]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/thunderbolt/switch.c
thunderbolt: Generalize tunnel creation functionality
[mirror_ubuntu-focal-kernel.git] / drivers / thunderbolt / switch.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 #include "tb.h"
19
20 /* Switch NVM support */
21
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
26
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
29
30 static DEFINE_IDA(nvm_ida);
31
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36 };
37
38 /*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56 }
57
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67 }
68
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92 }
93
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105 }
106
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168
169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 int ret;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 ret = tb_domain_disconnect_all_paths(sw->tb);
180 if (ret)
181 return ret;
182 /*
183 * The host controller goes away pretty soon after this if
184 * everything goes well so getting timeout is expected.
185 */
186 ret = dma_port_flash_update_auth(sw->dma_port);
187 return ret == -ETIMEDOUT ? 0 : ret;
188 }
189
190 /*
191 * From safe mode we can get out by just power cycling the
192 * switch.
193 */
194 dma_port_power_cycle(sw->dma_port);
195 return 0;
196 }
197
198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 int ret, retries = 10;
201
202 ret = dma_port_flash_update_auth(sw->dma_port);
203 if (ret && ret != -ETIMEDOUT)
204 return ret;
205
206 /*
207 * Poll here for the authentication status. It takes some time
208 * for the device to respond (we get timeout for a while). Once
209 * we get response the device needs to be power cycled in order
210 * to the new NVM to be taken into use.
211 */
212 do {
213 u32 status;
214
215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 if (ret < 0 && ret != -ETIMEDOUT)
217 return ret;
218 if (ret > 0) {
219 if (status) {
220 tb_sw_warn(sw, "failed to authenticate NVM\n");
221 nvm_set_auth_status(sw, status);
222 }
223
224 tb_sw_info(sw, "power cycling the switch now\n");
225 dma_port_power_cycle(sw->dma_port);
226 return 0;
227 }
228
229 msleep(500);
230 } while (--retries);
231
232 return -ETIMEDOUT;
233 }
234
235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 size_t bytes)
237 {
238 struct tb_switch *sw = priv;
239 int ret;
240
241 pm_runtime_get_sync(&sw->dev);
242 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
243 pm_runtime_mark_last_busy(&sw->dev);
244 pm_runtime_put_autosuspend(&sw->dev);
245
246 return ret;
247 }
248
249 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
250 size_t bytes)
251 {
252 struct tb_switch *sw = priv;
253 int ret = 0;
254
255 if (!mutex_trylock(&sw->tb->lock))
256 return restart_syscall();
257
258 /*
259 * Since writing the NVM image might require some special steps,
260 * for example when CSS headers are written, we cache the image
261 * locally here and handle the special cases when the user asks
262 * us to authenticate the image.
263 */
264 if (!sw->nvm->buf) {
265 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
266 if (!sw->nvm->buf) {
267 ret = -ENOMEM;
268 goto unlock;
269 }
270 }
271
272 sw->nvm->buf_data_size = offset + bytes;
273 memcpy(sw->nvm->buf + offset, val, bytes);
274
275 unlock:
276 mutex_unlock(&sw->tb->lock);
277
278 return ret;
279 }
280
281 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
282 size_t size, bool active)
283 {
284 struct nvmem_config config;
285
286 memset(&config, 0, sizeof(config));
287
288 if (active) {
289 config.name = "nvm_active";
290 config.reg_read = tb_switch_nvm_read;
291 config.read_only = true;
292 } else {
293 config.name = "nvm_non_active";
294 config.reg_write = tb_switch_nvm_write;
295 config.root_only = true;
296 }
297
298 config.id = id;
299 config.stride = 4;
300 config.word_size = 4;
301 config.size = size;
302 config.dev = &sw->dev;
303 config.owner = THIS_MODULE;
304 config.priv = sw;
305
306 return nvmem_register(&config);
307 }
308
309 static int tb_switch_nvm_add(struct tb_switch *sw)
310 {
311 struct nvmem_device *nvm_dev;
312 struct tb_switch_nvm *nvm;
313 u32 val;
314 int ret;
315
316 if (!sw->dma_port)
317 return 0;
318
319 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
320 if (!nvm)
321 return -ENOMEM;
322
323 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
324
325 /*
326 * If the switch is in safe-mode the only accessible portion of
327 * the NVM is the non-active one where userspace is expected to
328 * write new functional NVM.
