]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/tty/serial/amba-pl011.c
Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-eoan-kernel.git] / drivers / tty / serial / amba-pl011.c
1 /*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62
63 #define UART_NR 14
64
65 #define SERIAL_AMBA_MAJOR 204
66 #define SERIAL_AMBA_MINOR 64
67 #define SERIAL_AMBA_NR UART_NR
68
69 #define AMBA_ISR_PASS_LIMIT 256
70
71 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
72 #define UART_DUMMY_DR_RX (1 << 16)
73
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 unsigned int ifls;
77 unsigned int fr_busy;
78 unsigned int fr_dsr;
79 unsigned int fr_cts;
80 unsigned int fr_ri;
81 unsigned int lcrh_tx;
82 unsigned int lcrh_rx;
83 u16 *reg_lut;
84 bool oversampling;
85 bool dma_threshold;
86 bool cts_event_workaround;
87 bool always_enabled;
88 bool fixed_options;
89
90 unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92
93 /* Max address offset of register in use is 0x48 */
94 #define REG_NR (0x48 >> 2)
95 #define IDX(x) (x >> 2)
96 enum reg_idx {
97 REG_DR = IDX(UART01x_DR),
98 REG_RSR = IDX(UART01x_RSR),
99 REG_ST_DMAWM = IDX(ST_UART011_DMAWM),
100 REG_FR = IDX(UART01x_FR),
101 REG_ST_LCRH_RX = IDX(ST_UART011_LCRH_RX),
102 REG_ILPR = IDX(UART01x_ILPR),
103 REG_IBRD = IDX(UART011_IBRD),
104 REG_FBRD = IDX(UART011_FBRD),
105 REG_LCRH = IDX(UART011_LCRH),
106 REG_CR = IDX(UART011_CR),
107 REG_IFLS = IDX(UART011_IFLS),
108 REG_IMSC = IDX(UART011_IMSC),
109 REG_RIS = IDX(UART011_RIS),
110 REG_MIS = IDX(UART011_MIS),
111 REG_ICR = IDX(UART011_ICR),
112 REG_DMACR = IDX(UART011_DMACR),
113 };
114
115 static u16 arm_reg[] = {
116 [REG_DR] = UART01x_DR,
117 [REG_RSR] = UART01x_RSR,
118 [REG_ST_DMAWM] = ~0,
119 [REG_FR] = UART01x_FR,
120 [REG_ST_LCRH_RX] = ~0,
121 [REG_ILPR] = UART01x_ILPR,
122 [REG_IBRD] = UART011_IBRD,
123 [REG_FBRD] = UART011_FBRD,
124 [REG_LCRH] = UART011_LCRH,
125 [REG_CR] = UART011_CR,
126 [REG_IFLS] = UART011_IFLS,
127 [REG_IMSC] = UART011_IMSC,
128 [REG_RIS] = UART011_RIS,
129 [REG_MIS] = UART011_MIS,
130 [REG_ICR] = UART011_ICR,
131 [REG_DMACR] = UART011_DMACR,
132 };
133
134 #ifdef CONFIG_ARM_AMBA
135 static unsigned int get_fifosize_arm(struct amba_device *dev)
136 {
137 return amba_rev(dev) < 3 ? 16 : 32;
138 }
139
140 static struct vendor_data vendor_arm = {
141 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
142 .fr_busy = UART01x_FR_BUSY,
143 .fr_dsr = UART01x_FR_DSR,
144 .fr_cts = UART01x_FR_CTS,
145 .fr_ri = UART011_FR_RI,
146 .lcrh_tx = REG_LCRH,
147 .lcrh_rx = REG_LCRH,
148 .reg_lut = arm_reg,
149 .oversampling = false,
150 .dma_threshold = false,
151 .cts_event_workaround = false,
152 .always_enabled = false,
153 .fixed_options = false,
154 .get_fifosize = get_fifosize_arm,
155 };
156 #endif
157
158 static struct vendor_data vendor_sbsa = {
159 .fr_busy = UART01x_FR_BUSY,
160 .fr_dsr = UART01x_FR_DSR,
161 .fr_cts = UART01x_FR_CTS,
162 .fr_ri = UART011_FR_RI,
163 .reg_lut = arm_reg,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169 };
170
171 #ifdef CONFIG_ARM_AMBA
172 static u16 st_reg[] = {
173 [REG_DR] = UART01x_DR,
174 [REG_RSR] = UART01x_RSR,
175 [REG_ST_DMAWM] = ST_UART011_DMAWM,
176 [REG_FR] = UART01x_FR,
177 [REG_ST_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_ILPR] = UART01x_ILPR,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_LCRH] = UART011_LCRH,
182 [REG_CR] = UART011_CR,
183 [REG_IFLS] = UART011_IFLS,
184 [REG_IMSC] = UART011_IMSC,
185 [REG_RIS] = UART011_RIS,
186 [REG_MIS] = UART011_MIS,
187 [REG_ICR] = UART011_ICR,
188 [REG_DMACR] = UART011_DMACR,
189 };
190
191 static unsigned int get_fifosize_st(struct amba_device *dev)
192 {
193 return 64;
194 }
195
196 static struct vendor_data vendor_st = {
197 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
198 .fr_busy = UART01x_FR_BUSY,
199 .fr_dsr = UART01x_FR_DSR,
200 .fr_cts = UART01x_FR_CTS,
201 .fr_ri = UART011_FR_RI,
202 .lcrh_tx = REG_LCRH,
203 .lcrh_rx = REG_ST_LCRH_RX,
204 .reg_lut = st_reg,
205 .oversampling = true,
206 .dma_threshold = true,
207 .cts_event_workaround = true,
208 .always_enabled = false,
209 .fixed_options = false,
210 .get_fifosize = get_fifosize_st,
211 };
212 #endif
213
214 #ifdef CONFIG_SOC_ZX296702
215 static u16 zte_reg[] = {
216 [REG_DR] = ZX_UART01x_DR,
217 [REG_RSR] = UART01x_RSR,
218 [REG_ST_DMAWM] = ST_UART011_DMAWM,
219 [REG_FR] = ZX_UART01x_FR,
220 [REG_ST_LCRH_RX] = ST_UART011_LCRH_RX,
221 [REG_ILPR] = UART01x_ILPR,
222 [REG_IBRD] = UART011_IBRD,
223 [REG_FBRD] = UART011_FBRD,
224 [REG_LCRH] = ZX_UART011_LCRH_TX,
225 [REG_CR] = ZX_UART011_CR,
226 [REG_IFLS] = ZX_UART011_IFLS,
227 [REG_IMSC] = ZX_UART011_IMSC,
228 [REG_RIS] = ZX_UART011_RIS,
229 [REG_MIS] = ZX_UART011_MIS,
230 [REG_ICR] = ZX_UART011_ICR,
231 [REG_DMACR] = ZX_UART011_DMACR,
232 };
233
234 static struct vendor_data vendor_zte = {
235 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
236 .fr_busy = ZX_UART01x_FR_BUSY,
237 .fr_dsr = ZX_UART01x_FR_DSR,
238 .fr_cts = ZX_UART01x_FR_CTS,
239 .fr_ri = ZX_UART011_FR_RI,
240 .lcrh_tx = REG_LCRH,
241 .lcrh_rx = REG_ST_LCRH_RX,
242 .reg_lut = zte_reg,
243 .oversampling = false,
244 .dma_threshold = false,
245 .cts_event_workaround = false,
246 .fixed_options = false,
247 };
248 #endif
249
250 /* Deals with DMA transactions */
251
252 struct pl011_sgbuf {
253 struct scatterlist sg;
254 char *buf;
255 };
256
257 struct pl011_dmarx_data {
258 struct dma_chan *chan;
259 struct completion complete;
260 bool use_buf_b;
261 struct pl011_sgbuf sgbuf_a;
262 struct pl011_sgbuf sgbuf_b;
263 dma_cookie_t cookie;
264 bool running;
265 struct timer_list timer;
266 unsigned int last_residue;
267 unsigned long last_jiffies;
268 bool auto_poll_rate;
269 unsigned int poll_rate;
270 unsigned int poll_timeout;
271 };
272
273 struct pl011_dmatx_data {
274 struct dma_chan *chan;
275 struct scatterlist sg;
276 char *buf;
277 bool queued;
278 };
279
280 /*
281 * We wrap our port structure around the generic uart_port.
282 */
283 struct uart_amba_port {
284 struct uart_port port;
285 struct clk *clk;
286 const struct vendor_data *vendor;
287 u16 *reg_lut;
288 unsigned int dmacr; /* dma control reg */
289 unsigned int im; /* interrupt mask */
290 unsigned int old_status;
291 unsigned int fifosize; /* vendor-specific */
292 unsigned int fr_busy; /* vendor-specific */
293 unsigned int fr_dsr; /* vendor-specific */
294 unsigned int fr_cts; /* vendor-specific */
295 unsigned int fr_ri; /* vendor-specific */
296 unsigned int lcrh_tx; /* vendor-specific */
297 unsigned int lcrh_rx; /* vendor-specific */
298 unsigned int old_cr; /* state during shutdown */
299 bool autorts;
300 unsigned int fixed_baud; /* vendor-set fixed baud rate */
301 char type[12];
302 #ifdef CONFIG_DMA_ENGINE
303 /* DMA stuff */
304 bool using_tx_dma;
305 bool using_rx_dma;
306 struct pl011_dmarx_data dmarx;
307 struct pl011_dmatx_data dmatx;
308 bool dma_probed;
309 #endif
310 };
311
312 static bool is_implemented(struct uart_amba_port *uap, unsigned int reg)
313 {
314 return uap->reg_lut[reg] != (u16)~0;
315 }
316
317 static unsigned int pl011_readw(struct uart_amba_port *uap, int index)
318 {
319 WARN_ON(index > REG_NR);
320 return readw_relaxed(uap->port.membase + uap->reg_lut[index]);
321 }
322
323 static void pl011_writew(struct uart_amba_port *uap, int val, int index)
324 {
325 WARN_ON(index > REG_NR);
326 writew_relaxed(val, uap->port.membase + uap->reg_lut[index]);
327 }
328
329 static void pl011_writeb(struct uart_amba_port *uap, u8 val, int index)
330 {
331 WARN_ON(index > REG_NR);
332 writeb_relaxed(val, uap->port.membase + uap->reg_lut[index]);
333 }
334
335 /*
336 * Reads up to 256 characters from the FIFO or until it's empty and
337 * inserts them into the TTY layer. Returns the number of characters
338 * read from the FIFO.
