]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/serial/amba-pl011.c
Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / serial / amba-pl011.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19
20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/amba/bus.h>
35 #include <linux/amba/serial.h>
36 #include <linux/clk.h>
37 #include <linux/slab.h>
38 #include <linux/dmaengine.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/delay.h>
42 #include <linux/types.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pinctrl/consumer.h>
46 #include <linux/sizes.h>
47 #include <linux/io.h>
48 #include <linux/acpi.h>
49
50 #include "amba-pl011.h"
51
52 #define UART_NR 14
53
54 #define SERIAL_AMBA_MAJOR 204
55 #define SERIAL_AMBA_MINOR 64
56 #define SERIAL_AMBA_NR UART_NR
57
58 #define AMBA_ISR_PASS_LIMIT 256
59
60 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
61 #define UART_DUMMY_DR_RX (1 << 16)
62
63 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
64 [REG_DR] = UART01x_DR,
65 [REG_FR] = UART01x_FR,
66 [REG_LCRH_RX] = UART011_LCRH,
67 [REG_LCRH_TX] = UART011_LCRH,
68 [REG_IBRD] = UART011_IBRD,
69 [REG_FBRD] = UART011_FBRD,
70 [REG_CR] = UART011_CR,
71 [REG_IFLS] = UART011_IFLS,
72 [REG_IMSC] = UART011_IMSC,
73 [REG_RIS] = UART011_RIS,
74 [REG_MIS] = UART011_MIS,
75 [REG_ICR] = UART011_ICR,
76 [REG_DMACR] = UART011_DMACR,
77 };
78
79 /* There is by now at least one vendor with differing details, so handle it */
80 struct vendor_data {
81 const u16 *reg_offset;
82 unsigned int ifls;
83 unsigned int fr_busy;
84 unsigned int fr_dsr;
85 unsigned int fr_cts;
86 unsigned int fr_ri;
87 unsigned int inv_fr;
88 bool access_32b;
89 bool oversampling;
90 bool dma_threshold;
91 bool cts_event_workaround;
92 bool always_enabled;
93 bool fixed_options;
94
95 unsigned int (*get_fifosize)(struct amba_device *dev);
96 };
97
98 static unsigned int get_fifosize_arm(struct amba_device *dev)
99 {
100 return amba_rev(dev) < 3 ? 16 : 32;
101 }
102
103 static struct vendor_data vendor_arm = {
104 .reg_offset = pl011_std_offsets,
105 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
106 .fr_busy = UART01x_FR_BUSY,
107 .fr_dsr = UART01x_FR_DSR,
108 .fr_cts = UART01x_FR_CTS,
109 .fr_ri = UART011_FR_RI,
110 .oversampling = false,
111 .dma_threshold = false,
112 .cts_event_workaround = false,
113 .always_enabled = false,
114 .fixed_options = false,
115 .get_fifosize = get_fifosize_arm,
116 };
117
118 static const struct vendor_data vendor_sbsa = {
119 .reg_offset = pl011_std_offsets,
120 .fr_busy = UART01x_FR_BUSY,
121 .fr_dsr = UART01x_FR_DSR,
122 .fr_cts = UART01x_FR_CTS,
123 .fr_ri = UART011_FR_RI,
124 .access_32b = true,
125 .oversampling = false,
126 .dma_threshold = false,
127 .cts_event_workaround = false,
128 .always_enabled = true,
129 .fixed_options = true,
130 };
131
132 #ifdef CONFIG_ACPI_SPCR_TABLE
133 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
134 .reg_offset = pl011_std_offsets,
135 .fr_busy = UART011_FR_TXFE,
136 .fr_dsr = UART01x_FR_DSR,
137 .fr_cts = UART01x_FR_CTS,
138 .fr_ri = UART011_FR_RI,
139 .inv_fr = UART011_FR_TXFE,
140 .access_32b = true,
141 .oversampling = false,
142 .dma_threshold = false,
143 .cts_event_workaround = false,
144 .always_enabled = true,
145 .fixed_options = true,
146 };
147 #endif
148
149 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
150 [REG_DR] = UART01x_DR,
151 [REG_ST_DMAWM] = ST_UART011_DMAWM,
152 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
153 [REG_FR] = UART01x_FR,
154 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
155 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
156 [REG_IBRD] = UART011_IBRD,
157 [REG_FBRD] = UART011_FBRD,
158 [REG_CR] = UART011_CR,
159 [REG_IFLS] = UART011_IFLS,
160 [REG_IMSC] = UART011_IMSC,
161 [REG_RIS] = UART011_RIS,
162 [REG_MIS] = UART011_MIS,
163 [REG_ICR] = UART011_ICR,
164 [REG_DMACR] = UART011_DMACR,
165 [REG_ST_XFCR] = ST_UART011_XFCR,
166 [REG_ST_XON1] = ST_UART011_XON1,
167 [REG_ST_XON2] = ST_UART011_XON2,
168 [REG_ST_XOFF1] = ST_UART011_XOFF1,
169 [REG_ST_XOFF2] = ST_UART011_XOFF2,
170 [REG_ST_ITCR] = ST_UART011_ITCR,
171 [REG_ST_ITIP] = ST_UART011_ITIP,
172 [REG_ST_ABCR] = ST_UART011_ABCR,
173 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
174 };
175
176 static unsigned int get_fifosize_st(struct amba_device *dev)
177 {
178 return 64;
179 }
180
181 static struct vendor_data vendor_st = {
182 .reg_offset = pl011_st_offsets,
183 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
184 .fr_busy = UART01x_FR_BUSY,
185 .fr_dsr = UART01x_FR_DSR,
186 .fr_cts = UART01x_FR_CTS,
187 .fr_ri = UART011_FR_RI,
188 .oversampling = true,
189 .dma_threshold = true,
190 .cts_event_workaround = true,
191 .always_enabled = false,
192 .fixed_options = false,
193 .get_fifosize = get_fifosize_st,
194 };
195
196 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
197 [REG_DR] = ZX_UART011_DR,
198 [REG_FR] = ZX_UART011_FR,
199 [REG_LCRH_RX] = ZX_UART011_LCRH,
200 [REG_LCRH_TX] = ZX_UART011_LCRH,
201 [REG_IBRD] = ZX_UART011_IBRD,
202 [REG_FBRD] = ZX_UART011_FBRD,
203 [REG_CR] = ZX_UART011_CR,
204 [REG_IFLS] = ZX_UART011_IFLS,
205 [REG_IMSC] = ZX_UART011_IMSC,
206 [REG_RIS] = ZX_UART011_RIS,
207 [REG_MIS] = ZX_UART011_MIS,
208 [REG_ICR] = ZX_UART011_ICR,
209 [REG_DMACR] = ZX_UART011_DMACR,
210 };
211
212 static unsigned int get_fifosize_zte(struct amba_device *dev)
213 {
214 return 16;
215 }
216
217 static struct vendor_data vendor_zte = {
218 .reg_offset = pl011_zte_offsets,
219 .access_32b = true,
220 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
221 .fr_busy = ZX_UART01x_FR_BUSY,
222 .fr_dsr = ZX_UART01x_FR_DSR,
223 .fr_cts = ZX_UART01x_FR_CTS,
224 .fr_ri = ZX_UART011_FR_RI,
225 .get_fifosize = get_fifosize_zte,
226 };
227
228 /* Deals with DMA transactions */
229
230 struct pl011_sgbuf {
231 struct scatterlist sg;
232 char *buf;
233 };
234
235 struct pl011_dmarx_data {
236 struct dma_chan *chan;
237 struct completion complete;
238 bool use_buf_b;
239 struct pl011_sgbuf sgbuf_a;
240 struct pl011_sgbuf sgbuf_b;
241 dma_cookie_t cookie;
242 bool running;
243 struct timer_list timer;
244 unsigned int last_residue;
245 unsigned long last_jiffies;
246 bool auto_poll_rate;
247 unsigned int poll_rate;
248 unsigned int poll_timeout;
249 };
250
251 struct pl011_dmatx_data {
252 struct dma_chan *chan;
253 struct scatterlist sg;
254 char *buf;
255 bool queued;
256 };
257
258 /*
259 * We wrap our port structure around the generic uart_port.