329 */
330 if (!sw->safe_mode) {
331 u32 nvm_size, hdr_size;
332
333 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
334 sizeof(val));
335 if (ret)
336 goto err_ida;
337
338 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
339 nvm_size = (SZ_1M << (val & 7)) / 8;
340 nvm_size = (nvm_size - hdr_size) / 2;
341
342 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
343 sizeof(val));
344 if (ret)
345 goto err_ida;
346
347 nvm->major = val >> 16;
348 nvm->minor = val >> 8;
349
350 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
351 if (IS_ERR(nvm_dev)) {
352 ret = PTR_ERR(nvm_dev);
353 goto err_ida;
354 }
355 nvm->active = nvm_dev;
356 }
357
358 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
359 if (IS_ERR(nvm_dev)) {
360 ret = PTR_ERR(nvm_dev);
361 goto err_nvm_active;
362 }
363 nvm->non_active = nvm_dev;
364
365 sw->nvm = nvm;
366 return 0;
367
368 err_nvm_active:
369 if (nvm->active)
370 nvmem_unregister(nvm->active);
371 err_ida:
372 ida_simple_remove(&nvm_ida, nvm->id);
373 kfree(nvm);
374
375 return ret;
376 }
377
378 static void tb_switch_nvm_remove(struct tb_switch *sw)
379 {
380 struct tb_switch_nvm *nvm;
381
382 nvm = sw->nvm;
383 sw->nvm = NULL;
384
385 if (!nvm)
386 return;
387
388 /* Remove authentication status in case the switch is unplugged */
389 if (!nvm->authenticating)
390 nvm_clear_auth_status(sw);
391
392 nvmem_unregister(nvm->non_active);
393 if (nvm->active)
394 nvmem_unregister(nvm->active);
395 ida_simple_remove(&nvm_ida, nvm->id);
396 vfree(nvm->buf);
397 kfree(nvm);
398 }
399
400 /* port utility functions */
401
402 static const char *tb_port_type(struct tb_regs_port_header *port)
403 {
404 switch (port->type >> 16) {
405 case 0:
406 switch ((u8) port->type) {
407 case 0:
408 return "Inactive";
409 case 1:
410 return "Port";
411 case 2:
412 return "NHI";
413 default:
414 return "unknown";
415 }
416 case 0x2:
417 return "Ethernet";
418 case 0x8:
419 return "SATA";
420 case 0xe:
421 return "DP/HDMI";
422 case 0x10:
423 return "PCIe";
424 case 0x20:
425 return "USB";
426 default:
427 return "unknown";
428 }
429 }
430
431 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
432 {
433 tb_dbg(tb,
434 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
435 port->port_number, port->vendor_id, port->device_id,
436 port->revision, port->thunderbolt_version, tb_port_type(port),
437 port->type);
438 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
439 port->max_in_hop_id, port->max_out_hop_id);
440 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
441 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
442 }
443
444 /**
445 * tb_port_state() - get connectedness state of a port
446 *
447 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
448 *
449 * Return: Returns an enum tb_port_state on success or an error code on failure.
450 */
451 static int tb_port_state(struct tb_port *port)
452 {
453 struct tb_cap_phy phy;
454 int res;
455 if (port->cap_phy == 0) {
456 tb_port_WARN(port, "does not have a PHY\n");
457 return -EINVAL;
458 }
459 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
460 if (res)
461 return res;
462 return phy.state;
463 }
464
465 /**
466 * tb_wait_for_port() - wait for a port to become ready
467 *
468 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
469 * wait_if_unplugged is set then we also wait if the port is in state
470 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
471 * switch resume). Otherwise we only wait if a device is registered but the link
472 * has not yet been established.
473 *
474 * Return: Returns an error code on failure. Returns 0 if the port is not
475 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
476 * if the port is connected and in state TB_PORT_UP.
477 */
478 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
479 {
480 int retries = 10;
481 int state;
482 if (!port->cap_phy) {
483 tb_port_WARN(port, "does not have PHY\n");
484 return -EINVAL;
485 }
486 if (tb_is_upstream_port(port)) {
487 tb_port_WARN(port, "is the upstream port\n");
488 return -EINVAL;
489 }
490
491 while (retries--) {
492 state = tb_port_state(port);
493 if (state < 0)
494 return state;
495 if (state == TB_PORT_DISABLED) {
496 tb_port_info(port, "is disabled (state: 0)\n");
497 return 0;
498 }
499 if (state == TB_PORT_UNPLUGGED) {
500 if (wait_if_unplugged) {
501 /* used during resume */
502 tb_port_info(port,
503 "is unplugged (state: 7), retrying...\n");
504 msleep(100);
505 continue;
506 }
507 tb_port_info(port, "is unplugged (state: 7)\n");
508 return 0;
509 }
510 if (state == TB_PORT_UP) {
511 tb_port_info(port,
512 "is connected, link is up (state: 2)\n");
513 return 1;
514 }
515
516 /*
517 * After plug-in the state is TB_PORT_CONNECTING. Give it some
518 * time.
519 */
520 tb_port_info(port,
521 "is connected, link is not up (state: %d), retrying...\n",
522 state);
523 msleep(100);
524 }
525 tb_port_warn(port,
526 "failed to reach state TB_PORT_UP. Ignoring port...\n");
527 return 0;
528 }
529
530 /**
531 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
532 *
533 * Change the number of NFC credits allocated to @port by @credits. To remove
534 * NFC credits pass a negative amount of credits.
535 *
536 * Return: Returns 0 on success or an error code on failure.
537 */
538 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
539 {
540 if (credits == 0)
541 return 0;
542 tb_port_info(port,
543 "adding %#x NFC credits (%#x -> %#x)",
544 credits,
545 port->config.nfc_credits,
546 port->config.nfc_credits + credits);
547 port->config.nfc_credits += credits;
548 return tb_port_write(port, &port->config.nfc_credits,
549 TB_CFG_PORT, 4, 1);
550 }
551
552 /**
553 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
554 *
555 * Return: Returns 0 on success or an error code on failure.
556 */
557 int tb_port_clear_counter(struct tb_port *port, int counter)
558 {
559 u32 zero[3] = { 0, 0, 0 };
560 tb_port_info(port, "clearing counter %d\n", counter);
561 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
562 }
563
564 /**
565 * tb_init_port() - initialize a port
566 *
567 * This is a helper method for tb_switch_alloc. Does not check or initialize
568 * any downstream switches.
569 *
570 * Return: Returns 0 on success or an error code on failure.