339 */
340 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
341 {
342 u16 status, ch;
343 unsigned int flag, max_count = 256;
344 int fifotaken = 0;
345
346 while (max_count--) {
347 status = pl011_readw(uap, REG_FR);
348 if (status & UART01x_FR_RXFE)
349 break;
350
351 /* Take chars from the FIFO and update status */
352 ch = pl011_readw(uap, REG_DR) |
353 UART_DUMMY_DR_RX;
354 flag = TTY_NORMAL;
355 uap->port.icount.rx++;
356 fifotaken++;
357
358 if (unlikely(ch & UART_DR_ERROR)) {
359 if (ch & UART011_DR_BE) {
360 ch &= ~(UART011_DR_FE | UART011_DR_PE);
361 uap->port.icount.brk++;
362 if (uart_handle_break(&uap->port))
363 continue;
364 } else if (ch & UART011_DR_PE)
365 uap->port.icount.parity++;
366 else if (ch & UART011_DR_FE)
367 uap->port.icount.frame++;
368 if (ch & UART011_DR_OE)
369 uap->port.icount.overrun++;
370
371 ch &= uap->port.read_status_mask;
372
373 if (ch & UART011_DR_BE)
374 flag = TTY_BREAK;
375 else if (ch & UART011_DR_PE)
376 flag = TTY_PARITY;
377 else if (ch & UART011_DR_FE)
378 flag = TTY_FRAME;
379 }
380
381 if (uart_handle_sysrq_char(&uap->port, ch & 255))
382 continue;
383
384 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
385 }
386
387 return fifotaken;
388 }
389
390
391 /*
392 * All the DMA operation mode stuff goes inside this ifdef.
393 * This assumes that you have a generic DMA device interface,
394 * no custom DMA interfaces are supported.
395 */
396 #ifdef CONFIG_DMA_ENGINE
397
398 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
399
400 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
401 enum dma_data_direction dir)
402 {
403 dma_addr_t dma_addr;
404
405 sg->buf = dma_alloc_coherent(chan->device->dev,
406 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
407 if (!sg->buf)
408 return -ENOMEM;
409
410 sg_init_table(&sg->sg, 1);
411 sg_set_page(&sg->sg, phys_to_page(dma_addr),
412 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
413 sg_dma_address(&sg->sg) = dma_addr;
414 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
415
416 return 0;
417 }
418
419 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
420 enum dma_data_direction dir)
421 {
422 if (sg->buf) {
423 dma_free_coherent(chan->device->dev,
424 PL011_DMA_BUFFER_SIZE, sg->buf,
425 sg_dma_address(&sg->sg));
426 }
427 }
428
429 static void pl011_dma_probe(struct uart_amba_port *uap)
430 {
431 /* DMA is the sole user of the platform data right now */
432 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
433 struct device *dev = uap->port.dev;
434 struct dma_slave_config tx_conf = {
435 .dst_addr = uap->port.mapbase + uap->reg_lut[REG_DR],
436 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
437 .direction = DMA_MEM_TO_DEV,
438 .dst_maxburst = uap->fifosize >> 1,
439 .device_fc = false,
440 };
441 struct dma_chan *chan;
442 dma_cap_mask_t mask;
443
444 uap->dma_probed = true;
445 chan = dma_request_slave_channel_reason(dev, "tx");
446 if (IS_ERR(chan)) {
447 if (PTR_ERR(chan) == -EPROBE_DEFER) {
448 uap->dma_probed = false;
449 return;
450 }
451
452 /* We need platform data */
453 if (!plat || !plat->dma_filter) {
454 dev_info(uap->port.dev, "no DMA platform data\n");
455 return;
456 }
457
458 /* Try to acquire a generic DMA engine slave TX channel */
459 dma_cap_zero(mask);
460 dma_cap_set(DMA_SLAVE, mask);
461
462 chan = dma_request_channel(mask, plat->dma_filter,
463 plat->dma_tx_param);
464 if (!chan) {
465 dev_err(uap->port.dev, "no TX DMA channel!\n");
466 return;
467 }
468 }
469
470 dmaengine_slave_config(chan, &tx_conf);
471 uap->dmatx.chan = chan;
472
473 dev_info(uap->port.dev, "DMA channel TX %s\n",
474 dma_chan_name(uap->dmatx.chan));
475
476 /* Optionally make use of an RX channel as well */
477 chan = dma_request_slave_channel(dev, "rx");
478
479 if (!chan && plat->dma_rx_param) {
480 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
481
482 if (!chan) {
483 dev_err(uap->port.dev, "no RX DMA channel!\n");
484 return;
485 }
486 }
487
488 if (chan) {
489 struct dma_slave_config rx_conf = {
490 .src_addr = uap->port.mapbase + uap->reg_lut[REG_DR],
491 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
492 .direction = DMA_DEV_TO_MEM,
493 .src_maxburst = uap->fifosize >> 2,
494 .device_fc = false,
495 };
496 struct dma_slave_caps caps;
497
498 /*
499 * Some DMA controllers provide information on their capabilities.
500 * If the controller does, check for suitable residue processing
501 * otherwise assime all is well.
502 */
503 if (0 == dma_get_slave_caps(chan, &caps)) {
504 if (caps.residue_granularity ==
505 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
506 dma_release_channel(chan);
507 dev_info(uap->port.dev,
508 "RX DMA disabled - no residue processing\n");
509 return;
510 }
511 }
512 dmaengine_slave_config(chan, &rx_conf);
513 uap->dmarx.chan = chan;
514
515 uap->dmarx.auto_poll_rate = false;
516 if (plat && plat->dma_rx_poll_enable) {
517 /* Set poll rate if specified. */
518 if (plat->dma_rx_poll_rate) {
519 uap->dmarx.auto_poll_rate = false;
520 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
521 } else {
522 /*
523 * 100 ms defaults to poll rate if not
524 * specified. This will be adjusted with
525 * the baud rate at set_termios.
526 */
527 uap->dmarx.auto_poll_rate = true;
528 uap->dmarx.poll_rate = 100;
529 }
530 /* 3 secs defaults poll_timeout if not specified. */
531 if (plat->dma_rx_poll_timeout)
532 uap->dmarx.poll_timeout =
533 plat->dma_rx_poll_timeout;
534 else
535 uap->dmarx.poll_timeout = 3000;
536 } else if (!plat && dev->of_node) {
537 uap->dmarx.auto_poll_rate = of_property_read_bool(
538 dev->of_node, "auto-poll");
539 if (uap->dmarx.auto_poll_rate) {
540 u32 x;
541
542 if (0 == of_property_read_u32(dev->of_node,
543 "poll-rate-ms", &x))
544 uap->dmarx.poll_rate = x;
545 else
546 uap->dmarx.poll_rate = 100;
547 if (0 == of_property_read_u32(dev->of_node,
548 "poll-timeout-ms", &x))
549 uap->dmarx.poll_timeout = x;
550 else
551 uap->dmarx.poll_timeout = 3000;
552 }
553 }
554 dev_info(uap->port.dev, "DMA channel RX %s\n",
555 dma_chan_name(uap->dmarx.chan));
556 }
557 }
558
559 static void pl011_dma_remove(struct uart_amba_port *uap)
560 {
561 if (uap->dmatx.chan)
562 dma_release_channel(uap->dmatx.chan);
563 if (uap->dmarx.chan)
564 dma_release_channel(uap->dmarx.chan);
565 }
566
567 /* Forward declare these for the refill routine */
568 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
569 static void pl011_start_tx_pio(struct uart_amba_port *uap);
570
571 /*
572 * The current DMA TX buffer has been sent.
573 * Try to queue up another DMA buffer.
574 */
575 static void pl011_dma_tx_callback(void *data)
576 {
577 struct uart_amba_port *uap = data;
578 struct pl011_dmatx_data *dmatx = &uap->dmatx;
579 unsigned long flags;
580 u16 dmacr;
581
582 spin_lock_irqsave(&uap->port.lock, flags);
583 if (uap->dmatx.queued)
584 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
585 DMA_TO_DEVICE);
586
587 dmacr = uap->dmacr;
588 uap->dmacr = dmacr & ~UART011_TXDMAE;
589 pl011_writew(uap, uap->dmacr, REG_DMACR);
590
591 /*
592 * If TX DMA was disabled, it means that we've stopped the DMA for
593 * some reason (eg, XOFF received, or we want to send an X-char.)
594 *
595 * Note: we need to be careful here of a potential race between DMA
596 * and the rest of the driver - if the driver disables TX DMA while
597 * a TX buffer completing, we must update the tx queued status to
598 * get further refills (hence we check dmacr).
599 */
600 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
601 uart_circ_empty(&uap->port.state->xmit)) {
602 uap->dmatx.queued = false;
603 spin_unlock_irqrestore(&uap->port.lock, flags);
604 return;
605 }
606
607 if (pl011_dma_tx_refill(uap) <= 0)
608 /*
609 * We didn't queue a DMA buffer for some reason, but we
610 * have data pending to be sent. Re-enable the TX IRQ.
611 */
612 pl011_start_tx_pio(uap);
613
614 spin_unlock_irqrestore(&uap->port.lock, flags);
615 }
616
617 /*
618 * Try to refill the TX DMA buffer.
619 * Locking: called with port lock held and IRQs disabled.
620 * Returns:
621 * 1 if we queued up a TX DMA buffer.
622 * 0 if we didn't want to handle this by DMA
623 * <0 on error
624 */
625 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
626 {
627 struct pl011_dmatx_data *dmatx = &uap->dmatx;
628 struct dma_chan *chan = dmatx->chan;
629 struct dma_device *dma_dev = chan->device;
630 struct dma_async_tx_descriptor *desc;
631 struct circ_buf *xmit = &uap->port.state->xmit;
632 unsigned int count;
633
634 /*
635 * Try to avoid the overhead involved in using DMA if the
636 * transaction fits in the first half of the FIFO, by using
637 * the standard interrupt handling. This ensures that we
638 * issue a uart_write_wakeup() at the appropriate time.
639 */
640 count = uart_circ_chars_pending(xmit);
641 if (count < (uap->fifosize >> 1)) {
642 uap->dmatx.queued = false;
643 return 0;
644 }
645
646 /*
647 * Bodge: don't send the last character by DMA, as this
648 * will prevent XON from notifying us to restart DMA.
649 */
650 count -= 1;
651
652 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
653 if (count > PL011_DMA_BUFFER_SIZE)
654 count = PL011_DMA_BUFFER_SIZE;
655
656 if (xmit->tail < xmit->head)
657 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
658 else {
659 size_t first = UART_XMIT_SIZE - xmit->tail;
660 size_t second;
661
662 if (first > count)
663 first = count;
664 second = count - first;
665
666 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
667 if (second)
668 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
669 }
670
671 dmatx->sg.length = count;
672
673 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
674 uap->dmatx.queued = false;
675 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
676 return -EBUSY;
677 }
678
679 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
680 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
681 if (!desc) {
682 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
683 uap->dmatx.queued = false;
684 /*
685 * If DMA cannot be used right now, we complete this
686 * transaction via IRQ and let the TTY layer retry.
687 */
688 dev_dbg(uap->port.dev, "TX DMA busy\n");
689 return -EBUSY;
690 }
691
692 /* Some data to go along to the callback */
693 desc->callback = pl011_dma_tx_callback;
694 desc->callback_param = uap;
695
696 /* All errors should happen at prepare time */
697 dmaengine_submit(desc);
698
699 /* Fire the DMA transaction */
700 dma_dev->device_issue_pending(chan);
701
702 uap->dmacr |= UART011_TXDMAE;
703 pl011_writew(uap, uap->dmacr, REG_DMACR);
704 uap->dmatx.queued = true;
705
706 /*
707 * Now we know that DMA will fire, so advance the ring buffer
708 * with the stuff we just dispatched.