260 */
261 struct uart_amba_port {
262 struct uart_port port;
263 const u16 *reg_offset;
264 struct clk *clk;
265 const struct vendor_data *vendor;
266 unsigned int dmacr; /* dma control reg */
267 unsigned int im; /* interrupt mask */
268 unsigned int old_status;
269 unsigned int fifosize; /* vendor-specific */
270 unsigned int old_cr; /* state during shutdown */
271 unsigned int fixed_baud; /* vendor-set fixed baud rate */
272 char type[12];
273 #ifdef CONFIG_DMA_ENGINE
274 /* DMA stuff */
275 bool using_tx_dma;
276 bool using_rx_dma;
277 struct pl011_dmarx_data dmarx;
278 struct pl011_dmatx_data dmatx;
279 bool dma_probed;
280 #endif
281 };
282
283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
284 unsigned int reg)
285 {
286 return uap->reg_offset[reg];
287 }
288
289 static unsigned int pl011_read(const struct uart_amba_port *uap,
290 unsigned int reg)
291 {
292 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
293
294 return (uap->port.iotype == UPIO_MEM32) ?
295 readl_relaxed(addr) : readw_relaxed(addr);
296 }
297
298 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
299 unsigned int reg)
300 {
301 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
302
303 if (uap->port.iotype == UPIO_MEM32)
304 writel_relaxed(val, addr);
305 else
306 writew_relaxed(val, addr);
307 }
308
309 /*
310 * Reads up to 256 characters from the FIFO or until it's empty and
311 * inserts them into the TTY layer. Returns the number of characters
312 * read from the FIFO.
313 */
314 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
315 {
316 u16 status;
317 unsigned int ch, flag, max_count = 256;
318 int fifotaken = 0;
319
320 while (max_count--) {
321 status = pl011_read(uap, REG_FR);
322 if (status & UART01x_FR_RXFE)
323 break;
324
325 /* Take chars from the FIFO and update status */
326 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
327 flag = TTY_NORMAL;
328 uap->port.icount.rx++;
329 fifotaken++;
330
331 if (unlikely(ch & UART_DR_ERROR)) {
332 if (ch & UART011_DR_BE) {
333 ch &= ~(UART011_DR_FE | UART011_DR_PE);
334 uap->port.icount.brk++;
335 if (uart_handle_break(&uap->port))
336 continue;
337 } else if (ch & UART011_DR_PE)
338 uap->port.icount.parity++;
339 else if (ch & UART011_DR_FE)
340 uap->port.icount.frame++;
341 if (ch & UART011_DR_OE)
342 uap->port.icount.overrun++;
343
344 ch &= uap->port.read_status_mask;
345
346 if (ch & UART011_DR_BE)
347 flag = TTY_BREAK;
348 else if (ch & UART011_DR_PE)
349 flag = TTY_PARITY;
350 else if (ch & UART011_DR_FE)
351 flag = TTY_FRAME;
352 }
353
354 if (uart_handle_sysrq_char(&uap->port, ch & 255))
355 continue;
356
357 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
358 }
359
360 return fifotaken;
361 }
362
363
364 /*
365 * All the DMA operation mode stuff goes inside this ifdef.
366 * This assumes that you have a generic DMA device interface,
367 * no custom DMA interfaces are supported.
368 */
369 #ifdef CONFIG_DMA_ENGINE
370
371 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
372
373 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
374 enum dma_data_direction dir)
375 {
376 dma_addr_t dma_addr;
377
378 sg->buf = dma_alloc_coherent(chan->device->dev,
379 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
380 if (!sg->buf)
381 return -ENOMEM;
382
383 sg_init_table(&sg->sg, 1);
384 sg_set_page(&sg->sg, phys_to_page(dma_addr),
385 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
386 sg_dma_address(&sg->sg) = dma_addr;
387 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
388
389 return 0;
390 }
391
392 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
393 enum dma_data_direction dir)
394 {
395 if (sg->buf) {
396 dma_free_coherent(chan->device->dev,
397 PL011_DMA_BUFFER_SIZE, sg->buf,
398 sg_dma_address(&sg->sg));
399 }
400 }
401
402 static void pl011_dma_probe(struct uart_amba_port *uap)
403 {
404 /* DMA is the sole user of the platform data right now */
405 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
406 struct device *dev = uap->port.dev;
407 struct dma_slave_config tx_conf = {
408 .dst_addr = uap->port.mapbase +
409 pl011_reg_to_offset(uap, REG_DR),
410 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
411 .direction = DMA_MEM_TO_DEV,
412 .dst_maxburst = uap->fifosize >> 1,
413 .device_fc = false,
414 };
415 struct dma_chan *chan;
416 dma_cap_mask_t mask;
417
418 uap->dma_probed = true;
419 chan = dma_request_slave_channel_reason(dev, "tx");
420 if (IS_ERR(chan)) {
421 if (PTR_ERR(chan) == -EPROBE_DEFER) {
422 uap->dma_probed = false;
423 return;
424 }
425
426 /* We need platform data */
427 if (!plat || !plat->dma_filter) {
428 dev_info(uap->port.dev, "no DMA platform data\n");
429 return;
430 }
431
432 /* Try to acquire a generic DMA engine slave TX channel */
433 dma_cap_zero(mask);
434 dma_cap_set(DMA_SLAVE, mask);
435
436 chan = dma_request_channel(mask, plat->dma_filter,
437 plat->dma_tx_param);
438 if (!chan) {
439 dev_err(uap->port.dev, "no TX DMA channel!\n");
440 return;
441 }
442 }
443
444 dmaengine_slave_config(chan, &tx_conf);
445 uap->dmatx.chan = chan;
446
447 dev_info(uap->port.dev, "DMA channel TX %s\n",
448 dma_chan_name(uap->dmatx.chan));
449
450 /* Optionally make use of an RX channel as well */
451 chan = dma_request_slave_channel(dev, "rx");
452
453 if (!chan && plat && plat->dma_rx_param) {
454 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
455
456 if (!chan) {
457 dev_err(uap->port.dev, "no RX DMA channel!\n");
458 return;
459 }
460 }
461
462 if (chan) {
463 struct dma_slave_config rx_conf = {
464 .src_addr = uap->port.mapbase +
465 pl011_reg_to_offset(uap, REG_DR),
466 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
467 .direction = DMA_DEV_TO_MEM,
468 .src_maxburst = uap->fifosize >> 2,
469 .device_fc = false,
470 };
471 struct dma_slave_caps caps;
472
473 /*
474 * Some DMA controllers provide information on their capabilities.
475 * If the controller does, check for suitable residue processing
476 * otherwise assime all is well.
477 */
478 if (0 == dma_get_slave_caps(chan, &caps)) {
479 if (caps.residue_granularity ==
480 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
481 dma_release_channel(chan);
482 dev_info(uap->port.dev,
483 "RX DMA disabled - no residue processing\n");
484 return;
485 }
486 }
487 dmaengine_slave_config(chan, &rx_conf);
488 uap->dmarx.chan = chan;
489
490 uap->dmarx.auto_poll_rate = false;
491 if (plat && plat->dma_rx_poll_enable) {
492 /* Set poll rate if specified. */
493 if (plat->dma_rx_poll_rate) {
494 uap->dmarx.auto_poll_rate = false;
495 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
496 } else {
497 /*
498 * 100 ms defaults to poll rate if not
499 * specified. This will be adjusted with
500 * the baud rate at set_termios.
501 */
502 uap->dmarx.auto_poll_rate = true;
503 uap->dmarx.poll_rate = 100;
504 }
505 /* 3 secs defaults poll_timeout if not specified. */
506 if (plat->dma_rx_poll_timeout)
507 uap->dmarx.poll_timeout =
508 plat->dma_rx_poll_timeout;
509 else
510 uap->dmarx.poll_timeout = 3000;
511 } else if (!plat && dev->of_node) {
512 uap->dmarx.auto_poll_rate = of_property_read_bool(
513 dev->of_node, "auto-poll");
514 if (uap->dmarx.auto_poll_rate) {
515 u32 x;
516
517 if (0 == of_property_read_u32(dev->of_node,
518 "poll-rate-ms", &x))
519 uap->dmarx.poll_rate = x;
520 else
521 uap->dmarx.poll_rate = 100;
522 if (0 == of_property_read_u32(dev->of_node,
523 "poll-timeout-ms", &x))
524 uap->dmarx.poll_timeout = x;
525 else
526 uap->dmarx.poll_timeout = 3000;
527 }
528 }
529 dev_info(uap->port.dev, "DMA channel RX %s\n",
530 dma_chan_name(uap->dmarx.chan));
531 }
532 }
533
534 static void pl011_dma_remove(struct uart_amba_port *uap)
535 {
536 if (uap->dmatx.chan)
537 dma_release_channel(uap->dmatx.chan);
538 if (uap->dmarx.chan)
539 dma_release_channel(uap->dmarx.chan);
540 }
541
542 /* Forward declare these for the refill routine */
543 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
544 static void pl011_start_tx_pio(struct uart_amba_port *uap);
545
546 /*
547 * The current DMA TX buffer has been sent.
