]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/thunderbolt/switch.c
Merge tag 'vfs-5.4-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / drivers / thunderbolt / switch.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 #include "tb.h"
19
20 /* Switch NVM support */
21
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
26
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
29
30 static DEFINE_IDA(nvm_ida);
31
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36 };
37
38 /*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56 }
57
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67 }
68
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92 }
93
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105 }
106
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168
169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 int ret;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 ret = tb_domain_disconnect_all_paths(sw->tb);
180 if (ret)
181 return ret;
182 /*
183 * The host controller goes away pretty soon after this if
184 * everything goes well so getting timeout is expected.
185 */
186 ret = dma_port_flash_update_auth(sw->dma_port);
187 return ret == -ETIMEDOUT ? 0 : ret;
188 }
189
190 /*
191 * From safe mode we can get out by just power cycling the
192 * switch.
193 */
194 dma_port_power_cycle(sw->dma_port);
195 return 0;
196 }
197
198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 int ret, retries = 10;
201
202 ret = dma_port_flash_update_auth(sw->dma_port);
203 if (ret && ret != -ETIMEDOUT)
204 return ret;
205
206 /*
207 * Poll here for the authentication status. It takes some time
208 * for the device to respond (we get timeout for a while). Once
209 * we get response the device needs to be power cycled in order
210 * to the new NVM to be taken into use.
211 */
212 do {
213 u32 status;
214
215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 if (ret < 0 && ret != -ETIMEDOUT)
217 return ret;
218 if (ret > 0) {
219 if (status) {
220 tb_sw_warn(sw, "failed to authenticate NVM\n");
221 nvm_set_auth_status(sw, status);
222 }
223
224 tb_sw_info(sw, "power cycling the switch now\n");
225 dma_port_power_cycle(sw->dma_port);
226 return 0;
227 }
228
229 msleep(500);
230 } while (--retries);
231
232 return -ETIMEDOUT;
233 }
234
235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 size_t bytes)
237 {
238 struct tb_switch *sw = priv;
239 int ret;
240
241 pm_runtime_get_sync(&sw->dev);
242
243 if (!mutex_trylock(&sw->tb->lock)) {
244 ret = restart_syscall();
245 goto out;
246 }
247
248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
249 mutex_unlock(&sw->tb->lock);
250
251 out:
252 pm_runtime_mark_last_busy(&sw->dev);
253 pm_runtime_put_autosuspend(&sw->dev);
254
255 return ret;
256 }
257
258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
259 size_t bytes)
260 {
261 struct tb_switch *sw = priv;
262 int ret = 0;
263
264 if (!mutex_trylock(&sw->tb->lock))
265 return restart_syscall();
266
267 /*
268 * Since writing the NVM image might require some special steps,
269 * for example when CSS headers are written, we cache the image
270 * locally here and handle the special cases when the user asks
271 * us to authenticate the image.
272 */
273 if (!sw->nvm->buf) {
274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
275 if (!sw->nvm->buf) {
276 ret = -ENOMEM;
277 goto unlock;
278 }
279 }
280
281 sw->nvm->buf_data_size = offset + bytes;
282 memcpy(sw->nvm->buf + offset, val, bytes);
283
284 unlock:
285 mutex_unlock(&sw->tb->lock);
286
287 return ret;
288 }
289
290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
291 size_t size, bool active)
292 {
293 struct nvmem_config config;
294
295 memset(&config, 0, sizeof(config));
296
297 if (active) {
298 config.name = "nvm_active";
299 config.reg_read = tb_switch_nvm_read;
300 config.read_only = true;
301 } else {
302 config.name = "nvm_non_active";
303 config.reg_write = tb_switch_nvm_write;
304 config.root_only = true;
305 }
306
307 config.id = id;
308 config.stride = 4;
309 config.word_size = 4;
310 config.size = size;
311 config.dev = &sw->dev;
312 config.owner = THIS_MODULE;
313 config.priv = sw;
314
315 return nvmem_register(&config);
316 }
317
318 static int tb_switch_nvm_add(struct tb_switch *sw)
319 {
320 struct nvmem_device *nvm_dev;
321 struct tb_switch_nvm *nvm;
322 u32 val;
323 int ret;
324
325 if (!sw->dma_port)
326 return 0;
327
328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
329 if (!nvm)
330 return -ENOMEM;
331
332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
333
334 /*
335 * If the switch is in safe-mode the only accessible portion of
336 * the NVM is the non-active one where userspace is expected to
337 * write new functional NVM.
338 */
339 if (!sw->safe_mode) {
340 u32 nvm_size, hdr_size;
341
342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
343 sizeof(val));
344 if (ret)
345 goto err_ida;
346
347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
348 nvm_size = (SZ_1M << (val & 7)) / 8;
349 nvm_size = (nvm_size - hdr_size) / 2;
350
351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
352 sizeof(val));
353 if (ret)
354 goto err_ida;
355
356 nvm->major = val >> 16;
357 nvm->minor = val >> 8;
358
359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
360 if (IS_ERR(nvm_dev)) {
361 ret = PTR_ERR(nvm_dev);
362 goto err_ida;
363 }
364 nvm->active = nvm_dev;
365 }
366
367 if (!sw->no_nvm_upgrade) {
368 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
369 if (IS_ERR(nvm_dev)) {
370 ret = PTR_ERR(nvm_dev);
371 goto err_nvm_active;
372 }
373 nvm->non_active = nvm_dev;
374 }
375
376 sw->nvm = nvm;
377 return 0;
378
379 err_nvm_active:
380 if (nvm->active)
381 nvmem_unregister(nvm->active);
382 err_ida:
383 ida_simple_remove(&nvm_ida, nvm->id);
384 kfree(nvm);
385
386 return ret;
387 }
388
389 static void tb_switch_nvm_remove(struct tb_switch *sw)
390 {
391 struct tb_switch_nvm *nvm;
392
393 nvm = sw->nvm;
394 sw->nvm = NULL;
395
396 if (!nvm)
397 return;
398
399 /* Remove authentication status in case the switch is unplugged */
400 if (!nvm->authenticating)
401 nvm_clear_auth_status(sw);
402
403 if (nvm->non_active)
404 nvmem_unregister(nvm->non_active);
405 if (nvm->active)
406 nvmem_unregister(nvm->active);
407 ida_simple_remove(&nvm_ida, nvm->id);
408 vfree(nvm->buf);
409 kfree(nvm);
410 }
411
412 /* port utility functions */
413
414 static const char *tb_port_type(struct tb_regs_port_header *port)
415 {
416 switch (port->type >> 16) {
417 case 0:
418 switch ((u8) port->type) {
419 case 0:
420 return "Inactive";
421 case 1:
422 return "Port";
423 case 2:
424 return "NHI";
425 default:
426 return "unknown";
427 }
428 case 0x2:
429 return "Ethernet";
430 case 0x8:
431 return "SATA";
432 case 0xe:
433 return "DP/HDMI";
434 case 0x10:
435 return "PCIe";
436 case 0x20:
437 return "USB";
438 default:
439 return "unknown";
440 }
441 }
442
443 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
444 {
445 tb_dbg(tb,
446 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
447 port->port_number, port->vendor_id, port->device_id,
448 port->revision, port->thunderbolt_version, tb_port_type(port),
449 port->type);
450 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
451 port->max_in_hop_id, port->max_out_hop_id);
452 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
453 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
454 }
455
456 /**
457 * tb_port_state() - get connectedness state of a port
458 *
459 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
460 *
461 * Return: Returns an enum tb_port_state on success or an error code on failure.