709 */
710 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
711 uap->port.icount.tx += count;
712
713 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
714 uart_write_wakeup(&uap->port);
715
716 return 1;
717 }
718
719 /*
720 * We received a transmit interrupt without a pending X-char but with
721 * pending characters.
722 * Locking: called with port lock held and IRQs disabled.
723 * Returns:
724 * false if we want to use PIO to transmit
725 * true if we queued a DMA buffer
726 */
727 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
728 {
729 if (!uap->using_tx_dma)
730 return false;
731
732 /*
733 * If we already have a TX buffer queued, but received a
734 * TX interrupt, it will be because we've just sent an X-char.
735 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
736 */
737 if (uap->dmatx.queued) {
738 uap->dmacr |= UART011_TXDMAE;
739 pl011_writew(uap, uap->dmacr, REG_DMACR);
740 uap->im &= ~UART011_TXIM;
741 pl011_writew(uap, uap->im, REG_IMSC);
742 return true;
743 }
744
745 /*
746 * We don't have a TX buffer queued, so try to queue one.
747 * If we successfully queued a buffer, mask the TX IRQ.
748 */
749 if (pl011_dma_tx_refill(uap) > 0) {
750 uap->im &= ~UART011_TXIM;
751 pl011_writew(uap, uap->im, REG_IMSC);
752 return true;
753 }
754 return false;
755 }
756
757 /*
758 * Stop the DMA transmit (eg, due to received XOFF).
759 * Locking: called with port lock held and IRQs disabled.
760 */
761 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
762 {
763 if (uap->dmatx.queued) {
764 uap->dmacr &= ~UART011_TXDMAE;
765 pl011_writew(uap, uap->dmacr, REG_DMACR);
766 }
767 }
768
769 /*
770 * Try to start a DMA transmit, or in the case of an XON/OFF
771 * character queued for send, try to get that character out ASAP.
772 * Locking: called with port lock held and IRQs disabled.
773 * Returns:
774 * false if we want the TX IRQ to be enabled
775 * true if we have a buffer queued
776 */
777 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
778 {
779 u16 dmacr;
780
781 if (!uap->using_tx_dma)
782 return false;
783
784 if (!uap->port.x_char) {
785 /* no X-char, try to push chars out in DMA mode */
786 bool ret = true;
787
788 if (!uap->dmatx.queued) {
789 if (pl011_dma_tx_refill(uap) > 0) {
790 uap->im &= ~UART011_TXIM;
791 pl011_writew(uap, uap->im, REG_IMSC);
792 } else
793 ret = false;
794 } else if (!(uap->dmacr & UART011_TXDMAE)) {
795 uap->dmacr |= UART011_TXDMAE;
796 pl011_writew(uap, uap->dmacr, REG_DMACR);
797 }
798 return ret;
799 }
800
801 /*
802 * We have an X-char to send. Disable DMA to prevent it loading
803 * the TX fifo, and then see if we can stuff it into the FIFO.
804 */
805 dmacr = uap->dmacr;
806 uap->dmacr &= ~UART011_TXDMAE;
807 pl011_writew(uap, uap->dmacr, REG_DMACR);
808
809 if (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF) {
810 /*
811 * No space in the FIFO, so enable the transmit interrupt
812 * so we know when there is space. Note that once we've
813 * loaded the character, we should just re-enable DMA.
814 */
815 return false;
816 }
817
818 pl011_writew(uap, uap->port.x_char, REG_DR);
819 uap->port.icount.tx++;
820 uap->port.x_char = 0;
821
822 /* Success - restore the DMA state */
823 uap->dmacr = dmacr;
824 pl011_writew(uap, dmacr, REG_DMACR);
825
826 return true;
827 }
828
829 /*
830 * Flush the transmit buffer.
831 * Locking: called with port lock held and IRQs disabled.
832 */
833 static void pl011_dma_flush_buffer(struct uart_port *port)
834 __releases(&uap->port.lock)
835 __acquires(&uap->port.lock)
836 {
837 struct uart_amba_port *uap =
838 container_of(port, struct uart_amba_port, port);
839
840 if (!uap->using_tx_dma)
841 return;
842
843 /* Avoid deadlock with the DMA engine callback */
844 spin_unlock(&uap->port.lock);
845 dmaengine_terminate_all(uap->dmatx.chan);
846 spin_lock(&uap->port.lock);
847 if (uap->dmatx.queued) {
848 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
849 DMA_TO_DEVICE);
850 uap->dmatx.queued = false;
851 uap->dmacr &= ~UART011_TXDMAE;
852 pl011_writew(uap, uap->dmacr, REG_DMACR);
853 }
854 }
855
856 static void pl011_dma_rx_callback(void *data);
857
858 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
859 {
860 struct dma_chan *rxchan = uap->dmarx.chan;
861 struct pl011_dmarx_data *dmarx = &uap->dmarx;
862 struct dma_async_tx_descriptor *desc;
863 struct pl011_sgbuf *sgbuf;
864
865 if (!rxchan)
866 return -EIO;
867
868 /* Start the RX DMA job */
869 sgbuf = uap->dmarx.use_buf_b ?
870 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
871 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
872 DMA_DEV_TO_MEM,
873 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
874 /*
875 * If the DMA engine is busy and cannot prepare a
876 * channel, no big deal, the driver will fall back
877 * to interrupt mode as a result of this error code.
878 */
879 if (!desc) {
880 uap->dmarx.running = false;
881 dmaengine_terminate_all(rxchan);
882 return -EBUSY;
883 }
884
885 /* Some data to go along to the callback */
886 desc->callback = pl011_dma_rx_callback;
887 desc->callback_param = uap;
888 dmarx->cookie = dmaengine_submit(desc);
889 dma_async_issue_pending(rxchan);
890
891 uap->dmacr |= UART011_RXDMAE;
892 pl011_writew(uap, uap->dmacr, REG_DMACR);
893 uap->dmarx.running = true;
894
895 uap->im &= ~UART011_RXIM;
896 pl011_writew(uap, uap->im, REG_IMSC);
897
898 return 0;
899 }
900
901 /*
902 * This is called when either the DMA job is complete, or
903 * the FIFO timeout interrupt occurred. This must be called
904 * with the port spinlock uap->port.lock held.
905 */
906 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
907 u32 pending, bool use_buf_b,
908 bool readfifo)
909 {
910 struct tty_port *port = &uap->port.state->port;
911 struct pl011_sgbuf *sgbuf = use_buf_b ?
912 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
913 int dma_count = 0;
914 u32 fifotaken = 0; /* only used for vdbg() */
915
916 struct pl011_dmarx_data *dmarx = &uap->dmarx;
917 int dmataken = 0;
918
919 if (uap->dmarx.poll_rate) {
920 /* The data can be taken by polling */
921 dmataken = sgbuf->sg.length - dmarx->last_residue;
922 /* Recalculate the pending size */
923 if (pending >= dmataken)
924 pending -= dmataken;
925 }
926
927 /* Pick the remain data from the DMA */
928 if (pending) {
929
930 /*
931 * First take all chars in the DMA pipe, then look in the FIFO.
932 * Note that tty_insert_flip_buf() tries to take as many chars
933 * as it can.
934 */
935 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
936 pending);
937
938 uap->port.icount.rx += dma_count;
939 if (dma_count < pending)
940 dev_warn(uap->port.dev,
941 "couldn't insert all characters (TTY is full?)\n");
942 }
943
944 /* Reset the last_residue for Rx DMA poll */
945 if (uap->dmarx.poll_rate)
946 dmarx->last_residue = sgbuf->sg.length;
947
948 /*
949 * Only continue with trying to read the FIFO if all DMA chars have
950 * been taken first.
951 */
952 if (dma_count == pending && readfifo) {
953 /* Clear any error flags */
954 pl011_writew(uap,
955 UART011_OEIS | UART011_BEIS | UART011_PEIS
956 | UART011_FEIS, REG_ICR);
957
958 /*
959 * If we read all the DMA'd characters, and we had an
960 * incomplete buffer, that could be due to an rx error, or
961 * maybe we just timed out. Read any pending chars and check
962 * the error status.
963 *
964 * Error conditions will only occur in the FIFO, these will
965 * trigger an immediate interrupt and stop the DMA job, so we
966 * will always find the error in the FIFO, never in the DMA
967 * buffer.
968 */
969 fifotaken = pl011_fifo_to_tty(uap);
970 }
971
972 spin_unlock(&uap->port.lock);
973 dev_vdbg(uap->port.dev,
974 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
975 dma_count, fifotaken);
976 tty_flip_buffer_push(port);
977 spin_lock(&uap->port.lock);
978 }
979
980 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
981 {
982 struct pl011_dmarx_data *dmarx = &uap->dmarx;
983 struct dma_chan *rxchan = dmarx->chan;
984 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
985 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
986 size_t pending;
987 struct dma_tx_state state;
988 enum dma_status dmastat;
989
990 /*
991 * Pause the transfer so we can trust the current counter,
992 * do this before we pause the PL011 block, else we may
993 * overflow the FIFO.
994 */
995 if (dmaengine_pause(rxchan))
996 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
997 dmastat = rxchan->device->device_tx_status(rxchan,
998 dmarx->cookie, &state);
999 if (dmastat != DMA_PAUSED)
1000 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
1001
1002 /* Disable RX DMA - incoming data will wait in the FIFO */
1003 uap->dmacr &= ~UART011_RXDMAE;
1004 pl011_writew(uap, uap->dmacr, REG_DMACR);
1005 uap->dmarx.running = false;
1006
1007 pending = sgbuf->sg.length - state.residue;
1008 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1009 /* Then we terminate the transfer - we now know our residue */
1010 dmaengine_terminate_all(rxchan);
1011
1012 /*
1013 * This will take the chars we have so far and insert
1014 * into the framework.
1015 */
1016 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1017
1018 /* Switch buffer & re-trigger DMA job */
1019 dmarx->use_buf_b = !dmarx->use_buf_b;
1020 if (pl011_dma_rx_trigger_dma(uap)) {
1021 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1022 "fall back to interrupt mode\n");
1023 uap->im |= UART011_RXIM;
1024 pl011_writew(uap, uap->im, REG_IMSC);
1025 }
1026 }
1027
1028 static void pl011_dma_rx_callback(void *data)
1029 {
1030 struct uart_amba_port *uap = data;
1031 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1032 struct dma_chan *rxchan = dmarx->chan;
1033 bool lastbuf = dmarx->use_buf_b;
1034 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1035 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1036 size_t pending;
1037 struct dma_tx_state state;
1038 int ret;
1039
1040 /*
1041 * This completion interrupt occurs typically when the
1042 * RX buffer is totally stuffed but no timeout has yet
1043 * occurred. When that happens, we just want the RX
1044 * routine to flush out the secondary DMA buffer while
1045 * we immediately trigger the next DMA job.
