port, true) <= 0
1525 || tb_switch_resume(port->remote->sw)) {
1526 tb_port_warn(port,
1527 "lost during suspend, disconnecting\n");
1528 tb_sw_set_unplugged(port->remote->sw);
1529 }
1530 }
1531 return 0;
1532 }
1533
1534 void tb_switch_suspend(struct tb_switch *sw)
1535 {
1536 int i, err;
1537 err = tb_plug_events_active(sw, false);
1538 if (err)
1539 return;
1540
1541 for (i = 1; i <= sw->config.max_port_number; i++) {
1542 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1543 tb_switch_suspend(sw->ports[i].remote->sw);
1544 }
1545 /*
1546 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1547 * effect?
1548 */
1549 }
1550
1551 struct tb_sw_lookup {
1552 struct tb *tb;
1553 u8 link;
1554 u8 depth;
1555 const uuid_t *uuid;
1556 u64 route;
1557 };
1558
1559 static int tb_switch_match(struct device *dev, void *data)
1560 {
1561 struct tb_switch *sw = tb_to_switch(dev);
1562 struct tb_sw_lookup *lookup = data;
1563
1564 if (!sw)
1565 return 0;
1566 if (sw->tb != lookup->tb)
1567 return 0;
1568
1569 if (lookup->uuid)
1570 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1571
1572 if (lookup->route) {
1573 return sw->config.route_lo == lower_32_bits(lookup->route) &&
1574 sw->config.route_hi == upper_32_bits(lookup->route);
1575 }
1576
1577 /* Root switch is matched only by depth */
1578 if (!lookup->depth)
1579 return !sw->depth;
1580
1581 return sw->link == lookup->link && sw->depth == lookup->depth;
1582 }
1583
1584 /**
1585 * tb_switch_find_by_link_depth() - Find switch by link and depth
1586 * @tb: Domain the switch belongs
1587 * @link: Link number the switch is connected
1588 * @depth: Depth of the switch in link
1589 *
1590 * Returned switch has reference count increased so the caller needs to
1591 * call tb_switch_put() when done with the switch.
1592 */
1593 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1594 {
1595 struct tb_sw_lookup lookup;
1596 struct device *dev;
1597
1598 memset(&lookup, 0, sizeof(lookup));
1599 lookup.tb = tb;
1600 lookup.link = link;
1601 lookup.depth = depth;
1602
1603 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1604 if (dev)
1605 return tb_to_switch(dev);
1606
1607 return NULL;
1608 }
1609
1610 /**
1611 * tb_switch_find_by_uuid() - Find switch by UUID
1612 * @tb: Domain the switch belongs
1613 * @uuid: UUID to look for
1614 *
1615 * Returned switch has reference count increased so the caller needs to
1616 * call tb_switch_put() when done with the switch.
1617 */
1618 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1619 {
1620 struct tb_sw_lookup lookup;
1621 struct device *dev;
1622
1623 memset(&lookup, 0, sizeof(lookup));
1624 lookup.tb = tb;
1625 lookup.uuid = uuid;
1626
1627 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1628 if (dev)
1629 return tb_to_switch(dev);
1630
1631 return NULL;
1632 }
1633
1634 /**
1635 * tb_switch_find_by_route() - Find switch by route string
1636 * @tb: Domain the switch belongs
1637 * @route: Route string to look for
1638 *
1639 * Returned switch has reference count increased so the caller needs to
1640 * call tb_switch_put() when done with the switch.
1641 */
1642 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
1643 {
1644 struct tb_sw_lookup lookup;
1645 struct device *dev;
1646
1647 if (!route)
1648 return tb_switch_get(tb->root_switch);
1649
1650 memset(&lookup, 0, sizeof(lookup));
1651 lookup.tb = tb;
1652 lookup.route = route;
1653
1654 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1655 if (dev)
1656 return tb_to_switch(dev);
1657
1658 return NULL;
1659 }
1660
1661 void tb_switch_exit(void)
1662 {
1663 ida_destroy(&nvm_ida);
1664 }