548 * Try to queue up another DMA buffer.
549 */
550 static void pl011_dma_tx_callback(void *data)
551 {
552 struct uart_amba_port *uap = data;
553 struct pl011_dmatx_data *dmatx = &uap->dmatx;
554 unsigned long flags;
555 u16 dmacr;
556
557 spin_lock_irqsave(&uap->port.lock, flags);
558 if (uap->dmatx.queued)
559 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
560 DMA_TO_DEVICE);
561
562 dmacr = uap->dmacr;
563 uap->dmacr = dmacr & ~UART011_TXDMAE;
564 pl011_write(uap->dmacr, uap, REG_DMACR);
565
566 /*
567 * If TX DMA was disabled, it means that we've stopped the DMA for
568 * some reason (eg, XOFF received, or we want to send an X-char.)
569 *
570 * Note: we need to be careful here of a potential race between DMA
571 * and the rest of the driver - if the driver disables TX DMA while
572 * a TX buffer completing, we must update the tx queued status to
573 * get further refills (hence we check dmacr).
574 */
575 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
576 uart_circ_empty(&uap->port.state->xmit)) {
577 uap->dmatx.queued = false;
578 spin_unlock_irqrestore(&uap->port.lock, flags);
579 return;
580 }
581
582 if (pl011_dma_tx_refill(uap) <= 0)
583 /*
584 * We didn't queue a DMA buffer for some reason, but we
585 * have data pending to be sent. Re-enable the TX IRQ.
586 */
587 pl011_start_tx_pio(uap);
588
589 spin_unlock_irqrestore(&uap->port.lock, flags);
590 }
591
592 /*
593 * Try to refill the TX DMA buffer.
594 * Locking: called with port lock held and IRQs disabled.
595 * Returns:
596 * 1 if we queued up a TX DMA buffer.
597 * 0 if we didn't want to handle this by DMA
598 * <0 on error
599 */
600 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
601 {
602 struct pl011_dmatx_data *dmatx = &uap->dmatx;
603 struct dma_chan *chan = dmatx->chan;
604 struct dma_device *dma_dev = chan->device;
605 struct dma_async_tx_descriptor *desc;
606 struct circ_buf *xmit = &uap->port.state->xmit;
607 unsigned int count;
608
609 /*
610 * Try to avoid the overhead involved in using DMA if the
611 * transaction fits in the first half of the FIFO, by using
612 * the standard interrupt handling. This ensures that we
613 * issue a uart_write_wakeup() at the appropriate time.
614 */
615 count = uart_circ_chars_pending(xmit);
616 if (count < (uap->fifosize >> 1)) {
617 uap->dmatx.queued = false;
618 return 0;
619 }
620
621 /*
622 * Bodge: don't send the last character by DMA, as this
623 * will prevent XON from notifying us to restart DMA.
624 */
625 count -= 1;
626
627 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
628 if (count > PL011_DMA_BUFFER_SIZE)
629 count = PL011_DMA_BUFFER_SIZE;
630
631 if (xmit->tail < xmit->head)
632 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
633 else {
634 size_t first = UART_XMIT_SIZE - xmit->tail;
635 size_t second;
636
637 if (first > count)
638 first = count;
639 second = count - first;
640
641 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
642 if (second)
643 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
644 }
645
646 dmatx->sg.length = count;
647
648 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
649 uap->dmatx.queued = false;
650 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
651 return -EBUSY;
652 }
653
654 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
655 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
656 if (!desc) {
657 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
658 uap->dmatx.queued = false;
659 /*
660 * If DMA cannot be used right now, we complete this
661 * transaction via IRQ and let the TTY layer retry.
662 */
663 dev_dbg(uap->port.dev, "TX DMA busy\n");
664 return -EBUSY;
665 }
666
667 /* Some data to go along to the callback */
668 desc->callback = pl011_dma_tx_callback;
669 desc->callback_param = uap;
670
671 /* All errors should happen at prepare time */
672 dmaengine_submit(desc);
673
674 /* Fire the DMA transaction */
675 dma_dev->device_issue_pending(chan);
676
677 uap->dmacr |= UART011_TXDMAE;
678 pl011_write(uap->dmacr, uap, REG_DMACR);
679 uap->dmatx.queued = true;
680
681 /*
682 * Now we know that DMA will fire, so advance the ring buffer
683 * with the stuff we just dispatched.
684 */
685 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
686 uap->port.icount.tx += count;
687
688 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
689 uart_write_wakeup(&uap->port);
690
691 return 1;
692 }
693
694 /*
695 * We received a transmit interrupt without a pending X-char but with
696 * pending characters.
697 * Locking: called with port lock held and IRQs disabled.
698 * Returns:
699 * false if we want to use PIO to transmit
700 * true if we queued a DMA buffer
701 */
702 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
703 {
704 if (!uap->using_tx_dma)
705 return false;
706
707 /*
708 * If we already have a TX buffer queued, but received a
709 * TX interrupt, it will be because we've just sent an X-char.
710 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
711 */
712 if (uap->dmatx.queued) {
713 uap->dmacr |= UART011_TXDMAE;
714 pl011_write(uap->dmacr, uap, REG_DMACR);
715 uap->im &= ~UART011_TXIM;
716 pl011_write(uap->im, uap, REG_IMSC);
717 return true;
718 }
719
720 /*
721 * We don't have a TX buffer queued, so try to queue one.
722 * If we successfully queued a buffer, mask the TX IRQ.
723 */
724 if (pl011_dma_tx_refill(uap) > 0) {
725 uap->im &= ~UART011_TXIM;
726 pl011_write(uap->im, uap, REG_IMSC);
727 return true;
728 }
729 return false;
730 }
731
732 /*
733 * Stop the DMA transmit (eg, due to received XOFF).
734 * Locking: called with port lock held and IRQs disabled.
735 */
736 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
737 {
738 if (uap->dmatx.queued) {
739 uap->dmacr &= ~UART011_TXDMAE;
740 pl011_write(uap->dmacr, uap, REG_DMACR);
741 }
742 }
743
744 /*
745 * Try to start a DMA transmit, or in the case of an XON/OFF
746 * character queued for send, try to get that character out ASAP.
747 * Locking: called with port lock held and IRQs disabled.
748 * Returns:
749 * false if we want the TX IRQ to be enabled
750 * true if we have a buffer queued
751 */
752 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
753 {
754 u16 dmacr;
755
756 if (!uap->using_tx_dma)
757 return false;
758
759 if (!uap->port.x_char) {
760 /* no X-char, try to push chars out in DMA mode */
761 bool ret = true;
762
763 if (!uap->dmatx.queued) {
764 if (pl011_dma_tx_refill(uap) > 0) {
765 uap->im &= ~UART011_TXIM;
766 pl011_write(uap->im, uap, REG_IMSC);
767 } else
768 ret = false;
769 } else if (!(uap->dmacr & UART011_TXDMAE)) {
770 uap->dmacr |= UART011_TXDMAE;
771 pl011_write(uap->dmacr, uap, REG_DMACR);
772 }
773 return ret;
774 }
775
776 /*
777 * We have an X-char to send. Disable DMA to prevent it loading
778 * the TX fifo, and then see if we can stuff it into the FIFO.
779 */
780 dmacr = uap->dmacr;
781 uap->dmacr &= ~UART011_TXDMAE;
782 pl011_write(uap->dmacr, uap, REG_DMACR);
783
784 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
785 /*
786 * No space in the FIFO, so enable the transmit interrupt
787 * so we know when there is space. Note that once we've
788 * loaded the character, we should just re-enable DMA.
789 */
790 return false;
791 }
792
793 pl011_write(uap->port.x_char, uap, REG_DR);
794 uap->port.icount.tx++;
795 uap->port.x_char = 0;
796
797 /* Success - restore the DMA state */
798 uap->dmacr = dmacr;
799 pl011_write(dmacr, uap, REG_DMACR);
800
801 return true;
802 }
803
804 /*
805 * Flush the transmit buffer.
806 * Locking: called with port lock held and IRQs disabled.