462 */
463 static int tb_port_state(struct tb_port *port)
464 {
465 struct tb_cap_phy phy;
466 int res;
467 if (port->cap_phy == 0) {
468 tb_port_WARN(port, "does not have a PHY\n");
469 return -EINVAL;
470 }
471 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
472 if (res)
473 return res;
474 return phy.state;
475 }
476
477 /**
478 * tb_wait_for_port() - wait for a port to become ready
479 *
480 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
481 * wait_if_unplugged is set then we also wait if the port is in state
482 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
483 * switch resume). Otherwise we only wait if a device is registered but the link
484 * has not yet been established.
485 *
486 * Return: Returns an error code on failure. Returns 0 if the port is not
487 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
488 * if the port is connected and in state TB_PORT_UP.
489 */
490 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
491 {
492 int retries = 10;
493 int state;
494 if (!port->cap_phy) {
495 tb_port_WARN(port, "does not have PHY\n");
496 return -EINVAL;
497 }
498 if (tb_is_upstream_port(port)) {
499 tb_port_WARN(port, "is the upstream port\n");
500 return -EINVAL;
501 }
502
503 while (retries--) {
504 state = tb_port_state(port);
505 if (state < 0)
506 return state;
507 if (state == TB_PORT_DISABLED) {
508 tb_port_dbg(port, "is disabled (state: 0)\n");
509 return 0;
510 }
511 if (state == TB_PORT_UNPLUGGED) {
512 if (wait_if_unplugged) {
513 /* used during resume */
514 tb_port_dbg(port,
515 "is unplugged (state: 7), retrying...\n");
516 msleep(100);
517 continue;
518 }
519 tb_port_dbg(port, "is unplugged (state: 7)\n");
520 return 0;
521 }
522 if (state == TB_PORT_UP) {
523 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
524 return 1;
525 }
526
527 /*
528 * After plug-in the state is TB_PORT_CONNECTING. Give it some
529 * time.
530 */
531 tb_port_dbg(port,
532 "is connected, link is not up (state: %d), retrying...\n",
533 state);
534 msleep(100);
535 }
536 tb_port_warn(port,
537 "failed to reach state TB_PORT_UP. Ignoring port...\n");
538 return 0;
539 }
540
541 /**
542 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
543 *
544 * Change the number of NFC credits allocated to @port by @credits. To remove
545 * NFC credits pass a negative amount of credits.
546 *
547 * Return: Returns 0 on success or an error code on failure.
548 */
549 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
550 {
551 u32 nfc_credits;
552
553 if (credits == 0 || port->sw->is_unplugged)
554 return 0;
555
556 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
557 nfc_credits += credits;
558
559 tb_port_dbg(port, "adding %d NFC credits to %lu",
560 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
561
562 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
563 port->config.nfc_credits |= nfc_credits;
564
565 return tb_port_write(port, &port->config.nfc_credits,
566 TB_CFG_PORT, 4, 1);
567 }
568
569 /**
570 * tb_port_set_initial_credits() - Set initial port link credits allocated
571 * @port: Port to set the initial credits
572 * @credits: Number of credits to to allocate
573 *
574 * Set initial credits value to be used for ingress shared buffering.
575 */
576 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
577 {
578 u32 data;
579 int ret;
580
581 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
582 if (ret)
583 return ret;
584
585 data &= ~TB_PORT_LCA_MASK;
586 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
587
588 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
589 }
590
591 /**
592 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
593 *
594 * Return: Returns 0 on success or an error code on failure.
595 */
596 int tb_port_clear_counter(struct tb_port *port, int counter)
597 {
598 u32 zero[3] = { 0, 0, 0 };
599 tb_port_dbg(port, "clearing counter %d\n", counter);
600 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
601 }
602
603 /**
604 * tb_init_port() - initialize a port
605 *
606 * This is a helper method for tb_switch_alloc. Does not check or initialize
607 * any downstream switches.
608 *
609 * Return: Returns 0 on success or an error code on failure.
610 */
611 static int tb_init_port(struct tb_port *port)
612 {
613 int res;
614 int cap;
615
616 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
617 if (res) {
618 if (res == -ENODEV) {
619 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
620 port->port);
621 return 0;
622 }
623 return res;
624 }
625
626 /* Port 0 is the switch itself and has no PHY. */
627 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
628 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
629
630 if (cap > 0)
631 port->cap_phy = cap;
632 else
633 tb_port_WARN(port, "non switch port without a PHY\n");
634 } else if (port->port != 0) {
635 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
636 if (cap > 0)
637 port->cap_adap = cap;
638 }
639
640 tb_dump_port(port->sw->tb, &port->config);
641
642 /* Control port does not need HopID allocation */
643 if (port->port) {
644 ida_init(&port->in_hopids);
645 ida_init(&port->out_hopids);
646 }
647
648 return 0;
649
650 }
651
652 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
653 int max_hopid)
654 {
655 int port_max_hopid;
656 struct ida *ida;
657
658 if (in) {
659 port_max_hopid = port->config.max_in_hop_id;
660 ida = &port->in_hopids;
661 } else {
662 port_max_hopid = port->config.max_out_hop_id;
663 ida = &port->out_hopids;
664 }
665
666 /* HopIDs 0-7 are reserved */
667 if (min_hopid < TB_PATH_MIN_HOPID)
668 min_hopid = TB_PATH_MIN_HOPID;
669
670 if (max_hopid < 0 || max_hopid > port_max_hopid)
671 max_hopid = port_max_hopid;
672
673 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
674 }
675
676 /**
677 * tb_port_alloc_in_hopid() - Allocate input HopID from port
678 * @port: Port to allocate HopID for
679 * @min_hopid: Minimum acceptable input HopID
680 * @max_hopid: Maximum acceptable input HopID
681 *
682 * Return: HopID between @min_hopid and @max_hopid or negative errno in
683 * case of error.