571 */
572 static int tb_init_port(struct tb_port *port)
573 {
574 int res;
575 int cap;
576
577 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
578 if (res)
579 return res;
580
581 /* Port 0 is the switch itself and has no PHY. */
582 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
583 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
584
585 if (cap > 0)
586 port->cap_phy = cap;
587 else
588 tb_port_WARN(port, "non switch port without a PHY\n");
589 } else if (port->port != 0) {
590 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
591 if (cap > 0)
592 port->cap_adap = cap;
593 }
594
595 tb_dump_port(port->sw->tb, &port->config);
596
597 /* TODO: Read dual link port, DP port and more from EEPROM. */
598 return 0;
599
600 }
601
602 /**
603 * tb_pci_port_enable() - Enable PCIe adapter port
604 * @port: PCIe port to enable
605 * @enable: Enable/disable the PCIe adapter
606 */
607 int tb_pci_port_enable(struct tb_port *port, bool enable)
608 {
609 u32 word = enable ? TB_PCI_EN : 0x0;
610 if (!port->cap_adap)
611 return -ENXIO;
612 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
613 }
614
615 /* switch utility functions */
616
617 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
618 {
619 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
620 sw->vendor_id, sw->device_id, sw->revision,
621 sw->thunderbolt_version);
622 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
623 tb_dbg(tb, " Config:\n");
624 tb_dbg(tb,
625 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
626 sw->upstream_port_number, sw->depth,
627 (((u64) sw->route_hi) << 32) | sw->route_lo,
628 sw->enabled, sw->plug_events_delay);
629 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
630 sw->__unknown1, sw->__unknown4);
631 }
632
633 /**
634 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
635 *
636 * Return: Returns 0 on success or an error code on failure.
637 */
638 int tb_switch_reset(struct tb *tb, u64 route)
639 {
640 struct tb_cfg_result res;
641 struct tb_regs_switch_header header = {
642 header.route_hi = route >> 32,
643 header.route_lo = route,
644 header.enabled = true,
645 };
646 tb_dbg(tb, "resetting switch at %llx\n", route);
647 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
648 0, 2, 2, 2);
649 if (res.err)
650 return res.err;
651 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
652 if (res.err > 0)
653 return -EIO;
654 return res.err;
655 }
656
657 /**
658 * tb_plug_events_active() - enable/disable plug events on a switch
659 *
660 * Also configures a sane plug_events_delay of 255ms.
661 *
662 * Return: Returns 0 on success or an error code on failure.
663 */
664 static int tb_plug_events_active(struct tb_switch *sw, bool active)
665 {
666 u32 data;
667 int res;
668
669 if (!sw->config.enabled)
670 return 0;
671
672 sw->config.plug_events_delay = 0xff;
673 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
674 if (res)
675 return res;
676
677 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
678 if (res)
679 return res;
680
681 if (active) {
682 data = data & 0xFFFFFF83;
683 switch (sw->config.device_id) {
684 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
685 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
686 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
687 break;
688 default:
689 data |= 4;
690 }
691 } else {
692 data = data | 0x7c;
693 }
694 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
695 sw->cap_plug_events + 1, 1);
696 }
697
698 static ssize_t authorized_show(struct device *dev,
699 struct device_attribute *attr,
700 char *buf)
701 {
702 struct tb_switch *sw = tb_to_switch(dev);
703
704 return sprintf(buf, "%u\n", sw->authorized);
705 }
706
707 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
708 {
709 int ret = -EINVAL;
710
711 if (!mutex_trylock(&sw->tb->lock))
712 return restart_syscall();
713
714 if (sw->authorized)
715 goto unlock;
716
717 /*
718 * Make sure there is no PCIe rescan ongoing when a new PCIe
719 * tunnel is created. Otherwise the PCIe rescan code might find
720 * the new tunnel too early.