807 */
808 static void pl011_dma_flush_buffer(struct uart_port *port)
809 __releases(&uap->port.lock)
810 __acquires(&uap->port.lock)
811 {
812 struct uart_amba_port *uap =
813 container_of(port, struct uart_amba_port, port);
814
815 if (!uap->using_tx_dma)
816 return;
817
818 /* Avoid deadlock with the DMA engine callback */
819 spin_unlock(&uap->port.lock);
820 dmaengine_terminate_all(uap->dmatx.chan);
821 spin_lock(&uap->port.lock);
822 if (uap->dmatx.queued) {
823 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
824 DMA_TO_DEVICE);
825 uap->dmatx.queued = false;
826 uap->dmacr &= ~UART011_TXDMAE;
827 pl011_write(uap->dmacr, uap, REG_DMACR);
828 }
829 }
830
831 static void pl011_dma_rx_callback(void *data);
832
833 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
834 {
835 struct dma_chan *rxchan = uap->dmarx.chan;
836 struct pl011_dmarx_data *dmarx = &uap->dmarx;
837 struct dma_async_tx_descriptor *desc;
838 struct pl011_sgbuf *sgbuf;
839
840 if (!rxchan)
841 return -EIO;
842
843 /* Start the RX DMA job */
844 sgbuf = uap->dmarx.use_buf_b ?
845 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
846 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
847 DMA_DEV_TO_MEM,
848 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
849 /*
850 * If the DMA engine is busy and cannot prepare a
851 * channel, no big deal, the driver will fall back
852 * to interrupt mode as a result of this error code.
853 */
854 if (!desc) {
855 uap->dmarx.running = false;
856 dmaengine_terminate_all(rxchan);
857 return -EBUSY;
858 }
859
860 /* Some data to go along to the callback */
861 desc->callback = pl011_dma_rx_callback;
862 desc->callback_param = uap;
863 dmarx->cookie = dmaengine_submit(desc);
864 dma_async_issue_pending(rxchan);
865
866 uap->dmacr |= UART011_RXDMAE;
867 pl011_write(uap->dmacr, uap, REG_DMACR);
868 uap->dmarx.running = true;
869
870 uap->im &= ~UART011_RXIM;
871 pl011_write(uap->im, uap, REG_IMSC);
872
873 return 0;
874 }
875
876 /*
877 * This is called when either the DMA job is complete, or
878 * the FIFO timeout interrupt occurred. This must be called
879 * with the port spinlock uap->port.lock held.
880 */
881 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
882 u32 pending, bool use_buf_b,
883 bool readfifo)
884 {
885 struct tty_port *port = &uap->port.state->port;
886 struct pl011_sgbuf *sgbuf = use_buf_b ?
887 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
888 int dma_count = 0;
889 u32 fifotaken = 0; /* only used for vdbg() */
890
891 struct pl011_dmarx_data *dmarx = &uap->dmarx;
892 int dmataken = 0;
893
894 if (uap->dmarx.poll_rate) {
895 /* The data can be taken by polling */
896 dmataken = sgbuf->sg.length - dmarx->last_residue;
897 /* Recalculate the pending size */
898 if (pending >= dmataken)
899 pending -= dmataken;
900 }
901
902 /* Pick the remain data from the DMA */
903 if (pending) {
904
905 /*
906 * First take all chars in the DMA pipe, then look in the FIFO.
907 * Note that tty_insert_flip_buf() tries to take as many chars
908 * as it can.
909 */
910 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
911 pending);
912
913 uap->port.icount.rx += dma_count;
914 if (dma_count < pending)
915 dev_warn(uap->port.dev,
916 "couldn't insert all characters (TTY is full?)\n");
917 }
918
919 /* Reset the last_residue for Rx DMA poll */
920 if (uap->dmarx.poll_rate)
921 dmarx->last_residue = sgbuf->sg.length;
922
923 /*
924 * Only continue with trying to read the FIFO if all DMA chars have
925 * been taken first.
926 */
927 if (dma_count == pending && readfifo) {
928 /* Clear any error flags */
929 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
930 UART011_FEIS, uap, REG_ICR);
931
932 /*
933 * If we read all the DMA'd characters, and we had an
934 * incomplete buffer, that could be due to an rx error, or
935 * maybe we just timed out. Read any pending chars and check
936 * the error status.
937 *
938 * Error conditions will only occur in the FIFO, these will
939 * trigger an immediate interrupt and stop the DMA job, so we
940 * will always find the error in the FIFO, never in the DMA
941 * buffer.
942 */
943 fifotaken = pl011_fifo_to_tty(uap);
944 }
945
946 spin_unlock(&uap->port.lock);
947 dev_vdbg(uap->port.dev,
948 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
949 dma_count, fifotaken);
950 tty_flip_buffer_push(port);
951 spin_lock(&uap->port.lock);
952 }
953
954 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
955 {
956 struct pl011_dmarx_data *dmarx = &uap->dmarx;
957 struct dma_chan *rxchan = dmarx->chan;
958 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
959 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
960 size_t pending;
961 struct dma_tx_state state;
962 enum dma_status dmastat;
963
964 /*
965 * Pause the transfer so we can trust the current counter,
966 * do this before we pause the PL011 block, else we may
967 * overflow the FIFO.
968 */
969 if (dmaengine_pause(rxchan))
970 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
971 dmastat = rxchan->device->device_tx_status(rxchan,
972 dmarx->cookie, &state);
973 if (dmastat != DMA_PAUSED)
974 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
975
976 /* Disable RX DMA - incoming data will wait in the FIFO */
977 uap->dmacr &= ~UART011_RXDMAE;
978 pl011_write(uap->dmacr, uap, REG_DMACR);
979 uap->dmarx.running = false;
980
981 pending = sgbuf->sg.length - state.residue;
982 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
983 /* Then we terminate the transfer - we now know our residue */
984 dmaengine_terminate_all(rxchan);
985
986 /*
987 * This will take the chars we have so far and insert
988 * into the framework.
989 */
990 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
991
992 /* Switch buffer & re-trigger DMA job */
993 dmarx->use_buf_b = !dmarx->use_buf_b;
994 if (pl011_dma_rx_trigger_dma(uap)) {
995 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
996 "fall back to interrupt mode\n");
997 uap->im |= UART011_RXIM;
998 pl011_write(uap->im, uap, REG_IMSC);
999 }
1000 }
1001
1002 static void pl011_dma_rx_callback(void *data)
1003 {
1004 struct uart_amba_port *uap = data;
1005 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1006 struct dma_chan *rxchan = dmarx->chan;
1007 bool lastbuf = dmarx->use_buf_b;
1008 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1009 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1010 size_t pending;
1011 struct dma_tx_state state;
1012 int ret;
1013
1014 /*
1015 * This completion interrupt occurs typically when the
1016 * RX buffer is totally stuffed but no timeout has yet
1017 * occurred. When that happens, we just want the RX
1018 * routine to flush out the secondary DMA buffer while
1019 * we immediately trigger the next DMA job.
1020 */
1021 spin_lock_irq(&uap->port.lock);
1022 /*
1023 * Rx data can be taken by the UART interrupts during
1024 * the DMA irq handler. So we check the residue here.
1025 */
1026 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1027 pending = sgbuf->sg.length - state.residue;
1028 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1029 /* Then we terminate the transfer - we now know our residue */
1030 dmaengine_terminate_all(rxchan);
1031
1032 uap->dmarx.running = false;
1033 dmarx->use_buf_b = !lastbuf;
1034 ret = pl011_dma_rx_trigger_dma(uap);
1035
1036 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1037 spin_unlock_irq(&uap->port.lock);
1038 /*
1039 * Do this check after we picked the DMA chars so we don't
1040 * get some IRQ immediately from RX.
1041 */
1042 if (ret) {
1043 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1044 "fall back to interrupt mode\n");
1045 uap->im |= UART011_RXIM;
1046 pl011_write(uap->im, uap, REG_IMSC);
1047 }
1048 }
1049
1050 /*
1051 * Stop accepting received characters, when we're shutting down or
1052 * suspending this port.
1053 * Locking: called with port lock held and IRQs disabled.
1054 */
1055 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1056 {
1057 /* FIXME. Just disable the DMA enable */
1058 uap->dmacr &= ~UART011_RXDMAE;
1059 pl011_write(uap->dmacr, uap, REG_DMACR);
1060 }
1061
1062 /*
1063 * Timer handler for Rx DMA polling.
1064 * Every polling, It checks the residue in the dma buffer and transfer
1065 * data to the tty. Also, last_residue is updated for the next polling.