684 */
685 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
686 {
687 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
688 }
689
690 /**
691 * tb_port_alloc_out_hopid() - Allocate output HopID from port
692 * @port: Port to allocate HopID for
693 * @min_hopid: Minimum acceptable output HopID
694 * @max_hopid: Maximum acceptable output HopID
695 *
696 * Return: HopID between @min_hopid and @max_hopid or negative errno in
697 * case of error.
698 */
699 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
700 {
701 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
702 }
703
704 /**
705 * tb_port_release_in_hopid() - Release allocated input HopID from port
706 * @port: Port whose HopID to release
707 * @hopid: HopID to release
708 */
709 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
710 {
711 ida_simple_remove(&port->in_hopids, hopid);
712 }
713
714 /**
715 * tb_port_release_out_hopid() - Release allocated output HopID from port
716 * @port: Port whose HopID to release
717 * @hopid: HopID to release
718 */
719 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
720 {
721 ida_simple_remove(&port->out_hopids, hopid);
722 }
723
724 /**
725 * tb_next_port_on_path() - Return next port for given port on a path
726 * @start: Start port of the walk
727 * @end: End port of the walk
728 * @prev: Previous port (%NULL if this is the first)
729 *
730 * This function can be used to walk from one port to another if they
731 * are connected through zero or more switches. If the @prev is dual
732 * link port, the function follows that link and returns another end on
733 * that same link.
734 *
735 * If the @end port has been reached, return %NULL.
736 *
737 * Domain tb->lock must be held when this function is called.
738 */
739 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
740 struct tb_port *prev)
741 {
742 struct tb_port *next;
743
744 if (!prev)
745 return start;
746
747 if (prev->sw == end->sw) {
748 if (prev == end)
749 return NULL;
750 return end;
751 }
752
753 if (start->sw->config.depth < end->sw->config.depth) {
754 if (prev->remote &&
755 prev->remote->sw->config.depth > prev->sw->config.depth)
756 next = prev->remote;
757 else
758 next = tb_port_at(tb_route(end->sw), prev->sw);
759 } else {
760 if (tb_is_upstream_port(prev)) {
761 next = prev->remote;
762 } else {
763 next = tb_upstream_port(prev->sw);
764 /*
765 * Keep the same link if prev and next are both
766 * dual link ports.
767 */
768 if (next->dual_link_port &&
769 next->link_nr != prev->link_nr) {
770 next = next->dual_link_port;
771 }
772 }
773 }
774
775 return next;
776 }
777
778 /**
779 * tb_port_is_enabled() - Is the adapter port enabled
780 * @port: Port to check
781 */
782 bool tb_port_is_enabled(struct tb_port *port)
783 {
784 switch (port->config.type) {
785 case TB_TYPE_PCIE_UP:
786 case TB_TYPE_PCIE_DOWN:
787 return tb_pci_port_is_enabled(port);
788
789 case TB_TYPE_DP_HDMI_IN:
790 case TB_TYPE_DP_HDMI_OUT:
791 return tb_dp_port_is_enabled(port);
792
793 default:
794 return false;
795 }
796 }
797
798 /**
799 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
800 * @port: PCIe port to check
801 */
802 bool tb_pci_port_is_enabled(struct tb_port *port)
803 {
804 u32 data;
805
806 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
807 return false;
808
809 return !!(data & TB_PCI_EN);
810 }
811
812 /**
813 * tb_pci_port_enable() - Enable PCIe adapter port
814 * @port: PCIe port to enable
815 * @enable: Enable/disable the PCIe adapter
816 */
817 int tb_pci_port_enable(struct tb_port *port, bool enable)
818 {
819 u32 word = enable ? TB_PCI_EN : 0x0;
820 if (!port->cap_adap)
821 return -ENXIO;
822 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
823 }
824
825 /**
826 * tb_dp_port_hpd_is_active() - Is HPD already active
827 * @port: DP out port to check
828 *
829 * Checks if the DP OUT adapter port has HDP bit already set.
830 */
831 int tb_dp_port_hpd_is_active(struct tb_port *port)
832 {
833 u32 data;
834 int ret;
835
836 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
837 if (ret)
838 return ret;
839
840 return !!(data & TB_DP_HDP);
841 }
842
843 /**
844 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
845 * @port: Port to clear HPD
846 *
847 * If the DP IN port has HDP set, this function can be used to clear it.
848 */
849 int tb_dp_port_hpd_clear(struct tb_port *port)
850 {
851 u32 data;
852 int ret;
853
854 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
855 if (ret)
856 return ret;
857
858 data |= TB_DP_HPDC;
859 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
860 }
861
862 /**
863 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
864 * @port: DP IN/OUT port to set hops
865 * @video: Video Hop ID
866 * @aux_tx: AUX TX Hop ID
867 * @aux_rx: AUX RX Hop ID
868 *
869 * Programs specified Hop IDs for DP IN/OUT port.
870 */
871 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
872 unsigned int aux_tx, unsigned int aux_rx)
873 {
874 u32 data[2];
875 int ret;
876
877 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
878 ARRAY_SIZE(data));
879 if (ret)
880 return ret;
881
882 data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
883 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
884
885 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
886 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
887 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
888
889 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
890 ARRAY_SIZE(data));
891 }
892
893 /**
894 * tb_dp_port_is_enabled() - Is DP adapter port enabled
895 * @port: DP adapter port to check
896 */
897 bool tb_dp_port_is_enabled(struct tb_port *port)
898 {
899 u32 data;
900
901 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
902 return false;
903
904 return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
905 }
906
907 /**
908 * tb_dp_port_enable() - Enables/disables DP paths of a port
909 * @port: DP IN/OUT port
910 * @enable: Enable/disable DP path
911 *
912 * Once Hop IDs are programmed DP paths can be enabled or disabled by
913 * calling this function.
914 */
915 int tb_dp_port_enable(struct tb_port *port, bool enable)
916 {
917 u32 data;
918 int ret;
919
920 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1);
921 if (ret)
922 return ret;
923
924 if (enable)
925 data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
926 else
927 data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
928
929 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1);
930 }
931
932 /* switch utility functions */
933
934 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
935 {
936 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
937 sw->vendor_id, sw->device_id, sw->revision,
938 sw->thunderbolt_version);
939 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
940 tb_dbg(tb, " Config:\n");
941 tb_dbg(tb,
942 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
943 sw->upstream_port_number, sw->depth,
944 (((u64) sw->route_hi) << 32) | sw->route_lo,
945 sw->enabled, sw->plug_events_delay);
946 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
947 sw->__unknown1, sw->__unknown4);
948 }
949
950 /**
951 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
952 *
953 * Return: Returns 0 on success or an error code on failure.