721 */
722 pci_lock_rescan_remove();
723 pm_runtime_get_sync(&sw->dev);
724
725 switch (val) {
726 /* Approve switch */
727 case 1:
728 if (sw->key)
729 ret = tb_domain_approve_switch_key(sw->tb, sw);
730 else
731 ret = tb_domain_approve_switch(sw->tb, sw);
732 break;
733
734 /* Challenge switch */
735 case 2:
736 if (sw->key)
737 ret = tb_domain_challenge_switch_key(sw->tb, sw);
738 break;
739
740 default:
741 break;
742 }
743
744 pm_runtime_mark_last_busy(&sw->dev);
745 pm_runtime_put_autosuspend(&sw->dev);
746 pci_unlock_rescan_remove();
747
748 if (!ret) {
749 sw->authorized = val;
750 /* Notify status change to the userspace */
751 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
752 }
753
754 unlock:
755 mutex_unlock(&sw->tb->lock);
756 return ret;
757 }
758
759 static ssize_t authorized_store(struct device *dev,
760 struct device_attribute *attr,
761 const char *buf, size_t count)
762 {
763 struct tb_switch *sw = tb_to_switch(dev);
764 unsigned int val;
765 ssize_t ret;
766
767 ret = kstrtouint(buf, 0, &val);
768 if (ret)
769 return ret;
770 if (val > 2)
771 return -EINVAL;
772
773 ret = tb_switch_set_authorized(sw, val);
774
775 return ret ? ret : count;
776 }
777 static DEVICE_ATTR_RW(authorized);
778
779 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
780 char *buf)
781 {
782 struct tb_switch *sw = tb_to_switch(dev);
783
784 return sprintf(buf, "%u\n", sw->boot);
785 }
786 static DEVICE_ATTR_RO(boot);
787
788 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
789 char *buf)
790 {
791 struct tb_switch *sw = tb_to_switch(dev);
792
793 return sprintf(buf, "%#x\n", sw->device);
794 }
795 static DEVICE_ATTR_RO(device);
796
797 static ssize_t
798 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
799 {
800 struct tb_switch *sw = tb_to_switch(dev);
801
802 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
803 }
804 static DEVICE_ATTR_RO(device_name);
805
806 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
807 char *buf)
808 {
809 struct tb_switch *sw = tb_to_switch(dev);
810 ssize_t ret;
811
812 if (!mutex_trylock(&sw->tb->lock))
813 return restart_syscall();
814
815 if (sw->key)
816 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
817 else
818 ret = sprintf(buf, "\n");
819
820 mutex_unlock(&sw->tb->lock);
821 return ret;
822 }
823
824 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
825 const char *buf, size_t count)
826 {
827 struct tb_switch *sw = tb_to_switch(dev);
828 u8 key[TB_SWITCH_KEY_SIZE];
829 ssize_t ret = count;
830 bool clear = false;
831
832 if (!strcmp(buf, "\n"))
833 clear = true;
834 else if (hex2bin(key, buf, sizeof(key)))
835 return -EINVAL;
836
837 if (!mutex_trylock(&sw->tb->lock))
838 return restart_syscall();
839
840 if (sw->authorized) {
841 ret = -EBUSY;
842 } else {
843 kfree(sw->key);
844 if (clear) {
845 sw->key = NULL;
846 } else {
847 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
848 if (!sw->key)
849 ret = -ENOMEM;
850 }
851 }
852
853 mutex_unlock(&sw->tb->lock);
854 return ret;
855 }
856 static DEVICE_ATTR(key, 0600, key_show, key_store);
857
858 static void nvm_authenticate_start(struct tb_switch *sw)
859 {
860 struct pci_dev *root_port;
861
862 /*
863 * During host router NVM upgrade we should not allow root port to
864 * go into D3cold because some root ports cannot trigger PME
865 * itself. To be on the safe side keep the root port in D0 during
866 * the whole upgrade process.
867 */
868 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
869 if (root_port)
870 pm_runtime_get_noresume(&root_port->dev);
871 }
872
873 static void nvm_authenticate_complete(struct tb_switch *sw)
874 {
875 struct pci_dev *root_port;
876
877 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
878 if (root_port)
879 pm_runtime_put(&root_port->dev);
880 }
881
882 static ssize_t nvm_authenticate_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884 {
885 struct tb_switch *sw = tb_to_switch(dev);
886 u32 status;
887
888 nvm_get_auth_status(sw, &status);
889 return sprintf(buf, "%#x\n", status);
890 }
891
892 static ssize_t nvm_authenticate_store(struct device *dev,
893 struct device_attribute *attr, const char *buf, size_t count)
894 {
895 struct tb_switch *sw = tb_to_switch(dev);
896 bool val;
897 int ret;
898
899 if (!mutex_trylock(&sw->tb->lock))
900 return restart_syscall();
901
902 /* If NVMem devices are not yet added */
903 if (!sw->nvm) {
904 ret = -EAGAIN;
905 goto exit_unlock;
906 }
907
908 ret = kstrtobool(buf, &val);
909 if (ret)
910 goto exit_unlock;
911
912 /* Always clear the authentication status */
913 nvm_clear_auth_status(sw);
914
915 if (val) {
916 if (!sw->nvm->buf) {
917 ret = -EINVAL;
918 goto exit_unlock;
919 }
920
921 pm_runtime_get_sync(&sw->dev);
922 ret = nvm_validate_and_write(sw);
923 if (ret) {
924 pm_runtime_mark_last_busy(&sw->dev);
925 pm_runtime_put_autosuspend(&sw->dev);
926 goto exit_unlock;
927 }
928
929 sw->nvm->authenticating = true;
930
931 if (!tb_route(sw)) {
932 /*
933 * Keep root port from suspending as long as the
934 * NVM upgrade process is running.