1066 */
1067 static void pl011_dma_rx_poll(struct timer_list *t)
1068 {
1069 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1070 struct tty_port *port = &uap->port.state->port;
1071 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1072 struct dma_chan *rxchan = uap->dmarx.chan;
1073 unsigned long flags = 0;
1074 unsigned int dmataken = 0;
1075 unsigned int size = 0;
1076 struct pl011_sgbuf *sgbuf;
1077 int dma_count;
1078 struct dma_tx_state state;
1079
1080 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1081 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1082 if (likely(state.residue < dmarx->last_residue)) {
1083 dmataken = sgbuf->sg.length - dmarx->last_residue;
1084 size = dmarx->last_residue - state.residue;
1085 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1086 size);
1087 if (dma_count == size)
1088 dmarx->last_residue = state.residue;
1089 dmarx->last_jiffies = jiffies;
1090 }
1091 tty_flip_buffer_push(port);
1092
1093 /*
1094 * If no data is received in poll_timeout, the driver will fall back
1095 * to interrupt mode. We will retrigger DMA at the first interrupt.
1096 */
1097 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1098 > uap->dmarx.poll_timeout) {
1099
1100 spin_lock_irqsave(&uap->port.lock, flags);
1101 pl011_dma_rx_stop(uap);
1102 uap->im |= UART011_RXIM;
1103 pl011_write(uap->im, uap, REG_IMSC);
1104 spin_unlock_irqrestore(&uap->port.lock, flags);
1105
1106 uap->dmarx.running = false;
1107 dmaengine_terminate_all(rxchan);
1108 del_timer(&uap->dmarx.timer);
1109 } else {
1110 mod_timer(&uap->dmarx.timer,
1111 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1112 }
1113 }
1114
1115 static void pl011_dma_startup(struct uart_amba_port *uap)
1116 {
1117 int ret;
1118
1119 if (!uap->dma_probed)
1120 pl011_dma_probe(uap);
1121
1122 if (!uap->dmatx.chan)
1123 return;
1124
1125 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1126 if (!uap->dmatx.buf) {
1127 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1128 uap->port.fifosize = uap->fifosize;
1129 return;
1130 }
1131
1132 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1133
1134 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1135 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1136 uap->using_tx_dma = true;
1137
1138 if (!uap->dmarx.chan)
1139 goto skip_rx;
1140
1141 /* Allocate and map DMA RX buffers */
1142 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1143 DMA_FROM_DEVICE);
1144 if (ret) {
1145 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1146 "RX buffer A", ret);
1147 goto skip_rx;
1148 }
1149
1150 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1151 DMA_FROM_DEVICE);
1152 if (ret) {
1153 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1154 "RX buffer B", ret);
1155 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1156 DMA_FROM_DEVICE);
1157 goto skip_rx;
1158 }
1159
1160 uap->using_rx_dma = true;
1161
1162 skip_rx:
1163 /* Turn on DMA error (RX/TX will be enabled on demand) */
1164 uap->dmacr |= UART011_DMAONERR;
1165 pl011_write(uap->dmacr, uap, REG_DMACR);
1166
1167 /*
1168 * ST Micro variants has some specific dma burst threshold
1169 * compensation. Set this to 16 bytes, so burst will only
1170 * be issued above/below 16 bytes.
1171 */
1172 if (uap->vendor->dma_threshold)
1173 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1174 uap, REG_ST_DMAWM);
1175
1176 if (uap->using_rx_dma) {
1177 if (pl011_dma_rx_trigger_dma(uap))
1178 dev_dbg(uap->port.dev, "could not trigger initial "
1179 "RX DMA job, fall back to interrupt mode\n");
1180 if (uap->dmarx.poll_rate) {
1181 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1182 mod_timer(&uap->dmarx.timer,
1183 jiffies +
1184 msecs_to_jiffies(uap->dmarx.poll_rate));
1185 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1186 uap->dmarx.last_jiffies = jiffies;
1187 }
1188 }
1189 }
1190
1191 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1192 {
1193 if (!(uap->using_tx_dma || uap->using_rx_dma))
1194 return;
1195
1196 /* Disable RX and TX DMA */
1197 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1198 cpu_relax();
1199
1200 spin_lock_irq(&uap->port.lock);
1201 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1202 pl011_write(uap->dmacr, uap, REG_DMACR);
1203 spin_unlock_irq(&uap->port.lock);
1204
1205 if (uap->using_tx_dma) {
1206 /* In theory, this should already be done by pl011_dma_flush_buffer */
1207 dmaengine_terminate_all(uap->dmatx.chan);
1208 if (uap->dmatx.queued) {
1209 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1210 DMA_TO_DEVICE);
1211 uap->dmatx.queued = false;
1212 }
1213
1214 kfree(uap->dmatx.buf);
1215 uap->using_tx_dma = false;
1216 }
1217
1218 if (uap->using_rx_dma) {
1219 dmaengine_terminate_all(uap->dmarx.chan);
1220 /* Clean up the RX DMA */
1221 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1222 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1223 if (uap->dmarx.poll_rate)
1224 del_timer_sync(&uap->dmarx.timer);
1225 uap->using_rx_dma = false;
1226 }
1227 }
1228
1229 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1230 {
1231 return uap->using_rx_dma;
1232 }
1233
1234 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1235 {
1236 return uap->using_rx_dma && uap->dmarx.running;
1237 }
1238
1239 #else
1240 /* Blank functions if the DMA engine is not available */
1241 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1242 {
1243 }
1244
1245 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1246 {
1247 }
1248
1249 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1250 {
1251 }
1252
1253 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1254 {
1255 }
1256
1257 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1258 {
1259 return false;
1260 }
1261
1262 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1263 {
1264 }
1265
1266 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1267 {
1268 return false;
1269 }
1270
1271 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1272 {
1273 }
1274
1275 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1276 {
1277 }
1278
1279 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1280 {
1281 return -EIO;
1282 }
1283
1284 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1285 {
1286 return false;
1287 }
1288
1289 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1290 {
1291 return false;
1292 }
1293
1294 #define pl011_dma_flush_buffer NULL
1295 #endif
1296
1297 static void pl011_stop_tx(struct uart_port *port)
1298 {
1299 struct uart_amba_port *uap =
1300 container_of(port, struct uart_amba_port, port);
1301
1302 uap->im &= ~UART011_TXIM;
1303 pl011_write(uap->im, uap, REG_IMSC);
1304 pl011_dma_tx_stop(uap);
1305 }
1306
1307 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1308
1309 /* Start TX with programmed I/O only (no DMA) */
1310 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1311 {
1312 if (pl011_tx_chars(uap, false)) {
1313 uap->im |= UART011_TXIM;
1314 pl011_write(uap->im, uap, REG_IMSC);
1315 }
1316 }
1317
1318 static void pl011_start_tx(struct uart_port *port)
1319 {
1320 struct uart_amba_port *uap =
1321 container_of(port, struct uart_amba_port, port);
1322
1323 if (!pl011_dma_tx_start(uap))
1324 pl011_start_tx_pio(uap);
1325 }
1326
1327 static void pl011_stop_rx(struct uart_port *port)
1328 {
1329 struct uart_amba_port *uap =
1330 container_of(port, struct uart_amba_port, port);
1331
1332 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1333 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1334 pl011_write(uap->im, uap, REG_IMSC);
1335
1336 pl011_dma_rx_stop(uap);
1337 }
1338
1339 static void pl011_enable_ms(struct uart_port *port)
1340 {
1341 struct uart_amba_port *uap =
1342 container_of(port, struct uart_amba_port, port);
1343
1344 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1345 pl011_write(uap->im, uap, REG_IMSC);
1346 }
1347
1348 static void pl011_rx_chars(struct uart_amba_port *uap)
1349 __releases(&uap->port.lock)
1350 __acquires(&uap->port.lock)
1351 {
1352 pl011_fifo_to_tty(uap);
1353
1354 spin_unlock(&uap->port.lock);
1355 tty_flip_buffer_push(&uap->port.state->port);
1356 /*
1357 * If we were temporarily out of DMA mode for a while,
1358 * attempt to switch back to DMA mode again.