954 */
955 int tb_switch_reset(struct tb *tb, u64 route)
956 {
957 struct tb_cfg_result res;
958 struct tb_regs_switch_header header = {
959 header.route_hi = route >> 32,
960 header.route_lo = route,
961 header.enabled = true,
962 };
963 tb_dbg(tb, "resetting switch at %llx\n", route);
964 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
965 0, 2, 2, 2);
966 if (res.err)
967 return res.err;
968 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
969 if (res.err > 0)
970 return -EIO;
971 return res.err;
972 }
973
974 /**
975 * tb_plug_events_active() - enable/disable plug events on a switch
976 *
977 * Also configures a sane plug_events_delay of 255ms.
978 *
979 * Return: Returns 0 on success or an error code on failure.
980 */
981 static int tb_plug_events_active(struct tb_switch *sw, bool active)
982 {
983 u32 data;
984 int res;
985
986 if (!sw->config.enabled)
987 return 0;
988
989 sw->config.plug_events_delay = 0xff;
990 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
991 if (res)
992 return res;
993
994 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
995 if (res)
996 return res;
997
998 if (active) {
999 data = data & 0xFFFFFF83;
1000 switch (sw->config.device_id) {
1001 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1002 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1003 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1004 break;
1005 default:
1006 data |= 4;
1007 }
1008 } else {
1009 data = data | 0x7c;
1010 }
1011 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1012 sw->cap_plug_events + 1, 1);
1013 }
1014
1015 static ssize_t authorized_show(struct device *dev,
1016 struct device_attribute *attr,
1017 char *buf)
1018 {
1019 struct tb_switch *sw = tb_to_switch(dev);
1020
1021 return sprintf(buf, "%u\n", sw->authorized);
1022 }
1023
1024 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1025 {
1026 int ret = -EINVAL;
1027
1028 if (!mutex_trylock(&sw->tb->lock))
1029 return restart_syscall();
1030
1031 if (sw->authorized)
1032 goto unlock;
1033
1034 /*
1035 * Make sure there is no PCIe rescan ongoing when a new PCIe
1036 * tunnel is created. Otherwise the PCIe rescan code might find
1037 * the new tunnel too early.
1038 */
1039 pci_lock_rescan_remove();
1040
1041 switch (val) {
1042 /* Approve switch */
1043 case 1:
1044 if (sw->key)
1045 ret = tb_domain_approve_switch_key(sw->tb, sw);
1046 else
1047 ret = tb_domain_approve_switch(sw->tb, sw);
1048 break;
1049
1050 /* Challenge switch */
1051 case 2:
1052 if (sw->key)
1053 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1054 break;
1055
1056 default:
1057 break;
1058 }
1059
1060 pci_unlock_rescan_remove();
1061
1062 if (!ret) {
1063 sw->authorized = val;
1064 /* Notify status change to the userspace */
1065 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1066 }
1067
1068 unlock:
1069 mutex_unlock(&sw->tb->lock);
1070 return ret;
1071 }
1072
1073 static ssize_t authorized_store(struct device *dev,
1074 struct device_attribute *attr,
1075 const char *buf, size_t count)
1076 {
1077 struct tb_switch *sw = tb_to_switch(dev);
1078 unsigned int val;
1079 ssize_t ret;
1080
1081 ret = kstrtouint(buf, 0, &val);
1082 if (ret)
1083 return ret;
1084 if (val > 2)
1085 return -EINVAL;
1086
1087 pm_runtime_get_sync(&sw->dev);
1088 ret = tb_switch_set_authorized(sw, val);
1089 pm_runtime_mark_last_busy(&sw->dev);
1090 pm_runtime_put_autosuspend(&sw->dev);
1091
1092 return ret ? ret : count;
1093 }
1094 static DEVICE_ATTR_RW(authorized);
1095
1096 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1097 char *buf)
1098 {
1099 struct tb_switch *sw = tb_to_switch(dev);
1100
1101 return sprintf(buf, "%u\n", sw->boot);
1102 }
1103 static DEVICE_ATTR_RO(boot);
1104
1105 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1106 char *buf)
1107 {
1108 struct tb_switch *sw = tb_to_switch(dev);
1109
1110 return sprintf(buf, "%#x\n", sw->device);
1111 }
1112 static DEVICE_ATTR_RO(device);
1113
1114 static ssize_t
1115 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1116 {
1117 struct tb_switch *sw = tb_to_switch(dev);
1118
1119 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1120 }
1121 static DEVICE_ATTR_RO(device_name);
1122
1123 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1124 char *buf)
1125 {
1126 struct tb_switch *sw = tb_to_switch(dev);
1127 ssize_t ret;
1128
1129 if (!mutex_trylock(&sw->tb->lock))
1130 return restart_syscall();
1131
1132 if (sw->key)
1133 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1134 else
1135 ret = sprintf(buf, "\n");
1136
1137 mutex_unlock(&sw->tb->lock);
1138 return ret;
1139 }
1140
1141 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1142 const char *buf, size_t count)
1143 {
1144 struct tb_switch *sw = tb_to_switch(dev);
1145 u8 key[TB_SWITCH_KEY_SIZE];
1146 ssize_t ret = count;
1147 bool clear = false;
1148
1149 if (!strcmp(buf, "\n"))
1150 clear = true;
1151 else if (hex2bin(key, buf, sizeof(key)))
1152 return -EINVAL;
1153
1154 if (!mutex_trylock(&sw->tb->lock))
1155 return restart_syscall();
1156
1157 if (sw->authorized) {
1158 ret = -EBUSY;
1159 } else {
1160 kfree(sw->key);
1161 if (clear) {
1162 sw->key = NULL;
1163 } else {
1164 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1165 if (!sw->key)
1166 ret = -ENOMEM;
1167 }
1168 }
1169
1170 mutex_unlock(&sw->tb->lock);
1171 return ret;
1172 }
1173 static DEVICE_ATTR(key, 0600, key_show, key_store);
1174
1175 static void nvm_authenticate_start(struct tb_switch *sw)
1176 {
1177 struct pci_dev *root_port;
1178
1179 /*
1180 * During host router NVM upgrade we should not allow root port to
1181 * go into D3cold because some root ports cannot trigger PME
1182 * itself. To be on the safe side keep the root port in D0 during
1183 * the whole upgrade process.