1046 */
1047 spin_lock_irq(&uap->port.lock);
1048 /*
1049 * Rx data can be taken by the UART interrupts during
1050 * the DMA irq handler. So we check the residue here.
1051 */
1052 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1053 pending = sgbuf->sg.length - state.residue;
1054 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1055 /* Then we terminate the transfer - we now know our residue */
1056 dmaengine_terminate_all(rxchan);
1057
1058 uap->dmarx.running = false;
1059 dmarx->use_buf_b = !lastbuf;
1060 ret = pl011_dma_rx_trigger_dma(uap);
1061
1062 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1063 spin_unlock_irq(&uap->port.lock);
1064 /*
1065 * Do this check after we picked the DMA chars so we don't
1066 * get some IRQ immediately from RX.
1067 */
1068 if (ret) {
1069 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1070 "fall back to interrupt mode\n");
1071 uap->im |= UART011_RXIM;
1072 pl011_writew(uap, uap->im, REG_IMSC);
1073 }
1074 }
1075
1076 /*
1077 * Stop accepting received characters, when we're shutting down or
1078 * suspending this port.
1079 * Locking: called with port lock held and IRQs disabled.
1080 */
1081 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1082 {
1083 /* FIXME. Just disable the DMA enable */
1084 uap->dmacr &= ~UART011_RXDMAE;
1085 pl011_writew(uap, uap->dmacr, REG_DMACR);
1086 }
1087
1088 /*
1089 * Timer handler for Rx DMA polling.
1090 * Every polling, It checks the residue in the dma buffer and transfer
1091 * data to the tty. Also, last_residue is updated for the next polling.
1092 */
1093 static void pl011_dma_rx_poll(unsigned long args)
1094 {
1095 struct uart_amba_port *uap = (struct uart_amba_port *)args;
1096 struct tty_port *port = &uap->port.state->port;
1097 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1098 struct dma_chan *rxchan = uap->dmarx.chan;
1099 unsigned long flags = 0;
1100 unsigned int dmataken = 0;
1101 unsigned int size = 0;
1102 struct pl011_sgbuf *sgbuf;
1103 int dma_count;
1104 struct dma_tx_state state;
1105
1106 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1107 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1108 if (likely(state.residue < dmarx->last_residue)) {
1109 dmataken = sgbuf->sg.length - dmarx->last_residue;
1110 size = dmarx->last_residue - state.residue;
1111 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1112 size);
1113 if (dma_count == size)
1114 dmarx->last_residue = state.residue;
1115 dmarx->last_jiffies = jiffies;
1116 }
1117 tty_flip_buffer_push(port);
1118
1119 /*
1120 * If no data is received in poll_timeout, the driver will fall back
1121 * to interrupt mode. We will retrigger DMA at the first interrupt.
1122 */
1123 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1124 > uap->dmarx.poll_timeout) {
1125
1126 spin_lock_irqsave(&uap->port.lock, flags);
1127 pl011_dma_rx_stop(uap);
1128 uap->im |= UART011_RXIM;
1129 pl011_writew(uap, uap->im, REG_IMSC);
1130 spin_unlock_irqrestore(&uap->port.lock, flags);
1131
1132 uap->dmarx.running = false;
1133 dmaengine_terminate_all(rxchan);
1134 del_timer(&uap->dmarx.timer);
1135 } else {
1136 mod_timer(&uap->dmarx.timer,
1137 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1138 }
1139 }
1140
1141 static void pl011_dma_startup(struct uart_amba_port *uap)
1142 {
1143 int ret;
1144
1145 if (!uap->dma_probed)
1146 pl011_dma_probe(uap);
1147
1148 if (!uap->dmatx.chan)
1149 return;
1150
1151 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1152 if (!uap->dmatx.buf) {
1153 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1154 uap->port.fifosize = uap->fifosize;
1155 return;
1156 }
1157
1158 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1159
1160 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1161 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1162 uap->using_tx_dma = true;
1163
1164 if (!uap->dmarx.chan)
1165 goto skip_rx;
1166
1167 /* Allocate and map DMA RX buffers */
1168 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1169 DMA_FROM_DEVICE);
1170 if (ret) {
1171 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1172 "RX buffer A", ret);
1173 goto skip_rx;
1174 }
1175
1176 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1177 DMA_FROM_DEVICE);
1178 if (ret) {
1179 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1180 "RX buffer B", ret);
1181 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1182 DMA_FROM_DEVICE);
1183 goto skip_rx;
1184 }
1185
1186 uap->using_rx_dma = true;
1187
1188 skip_rx:
1189 /* Turn on DMA error (RX/TX will be enabled on demand) */
1190 uap->dmacr |= UART011_DMAONERR;
1191 pl011_writew(uap, uap->dmacr, REG_DMACR);
1192
1193 /*
1194 * ST Micro variants has some specific dma burst threshold
1195 * compensation. Set this to 16 bytes, so burst will only
1196 * be issued above/below 16 bytes.
1197 */
1198 if (uap->vendor->dma_threshold)
1199 pl011_writew(uap,
1200 ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1201 REG_ST_DMAWM);
1202
1203 if (uap->using_rx_dma) {
1204 if (pl011_dma_rx_trigger_dma(uap))
1205 dev_dbg(uap->port.dev, "could not trigger initial "
1206 "RX DMA job, fall back to interrupt mode\n");
1207 if (uap->dmarx.poll_rate) {
1208 init_timer(&(uap->dmarx.timer));
1209 uap->dmarx.timer.function = pl011_dma_rx_poll;
1210 uap->dmarx.timer.data = (unsigned long)uap;
1211 mod_timer(&uap->dmarx.timer,
1212 jiffies +
1213 msecs_to_jiffies(uap->dmarx.poll_rate));
1214 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1215 uap->dmarx.last_jiffies = jiffies;
1216 }
1217 }
1218 }
1219
1220 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1221 {
1222 if (!(uap->using_tx_dma || uap->using_rx_dma))
1223 return;
1224
1225 /* Disable RX and TX DMA */
1226 while (pl011_readw(uap, REG_FR) & uap->fr_busy)
1227 barrier();
1228
1229 spin_lock_irq(&uap->port.lock);
1230 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1231 pl011_writew(uap, uap->dmacr, REG_DMACR);
1232 spin_unlock_irq(&uap->port.lock);
1233
1234 if (uap->using_tx_dma) {
1235 /* In theory, this should already be done by pl011_dma_flush_buffer */
1236 dmaengine_terminate_all(uap->dmatx.chan);
1237 if (uap->dmatx.queued) {
1238 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1239 DMA_TO_DEVICE);
1240 uap->dmatx.queued = false;
1241 }
1242
1243 kfree(uap->dmatx.buf);
1244 uap->using_tx_dma = false;
1245 }
1246
1247 if (uap->using_rx_dma) {
1248 dmaengine_terminate_all(uap->dmarx.chan);
1249 /* Clean up the RX DMA */
1250 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1251 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1252 if (uap->dmarx.poll_rate)
1253 del_timer_sync(&uap->dmarx.timer);
1254 uap->using_rx_dma = false;
1255 }
1256 }
1257
1258 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1259 {
1260 return uap->using_rx_dma;
1261 }
1262
1263 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1264 {
1265 return uap->using_rx_dma && uap->dmarx.running;
1266 }
1267
1268 #else
1269 /* Blank functions if the DMA engine is not available */
1270 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1271 {
1272 }
1273
1274 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1275 {
1276 }
1277
1278 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1279 {
1280 }
1281
1282 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1283 {
1284 }
1285
1286 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1287 {
1288 return false;
1289 }
1290
1291 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1292 {
1293 }
1294
1295 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1296 {
1297 return false;
1298 }
1299
1300 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1301 {
1302 }
1303
1304 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1305 {
1306 }
1307
1308 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1309 {
1310 return -EIO;
1311 }
1312
1313 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1314 {
1315 return false;
1316 }
1317
1318 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1319 {
1320 return false;
1321 }
1322
1323 #define pl011_dma_flush_buffer NULL
1324 #endif
1325
1326 static void pl011_stop_tx(struct uart_port *port)
1327 {
1328 struct uart_amba_port *uap =
1329 container_of(port, struct uart_amba_port, port);
1330
1331 uap->im &= ~UART011_TXIM;
1332 pl011_writew(uap, uap->im, REG_IMSC);
1333 pl011_dma_tx_stop(uap);
1334 }
1335
1336 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1337
1338 /* Start TX with programmed I/O only (no DMA) */
1339 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1340 {
1341 uap->im |= UART011_TXIM;
1342 pl011_writew(uap, uap->im, REG_IMSC);
1343 pl011_tx_chars(uap, false);
1344 }
1345
1346 static void pl011_start_tx(struct uart_port *port)
1347 {
1348 struct uart_amba_port *uap =
1349 container_of(port, struct uart_amba_port, port);
1350
1351 if (!pl011_dma_tx_start(uap))
1352 pl011_start_tx_pio(uap);
1353 }
1354
1355 static void pl011_stop_rx(struct uart_port *port)
1356 {
1357 struct uart_amba_port *uap =
1358 container_of(port, struct uart_amba_port, port);
1359
1360 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1361 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1362 pl011_writew(uap, uap->im, REG_IMSC);
1363
1364 pl011_dma_rx_stop(uap);
1365 }
1366
1367 static void pl011_enable_ms(struct uart_port *port)
1368 {
1369 struct uart_amba_port *uap =
1370 container_of(port, struct uart_amba_port, port);
1371
1372 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1373 pl011_writew(uap, uap->im, REG_IMSC);
1374 }
1375
1376 static void pl011_rx_chars(struct uart_amba_port *uap)
1377 __releases(&uap->port.lock)
1378 __acquires(&uap->port.lock)
1379 {
1380 pl011_fifo_to_tty(uap);
1381
1382 spin_unlock(&uap->port.lock);
1383 tty_flip_buffer_push(&uap->port.state->port);
1384 /*
1385 * If we were temporarily out of DMA mode for a while,
1386 * attempt to switch back to DMA mode again.