1359 */
1360 if (pl011_dma_rx_available(uap)) {
1361 if (pl011_dma_rx_trigger_dma(uap)) {
1362 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1363 "fall back to interrupt mode again\n");
1364 uap->im |= UART011_RXIM;
1365 pl011_write(uap->im, uap, REG_IMSC);
1366 } else {
1367 #ifdef CONFIG_DMA_ENGINE
1368 /* Start Rx DMA poll */
1369 if (uap->dmarx.poll_rate) {
1370 uap->dmarx.last_jiffies = jiffies;
1371 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1372 mod_timer(&uap->dmarx.timer,
1373 jiffies +
1374 msecs_to_jiffies(uap->dmarx.poll_rate));
1375 }
1376 #endif
1377 }
1378 }
1379 spin_lock(&uap->port.lock);
1380 }
1381
1382 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1383 bool from_irq)
1384 {
1385 if (unlikely(!from_irq) &&
1386 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1387 return false; /* unable to transmit character */
1388
1389 pl011_write(c, uap, REG_DR);
1390 uap->port.icount.tx++;
1391
1392 return true;
1393 }
1394
1395 /* Returns true if tx interrupts have to be (kept) enabled */
1396 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1397 {
1398 struct circ_buf *xmit = &uap->port.state->xmit;
1399 int count = uap->fifosize >> 1;
1400
1401 if (uap->port.x_char) {
1402 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1403 return true;
1404 uap->port.x_char = 0;
1405 --count;
1406 }
1407 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1408 pl011_stop_tx(&uap->port);
1409 return false;
1410 }
1411
1412 /* If we are using DMA mode, try to send some characters. */
1413 if (pl011_dma_tx_irq(uap))
1414 return true;
1415
1416 do {
1417 if (likely(from_irq) && count-- == 0)
1418 break;
1419
1420 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1421 break;
1422
1423 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1424 } while (!uart_circ_empty(xmit));
1425
1426 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1427 uart_write_wakeup(&uap->port);
1428
1429 if (uart_circ_empty(xmit)) {
1430 pl011_stop_tx(&uap->port);
1431 return false;
1432 }
1433 return true;
1434 }
1435
1436 static void pl011_modem_status(struct uart_amba_port *uap)
1437 {
1438 unsigned int status, delta;
1439
1440 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1441
1442 delta = status ^ uap->old_status;
1443 uap->old_status = status;
1444
1445 if (!delta)
1446 return;
1447
1448 if (delta & UART01x_FR_DCD)
1449 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1450
1451 if (delta & uap->vendor->fr_dsr)
1452 uap->port.icount.dsr++;
1453
1454 if (delta & uap->vendor->fr_cts)
1455 uart_handle_cts_change(&uap->port,
1456 status & uap->vendor->fr_cts);
1457
1458 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1459 }
1460
1461 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1462 {
1463 unsigned int dummy_read;
1464
1465 if (!uap->vendor->cts_event_workaround)
1466 return;
1467
1468 /* workaround to make sure that all bits are unlocked.. */
1469 pl011_write(0x00, uap, REG_ICR);
1470
1471 /*
1472 * WA: introduce 26ns(1 uart clk) delay before W1C;
1473 * single apb access will incur 2 pclk(133.12Mhz) delay,
1474 * so add 2 dummy reads
1475 */
1476 dummy_read = pl011_read(uap, REG_ICR);
1477 dummy_read = pl011_read(uap, REG_ICR);
1478 }
1479
1480 static irqreturn_t pl011_int(int irq, void *dev_id)
1481 {
1482 struct uart_amba_port *uap = dev_id;
1483 unsigned long flags;
1484 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1485 u16 imsc;
1486 int handled = 0;
1487
1488 spin_lock_irqsave(&uap->port.lock, flags);
1489 imsc = pl011_read(uap, REG_IMSC);
1490 status = pl011_read(uap, REG_RIS) & imsc;
1491 if (status) {
1492 do {
1493 check_apply_cts_event_workaround(uap);
1494
1495 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1496 UART011_RXIS),
1497 uap, REG_ICR);
1498
1499 if (status & (UART011_RTIS|UART011_RXIS)) {
1500 if (pl011_dma_rx_running(uap))
1501 pl011_dma_rx_irq(uap);
1502 else
1503 pl011_rx_chars(uap);
1504 }
1505 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1506 UART011_CTSMIS|UART011_RIMIS))
1507 pl011_modem_status(uap);
1508 if (status & UART011_TXIS)
1509 pl011_tx_chars(uap, true);
1510
1511 if (pass_counter-- == 0)
1512 break;
1513
1514 status = pl011_read(uap, REG_RIS) & imsc;
1515 } while (status != 0);
1516 handled = 1;
1517 }
1518
1519 spin_unlock_irqrestore(&uap->port.lock, flags);
1520
1521 return IRQ_RETVAL(handled);
1522 }
1523
1524 static unsigned int pl011_tx_empty(struct uart_port *port)
1525 {
1526 struct uart_amba_port *uap =
1527 container_of(port, struct uart_amba_port, port);
1528
1529 /* Allow feature register bits to be inverted to work around errata */
1530 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1531
1532 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1533 0 : TIOCSER_TEMT;
1534 }
1535
1536 static unsigned int pl011_get_mctrl(struct uart_port *port)
1537 {
1538 struct uart_amba_port *uap =
1539 container_of(port, struct uart_amba_port, port);
1540 unsigned int result = 0;
1541 unsigned int status = pl011_read(uap, REG_FR);
1542
1543 #define TIOCMBIT(uartbit, tiocmbit) \
1544 if (status & uartbit) \
1545 result |= tiocmbit
1546
1547 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1548 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1549 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1550 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1551 #undef TIOCMBIT
1552 return result;
1553 }
1554
1555 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1556 {
1557 struct uart_amba_port *uap =
1558 container_of(port, struct uart_amba_port, port);
1559 unsigned int cr;
1560
1561 cr = pl011_read(uap, REG_CR);
1562
1563 #define TIOCMBIT(tiocmbit, uartbit) \
1564 if (mctrl & tiocmbit) \
1565 cr |= uartbit; \
1566 else \
1567 cr &= ~uartbit
1568
1569 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1570 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1571 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1572 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1573 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1574
1575 if (port->status & UPSTAT_AUTORTS) {
1576 /* We need to disable auto-RTS if we want to turn RTS off */
1577 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1578 }
1579 #undef TIOCMBIT
1580
1581 pl011_write(cr, uap, REG_CR);
1582 }
1583
1584 static void pl011_break_ctl(struct uart_port *port, int break_state)
1585 {
1586 struct uart_amba_port *uap =
1587 container_of(port, struct uart_amba_port, port);
1588 unsigned long flags;
1589 unsigned int lcr_h;
1590
1591 spin_lock_irqsave(&uap->port.lock, flags);
1592 lcr_h = pl011_read(uap, REG_LCRH_TX);
1593 if (break_state == -1)
1594 lcr_h |= UART01x_LCRH_BRK;
1595 else
1596 lcr_h &= ~UART01x_LCRH_BRK;
1597 pl011_write(lcr_h, uap, REG_LCRH_TX);
1598 spin_unlock_irqrestore(&uap->port.lock, flags);
1599 }
1600
1601 #ifdef CONFIG_CONSOLE_POLL
1602
1603 static void pl011_quiesce_irqs(struct uart_port *port)
1604 {
1605 struct uart_amba_port *uap =
1606 container_of(port, struct uart_amba_port, port);
1607
1608 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1609 /*
1610 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1611 * we simply mask it. start_tx() will unmask it.
1612 *
1613 * Note we can race with start_tx(), and if the race happens, the
1614 * polling user might get another interrupt just after we clear it.
1615 * But it should be OK and can happen even w/o the race, e.g.
1616 * controller immediately got some new data and raised the IRQ.
1617 *
1618 * And whoever uses polling routines assumes that it manages the device
1619 * (including tx queue), so we're also fine with start_tx()'s caller
1620 * side.
1621 */
1622 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1623 REG_IMSC);
1624 }
1625
1626 static int pl011_get_poll_char(struct uart_port *port)
1627 {
1628 struct uart_amba_port *uap =
1629 container_of(port, struct uart_amba_port, port);
1630 unsigned int status;
1631
1632 /*
1633 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1634 * debugger.
1635 */
1636 pl011_quiesce_irqs(port);
1637
1638 status = pl011_read(uap, REG_FR);
1639 if (status & UART01x_FR_RXFE)
1640 return NO_POLL_CHAR;
1641
1642 return pl011_read(uap, REG_DR);
1643 }
1644
1645 static void pl011_put_poll_char(struct uart_port *port,
1646 unsigned char ch)
1647 {
1648 struct uart_amba_port *uap =
1649 container_of(port, struct uart_amba_port, port);
1650
1651 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1652 cpu_relax();
1653
1654 pl011_write(ch, uap, REG_DR);
1655 }
1656
1657 #endif /* CONFIG_CONSOLE_POLL */
1658
1659 static int pl011_hwinit(struct uart_port *port)
1660 {
1661 struct uart_amba_port *uap =
1662 container_of(port, struct uart_amba_port, port);
1663 int retval;
1664
1665 /* Optionaly enable pins to be muxed in and configured */
1666 pinctrl_pm_select_default_state(port->dev);
1667
1668 /*
1669 * Try to enable the clock producer.