1184 */
1185 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1186 if (root_port)
1187 pm_runtime_get_noresume(&root_port->dev);
1188 }
1189
1190 static void nvm_authenticate_complete(struct tb_switch *sw)
1191 {
1192 struct pci_dev *root_port;
1193
1194 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1195 if (root_port)
1196 pm_runtime_put(&root_port->dev);
1197 }
1198
1199 static ssize_t nvm_authenticate_show(struct device *dev,
1200 struct device_attribute *attr, char *buf)
1201 {
1202 struct tb_switch *sw = tb_to_switch(dev);
1203 u32 status;
1204
1205 nvm_get_auth_status(sw, &status);
1206 return sprintf(buf, "%#x\n", status);
1207 }
1208
1209 static ssize_t nvm_authenticate_store(struct device *dev,
1210 struct device_attribute *attr, const char *buf, size_t count)
1211 {
1212 struct tb_switch *sw = tb_to_switch(dev);
1213 bool val;
1214 int ret;
1215
1216 pm_runtime_get_sync(&sw->dev);
1217
1218 if (!mutex_trylock(&sw->tb->lock)) {
1219 ret = restart_syscall();
1220 goto exit_rpm;
1221 }
1222
1223 /* If NVMem devices are not yet added */
1224 if (!sw->nvm) {
1225 ret = -EAGAIN;
1226 goto exit_unlock;
1227 }
1228
1229 ret = kstrtobool(buf, &val);
1230 if (ret)
1231 goto exit_unlock;
1232
1233 /* Always clear the authentication status */
1234 nvm_clear_auth_status(sw);
1235
1236 if (val) {
1237 if (!sw->nvm->buf) {
1238 ret = -EINVAL;
1239 goto exit_unlock;
1240 }
1241
1242 ret = nvm_validate_and_write(sw);
1243 if (ret)
1244 goto exit_unlock;
1245
1246 sw->nvm->authenticating = true;
1247
1248 if (!tb_route(sw)) {
1249 /*
1250 * Keep root port from suspending as long as the
1251 * NVM upgrade process is running.
1252 */
1253 nvm_authenticate_start(sw);
1254 ret = nvm_authenticate_host(sw);
1255 if (ret)
1256 nvm_authenticate_complete(sw);
1257 } else {
1258 ret = nvm_authenticate_device(sw);
1259 }
1260 }
1261
1262 exit_unlock:
1263 mutex_unlock(&sw->tb->lock);
1264 exit_rpm:
1265 pm_runtime_mark_last_busy(&sw->dev);
1266 pm_runtime_put_autosuspend(&sw->dev);
1267
1268 if (ret)
1269 return ret;
1270 return count;
1271 }
1272 static DEVICE_ATTR_RW(nvm_authenticate);
1273
1274 static ssize_t nvm_version_show(struct device *dev,
1275 struct device_attribute *attr, char *buf)
1276 {
1277 struct tb_switch *sw = tb_to_switch(dev);
1278 int ret;
1279
1280 if (!mutex_trylock(&sw->tb->lock))
1281 return restart_syscall();
1282
1283 if (sw->safe_mode)
1284 ret = -ENODATA;
1285 else if (!sw->nvm)
1286 ret = -EAGAIN;
1287 else
1288 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1289
1290 mutex_unlock(&sw->tb->lock);
1291
1292 return ret;
1293 }
1294 static DEVICE_ATTR_RO(nvm_version);
1295
1296 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1297 char *buf)
1298 {
1299 struct tb_switch *sw = tb_to_switch(dev);
1300
1301 return sprintf(buf, "%#x\n", sw->vendor);
1302 }
1303 static DEVICE_ATTR_RO(vendor);
1304
1305 static ssize_t
1306 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1307 {
1308 struct tb_switch *sw = tb_to_switch(dev);
1309
1310 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1311 }
1312 static DEVICE_ATTR_RO(vendor_name);
1313
1314 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1315 char *buf)
1316 {
1317 struct tb_switch *sw = tb_to_switch(dev);
1318
1319 return sprintf(buf, "%pUb\n", sw->uuid);
1320 }
1321 static DEVICE_ATTR_RO(unique_id);
1322
1323 static struct attribute *switch_attrs[] = {
1324 &dev_attr_authorized.attr,
1325 &dev_attr_boot.attr,
1326 &dev_attr_device.attr,
1327 &dev_attr_device_name.attr,
1328 &dev_attr_key.attr,
1329 &dev_attr_nvm_authenticate.attr,
1330 &dev_attr_nvm_version.attr,
1331 &dev_attr_vendor.attr,
1332 &dev_attr_vendor_name.attr,
1333 &dev_attr_unique_id.attr,
1334 NULL,
1335 };
1336
1337 static umode_t switch_attr_is_visible(struct kobject *kobj,
1338 struct attribute *attr, int n)
1339 {
1340 struct device *dev = container_of(kobj, struct device, kobj);
1341 struct tb_switch *sw = tb_to_switch(dev);
1342
1343 if (attr == &dev_attr_device.attr) {
1344 if (!sw->device)
1345 return 0;
1346 } else if (attr == &dev_attr_device_name.attr) {
1347 if (!sw->device_name)
1348 return 0;
1349 } else if (attr == &dev_attr_vendor.attr) {
1350 if (!sw->vendor)
1351 return 0;
1352 } else if (attr == &dev_attr_vendor_name.attr) {
1353 if (!sw->vendor_name)
1354 return 0;
1355 } else if (attr == &dev_attr_key.attr) {
1356 if (tb_route(sw) &&
1357 sw->tb->security_level == TB_SECURITY_SECURE &&
1358 sw->security_level == TB_SECURITY_SECURE)
1359 return attr->mode;
1360 return 0;
1361 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1362 if (sw->dma_port && !sw->no_nvm_upgrade)
1363 return attr->mode;
1364 return 0;
1365 } else if (attr == &dev_attr_nvm_version.attr) {
1366 if (sw->dma_port)
1367 return attr->mode;
1368 return 0;
1369 } else if (attr == &dev_attr_boot.attr) {
1370 if (tb_route(sw))
1371 return attr->mode;
1372 return 0;
1373 }
1374
1375 return sw->safe_mode ? 0 : attr->mode;
1376 }
1377
1378 static struct attribute_group switch_group = {
1379 .is_visible = switch_attr_is_visible,
1380 .attrs = switch_attrs,
1381 };
1382
1383 static const struct attribute_group *switch_groups[] = {
1384 &switch_group,
1385 NULL,
1386 };
1387
1388 static void tb_switch_release(struct device *dev)
1389 {
1390 struct tb_switch *sw = tb_to_switch(dev);
1391 int i;
1392
1393 dma_port_free(sw->dma_port);
1394
1395 for (i = 1; i <= sw->config.max_port_number; i++) {
1396 if (!sw->ports[i].disabled) {
1397 ida_destroy(&sw->ports[i].in_hopids);
1398 ida_destroy(&sw->ports[i].out_hopids);
1399 }
1400 }
1401
1402 kfree(sw->uuid);
1403 kfree(sw->device_name);
1404 kfree(sw->vendor_name);
1405 kfree(sw->ports);
1406 kfree(sw->drom);
1407 kfree(sw->key);
1408 kfree(sw);
1409 }
1410
1411 /*
1412 * Currently only need to provide the callbacks. Everything else is handled
1413 * in the connection manager.