1387 */
1388 if (pl011_dma_rx_available(uap)) {
1389 if (pl011_dma_rx_trigger_dma(uap)) {
1390 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1391 "fall back to interrupt mode again\n");
1392 uap->im |= UART011_RXIM;
1393 pl011_writew(uap, uap->im, REG_IMSC);
1394 } else {
1395 #ifdef CONFIG_DMA_ENGINE
1396 /* Start Rx DMA poll */
1397 if (uap->dmarx.poll_rate) {
1398 uap->dmarx.last_jiffies = jiffies;
1399 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1400 mod_timer(&uap->dmarx.timer,
1401 jiffies +
1402 msecs_to_jiffies(uap->dmarx.poll_rate));
1403 }
1404 #endif
1405 }
1406 }
1407 spin_lock(&uap->port.lock);
1408 }
1409
1410 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1411 bool from_irq)
1412 {
1413 if (unlikely(!from_irq) &&
1414 pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
1415 return false; /* unable to transmit character */
1416
1417 pl011_writew(uap, c, REG_DR);
1418 uap->port.icount.tx++;
1419
1420 return true;
1421 }
1422
1423 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1424 {
1425 struct circ_buf *xmit = &uap->port.state->xmit;
1426 int count = uap->fifosize >> 1;
1427
1428 if (uap->port.x_char) {
1429 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1430 return;
1431 uap->port.x_char = 0;
1432 --count;
1433 }
1434 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1435 pl011_stop_tx(&uap->port);
1436 return;
1437 }
1438
1439 /* If we are using DMA mode, try to send some characters. */
1440 if (pl011_dma_tx_irq(uap))
1441 return;
1442
1443 do {
1444 if (likely(from_irq) && count-- == 0)
1445 break;
1446
1447 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1448 break;
1449
1450 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1451 } while (!uart_circ_empty(xmit));
1452
1453 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1454 uart_write_wakeup(&uap->port);
1455
1456 if (uart_circ_empty(xmit))
1457 pl011_stop_tx(&uap->port);
1458 }
1459
1460 static void pl011_modem_status(struct uart_amba_port *uap)
1461 {
1462 unsigned int status, delta;
1463
1464 status = pl011_readw(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1465
1466 delta = status ^ uap->old_status;
1467 uap->old_status = status;
1468
1469 if (!delta)
1470 return;
1471
1472 if (delta & UART01x_FR_DCD)
1473 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1474
1475 if (delta & uap->fr_dsr)
1476 uap->port.icount.dsr++;
1477
1478 if (delta & uap->fr_cts)
1479 uart_handle_cts_change(&uap->port, status & uap->fr_cts);
1480
1481 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1482 }
1483
1484 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1485 {
1486 unsigned int dummy_read;
1487
1488 if (!uap->vendor->cts_event_workaround)
1489 return;
1490
1491 /* workaround to make sure that all bits are unlocked.. */
1492 pl011_writew(uap, 0x00, REG_ICR);
1493
1494 /*
1495 * WA: introduce 26ns(1 uart clk) delay before W1C;
1496 * single apb access will incur 2 pclk(133.12Mhz) delay,
1497 * so add 2 dummy reads
1498 */
1499 dummy_read = pl011_readw(uap, REG_ICR);
1500 dummy_read = pl011_readw(uap, REG_ICR);
1501 }
1502
1503 static irqreturn_t pl011_int(int irq, void *dev_id)
1504 {
1505 struct uart_amba_port *uap = dev_id;
1506 unsigned long flags;
1507 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1508 u16 imsc;
1509 int handled = 0;
1510
1511 spin_lock_irqsave(&uap->port.lock, flags);
1512 imsc = pl011_readw(uap, REG_IMSC);
1513 status = pl011_readw(uap, REG_RIS) & imsc;
1514 if (status) {
1515 do {
1516 check_apply_cts_event_workaround(uap);
1517 pl011_writew(uap, status & ~(UART011_TXIS|UART011_RTIS|
1518 UART011_RXIS), REG_ICR);
1519
1520 if (status & (UART011_RTIS|UART011_RXIS)) {
1521 if (pl011_dma_rx_running(uap))
1522 pl011_dma_rx_irq(uap);
1523 else
1524 pl011_rx_chars(uap);
1525 }
1526 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1527 UART011_CTSMIS|UART011_RIMIS))
1528 pl011_modem_status(uap);
1529 if (status & UART011_TXIS)
1530 pl011_tx_chars(uap, true);
1531
1532 if (pass_counter-- == 0)
1533 break;
1534
1535 status = pl011_readw(uap, REG_RIS) & imsc;
1536 } while (status != 0);
1537 handled = 1;
1538 }
1539
1540 spin_unlock_irqrestore(&uap->port.lock, flags);
1541
1542 return IRQ_RETVAL(handled);
1543 }
1544
1545 static unsigned int pl011_tx_empty(struct uart_port *port)
1546 {
1547 struct uart_amba_port *uap =
1548 container_of(port, struct uart_amba_port, port);
1549 unsigned int status = pl011_readw(uap, REG_FR);
1550 return status & (uap->fr_busy|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1551 }
1552
1553 static unsigned int pl011_get_mctrl(struct uart_port *port)
1554 {
1555 struct uart_amba_port *uap =
1556 container_of(port, struct uart_amba_port, port);
1557 unsigned int result = 0;
1558 unsigned int status = pl011_readw(uap, REG_FR);
1559
1560 #define TIOCMBIT(uartbit, tiocmbit) \
1561 if (status & uartbit) \
1562 result |= tiocmbit
1563
1564 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1565 TIOCMBIT(uap->fr_dsr, TIOCM_DSR);
1566 TIOCMBIT(uap->fr_cts, TIOCM_CTS);
1567 TIOCMBIT(uap->fr_ri, TIOCM_RNG);
1568 #undef TIOCMBIT
1569 return result;
1570 }
1571
1572 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1573 {
1574 struct uart_amba_port *uap =
1575 container_of(port, struct uart_amba_port, port);
1576 unsigned int cr;
1577
1578 cr = pl011_readw(uap, REG_CR);
1579
1580 #define TIOCMBIT(tiocmbit, uartbit) \
1581 if (mctrl & tiocmbit) \
1582 cr |= uartbit; \
1583 else \
1584 cr &= ~uartbit
1585
1586 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1587 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1588 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1589 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1590 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1591
1592 if (uap->autorts) {
1593 /* We need to disable auto-RTS if we want to turn RTS off */
1594 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1595 }
1596 #undef TIOCMBIT
1597
1598 pl011_writew(uap, cr, REG_CR);
1599 }
1600
1601 static void pl011_break_ctl(struct uart_port *port, int break_state)
1602 {
1603 struct uart_amba_port *uap =
1604 container_of(port, struct uart_amba_port, port);
1605 unsigned long flags;
1606 unsigned int lcr_h;
1607
1608 spin_lock_irqsave(&uap->port.lock, flags);
1609 lcr_h = pl011_readw(uap, uap->lcrh_tx);
1610 if (break_state == -1)
1611 lcr_h |= UART01x_LCRH_BRK;
1612 else
1613 lcr_h &= ~UART01x_LCRH_BRK;
1614 pl011_writew(uap, lcr_h, uap->lcrh_tx);
1615 spin_unlock_irqrestore(&uap->port.lock, flags);
1616 }
1617
1618 #ifdef CONFIG_CONSOLE_POLL
1619
1620 static void pl011_quiesce_irqs(struct uart_port *port)
1621 {
1622 struct uart_amba_port *uap =
1623 container_of(port, struct uart_amba_port, port);
1624
1625 pl011_writew(uap, pl011_readw(uap, REG_MIS), REG_ICR);
1626 /*
1627 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1628 * we simply mask it. start_tx() will unmask it.
1629 *
1630 * Note we can race with start_tx(), and if the race happens, the
1631 * polling user might get another interrupt just after we clear it.
1632 * But it should be OK and can happen even w/o the race, e.g.
1633 * controller immediately got some new data and raised the IRQ.
1634 *
1635 * And whoever uses polling routines assumes that it manages the device
1636 * (including tx queue), so we're also fine with start_tx()'s caller
1637 * side.
1638 */
1639 pl011_writew(uap, pl011_readw(uap, REG_IMSC) & ~UART011_TXIM, REG_IMSC);
1640 }
1641
1642 static int pl011_get_poll_char(struct uart_port *port)
1643 {
1644 struct uart_amba_port *uap =
1645 container_of(port, struct uart_amba_port, port);
1646 unsigned int status;
1647
1648 /*
1649 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1650 * debugger.
1651 */
1652 pl011_quiesce_irqs(port);
1653
1654 status = pl011_readw(uap, REG_FR);
1655 if (status & UART01x_FR_RXFE)
1656 return NO_POLL_CHAR;
1657
1658 return pl011_readw(uap, REG_DR);
1659 }
1660
1661 static void pl011_put_poll_char(struct uart_port *port,
1662 unsigned char ch)
1663 {
1664 struct uart_amba_port *uap =
1665 container_of(port, struct uart_amba_port, port);
1666
1667 while (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
1668 barrier();
1669
1670 pl011_writew(uap, ch, REG_DR);
1671 }
1672
1673 #endif /* CONFIG_CONSOLE_POLL */
1674
1675 static int pl011_hwinit(struct uart_port *port)
1676 {
1677 struct uart_amba_port *uap =
1678 container_of(port, struct uart_amba_port, port);
1679 int retval;
1680
1681 /* Optionaly enable pins to be muxed in and configured */
1682 pinctrl_pm_select_default_state(port->dev);
1683
1684 /*
1685 * Try to enable the clock producer.
1686 */
1687 retval = clk_prepare_enable(uap->clk);
1688 if (retval)
1689 return retval;
1690
1691 uap->port.uartclk = clk_get_rate(uap->clk);
1692
1693 /* Clear pending error and receive interrupts */
1694 pl011_writew(uap, UART011_OEIS | UART011_BEIS | UART011_PEIS |
1695 UART011_FEIS | UART011_RTIS | UART011_RXIS, REG_ICR);
1696
1697 /*
1698 * Save interrupts enable mask, and enable RX interrupts in case if
1699 * the interrupt is used for NMI entry.
1700 */
1701 uap->im = pl011_readw(uap, REG_IMSC);
1702 pl011_writew(uap, UART011_RTIM | UART011_RXIM, REG_IMSC);
1703
1704 if (dev_get_platdata(uap->port.dev)) {
1705 struct amba_pl011_data *plat;
1706
1707 plat = dev_get_platdata(uap->port.dev);
1708 if (plat->init)
1709 plat->init();
1710 }
1711 return 0;
1712 }
1713
1714 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1715 {
1716 pl011_writew(uap, lcr_h, uap->lcrh_rx);
1717 if (is_implemented(uap, REG_ST_LCRH_RX)) {
1718 int i;
1719 /*
1720 * Wait 10 PCLKs before writing LCRH_TX register,
1721 * to get this delay write read only register 10 times
1722 */
1723 for (i = 0; i < 10; ++i)
1724 pl011_writew(uap, 0xff, REG_MIS);
1725 pl011_writew(uap, lcr_h, uap->lcrh_tx);
1726 }
1727 }
1728
1729 static int pl011_allocate_irq(struct uart_amba_port *uap)
1730 {
1731 pl011_writew(uap, uap->im, REG_IMSC);
1732
1733 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1734 }
1735
1736 /*
1737 * Enable interrupts, only timeouts when using DMA
1738 * if initial RX DMA job failed, start in interrupt mode
1739 * as well.