1670 */
1671 retval = clk_prepare_enable(uap->clk);
1672 if (retval)
1673 return retval;
1674
1675 uap->port.uartclk = clk_get_rate(uap->clk);
1676
1677 /* Clear pending error and receive interrupts */
1678 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1679 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1680 uap, REG_ICR);
1681
1682 /*
1683 * Save interrupts enable mask, and enable RX interrupts in case if
1684 * the interrupt is used for NMI entry.
1685 */
1686 uap->im = pl011_read(uap, REG_IMSC);
1687 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1688
1689 if (dev_get_platdata(uap->port.dev)) {
1690 struct amba_pl011_data *plat;
1691
1692 plat = dev_get_platdata(uap->port.dev);
1693 if (plat->init)
1694 plat->init();
1695 }
1696 return 0;
1697 }
1698
1699 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1700 {
1701 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1702 pl011_reg_to_offset(uap, REG_LCRH_TX);
1703 }
1704
1705 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1706 {
1707 pl011_write(lcr_h, uap, REG_LCRH_RX);
1708 if (pl011_split_lcrh(uap)) {
1709 int i;
1710 /*
1711 * Wait 10 PCLKs before writing LCRH_TX register,
1712 * to get this delay write read only register 10 times
1713 */
1714 for (i = 0; i < 10; ++i)
1715 pl011_write(0xff, uap, REG_MIS);
1716 pl011_write(lcr_h, uap, REG_LCRH_TX);
1717 }
1718 }
1719
1720 static int pl011_allocate_irq(struct uart_amba_port *uap)
1721 {
1722 pl011_write(uap->im, uap, REG_IMSC);
1723
1724 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1725 }
1726
1727 /*
1728 * Enable interrupts, only timeouts when using DMA
1729 * if initial RX DMA job failed, start in interrupt mode
1730 * as well.
1731 */
1732 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1733 {
1734 spin_lock_irq(&uap->port.lock);
1735
1736 /* Clear out any spuriously appearing RX interrupts */
1737 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1738 uap->im = UART011_RTIM;
1739 if (!pl011_dma_rx_running(uap))
1740 uap->im |= UART011_RXIM;
1741 pl011_write(uap->im, uap, REG_IMSC);
1742 spin_unlock_irq(&uap->port.lock);
1743 }
1744
1745 static int pl011_startup(struct uart_port *port)
1746 {
1747 struct uart_amba_port *uap =
1748 container_of(port, struct uart_amba_port, port);
1749 unsigned int cr;
1750 int retval;
1751
1752 retval = pl011_hwinit(port);
1753 if (retval)
1754 goto clk_dis;
1755
1756 retval = pl011_allocate_irq(uap);
1757 if (retval)
1758 goto clk_dis;
1759
1760 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1761
1762 spin_lock_irq(&uap->port.lock);
1763
1764 /* restore RTS and DTR */
1765 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1766 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1767 pl011_write(cr, uap, REG_CR);
1768
1769 spin_unlock_irq(&uap->port.lock);
1770
1771 /*
1772 * initialise the old status of the modem signals
1773 */
1774 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1775
1776 /* Startup DMA */
1777 pl011_dma_startup(uap);
1778
1779 pl011_enable_interrupts(uap);
1780
1781 return 0;
1782
1783 clk_dis:
1784 clk_disable_unprepare(uap->clk);
1785 return retval;
1786 }
1787
1788 static int sbsa_uart_startup(struct uart_port *port)
1789 {
1790 struct uart_amba_port *uap =
1791 container_of(port, struct uart_amba_port, port);
1792 int retval;
1793
1794 retval = pl011_hwinit(port);
1795 if (retval)
1796 return retval;
1797
1798 retval = pl011_allocate_irq(uap);
1799 if (retval)
1800 return retval;
1801
1802 /* The SBSA UART does not support any modem status lines. */
1803 uap->old_status = 0;
1804
1805 pl011_enable_interrupts(uap);
1806
1807 return 0;
1808 }
1809
1810 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1811 unsigned int lcrh)
1812 {
1813 unsigned long val;
1814
1815 val = pl011_read(uap, lcrh);
1816 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1817 pl011_write(val, uap, lcrh);
1818 }
1819
1820 /*
1821 * disable the port. It should not disable RTS and DTR.
1822 * Also RTS and DTR state should be preserved to restore
1823 * it during startup().
1824 */
1825 static void pl011_disable_uart(struct uart_amba_port *uap)
1826 {
1827 unsigned int cr;
1828
1829 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1830 spin_lock_irq(&uap->port.lock);
1831 cr = pl011_read(uap, REG_CR);
1832 uap->old_cr = cr;
1833 cr &= UART011_CR_RTS | UART011_CR_DTR;
1834 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1835 pl011_write(cr, uap, REG_CR);
1836 spin_unlock_irq(&uap->port.lock);
1837
1838 /*
1839 * disable break condition and fifos
1840 */
1841 pl011_shutdown_channel(uap, REG_LCRH_RX);
1842 if (pl011_split_lcrh(uap))
1843 pl011_shutdown_channel(uap, REG_LCRH_TX);
1844 }
1845
1846 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1847 {
1848 spin_lock_irq(&uap->port.lock);
1849
1850 /* mask all interrupts and clear all pending ones */
1851 uap->im = 0;
1852 pl011_write(uap->im, uap, REG_IMSC);
1853 pl011_write(0xffff, uap, REG_ICR);
1854
1855 spin_unlock_irq(&uap->port.lock);
1856 }
1857
1858 static void pl011_shutdown(struct uart_port *port)
1859 {
1860 struct uart_amba_port *uap =
1861 container_of(port, struct uart_amba_port, port);
1862
1863 pl011_disable_interrupts(uap);
1864
1865 pl011_dma_shutdown(uap);
1866
1867 free_irq(uap->port.irq, uap);
1868
1869 pl011_disable_uart(uap);
1870
1871 /*
1872 * Shut down the clock producer
1873 */
1874 clk_disable_unprepare(uap->clk);
1875 /* Optionally let pins go into sleep states */
1876 pinctrl_pm_select_sleep_state(port->dev);
1877
1878 if (dev_get_platdata(uap->port.dev)) {
1879 struct amba_pl011_data *plat;
1880
1881 plat = dev_get_platdata(uap->port.dev);
1882 if (plat->exit)
1883 plat->exit();
1884 }
1885
1886 if (uap->port.ops->flush_buffer)
1887 uap->port.ops->flush_buffer(port);
1888 }
1889
1890 static void sbsa_uart_shutdown(struct uart_port *port)
1891 {
1892 struct uart_amba_port *uap =
1893 container_of(port, struct uart_amba_port, port);
1894
1895 pl011_disable_interrupts(uap);
1896
1897 free_irq(uap->port.irq, uap);
1898
1899 if (uap->port.ops->flush_buffer)
1900 uap->port.ops->flush_buffer(port);
1901 }
1902
1903 static void
1904 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1905 {
1906 port->read_status_mask = UART011_DR_OE | 255;
1907 if (termios->c_iflag & INPCK)
1908 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1909 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1910 port->read_status_mask |= UART011_DR_BE;
1911
1912 /*
1913 * Characters to ignore
1914 */
1915 port->ignore_status_mask = 0;
1916 if (termios->c_iflag & IGNPAR)
1917 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1918 if (termios->c_iflag & IGNBRK) {
1919 port->ignore_status_mask |= UART011_DR_BE;
1920 /*
1921 * If we're ignoring parity and break indicators,
1922 * ignore overruns too (for real raw support).
1923 */
1924 if (termios->c_iflag & IGNPAR)
1925 port->ignore_status_mask |= UART011_DR_OE;
1926 }
1927
1928 /*
1929 * Ignore all characters if CREAD is not set.
1930 */
1931 if ((termios->c_cflag & CREAD) == 0)
1932 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1933 }
1934
1935 static void
1936 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1937 struct ktermios *old)
1938 {
1939 struct uart_amba_port *uap =
1940 container_of(port, struct uart_amba_port, port);
1941 unsigned int lcr_h, old_cr;
1942 unsigned long flags;
1943 unsigned int baud, quot, clkdiv;
1944
1945 if (uap->vendor->oversampling)
1946 clkdiv = 8;
1947 else
1948 clkdiv = 16;
1949
1950 /*
1951 * Ask the core to calculate the divisor for us.