1414 */
1415 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1416 {
1417 struct tb_switch *sw = tb_to_switch(dev);
1418 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1419
1420 if (cm_ops->runtime_suspend_switch)
1421 return cm_ops->runtime_suspend_switch(sw);
1422
1423 return 0;
1424 }
1425
1426 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1427 {
1428 struct tb_switch *sw = tb_to_switch(dev);
1429 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1430
1431 if (cm_ops->runtime_resume_switch)
1432 return cm_ops->runtime_resume_switch(sw);
1433 return 0;
1434 }
1435
1436 static const struct dev_pm_ops tb_switch_pm_ops = {
1437 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1438 NULL)
1439 };
1440
1441 struct device_type tb_switch_type = {
1442 .name = "thunderbolt_device",
1443 .release = tb_switch_release,
1444 .pm = &tb_switch_pm_ops,
1445 };
1446
1447 static int tb_switch_get_generation(struct tb_switch *sw)
1448 {
1449 switch (sw->config.device_id) {
1450 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1451 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1452 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1453 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1454 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1455 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1456 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1457 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1458 return 1;
1459
1460 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1461 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1462 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1463 return 2;
1464
1465 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1466 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1467 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1468 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1469 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1470 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1471 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1472 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1473 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1474 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1475 return 3;
1476
1477 default:
1478 /*
1479 * For unknown switches assume generation to be 1 to be
1480 * on the safe side.
1481 */
1482 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1483 sw->config.device_id);
1484 return 1;
1485 }
1486 }
1487
1488 /**
1489 * tb_switch_alloc() - allocate a switch
1490 * @tb: Pointer to the owning domain
1491 * @parent: Parent device for this switch
1492 * @route: Route string for this switch
1493 *
1494 * Allocates and initializes a switch. Will not upload configuration to
1495 * the switch. For that you need to call tb_switch_configure()
1496 * separately. The returned switch should be released by calling
1497 * tb_switch_put().
1498 *
1499 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1500 * failure.
1501 */
1502 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1503 u64 route)
1504 {
1505 struct tb_switch *sw;
1506 int upstream_port;
1507 int i, ret, depth;
1508
1509 /* Make sure we do not exceed maximum topology limit */
1510 depth = tb_route_length(route);
1511 if (depth > TB_SWITCH_MAX_DEPTH)
1512 return ERR_PTR(-EADDRNOTAVAIL);
1513
1514 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1515 if (upstream_port < 0)
1516 return ERR_PTR(upstream_port);
1517
1518 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1519 if (!sw)
1520 return ERR_PTR(-ENOMEM);
1521
1522 sw->tb = tb;
1523 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1524 if (ret)
1525 goto err_free_sw_ports;
1526
1527 tb_dbg(tb, "current switch config:\n");
1528 tb_dump_switch(tb, &sw->config);
1529
1530 /* configure switch */
1531 sw->config.upstream_port_number = upstream_port;
1532 sw->config.depth = depth;
1533 sw->config.route_hi = upper_32_bits(route);
1534 sw->config.route_lo = lower_32_bits(route);
1535 sw->config.enabled = 0;
1536
1537 /* initialize ports */
1538 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1539 GFP_KERNEL);
1540 if (!sw->ports) {
1541 ret = -ENOMEM;
1542 goto err_free_sw_ports;
1543 }
1544
1545 for (i = 0; i <= sw->config.max_port_number; i++) {
1546 /* minimum setup for tb_find_cap and tb_drom_read to work */
1547 sw->ports[i].sw = sw;
1548 sw->ports[i].port = i;
1549 }
1550
1551 sw->generation = tb_switch_get_generation(sw);
1552
1553 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1554 if (ret < 0) {
1555 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1556 goto err_free_sw_ports;
1557 }
1558 sw->cap_plug_events = ret;
1559
1560 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1561 if (ret > 0)
1562 sw->cap_lc = ret;
1563
1564 /* Root switch is always authorized */
1565 if (!route)
1566 sw->authorized = true;
1567
1568 device_initialize(&sw->dev);
1569 sw->dev.parent = parent;
1570 sw->dev.bus = &tb_bus_type;
1571 sw->dev.type = &tb_switch_type;
1572 sw->dev.groups = switch_groups;
1573 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1574
1575 return sw;
1576
1577 err_free_sw_ports:
1578 kfree(sw->ports);
1579 kfree(sw);
1580
1581 return ERR_PTR(ret);
1582 }
1583
1584 /**
1585 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1586 * @tb: Pointer to the owning domain
1587 * @parent: Parent device for this switch
1588 * @route: Route string for this switch
1589 *
1590 * This creates a switch in safe mode. This means the switch pretty much
1591 * lacks all capabilities except DMA configuration port before it is
1592 * flashed with a valid NVM firmware.
1593 *
1594 * The returned switch must be released by calling tb_switch_put().
1595 *
1596 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1597 */
1598 struct tb_switch *
1599 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1600 {
1601 struct tb_switch *sw;
1602
1603 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1604 if (!sw)
1605 return ERR_PTR(-ENOMEM);
1606
1607 sw->tb = tb;
1608 sw->config.depth = tb_route_length(route);
1609 sw->config.route_hi = upper_32_bits(route);
1610 sw->config.route_lo = lower_32_bits(route);
1611 sw->safe_mode = true;
1612
1613 device_initialize(&sw->dev);
1614 sw->dev.parent = parent;
1615 sw->dev.bus = &tb_bus_type;
1616 sw->dev.type = &tb_switch_type;
1617 sw->dev.groups = switch_groups;
1618 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1619
1620 return sw;
1621 }
1622
1623 /**
1624 * tb_switch_configure() - Uploads configuration to the switch
1625 * @sw: Switch to configure
1626 *
1627 * Call this function before the switch is added to the system. It will
1628 * upload configuration to the switch and makes it available for the
1629 * connection manager to use.
1630 *
1631 * Return: %0 in case of success and negative errno in case of failure
1632 */
1633 int tb_switch_configure(struct tb_switch *sw)
1634 {
1635 struct tb *tb = sw->tb;
1636 u64 route;
1637 int ret;
1638
1639 route = tb_route(sw);
1640 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1641 route, tb_route_length(route), sw->config.upstream_port_number);
1642
1643 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1644 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1645 sw->config.vendor_id);
1646
1647 sw->config.enabled = 1;
1648
1649 /* upload configuration */
1650 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1651 if (ret)
1652 return ret;
1653
1654 ret = tb_lc_configure_link(sw);
1655 if (ret)
1656 return ret;
1657
1658 return tb_plug_events_active(sw, true);
1659 }
1660
1661 static int tb_switch_set_uuid(struct tb_switch *sw)
1662 {
1663 u32 uuid[4];
1664 int ret;
1665
1666 if (sw->uuid)
1667 return 0;
1668
1669 /*
1670 * The newer controllers include fused UUID as part of link
1671 * controller specific registers
1672 */
1673 ret = tb_lc_read_uuid(sw, uuid);
1674 if (ret) {
1675 /*
1676 * ICM generates UUID based on UID and fills the upper
1677 * two words with ones. This is not strictly following
1678 * UUID format but we want to be compatible with it so
1679 * we do the same here.