935 */
936 nvm_authenticate_start(sw);
937 ret = nvm_authenticate_host(sw);
938 if (ret)
939 nvm_authenticate_complete(sw);
940 } else {
941 ret = nvm_authenticate_device(sw);
942 }
943 pm_runtime_mark_last_busy(&sw->dev);
944 pm_runtime_put_autosuspend(&sw->dev);
945 }
946
947 exit_unlock:
948 mutex_unlock(&sw->tb->lock);
949
950 if (ret)
951 return ret;
952 return count;
953 }
954 static DEVICE_ATTR_RW(nvm_authenticate);
955
956 static ssize_t nvm_version_show(struct device *dev,
957 struct device_attribute *attr, char *buf)
958 {
959 struct tb_switch *sw = tb_to_switch(dev);
960 int ret;
961
962 if (!mutex_trylock(&sw->tb->lock))
963 return restart_syscall();
964
965 if (sw->safe_mode)
966 ret = -ENODATA;
967 else if (!sw->nvm)
968 ret = -EAGAIN;
969 else
970 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
971
972 mutex_unlock(&sw->tb->lock);
973
974 return ret;
975 }
976 static DEVICE_ATTR_RO(nvm_version);
977
978 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
979 char *buf)
980 {
981 struct tb_switch *sw = tb_to_switch(dev);
982
983 return sprintf(buf, "%#x\n", sw->vendor);
984 }
985 static DEVICE_ATTR_RO(vendor);
986
987 static ssize_t
988 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
989 {
990 struct tb_switch *sw = tb_to_switch(dev);
991
992 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
993 }
994 static DEVICE_ATTR_RO(vendor_name);
995
996 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
997 char *buf)
998 {
999 struct tb_switch *sw = tb_to_switch(dev);
1000
1001 return sprintf(buf, "%pUb\n", sw->uuid);
1002 }
1003 static DEVICE_ATTR_RO(unique_id);
1004
1005 static struct attribute *switch_attrs[] = {
1006 &dev_attr_authorized.attr,
1007 &dev_attr_boot.attr,
1008 &dev_attr_device.attr,
1009 &dev_attr_device_name.attr,
1010 &dev_attr_key.attr,
1011 &dev_attr_nvm_authenticate.attr,
1012 &dev_attr_nvm_version.attr,
1013 &dev_attr_vendor.attr,
1014 &dev_attr_vendor_name.attr,
1015 &dev_attr_unique_id.attr,
1016 NULL,
1017 };
1018
1019 static umode_t switch_attr_is_visible(struct kobject *kobj,
1020 struct attribute *attr, int n)
1021 {
1022 struct device *dev = container_of(kobj, struct device, kobj);
1023 struct tb_switch *sw = tb_to_switch(dev);
1024
1025 if (attr == &dev_attr_key.attr) {
1026 if (tb_route(sw) &&
1027 sw->tb->security_level == TB_SECURITY_SECURE &&
1028 sw->security_level == TB_SECURITY_SECURE)
1029 return attr->mode;
1030 return 0;
1031 } else if (attr == &dev_attr_nvm_authenticate.attr ||
1032 attr == &dev_attr_nvm_version.attr) {
1033 if (sw->dma_port)
1034 return attr->mode;
1035 return 0;
1036 } else if (attr == &dev_attr_boot.attr) {
1037 if (tb_route(sw))
1038 return attr->mode;
1039 return 0;
1040 }
1041
1042 return sw->safe_mode ? 0 : attr->mode;
1043 }
1044
1045 static struct attribute_group switch_group = {
1046 .is_visible = switch_attr_is_visible,
1047 .attrs = switch_attrs,
1048 };
1049
1050 static const struct attribute_group *switch_groups[] = {
1051 &switch_group,
1052 NULL,
1053 };
1054
1055 static void tb_switch_release(struct device *dev)
1056 {
1057 struct tb_switch *sw = tb_to_switch(dev);
1058
1059 dma_port_free(sw->dma_port);
1060
1061 kfree(sw->uuid);
1062 kfree(sw->device_name);
1063 kfree(sw->vendor_name);
1064 kfree(sw->ports);
1065 kfree(sw->drom);
1066 kfree(sw->key);
1067 kfree(sw);
1068 }
1069
1070 /*
1071 * Currently only need to provide the callbacks. Everything else is handled
1072 * in the connection manager.
1073 */
1074 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1075 {
1076 return 0;
1077 }
1078
1079 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1080 {
1081 return 0;
1082 }
1083
1084 static const struct dev_pm_ops tb_switch_pm_ops = {
1085 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1086 NULL)
1087 };
1088
1089 struct device_type tb_switch_type = {
1090 .name = "thunderbolt_device",
1091 .release = tb_switch_release,
1092 .pm = &tb_switch_pm_ops,
1093 };
1094
1095 static int tb_switch_get_generation(struct tb_switch *sw)
1096 {
1097 switch (sw->config.device_id) {
1098 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1099 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1100 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1101 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1102 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1103 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1104 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1105 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1106 return 1;
1107
1108 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1109 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1110 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1111 return 2;
1112
1113 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1114 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1115 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1116 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1117 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1118 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1119 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1120 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1121 return 3;
1122
1123 default:
1124 /*
1125 * For unknown switches assume generation to be 1 to be
1126 * on the safe side.
1127 */
1128 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1129 sw->config.device_id);
1130 return 1;
1131 }
1132 }
1133
1134 /**
1135 * tb_switch_alloc() - allocate a switch
1136 * @tb: Pointer to the owning domain
1137 * @parent: Parent device for this switch
1138 * @route: Route string for this switch
1139 *
1140 * Allocates and initializes a switch. Will not upload configuration to
1141 * the switch. For that you need to call tb_switch_configure()
1142 * separately. The returned switch should be released by calling
1143 * tb_switch_put().