1740 */
1741 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1742 {
1743 spin_lock_irq(&uap->port.lock);
1744
1745 /* Clear out any spuriously appearing RX interrupts */
1746 pl011_writew(uap, UART011_RTIS | UART011_RXIS, REG_ICR);
1747 uap->im = UART011_RTIM;
1748 if (!pl011_dma_rx_running(uap))
1749 uap->im |= UART011_RXIM;
1750 pl011_writew(uap, uap->im, REG_IMSC);
1751 spin_unlock_irq(&uap->port.lock);
1752 }
1753
1754 static int pl011_startup(struct uart_port *port)
1755 {
1756 struct uart_amba_port *uap =
1757 container_of(port, struct uart_amba_port, port);
1758 unsigned int cr;
1759 int retval;
1760
1761 retval = pl011_hwinit(port);
1762 if (retval)
1763 goto clk_dis;
1764
1765 retval = pl011_allocate_irq(uap);
1766 if (retval)
1767 goto clk_dis;
1768
1769 pl011_writew(uap, uap->vendor->ifls, REG_IFLS);
1770
1771 spin_lock_irq(&uap->port.lock);
1772
1773 /* restore RTS and DTR */
1774 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1775 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1776 pl011_writew(uap, cr, REG_CR);
1777
1778 spin_unlock_irq(&uap->port.lock);
1779
1780 /*
1781 * initialise the old status of the modem signals
1782 */
1783 uap->old_status = pl011_readw(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1784
1785 /* Startup DMA */
1786 pl011_dma_startup(uap);
1787
1788 pl011_enable_interrupts(uap);
1789
1790 return 0;
1791
1792 clk_dis:
1793 clk_disable_unprepare(uap->clk);
1794 return retval;
1795 }
1796
1797 static int sbsa_uart_startup(struct uart_port *port)
1798 {
1799 struct uart_amba_port *uap =
1800 container_of(port, struct uart_amba_port, port);
1801 int retval;
1802
1803 retval = pl011_hwinit(port);
1804 if (retval)
1805 return retval;
1806
1807 retval = pl011_allocate_irq(uap);
1808 if (retval)
1809 return retval;
1810
1811 /* The SBSA UART does not support any modem status lines. */
1812 uap->old_status = 0;
1813
1814 pl011_enable_interrupts(uap);
1815
1816 return 0;
1817 }
1818
1819 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1820 unsigned int lcrh)
1821 {
1822 unsigned long val;
1823
1824 val = pl011_readw(uap, lcrh);
1825 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1826 pl011_writew(uap, val, lcrh);
1827 }
1828
1829 /*
1830 * disable the port. It should not disable RTS and DTR.
1831 * Also RTS and DTR state should be preserved to restore
1832 * it during startup().
1833 */
1834 static void pl011_disable_uart(struct uart_amba_port *uap)
1835 {
1836 unsigned int cr;
1837
1838 uap->autorts = false;
1839 spin_lock_irq(&uap->port.lock);
1840 cr = pl011_readw(uap, REG_CR);
1841 uap->old_cr = cr;
1842 cr &= UART011_CR_RTS | UART011_CR_DTR;
1843 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1844 pl011_writew(uap, cr, REG_CR);
1845 spin_unlock_irq(&uap->port.lock);
1846
1847 /*
1848 * disable break condition and fifos
1849 */
1850 pl011_shutdown_channel(uap, uap->lcrh_rx);
1851 if (is_implemented(uap, REG_ST_LCRH_RX))
1852 pl011_shutdown_channel(uap, uap->lcrh_tx);
1853 }
1854
1855 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1856 {
1857 spin_lock_irq(&uap->port.lock);
1858
1859 /* mask all interrupts and clear all pending ones */
1860 uap->im = 0;
1861 pl011_writew(uap, uap->im, REG_IMSC);
1862 pl011_writew(uap, 0xffff, REG_ICR);
1863
1864 spin_unlock_irq(&uap->port.lock);
1865 }
1866
1867 static void pl011_shutdown(struct uart_port *port)
1868 {
1869 struct uart_amba_port *uap =
1870 container_of(port, struct uart_amba_port, port);
1871
1872 pl011_disable_interrupts(uap);
1873
1874 pl011_dma_shutdown(uap);
1875
1876 free_irq(uap->port.irq, uap);
1877
1878 pl011_disable_uart(uap);
1879
1880 /*
1881 * Shut down the clock producer
1882 */
1883 clk_disable_unprepare(uap->clk);
1884 /* Optionally let pins go into sleep states */
1885 pinctrl_pm_select_sleep_state(port->dev);
1886
1887 if (dev_get_platdata(uap->port.dev)) {
1888 struct amba_pl011_data *plat;
1889
1890 plat = dev_get_platdata(uap->port.dev);
1891 if (plat->exit)
1892 plat->exit();
1893 }
1894
1895 if (uap->port.ops->flush_buffer)
1896 uap->port.ops->flush_buffer(port);
1897 }
1898
1899 static void sbsa_uart_shutdown(struct uart_port *port)
1900 {
1901 struct uart_amba_port *uap =
1902 container_of(port, struct uart_amba_port, port);
1903
1904 pl011_disable_interrupts(uap);
1905
1906 free_irq(uap->port.irq, uap);
1907
1908 if (uap->port.ops->flush_buffer)
1909 uap->port.ops->flush_buffer(port);
1910 }
1911
1912 static void
1913 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1914 {
1915 port->read_status_mask = UART011_DR_OE | 255;
1916 if (termios->c_iflag & INPCK)
1917 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1918 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1919 port->read_status_mask |= UART011_DR_BE;
1920
1921 /*
1922 * Characters to ignore
1923 */
1924 port->ignore_status_mask = 0;
1925 if (termios->c_iflag & IGNPAR)
1926 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1927 if (termios->c_iflag & IGNBRK) {
1928 port->ignore_status_mask |= UART011_DR_BE;
1929 /*
1930 * If we're ignoring parity and break indicators,
1931 * ignore overruns too (for real raw support).
1932 */
1933 if (termios->c_iflag & IGNPAR)
1934 port->ignore_status_mask |= UART011_DR_OE;
1935 }
1936
1937 /*
1938 * Ignore all characters if CREAD is not set.
1939 */
1940 if ((termios->c_cflag & CREAD) == 0)
1941 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1942 }
1943
1944 static void
1945 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1946 struct ktermios *old)
1947 {
1948 struct uart_amba_port *uap =
1949 container_of(port, struct uart_amba_port, port);
1950 unsigned int lcr_h, old_cr;
1951 unsigned long flags;
1952 unsigned int baud, quot, clkdiv;
1953
1954 if (uap->vendor->oversampling)
1955 clkdiv = 8;
1956 else
1957 clkdiv = 16;
1958
1959 /*
1960 * Ask the core to calculate the divisor for us.
1961 */
1962 baud = uart_get_baud_rate(port, termios, old, 0,
1963 port->uartclk / clkdiv);
1964 #ifdef CONFIG_DMA_ENGINE
1965 /*
1966 * Adjust RX DMA polling rate with baud rate if not specified.
1967 */
1968 if (uap->dmarx.auto_poll_rate)
1969 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1970 #endif
1971
1972 if (baud > port->uartclk/16)
1973 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1974 else
1975 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1976
1977 switch (termios->c_cflag & CSIZE) {
1978 case CS5:
1979 lcr_h = UART01x_LCRH_WLEN_5;
1980 break;
1981 case CS6:
1982 lcr_h = UART01x_LCRH_WLEN_6;
1983 break;
1984 case CS7:
1985 lcr_h = UART01x_LCRH_WLEN_7;
1986 break;
1987 default: // CS8
1988 lcr_h = UART01x_LCRH_WLEN_8;
1989 break;
1990 }
1991 if (termios->c_cflag & CSTOPB)
1992 lcr_h |= UART01x_LCRH_STP2;
1993 if (termios->c_cflag & PARENB) {
1994 lcr_h |= UART01x_LCRH_PEN;
1995 if (!(termios->c_cflag & PARODD))
1996 lcr_h |= UART01x_LCRH_EPS;
1997 }
1998 if (uap->fifosize > 1)
1999 lcr_h |= UART01x_LCRH_FEN;
2000
2001 spin_lock_irqsave(&port->lock, flags);
2002
2003 /*
2004 * Update the per-port timeout.
2005 */
2006 uart_update_timeout(port, termios->c_cflag, baud);
2007
2008 pl011_setup_status_masks(port, termios);
2009
2010 if (UART_ENABLE_MS(port, termios->c_cflag))
2011 pl011_enable_ms(port);
2012
2013 /* first, disable everything */
2014 old_cr = pl011_readw(uap, REG_CR);
2015 pl011_writew(uap, 0, REG_CR);
2016
2017 if (termios->c_cflag & CRTSCTS) {
2018 if (old_cr & UART011_CR_RTS)
2019 old_cr |= UART011_CR_RTSEN;
2020
2021 old_cr |= UART011_CR_CTSEN;
2022 uap->autorts = true;
2023 } else {
2024 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2025 uap->autorts = false;
2026 }
2027
2028 if (uap->vendor->oversampling) {
2029 if (baud > port->uartclk / 16)
2030 old_cr |= ST_UART011_CR_OVSFACT;
2031 else
2032 old_cr &= ~ST_UART011_CR_OVSFACT;
2033 }
2034
2035 /*
2036 * Workaround for the ST Micro oversampling variants to
2037 * increase the bitrate slightly, by lowering the divisor,
2038 * to avoid delayed sampling of start bit at high speeds,
2039 * else we see data corruption.
2040 */
2041 if (uap->vendor->oversampling) {
2042 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2043 quot -= 1;
2044 else if ((baud > 3250000) && (quot > 2))
2045 quot -= 2;
2046 }
2047 /* Set baud rate */
2048 pl011_writew(uap, quot & 0x3f, REG_FBRD);
2049 pl011_writew(uap, quot >> 6, REG_IBRD);
2050
2051 /*
2052 * ----------v----------v----------v----------v-----
2053 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
2054 * REG_FBRD & REG_IBRD.
2055 * ----------^----------^----------^----------^-----
2056 */
2057 pl011_write_lcr_h(uap, lcr_h);
2058 pl011_writew(uap, old_cr, REG_CR);
2059
2060 spin_unlock_irqrestore(&port->lock, flags);
2061 }
2062
2063 static void
2064 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2065 struct ktermios *old)
2066 {
2067 struct uart_amba_port *uap =
2068 container_of(port, struct uart_amba_port, port);
2069 unsigned long flags;
2070
2071 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2072
2073 /* The SBSA UART only supports 8n1 without hardware flow control. */
2074 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2075 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2076 termios->c_cflag |= CS8 | CLOCAL;
2077
2078 spin_lock_irqsave(&port->lock, flags);
2079 uart_update_timeout(port, CS8, uap->fixed_baud);
2080 pl011_setup_status_masks(port, termios);
2081 spin_unlock_irqrestore(&port->lock, flags);
2082 }
2083
2084 static const char *pl011_type(struct uart_port *port)
2085 {
2086 struct uart_amba_port *uap =
2087 container_of(port, struct uart_amba_port, port);
2088 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2089 }
2090
2091 /*
2092 * Release the memory region(s) being used by 'port'
2093 */
2094 static void pl011_release_port(struct uart_port *port)
2095 {
2096 release_mem_region(port->mapbase, SZ_4K);
2097 }
2098
2099 /*
2100 * Request the memory region(s) being used by 'port'
2101 */
2102 static int pl011_request_port(struct uart_port *port)
2103 {
2104 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2105 != NULL ? 0 : -EBUSY;
2106 }
2107
2108 /*
2109 * Configure/autoconfigure the port.