1680 */
1681 uuid[0] = sw->uid & 0xffffffff;
1682 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1683 uuid[2] = 0xffffffff;
1684 uuid[3] = 0xffffffff;
1685 }
1686
1687 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1688 if (!sw->uuid)
1689 return -ENOMEM;
1690 return 0;
1691 }
1692
1693 static int tb_switch_add_dma_port(struct tb_switch *sw)
1694 {
1695 u32 status;
1696 int ret;
1697
1698 switch (sw->generation) {
1699 case 3:
1700 break;
1701
1702 case 2:
1703 /* Only root switch can be upgraded */
1704 if (tb_route(sw))
1705 return 0;
1706 break;
1707
1708 default:
1709 /*
1710 * DMA port is the only thing available when the switch
1711 * is in safe mode.
1712 */
1713 if (!sw->safe_mode)
1714 return 0;
1715 break;
1716 }
1717
1718 /* Root switch DMA port requires running firmware */
1719 if (!tb_route(sw) && sw->config.enabled)
1720 return 0;
1721
1722 sw->dma_port = dma_port_alloc(sw);
1723 if (!sw->dma_port)
1724 return 0;
1725
1726 if (sw->no_nvm_upgrade)
1727 return 0;
1728
1729 /*
1730 * Check status of the previous flash authentication. If there
1731 * is one we need to power cycle the switch in any case to make
1732 * it functional again.
1733 */
1734 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1735 if (ret <= 0)
1736 return ret;
1737
1738 /* Now we can allow root port to suspend again */
1739 if (!tb_route(sw))
1740 nvm_authenticate_complete(sw);
1741
1742 if (status) {
1743 tb_sw_info(sw, "switch flash authentication failed\n");
1744 ret = tb_switch_set_uuid(sw);
1745 if (ret)
1746 return ret;
1747 nvm_set_auth_status(sw, status);
1748 }
1749
1750 tb_sw_info(sw, "power cycling the switch now\n");
1751 dma_port_power_cycle(sw->dma_port);
1752
1753 /*
1754 * We return error here which causes the switch adding failure.
1755 * It should appear back after power cycle is complete.
1756 */
1757 return -ESHUTDOWN;
1758 }
1759
1760 /**
1761 * tb_switch_add() - Add a switch to the domain
1762 * @sw: Switch to add
1763 *
1764 * This is the last step in adding switch to the domain. It will read
1765 * identification information from DROM and initializes ports so that
1766 * they can be used to connect other switches. The switch will be
1767 * exposed to the userspace when this function successfully returns. To
1768 * remove and release the switch, call tb_switch_remove().
1769 *
1770 * Return: %0 in case of success and negative errno in case of failure
1771 */
1772 int tb_switch_add(struct tb_switch *sw)
1773 {
1774 int i, ret;
1775
1776 /*
1777 * Initialize DMA control port now before we read DROM. Recent
1778 * host controllers have more complete DROM on NVM that includes
1779 * vendor and model identification strings which we then expose
1780 * to the userspace. NVM can be accessed through DMA
1781 * configuration based mailbox.
1782 */
1783 ret = tb_switch_add_dma_port(sw);
1784 if (ret)
1785 return ret;
1786
1787 if (!sw->safe_mode) {
1788 /* read drom */
1789 ret = tb_drom_read(sw);
1790 if (ret) {
1791 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1792 return ret;
1793 }
1794 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1795
1796 ret = tb_switch_set_uuid(sw);
1797 if (ret)
1798 return ret;
1799
1800 for (i = 0; i <= sw->config.max_port_number; i++) {
1801 if (sw->ports[i].disabled) {
1802 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1803 continue;
1804 }
1805 ret = tb_init_port(&sw->ports[i]);
1806 if (ret)
1807 return ret;
1808 }
1809 }
1810
1811 ret = device_add(&sw->dev);
1812 if (ret)
1813 return ret;
1814
1815 if (tb_route(sw)) {
1816 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1817 sw->vendor, sw->device);
1818 if (sw->vendor_name && sw->device_name)
1819 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1820 sw->device_name);
1821 }
1822
1823 ret = tb_switch_nvm_add(sw);
1824 if (ret) {
1825 device_del(&sw->dev);
1826 return ret;
1827 }
1828
1829 pm_runtime_set_active(&sw->dev);
1830 if (sw->rpm) {
1831 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1832 pm_runtime_use_autosuspend(&sw->dev);
1833 pm_runtime_mark_last_busy(&sw->dev);
1834 pm_runtime_enable(&sw->dev);
1835 pm_request_autosuspend(&sw->dev);
1836 }
1837
1838 return 0;
1839 }
1840
1841 /**
1842 * tb_switch_remove() - Remove and release a switch
1843 * @sw: Switch to remove
1844 *
1845 * This will remove the switch from the domain and release it after last
1846 * reference count drops to zero. If there are switches connected below
1847 * this switch, they will be removed as well.
1848 */
1849 void tb_switch_remove(struct tb_switch *sw)
1850 {
1851 int i;
1852
1853 if (sw->rpm) {
1854 pm_runtime_get_sync(&sw->dev);
1855 pm_runtime_disable(&sw->dev);
1856 }
1857
1858 /* port 0 is the switch itself and never has a remote */
1859 for (i = 1; i <= sw->config.max_port_number; i++) {
1860 if (tb_port_has_remote(&sw->ports[i])) {
1861 tb_switch_remove(sw->ports[i].remote->sw);
1862 sw->ports[i].remote = NULL;
1863 } else if (sw->ports[i].xdomain) {
1864 tb_xdomain_remove(sw->ports[i].xdomain);
1865 sw->ports[i].xdomain = NULL;
1866 }
1867 }
1868
1869 if (!sw->is_unplugged)
1870 tb_plug_events_active(sw, false);
1871 tb_lc_unconfigure_link(sw);
1872
1873 tb_switch_nvm_remove(sw);
1874
1875 if (tb_route(sw))
1876 dev_info(&sw->dev, "device disconnected\n");
1877 device_unregister(&sw->dev);
1878 }
1879
1880 /**
1881 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1882 */
1883 void tb_sw_set_unplugged(struct tb_switch *sw)
1884 {
1885 int i;
1886 if (sw == sw->tb->root_switch) {
1887 tb_sw_WARN(sw, "cannot unplug root switch\n");
1888 return;
1889 }
1890 if (sw->is_unplugged) {
1891 tb_sw_WARN(sw, "is_unplugged already set\n");
1892 return;
1893 }
1894 sw->is_unplugged = true;
1895 for (i = 0; i <= sw->config.max_port_number; i++) {
1896 if (tb_port_has_remote(&sw->ports[i]))
1897 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1898 else if (sw->ports[i].xdomain)
1899 sw->ports[i].xdomain->is_unplugged = true;
1900 }
1901 }
1902
1903 int tb_switch_resume(struct tb_switch *sw)
1904 {
1905 int i, err;
1906 tb_sw_dbg(sw, "resuming switch\n");
1907
1908 /*
1909 * Check for UID of the connected switches except for root
1910 * switch which we assume cannot be removed.