1144 *
1145 * Return: Pointer to the allocated switch or %NULL in case of failure
1146 */
1147 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1148 u64 route)
1149 {
1150 struct tb_switch *sw;
1151 int upstream_port;
1152 int i, cap, depth;
1153
1154 /* Make sure we do not exceed maximum topology limit */
1155 depth = tb_route_length(route);
1156 if (depth > TB_SWITCH_MAX_DEPTH)
1157 return NULL;
1158
1159 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1160 if (upstream_port < 0)
1161 return NULL;
1162
1163 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1164 if (!sw)
1165 return NULL;
1166
1167 sw->tb = tb;
1168 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1169 goto err_free_sw_ports;
1170
1171 tb_dbg(tb, "current switch config:\n");
1172 tb_dump_switch(tb, &sw->config);
1173
1174 /* configure switch */
1175 sw->config.upstream_port_number = upstream_port;
1176 sw->config.depth = depth;
1177 sw->config.route_hi = upper_32_bits(route);
1178 sw->config.route_lo = lower_32_bits(route);
1179 sw->config.enabled = 0;
1180
1181 /* initialize ports */
1182 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1183 GFP_KERNEL);
1184 if (!sw->ports)
1185 goto err_free_sw_ports;
1186
1187 for (i = 0; i <= sw->config.max_port_number; i++) {
1188 /* minimum setup for tb_find_cap and tb_drom_read to work */
1189 sw->ports[i].sw = sw;
1190 sw->ports[i].port = i;
1191 }
1192
1193 sw->generation = tb_switch_get_generation(sw);
1194
1195 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1196 if (cap < 0) {
1197 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1198 goto err_free_sw_ports;
1199 }
1200 sw->cap_plug_events = cap;
1201
1202 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1203 if (cap > 0)
1204 sw->cap_lc = cap;
1205
1206 /* Root switch is always authorized */
1207 if (!route)
1208 sw->authorized = true;
1209
1210 device_initialize(&sw->dev);
1211 sw->dev.parent = parent;
1212 sw->dev.bus = &tb_bus_type;
1213 sw->dev.type = &tb_switch_type;
1214 sw->dev.groups = switch_groups;
1215 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1216
1217 return sw;
1218
1219 err_free_sw_ports:
1220 kfree(sw->ports);
1221 kfree(sw);
1222
1223 return NULL;
1224 }
1225
1226 /**
1227 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1228 * @tb: Pointer to the owning domain
1229 * @parent: Parent device for this switch
1230 * @route: Route string for this switch
1231 *
1232 * This creates a switch in safe mode. This means the switch pretty much
1233 * lacks all capabilities except DMA configuration port before it is
1234 * flashed with a valid NVM firmware.
1235 *
1236 * The returned switch must be released by calling tb_switch_put().
1237 *
1238 * Return: Pointer to the allocated switch or %NULL in case of failure
1239 */
1240 struct tb_switch *
1241 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1242 {
1243 struct tb_switch *sw;
1244
1245 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1246 if (!sw)
1247 return NULL;
1248
1249 sw->tb = tb;
1250 sw->config.depth = tb_route_length(route);
1251 sw->config.route_hi = upper_32_bits(route);
1252 sw->config.route_lo = lower_32_bits(route);
1253 sw->safe_mode = true;
1254
1255 device_initialize(&sw->dev);
1256 sw->dev.parent = parent;
1257 sw->dev.bus = &tb_bus_type;
1258 sw->dev.type = &tb_switch_type;
1259 sw->dev.groups = switch_groups;
1260 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1261
1262 return sw;
1263 }
1264
1265 /**
1266 * tb_switch_configure() - Uploads configuration to the switch
1267 * @sw: Switch to configure
1268 *
1269 * Call this function before the switch is added to the system. It will
1270 * upload configuration to the switch and makes it available for the
1271 * connection manager to use.
1272 *
1273 * Return: %0 in case of success and negative errno in case of failure
1274 */
1275 int tb_switch_configure(struct tb_switch *sw)
1276 {
1277 struct tb *tb = sw->tb;
1278 u64 route;
1279 int ret;
1280
1281 route = tb_route(sw);
1282 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1283 route, tb_route_length(route), sw->config.upstream_port_number);
1284
1285 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1286 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1287 sw->config.vendor_id);
1288
1289 sw->config.enabled = 1;
1290
1291 /* upload configuration */
1292 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1293 if (ret)
1294 return ret;
1295
1296 ret = tb_lc_configure_link(sw);
1297 if (ret)
1298 return ret;
1299
1300 return tb_plug_events_active(sw, true);
1301 }
1302
1303 static int tb_switch_set_uuid(struct tb_switch *sw)
1304 {
1305 u32 uuid[4];
1306 int ret;
1307
1308 if (sw->uuid)
1309 return 0;
1310
1311 /*
1312 * The newer controllers include fused UUID as part of link
1313 * controller specific registers
1314 */
1315 ret = tb_lc_read_uuid(sw, uuid);
1316 if (ret) {
1317 /*
1318 * ICM generates UUID based on UID and fills the upper
1319 * two words with ones. This is not strictly following
1320 * UUID format but we want to be compatible with it so
1321 * we do the same here.
1322 */
1323 uuid[0] = sw->uid & 0xffffffff;
1324 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1325 uuid[2] = 0xffffffff;
1326 uuid[3] = 0xffffffff;
1327 }
1328
1329 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1330 if (!sw->uuid)
1331 return -ENOMEM;
1332 return 0;
1333 }
1334
1335 static int tb_switch_add_dma_port(struct tb_switch *sw)
1336 {
1337 u32 status;
1338 int ret;
1339
1340 switch (sw->generation) {
1341 case 3:
1342 break;
1343
1344 case 2:
1345 /* Only root switch can be upgraded */
1346 if (tb_route(sw))
1347 return 0;
1348 break;
1349
1350 default:
1351 /*
1352 * DMA port is the only thing available when the switch
1353 * is in safe mode.
1354 */
1355 if (!sw->safe_mode)
1356 return 0;
1357 break;
1358 }
1359
1360 if (sw->no_nvm_upgrade)
1361 return 0;
1362
1363 sw->dma_port = dma_port_alloc(sw);
1364 if (!sw->dma_port)
1365 return 0;
1366
1367 /*
1368 * Check status of the previous flash authentication. If there
1369 * is one we need to power cycle the switch in any case to make
1370 * it functional again.