2110 */
2111 static void pl011_config_port(struct uart_port *port, int flags)
2112 {
2113 if (flags & UART_CONFIG_TYPE) {
2114 port->type = PORT_AMBA;
2115 pl011_request_port(port);
2116 }
2117 }
2118
2119 /*
2120 * verify the new serial_struct (for TIOCSSERIAL).
2121 */
2122 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2123 {
2124 int ret = 0;
2125 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2126 ret = -EINVAL;
2127 if (ser->irq < 0 || ser->irq >= nr_irqs)
2128 ret = -EINVAL;
2129 if (ser->baud_base < 9600)
2130 ret = -EINVAL;
2131 return ret;
2132 }
2133
2134 static struct uart_ops amba_pl011_pops = {
2135 .tx_empty = pl011_tx_empty,
2136 .set_mctrl = pl011_set_mctrl,
2137 .get_mctrl = pl011_get_mctrl,
2138 .stop_tx = pl011_stop_tx,
2139 .start_tx = pl011_start_tx,
2140 .stop_rx = pl011_stop_rx,
2141 .enable_ms = pl011_enable_ms,
2142 .break_ctl = pl011_break_ctl,
2143 .startup = pl011_startup,
2144 .shutdown = pl011_shutdown,
2145 .flush_buffer = pl011_dma_flush_buffer,
2146 .set_termios = pl011_set_termios,
2147 .type = pl011_type,
2148 .release_port = pl011_release_port,
2149 .request_port = pl011_request_port,
2150 .config_port = pl011_config_port,
2151 .verify_port = pl011_verify_port,
2152 #ifdef CONFIG_CONSOLE_POLL
2153 .poll_init = pl011_hwinit,
2154 .poll_get_char = pl011_get_poll_char,
2155 .poll_put_char = pl011_put_poll_char,
2156 #endif
2157 };
2158
2159 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2160 {
2161 }
2162
2163 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2164 {
2165 return 0;
2166 }
2167
2168 static const struct uart_ops sbsa_uart_pops = {
2169 .tx_empty = pl011_tx_empty,
2170 .set_mctrl = sbsa_uart_set_mctrl,
2171 .get_mctrl = sbsa_uart_get_mctrl,
2172 .stop_tx = pl011_stop_tx,
2173 .start_tx = pl011_start_tx,
2174 .stop_rx = pl011_stop_rx,
2175 .startup = sbsa_uart_startup,
2176 .shutdown = sbsa_uart_shutdown,
2177 .set_termios = sbsa_uart_set_termios,
2178 .type = pl011_type,
2179 .release_port = pl011_release_port,
2180 .request_port = pl011_request_port,
2181 .config_port = pl011_config_port,
2182 .verify_port = pl011_verify_port,
2183 #ifdef CONFIG_CONSOLE_POLL
2184 .poll_init = pl011_hwinit,
2185 .poll_get_char = pl011_get_poll_char,
2186 .poll_put_char = pl011_put_poll_char,
2187 #endif
2188 };
2189
2190 static struct uart_amba_port *amba_ports[UART_NR];
2191
2192 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2193
2194 static void pl011_console_putchar(struct uart_port *port, int ch)
2195 {
2196 struct uart_amba_port *uap =
2197 container_of(port, struct uart_amba_port, port);
2198
2199 while (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
2200 barrier();
2201 pl011_writew(uap, ch, REG_DR);
2202 }
2203
2204 static void
2205 pl011_console_write(struct console *co, const char *s, unsigned int count)
2206 {
2207 struct uart_amba_port *uap = amba_ports[co->index];
2208 unsigned int status, old_cr = 0, new_cr;
2209 unsigned long flags;
2210 int locked = 1;
2211
2212 clk_enable(uap->clk);
2213
2214 local_irq_save(flags);
2215 if (uap->port.sysrq)
2216 locked = 0;
2217 else if (oops_in_progress)
2218 locked = spin_trylock(&uap->port.lock);
2219 else
2220 spin_lock(&uap->port.lock);
2221
2222 /*
2223 * First save the CR then disable the interrupts
2224 */
2225 if (!uap->vendor->always_enabled) {
2226 old_cr = pl011_readw(uap, REG_CR);
2227 new_cr = old_cr & ~UART011_CR_CTSEN;
2228 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2229 pl011_writew(uap, new_cr, REG_CR);
2230 }
2231
2232 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2233
2234 /*
2235 * Finally, wait for transmitter to become empty
2236 * and restore the TCR
2237 */
2238 do {
2239 status = pl011_readw(uap, REG_FR);
2240 } while (status & uap->fr_busy);
2241 if (!uap->vendor->always_enabled)
2242 pl011_writew(uap, old_cr, REG_CR);
2243
2244 if (locked)
2245 spin_unlock(&uap->port.lock);
2246 local_irq_restore(flags);
2247
2248 clk_disable(uap->clk);
2249 }
2250
2251 static void __init
2252 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2253 int *parity, int *bits)
2254 {
2255 if (pl011_readw(uap, REG_CR) & UART01x_CR_UARTEN) {
2256 unsigned int lcr_h, ibrd, fbrd;
2257
2258 lcr_h = pl011_readw(uap, uap->lcrh_tx);
2259
2260 *parity = 'n';
2261 if (lcr_h & UART01x_LCRH_PEN) {
2262 if (lcr_h & UART01x_LCRH_EPS)
2263 *parity = 'e';
2264 else
2265 *parity = 'o';
2266 }
2267
2268 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2269 *bits = 7;
2270 else
2271 *bits = 8;
2272
2273 ibrd = pl011_readw(uap, REG_IBRD);
2274 fbrd = pl011_readw(uap, REG_FBRD);
2275
2276 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2277
2278 if (uap->vendor->oversampling) {
2279 if (pl011_readw(uap, REG_CR)
2280 & ST_UART011_CR_OVSFACT)
2281 *baud *= 2;
2282 }
2283 }
2284 }
2285
2286 static int __init pl011_console_setup(struct console *co, char *options)
2287 {
2288 struct uart_amba_port *uap;
2289 int baud = 38400;
2290 int bits = 8;
2291 int parity = 'n';
2292 int flow = 'n';
2293 int ret;
2294
2295 /*
2296 * Check whether an invalid uart number has been specified, and
2297 * if so, search for the first available port that does have
2298 * console support.
2299 */
2300 if (co->index >= UART_NR)
2301 co->index = 0;
2302 uap = amba_ports[co->index];
2303 if (!uap)
2304 return -ENODEV;
2305
2306 /* Allow pins to be muxed in and configured */
2307 pinctrl_pm_select_default_state(uap->port.dev);
2308
2309 ret = clk_prepare(uap->clk);
2310 if (ret)
2311 return ret;
2312
2313 if (dev_get_platdata(uap->port.dev)) {
2314 struct amba_pl011_data *plat;
2315
2316 plat = dev_get_platdata(uap->port.dev);
2317 if (plat->init)
2318 plat->init();
2319 }
2320
2321 uap->port.uartclk = clk_get_rate(uap->clk);
2322
2323 if (uap->vendor->fixed_options) {
2324 baud = uap->fixed_baud;
2325 } else {
2326 if (options)
2327 uart_parse_options(options,
2328 &baud, &parity, &bits, &flow);
2329 else
2330 pl011_console_get_options(uap, &baud, &parity, &bits);
2331 }
2332
2333 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2334 }
2335
2336 static struct uart_driver amba_reg;
2337 static struct console amba_console = {
2338 .name = "ttyAMA",
2339 .write = pl011_console_write,
2340 .device = uart_console_device,
2341 .setup = pl011_console_setup,
2342 .flags = CON_PRINTBUFFER,
2343 .index = -1,
2344 .data = &amba_reg,
2345 };
2346
2347 #define AMBA_CONSOLE (&amba_console)
2348
2349 static void pl011_putc(struct uart_port *port, int c)
2350 {
2351 struct uart_amba_port *uap =
2352 container_of(port, struct uart_amba_port, port);
2353
2354 while (pl011_readw(uap, REG_FR) & UART01x_FR_TXFF)
2355 ;
2356 pl011_writeb(uap, c, REG_DR);
2357 while (pl011_readw(uap, REG_FR) & uap->fr_busy)
2358 ;
2359 }
2360
2361 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2362 {
2363 struct earlycon_device *dev = con->data;
2364
2365 uart_console_write(&dev->port, s, n, pl011_putc);
2366 }
2367
2368 static int __init pl011_early_console_setup(struct earlycon_device *device,
2369 const char *opt)
2370 {
2371 if (!device->port.membase)
2372 return -ENODEV;
2373
2374 device->con->write = pl011_early_write;
2375 return 0;
2376 }
2377 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2378 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2379
2380 #else
2381 #define AMBA_CONSOLE NULL
2382 #endif
2383
2384 static struct uart_driver amba_reg = {
2385 .owner = THIS_MODULE,
2386 .driver_name = "ttyAMA",
2387 .dev_name = "ttyAMA",
2388 .major = SERIAL_AMBA_MAJOR,
2389 .minor = SERIAL_AMBA_MINOR,
2390 .nr = UART_NR,
2391 .cons = AMBA_CONSOLE,
2392 };
2393
2394 static int pl011_probe_dt_alias(int index, struct device *dev)
2395 {
2396 struct device_node *np;
2397 static bool seen_dev_with_alias = false;
2398 static bool seen_dev_without_alias = false;
2399 int ret = index;
2400
2401 if (!IS_ENABLED(CONFIG_OF))
2402 return ret;
2403
2404 np = dev->of_node;
2405 if (!np)
2406 return ret;
2407
2408 ret = of_alias_get_id(np, "serial");
2409 if (IS_ERR_VALUE(ret)) {
2410 seen_dev_without_alias = true;
2411 ret = index;
2412 } else {
2413 seen_dev_with_alias = true;
2414 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2415 dev_warn(dev, "requested serial port %d not available.\n", ret);
2416 ret = index;
2417 }
2418 }
2419
2420 if (seen_dev_with_alias && seen_dev_without_alias)
2421 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2422
2423 return ret;
2424 }
2425
2426 /* unregisters the driver also if no more ports are left */
2427 static void pl011_unregister_port(struct uart_amba_port *uap)
2428 {
2429 int i;
2430 bool busy = false;
2431
2432 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2433 if (amba_ports[i] == uap)
2434 amba_ports[i] = NULL;
2435 else if (amba_ports[i])
2436 busy = true;
2437 }
2438 pl011_dma_remove(uap);
2439 if (!busy)
2440 uart_unregister_driver(&amba_reg);
2441 }
2442
2443 static int pl011_find_free_port(void)
2444 {
2445 int i;
2446
2447 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2448 if (amba_ports[i] == NULL)
2449 return i;
2450
2451 return -EBUSY;
2452 }
2453
2454 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2455 struct resource *mmiobase, int index)
2456 {