1911 */
1912 if (tb_route(sw)) {
1913 u64 uid;
1914
1915 /*
1916 * Check first that we can still read the switch config
1917 * space. It may be that there is now another domain
1918 * connected.
1919 */
1920 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1921 if (err < 0) {
1922 tb_sw_info(sw, "switch not present anymore\n");
1923 return err;
1924 }
1925
1926 err = tb_drom_read_uid_only(sw, &uid);
1927 if (err) {
1928 tb_sw_warn(sw, "uid read failed\n");
1929 return err;
1930 }
1931 if (sw->uid != uid) {
1932 tb_sw_info(sw,
1933 "changed while suspended (uid %#llx -> %#llx)\n",
1934 sw->uid, uid);
1935 return -ENODEV;
1936 }
1937 }
1938
1939 /* upload configuration */
1940 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1941 if (err)
1942 return err;
1943
1944 err = tb_lc_configure_link(sw);
1945 if (err)
1946 return err;
1947
1948 err = tb_plug_events_active(sw, true);
1949 if (err)
1950 return err;
1951
1952 /* check for surviving downstream switches */
1953 for (i = 1; i <= sw->config.max_port_number; i++) {
1954 struct tb_port *port = &sw->ports[i];
1955
1956 if (!tb_port_has_remote(port) && !port->xdomain)
1957 continue;
1958
1959 if (tb_wait_for_port(port, true) <= 0) {
1960 tb_port_warn(port,
1961 "lost during suspend, disconnecting\n");
1962 if (tb_port_has_remote(port))
1963 tb_sw_set_unplugged(port->remote->sw);
1964 else if (port->xdomain)
1965 port->xdomain->is_unplugged = true;
1966 } else if (tb_port_has_remote(port)) {
1967 if (tb_switch_resume(port->remote->sw)) {
1968 tb_port_warn(port,
1969 "lost during suspend, disconnecting\n");
1970 tb_sw_set_unplugged(port->remote->sw);
1971 }
1972 }
1973 }
1974 return 0;
1975 }
1976
1977 void tb_switch_suspend(struct tb_switch *sw)
1978 {
1979 int i, err;
1980 err = tb_plug_events_active(sw, false);
1981 if (err)
1982 return;
1983
1984 for (i = 1; i <= sw->config.max_port_number; i++) {
1985 if (tb_port_has_remote(&sw->ports[i]))
1986 tb_switch_suspend(sw->ports[i].remote->sw);
1987 }
1988
1989 tb_lc_set_sleep(sw);
1990 }
1991
1992 struct tb_sw_lookup {
1993 struct tb *tb;
1994 u8 link;
1995 u8 depth;
1996 const uuid_t *uuid;
1997 u64 route;
1998 };
1999
2000 static int tb_switch_match(struct device *dev, const void *data)
2001 {
2002 struct tb_switch *sw = tb_to_switch(dev);
2003 const struct tb_sw_lookup *lookup = data;
2004
2005 if (!sw)
2006 return 0;
2007 if (sw->tb != lookup->tb)
2008 return 0;
2009
2010 if (lookup->uuid)
2011 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2012
2013 if (lookup->route) {
2014 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2015 sw->config.route_hi == upper_32_bits(lookup->route);
2016 }
2017
2018 /* Root switch is matched only by depth */
2019 if (!lookup->depth)
2020 return !sw->depth;
2021
2022 return sw->link == lookup->link && sw->depth == lookup->depth;
2023 }
2024
2025 /**
2026 * tb_switch_find_by_link_depth() - Find switch by link and depth
2027 * @tb: Domain the switch belongs
2028 * @link: Link number the switch is connected
2029 * @depth: Depth of the switch in link
2030 *
2031 * Returned switch has reference count increased so the caller needs to
2032 * call tb_switch_put() when done with the switch.
2033 */
2034 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2035 {
2036 struct tb_sw_lookup lookup;
2037 struct device *dev;
2038
2039 memset(&lookup, 0, sizeof(lookup));
2040 lookup.tb = tb;
2041 lookup.link = link;
2042 lookup.depth = depth;
2043
2044 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2045 if (dev)
2046 return tb_to_switch(dev);
2047
2048 return NULL;
2049 }
2050
2051 /**
2052 * tb_switch_find_by_uuid() - Find switch by UUID
2053 * @tb: Domain the switch belongs
2054 * @uuid: UUID to look for
2055 *
2056 * Returned switch has reference count increased so the caller needs to
2057 * call tb_switch_put() when done with the switch.
2058 */
2059 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2060 {
2061 struct tb_sw_lookup lookup;
2062 struct device *dev;
2063
2064 memset(&lookup, 0, sizeof(lookup));
2065 lookup.tb = tb;
2066 lookup.uuid = uuid;
2067
2068 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2069 if (dev)
2070 return tb_to_switch(dev);
2071
2072 return NULL;
2073 }
2074
2075 /**
2076 * tb_switch_find_by_route() - Find switch by route string
2077 * @tb: Domain the switch belongs
2078 * @route: Route string to look for
2079 *
2080 * Returned switch has reference count increased so the caller needs to
2081 * call tb_switch_put() when done with the switch.
2082 */
2083 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2084 {
2085 struct tb_sw_lookup lookup;
2086 struct device *dev;
2087
2088 if (!route)
2089 return tb_switch_get(tb->root_switch);
2090
2091 memset(&lookup, 0, sizeof(lookup));
2092 lookup.tb = tb;
2093 lookup.route = route;
2094
2095 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2096 if (dev)
2097 return tb_to_switch(dev);
2098
2099 return NULL;
2100 }
2101
2102 void tb_switch_exit(void)
2103 {
2104 ida_destroy(&nvm_ida);
2105 }