1371 */
1372 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1373 if (ret <= 0)
1374 return ret;
1375
1376 /* Now we can allow root port to suspend again */
1377 if (!tb_route(sw))
1378 nvm_authenticate_complete(sw);
1379
1380 if (status) {
1381 tb_sw_info(sw, "switch flash authentication failed\n");
1382 ret = tb_switch_set_uuid(sw);
1383 if (ret)
1384 return ret;
1385 nvm_set_auth_status(sw, status);
1386 }
1387
1388 tb_sw_info(sw, "power cycling the switch now\n");
1389 dma_port_power_cycle(sw->dma_port);
1390
1391 /*
1392 * We return error here which causes the switch adding failure.
1393 * It should appear back after power cycle is complete.
1394 */
1395 return -ESHUTDOWN;
1396 }
1397
1398 /**
1399 * tb_switch_add() - Add a switch to the domain
1400 * @sw: Switch to add
1401 *
1402 * This is the last step in adding switch to the domain. It will read
1403 * identification information from DROM and initializes ports so that
1404 * they can be used to connect other switches. The switch will be
1405 * exposed to the userspace when this function successfully returns. To
1406 * remove and release the switch, call tb_switch_remove().
1407 *
1408 * Return: %0 in case of success and negative errno in case of failure
1409 */
1410 int tb_switch_add(struct tb_switch *sw)
1411 {
1412 int i, ret;
1413
1414 /*
1415 * Initialize DMA control port now before we read DROM. Recent
1416 * host controllers have more complete DROM on NVM that includes
1417 * vendor and model identification strings which we then expose
1418 * to the userspace. NVM can be accessed through DMA
1419 * configuration based mailbox.
1420 */
1421 ret = tb_switch_add_dma_port(sw);
1422 if (ret)
1423 return ret;
1424
1425 if (!sw->safe_mode) {
1426 /* read drom */
1427 ret = tb_drom_read(sw);
1428 if (ret) {
1429 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1430 return ret;
1431 }
1432 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1433
1434 ret = tb_switch_set_uuid(sw);
1435 if (ret)
1436 return ret;
1437
1438 for (i = 0; i <= sw->config.max_port_number; i++) {
1439 if (sw->ports[i].disabled) {
1440 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1441 continue;
1442 }
1443 ret = tb_init_port(&sw->ports[i]);
1444 if (ret)
1445 return ret;
1446 }
1447 }
1448
1449 ret = device_add(&sw->dev);
1450 if (ret)
1451 return ret;
1452
1453 if (tb_route(sw)) {
1454 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1455 sw->vendor, sw->device);
1456 if (sw->vendor_name && sw->device_name)
1457 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1458 sw->device_name);
1459 }
1460
1461 ret = tb_switch_nvm_add(sw);
1462 if (ret) {
1463 device_del(&sw->dev);
1464 return ret;
1465 }
1466
1467 pm_runtime_set_active(&sw->dev);
1468 if (sw->rpm) {
1469 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1470 pm_runtime_use_autosuspend(&sw->dev);
1471 pm_runtime_mark_last_busy(&sw->dev);
1472 pm_runtime_enable(&sw->dev);
1473 pm_request_autosuspend(&sw->dev);
1474 }
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * tb_switch_remove() - Remove and release a switch
1481 * @sw: Switch to remove
1482 *
1483 * This will remove the switch from the domain and release it after last
1484 * reference count drops to zero. If there are switches connected below
1485 * this switch, they will be removed as well.
1486 */
1487 void tb_switch_remove(struct tb_switch *sw)
1488 {
1489 int i;
1490
1491 if (sw->rpm) {
1492 pm_runtime_get_sync(&sw->dev);
1493 pm_runtime_disable(&sw->dev);
1494 }
1495
1496 /* port 0 is the switch itself and never has a remote */
1497 for (i = 1; i <= sw->config.max_port_number; i++) {
1498 if (tb_is_upstream_port(&sw->ports[i]))
1499 continue;
1500 if (sw->ports[i].remote)
1501 tb_switch_remove(sw->ports[i].remote->sw);
1502 sw->ports[i].remote = NULL;
1503 if (sw->ports[i].xdomain)
1504 tb_xdomain_remove(sw->ports[i].xdomain);
1505 sw->ports[i].xdomain = NULL;
1506 }
1507
1508 if (!sw->is_unplugged)
1509 tb_plug_events_active(sw, false);
1510 tb_lc_unconfigure_link(sw);
1511
1512 tb_switch_nvm_remove(sw);
1513
1514 if (tb_route(sw))
1515 dev_info(&sw->dev, "device disconnected\n");
1516 device_unregister(&sw->dev);
1517 }
1518
1519 /**
1520 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1521 */
1522 void tb_sw_set_unplugged(struct tb_switch *sw)
1523 {
1524 int i;
1525 if (sw == sw->tb->root_switch) {
1526 tb_sw_WARN(sw, "cannot unplug root switch\n");
1527 return;
1528 }
1529 if (sw->is_unplugged) {
1530 tb_sw_WARN(sw, "is_unplugged already set\n");
1531 return;
1532 }
1533 sw->is_unplugged = true;
1534 for (i = 0; i <= sw->config.max_port_number; i++) {
1535 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1536 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1537 }
1538 }
1539
1540 int tb_switch_resume(struct tb_switch *sw)
1541 {
1542 int i, err;
1543 tb_sw_dbg(sw, "resuming switch\n");
1544
1545 /*
1546 * Check for UID of the connected switches except for root
1547 * switch which we assume cannot be removed.