2457 void __iomem *base;
2458
2459 base = devm_ioremap_resource(dev, mmiobase);
2460 if (IS_ERR(base))
2461 return PTR_ERR(base);
2462
2463 index = pl011_probe_dt_alias(index, dev);
2464
2465 uap->old_cr = 0;
2466 uap->port.dev = dev;
2467 uap->port.mapbase = mmiobase->start;
2468 uap->port.membase = base;
2469 uap->port.iotype = UPIO_MEM;
2470 uap->port.fifosize = uap->fifosize;
2471 uap->port.flags = UPF_BOOT_AUTOCONF;
2472 uap->port.line = index;
2473
2474 amba_ports[index] = uap;
2475
2476 return 0;
2477 }
2478
2479 static int pl011_register_port(struct uart_amba_port *uap)
2480 {
2481 int ret;
2482
2483 /* Ensure interrupts from this UART are masked and cleared */
2484 pl011_writew(uap, 0, REG_IMSC);
2485 pl011_writew(uap, 0xffff, REG_ICR);
2486
2487 if (!amba_reg.state) {
2488 ret = uart_register_driver(&amba_reg);
2489 if (ret < 0) {
2490 dev_err(uap->port.dev,
2491 "Failed to register AMBA-PL011 driver\n");
2492 return ret;
2493 }
2494 }
2495
2496 ret = uart_add_one_port(&amba_reg, &uap->port);
2497 if (ret)
2498 pl011_unregister_port(uap);
2499
2500 return ret;
2501 }
2502
2503 #ifdef CONFIG_ARM_AMBA
2504 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2505 {
2506 struct uart_amba_port *uap;
2507 struct vendor_data *vendor = id->data;
2508 int portnr, ret;
2509
2510 portnr = pl011_find_free_port();
2511 if (portnr < 0)
2512 return portnr;
2513
2514 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2515 GFP_KERNEL);
2516 if (!uap)
2517 return -ENOMEM;
2518
2519 uap->clk = devm_clk_get(&dev->dev, NULL);
2520 if (IS_ERR(uap->clk))
2521 return PTR_ERR(uap->clk);
2522
2523 uap->vendor = vendor;
2524 uap->reg_lut = vendor->reg_lut;
2525 uap->lcrh_rx = vendor->lcrh_rx;
2526 uap->lcrh_tx = vendor->lcrh_tx;
2527 uap->fr_busy = vendor->fr_busy;
2528 uap->fr_dsr = vendor->fr_dsr;
2529 uap->fr_cts = vendor->fr_cts;
2530 uap->fr_ri = vendor->fr_ri;
2531 uap->fifosize = vendor->get_fifosize(dev);
2532 uap->port.irq = dev->irq[0];
2533 uap->port.ops = &amba_pl011_pops;
2534
2535 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2536
2537 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2538 if (ret)
2539 return ret;
2540
2541 amba_set_drvdata(dev, uap);
2542
2543 return pl011_register_port(uap);
2544 }
2545
2546 static int pl011_remove(struct amba_device *dev)
2547 {
2548 struct uart_amba_port *uap = amba_get_drvdata(dev);
2549
2550 uart_remove_one_port(&amba_reg, &uap->port);
2551 pl011_unregister_port(uap);
2552 return 0;
2553 }
2554 #endif
2555
2556 #ifdef CONFIG_SOC_ZX296702
2557 static int zx_uart_probe(struct platform_device *pdev)
2558 {
2559 struct uart_amba_port *uap;
2560 struct vendor_data *vendor = &vendor_zte;
2561 struct resource *res;
2562 int portnr, ret;
2563
2564 portnr = pl011_find_free_port();
2565 if (portnr < 0)
2566 return portnr;
2567
2568 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2569 GFP_KERNEL);
2570 if (!uap) {
2571 ret = -ENOMEM;
2572 goto out;
2573 }
2574
2575 uap->clk = devm_clk_get(&pdev->dev, NULL);
2576 if (IS_ERR(uap->clk)) {
2577 ret = PTR_ERR(uap->clk);
2578 goto out;
2579 }
2580
2581 uap->vendor = vendor;
2582 uap->reg_lut = vendor->reg_lut;
2583 uap->lcrh_rx = vendor->lcrh_rx;
2584 uap->lcrh_tx = vendor->lcrh_tx;
2585 uap->fr_busy = vendor->fr_busy;
2586 uap->fr_dsr = vendor->fr_dsr;
2587 uap->fr_cts = vendor->fr_cts;
2588 uap->fr_ri = vendor->fr_ri;
2589 uap->fifosize = 16;
2590 uap->port.irq = platform_get_irq(pdev, 0);
2591 uap->port.ops = &amba_pl011_pops;
2592
2593 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2594
2595 ret = pl011_setup_port(&pdev->dev, uap, res, portnr);
2596 if (ret)
2597 return ret;
2598
2599 platform_set_drvdata(pdev, uap);
2600
2601 return pl011_register_port(uap);
2602 out:
2603 return ret;
2604 }
2605
2606 static int zx_uart_remove(struct platform_device *pdev)
2607 {
2608 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2609
2610 uart_remove_one_port(&amba_reg, &uap->port);
2611 pl011_unregister_port(uap);
2612 return 0;
2613 }
2614 #endif
2615
2616 #ifdef CONFIG_PM_SLEEP
2617 static int pl011_suspend(struct device *dev)
2618 {
2619 struct uart_amba_port *uap = dev_get_drvdata(dev);
2620
2621 if (!uap)
2622 return -EINVAL;
2623
2624 return uart_suspend_port(&amba_reg, &uap->port);
2625 }
2626
2627 static int pl011_resume(struct device *dev)
2628 {
2629 struct uart_amba_port *uap = dev_get_drvdata(dev);
2630
2631 if (!uap)
2632 return -EINVAL;
2633
2634 return uart_resume_port(&amba_reg, &uap->port);
2635 }
2636 #endif
2637
2638 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2639
2640 static int sbsa_uart_probe(struct platform_device *pdev)
2641 {
2642 struct uart_amba_port *uap;
2643 struct resource *r;
2644 int portnr, ret;
2645 int baudrate;
2646
2647 /*
2648 * Check the mandatory baud rate parameter in the DT node early
2649 * so that we can easily exit with the error.
2650 */
2651 if (pdev->dev.of_node) {
2652 struct device_node *np = pdev->dev.of_node;
2653
2654 ret = of_property_read_u32(np, "current-speed", &baudrate);
2655 if (ret)
2656 return ret;
2657 } else {
2658 baudrate = 115200;
2659 }
2660
2661 portnr = pl011_find_free_port();
2662 if (portnr < 0)
2663 return portnr;
2664
2665 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2666 GFP_KERNEL);
2667 if (!uap)
2668 return -ENOMEM;
2669
2670 uap->vendor = &vendor_sbsa;
2671 uap->reg_lut = vendor_sbsa.reg_lut;
2672 uap->fr_busy = vendor_sbsa.fr_busy;
2673 uap->fr_dsr = vendor_sbsa.fr_dsr;
2674 uap->fr_cts = vendor_sbsa.fr_cts;
2675 uap->fr_ri = vendor_sbsa.fr_ri;
2676 uap->fifosize = 32;
2677 uap->port.irq = platform_get_irq(pdev, 0);
2678 uap->port.ops = &sbsa_uart_pops;
2679 uap->fixed_baud = baudrate;
2680
2681 snprintf(uap->type, sizeof(uap->type), "SBSA");
2682
2683 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2684
2685 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2686 if (ret)
2687 return ret;
2688
2689 platform_set_drvdata(pdev, uap);
2690
2691 return pl011_register_port(uap);
2692 }
2693
2694 static int sbsa_uart_remove(struct platform_device *pdev)
2695 {
2696 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2697
2698 uart_remove_one_port(&amba_reg, &uap->port);
2699 pl011_unregister_port(uap);
2700 return 0;
2701 }
2702
2703 static const struct of_device_id sbsa_uart_of_match[] = {
2704 { .compatible = "arm,sbsa-uart", },
2705 {},
2706 };
2707 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2708
2709 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2710 { "ARMH0011", 0 },
2711 {},
2712 };
2713 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2714
2715 static struct platform_driver arm_sbsa_uart_platform_driver = {
2716 .probe = sbsa_uart_probe,
2717 .remove = sbsa_uart_remove,
2718 .driver = {
2719 .name = "sbsa-uart",
2720 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2721 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2722 },
2723 };
2724
2725 #ifdef CONFIG_ARM_AMBA
2726 static struct amba_id pl011_ids[] = {
2727 {
2728 .id = 0x00041011,
2729 .mask = 0x000fffff,
2730 .data = &vendor_arm,
2731 },
2732 {
2733 .id = 0x00380802,
2734 .mask = 0x00ffffff,
2735 .data = &vendor_st,
2736 },
2737 { 0, 0 },
2738 };
2739
2740 MODULE_DEVICE_TABLE(amba, pl011_ids);
2741
2742 static struct amba_driver pl011_driver = {
2743 .drv = {
2744 .name = "uart-pl011",
2745 .pm = &pl011_dev_pm_ops,
2746 },
2747 .id_table = pl011_ids,
2748 .probe = pl011_probe,
2749 .remove = pl011_remove,
2750 };
2751 #endif
2752
2753 #ifdef CONFIG_SOC_ZX296702
2754 static const struct of_device_id zx_uart_dt_ids[] = {
2755 { .compatible = "zte,zx296702-uart", },
2756 { /* sentinel */ }
2757 };
2758 MODULE_DEVICE_TABLE(of, zx_uart_dt_ids);
2759
2760 static struct platform_driver zx_uart_driver = {
2761 .driver = {
2762 .name = "zx-uart",
2763 .owner = THIS_MODULE,
2764 .pm = &pl011_dev_pm_ops,
2765 .of_match_table = zx_uart_dt_ids,
2766 },
2767 .probe = zx_uart_probe,
2768 .remove = zx_uart_remove,
2769 };
2770 #endif
2771
2772
2773 static int __init pl011_init(void)
2774 {
2775 int ret;
2776 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2777
2778 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2779 pr_warn("could not register SBSA UART platform driver\n");
2780
2781 #ifdef CONFIG_SOC_ZX296702
2782 ret = platform_driver_register(&zx_uart_driver);
2783 if (ret)
2784 pr_warn("could not register ZX UART platform driver\n");
2785 #endif
2786
2787 #ifdef CONFIG_ARM_AMBA
2788 ret = amba_driver_register(&pl011_driver);
2789 #endif
2790 return ret;
2791 }
2792
2793 static void __exit pl011_exit(void)
2794 {
2795 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2796 #ifdef CONFIG_SOC_ZX296702
2797 platform_driver_unregister(&zx_uart_driver);
2798 #endif
2799 #ifdef CONFIG_ARM_AMBA
2800 amba_driver_unregister(&pl011_driver);
2801 #endif
2802 }
2803
2804 /*
2805 * While this can be a module, if builtin it's most likely the console
2806 * So let's leave module_exit but move module_init to an earlier place
2807 */
2808 arch_initcall(pl011_init);
2809 module_exit(pl011_exit);
2810
2811 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2812 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2813 MODULE_LICENSE("GPL");