1548 */
1549 if (tb_route(sw)) {
1550 u64 uid;
1551
1552 err = tb_drom_read_uid_only(sw, &uid);
1553 if (err) {
1554 tb_sw_warn(sw, "uid read failed\n");
1555 return err;
1556 }
1557 if (sw->uid != uid) {
1558 tb_sw_info(sw,
1559 "changed while suspended (uid %#llx -> %#llx)\n",
1560 sw->uid, uid);
1561 return -ENODEV;
1562 }
1563 }
1564
1565 /* upload configuration */
1566 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1567 if (err)
1568 return err;
1569
1570 err = tb_lc_configure_link(sw);
1571 if (err)
1572 return err;
1573
1574 err = tb_plug_events_active(sw, true);
1575 if (err)
1576 return err;
1577
1578 /* check for surviving downstream switches */
1579 for (i = 1; i <= sw->config.max_port_number; i++) {
1580 struct tb_port *port = &sw->ports[i];
1581 if (tb_is_upstream_port(port))
1582 continue;
1583 if (!port->remote)
1584 continue;
1585 if (tb_wait_for_port(port, true) <= 0
1586 || tb_switch_resume(port->remote->sw)) {
1587 tb_port_warn(port,
1588 "lost during suspend, disconnecting\n");
1589 tb_sw_set_unplugged(port->remote->sw);
1590 }
1591 }
1592 return 0;
1593 }
1594
1595 void tb_switch_suspend(struct tb_switch *sw)
1596 {
1597 int i, err;
1598 err = tb_plug_events_active(sw, false);
1599 if (err)
1600 return;
1601
1602 for (i = 1; i <= sw->config.max_port_number; i++) {
1603 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1604 tb_switch_suspend(sw->ports[i].remote->sw);
1605 }
1606
1607 tb_lc_set_sleep(sw);
1608 }
1609
1610 struct tb_sw_lookup {
1611 struct tb *tb;
1612 u8 link;
1613 u8 depth;
1614 const uuid_t *uuid;
1615 u64 route;
1616 };
1617
1618 static int tb_switch_match(struct device *dev, void *data)
1619 {
1620 struct tb_switch *sw = tb_to_switch(dev);
1621 struct tb_sw_lookup *lookup = data;
1622
1623 if (!sw)
1624 return 0;
1625 if (sw->tb != lookup->tb)
1626 return 0;
1627
1628 if (lookup->uuid)
1629 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1630
1631 if (lookup->route) {
1632 return sw->config.route_lo == lower_32_bits(lookup->route) &&
1633 sw->config.route_hi == upper_32_bits(lookup->route);
1634 }
1635
1636 /* Root switch is matched only by depth */
1637 if (!lookup->depth)
1638 return !sw->depth;
1639
1640 return sw->link == lookup->link && sw->depth == lookup->depth;
1641 }
1642
1643 /**
1644 * tb_switch_find_by_link_depth() - Find switch by link and depth
1645 * @tb: Domain the switch belongs
1646 * @link: Link number the switch is connected
1647 * @depth: Depth of the switch in link
1648 *
1649 * Returned switch has reference count increased so the caller needs to
1650 * call tb_switch_put() when done with the switch.
1651 */
1652 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1653 {
1654 struct tb_sw_lookup lookup;
1655 struct device *dev;
1656
1657 memset(&lookup, 0, sizeof(lookup));
1658 lookup.tb = tb;
1659 lookup.link = link;
1660 lookup.depth = depth;
1661
1662 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1663 if (dev)
1664 return tb_to_switch(dev);
1665
1666 return NULL;
1667 }
1668
1669 /**
1670 * tb_switch_find_by_uuid() - Find switch by UUID
1671 * @tb: Domain the switch belongs
1672 * @uuid: UUID to look for
1673 *
1674 * Returned switch has reference count increased so the caller needs to
1675 * call tb_switch_put() when done with the switch.
1676 */
1677 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1678 {
1679 struct tb_sw_lookup lookup;
1680 struct device *dev;
1681
1682 memset(&lookup, 0, sizeof(lookup));
1683 lookup.tb = tb;
1684 lookup.uuid = uuid;
1685
1686 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1687 if (dev)
1688 return tb_to_switch(dev);
1689
1690 return NULL;
1691 }
1692
1693 /**
1694 * tb_switch_find_by_route() - Find switch by route string
1695 * @tb: Domain the switch belongs
1696 * @route: Route string to look for
1697 *
1698 * Returned switch has reference count increased so the caller needs to
1699 * call tb_switch_put() when done with the switch.
1700 */
1701 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
1702 {
1703 struct tb_sw_lookup lookup;
1704 struct device *dev;
1705
1706 if (!route)
1707 return tb_switch_get(tb->root_switch);
1708
1709 memset(&lookup, 0, sizeof(lookup));
1710 lookup.tb = tb;
1711 lookup.route = route;
1712
1713 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1714 if (dev)
1715 return tb_to_switch(dev);
1716
1717 return NULL;
1718 }
1719
1720 void tb_switch_exit(void)
1721 {
1722 ida_destroy(&nvm_ida);
1723 }