1952 */
1953 baud = uart_get_baud_rate(port, termios, old, 0,
1954 port->uartclk / clkdiv);
1955 #ifdef CONFIG_DMA_ENGINE
1956 /*
1957 * Adjust RX DMA polling rate with baud rate if not specified.
1958 */
1959 if (uap->dmarx.auto_poll_rate)
1960 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1961 #endif
1962
1963 if (baud > port->uartclk/16)
1964 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1965 else
1966 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1967
1968 switch (termios->c_cflag & CSIZE) {
1969 case CS5:
1970 lcr_h = UART01x_LCRH_WLEN_5;
1971 break;
1972 case CS6:
1973 lcr_h = UART01x_LCRH_WLEN_6;
1974 break;
1975 case CS7:
1976 lcr_h = UART01x_LCRH_WLEN_7;
1977 break;
1978 default: // CS8
1979 lcr_h = UART01x_LCRH_WLEN_8;
1980 break;
1981 }
1982 if (termios->c_cflag & CSTOPB)
1983 lcr_h |= UART01x_LCRH_STP2;
1984 if (termios->c_cflag & PARENB) {
1985 lcr_h |= UART01x_LCRH_PEN;
1986 if (!(termios->c_cflag & PARODD))
1987 lcr_h |= UART01x_LCRH_EPS;
1988 if (termios->c_cflag & CMSPAR)
1989 lcr_h |= UART011_LCRH_SPS;
1990 }
1991 if (uap->fifosize > 1)
1992 lcr_h |= UART01x_LCRH_FEN;
1993
1994 spin_lock_irqsave(&port->lock, flags);
1995
1996 /*
1997 * Update the per-port timeout.
1998 */
1999 uart_update_timeout(port, termios->c_cflag, baud);
2000
2001 pl011_setup_status_masks(port, termios);
2002
2003 if (UART_ENABLE_MS(port, termios->c_cflag))
2004 pl011_enable_ms(port);
2005
2006 /* first, disable everything */
2007 old_cr = pl011_read(uap, REG_CR);
2008 pl011_write(0, uap, REG_CR);
2009
2010 if (termios->c_cflag & CRTSCTS) {
2011 if (old_cr & UART011_CR_RTS)
2012 old_cr |= UART011_CR_RTSEN;
2013
2014 old_cr |= UART011_CR_CTSEN;
2015 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2016 } else {
2017 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2018 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2019 }
2020
2021 if (uap->vendor->oversampling) {
2022 if (baud > port->uartclk / 16)
2023 old_cr |= ST_UART011_CR_OVSFACT;
2024 else
2025 old_cr &= ~ST_UART011_CR_OVSFACT;
2026 }
2027
2028 /*
2029 * Workaround for the ST Micro oversampling variants to
2030 * increase the bitrate slightly, by lowering the divisor,
2031 * to avoid delayed sampling of start bit at high speeds,
2032 * else we see data corruption.
2033 */
2034 if (uap->vendor->oversampling) {
2035 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2036 quot -= 1;
2037 else if ((baud > 3250000) && (quot > 2))
2038 quot -= 2;
2039 }
2040 /* Set baud rate */
2041 pl011_write(quot & 0x3f, uap, REG_FBRD);
2042 pl011_write(quot >> 6, uap, REG_IBRD);
2043
2044 /*
2045 * ----------v----------v----------v----------v-----
2046 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2047 * REG_FBRD & REG_IBRD.
2048 * ----------^----------^----------^----------^-----
2049 */
2050 pl011_write_lcr_h(uap, lcr_h);
2051 pl011_write(old_cr, uap, REG_CR);
2052
2053 spin_unlock_irqrestore(&port->lock, flags);
2054 }
2055
2056 static void
2057 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2058 struct ktermios *old)
2059 {
2060 struct uart_amba_port *uap =
2061 container_of(port, struct uart_amba_port, port);
2062 unsigned long flags;
2063
2064 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2065
2066 /* The SBSA UART only supports 8n1 without hardware flow control. */
2067 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2068 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2069 termios->c_cflag |= CS8 | CLOCAL;
2070
2071 spin_lock_irqsave(&port->lock, flags);
2072 uart_update_timeout(port, CS8, uap->fixed_baud);
2073 pl011_setup_status_masks(port, termios);
2074 spin_unlock_irqrestore(&port->lock, flags);
2075 }
2076
2077 static const char *pl011_type(struct uart_port *port)
2078 {
2079 struct uart_amba_port *uap =
2080 container_of(port, struct uart_amba_port, port);
2081 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2082 }
2083
2084 /*
2085 * Release the memory region(s) being used by 'port'
2086 */
2087 static void pl011_release_port(struct uart_port *port)
2088 {
2089 release_mem_region(port->mapbase, SZ_4K);
2090 }
2091
2092 /*
2093 * Request the memory region(s) being used by 'port'
2094 */
2095 static int pl011_request_port(struct uart_port *port)
2096 {
2097 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2098 != NULL ? 0 : -EBUSY;
2099 }
2100
2101 /*
2102 * Configure/autoconfigure the port.
2103 */
2104 static void pl011_config_port(struct uart_port *port, int flags)
2105 {
2106 if (flags & UART_CONFIG_TYPE) {
2107 port->type = PORT_AMBA;
2108 pl011_request_port(port);
2109 }
2110 }
2111
2112 /*
2113 * verify the new serial_struct (for TIOCSSERIAL).
2114 */
2115 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2116 {
2117 int ret = 0;
2118 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2119 ret = -EINVAL;
2120 if (ser->irq < 0 || ser->irq >= nr_irqs)
2121 ret = -EINVAL;
2122 if (ser->baud_base < 9600)
2123 ret = -EINVAL;
2124 return ret;
2125 }
2126
2127 static const struct uart_ops amba_pl011_pops = {
2128 .tx_empty = pl011_tx_empty,
2129 .set_mctrl = pl011_set_mctrl,
2130 .get_mctrl = pl011_get_mctrl,
2131 .stop_tx = pl011_stop_tx,
2132 .start_tx = pl011_start_tx,
2133 .stop_rx = pl011_stop_rx,
2134 .enable_ms = pl011_enable_ms,
2135 .break_ctl = pl011_break_ctl,
2136 .startup = pl011_startup,
2137 .shutdown = pl011_shutdown,
2138 .flush_buffer = pl011_dma_flush_buffer,
2139 .set_termios = pl011_set_termios,
2140 .type = pl011_type,
2141 .release_port = pl011_release_port,
2142 .request_port = pl011_request_port,
2143 .config_port = pl011_config_port,
2144 .verify_port = pl011_verify_port,
2145 #ifdef CONFIG_CONSOLE_POLL
2146 .poll_init = pl011_hwinit,
2147 .poll_get_char = pl011_get_poll_char,
2148 .poll_put_char = pl011_put_poll_char,
2149 #endif
2150 };
2151
2152 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2153 {
2154 }
2155
2156 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2157 {
2158 return 0;
2159 }
2160
2161 static const struct uart_ops sbsa_uart_pops = {
2162 .tx_empty = pl011_tx_empty,
2163 .set_mctrl = sbsa_uart_set_mctrl,
2164 .get_mctrl = sbsa_uart_get_mctrl,
2165 .stop_tx = pl011_stop_tx,
2166 .start_tx = pl011_start_tx,
2167 .stop_rx = pl011_stop_rx,
2168 .startup = sbsa_uart_startup,
2169 .shutdown = sbsa_uart_shutdown,
2170 .set_termios = sbsa_uart_set_termios,
2171 .type = pl011_type,
2172 .release_port = pl011_release_port,
2173 .request_port = pl011_request_port,
2174 .config_port = pl011_config_port,
2175 .verify_port = pl011_verify_port,
2176 #ifdef CONFIG_CONSOLE_POLL
2177 .poll_init = pl011_hwinit,
2178 .poll_get_char = pl011_get_poll_char,
2179 .poll_put_char = pl011_put_poll_char,
2180 #endif
2181 };
2182
2183 static struct uart_amba_port *amba_ports[UART_NR];
2184
2185 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2186
2187 static void pl011_console_putchar(struct uart_port *port, int ch)
2188 {
2189 struct uart_amba_port *uap =
2190 container_of(port, struct uart_amba_port, port);
2191
2192 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2193 cpu_relax();
2194 pl011_write(ch, uap, REG_DR);
2195 }
2196
2197 static void
2198 pl011_console_write(struct console *co, const char *s, unsigned int count)
2199 {
2200 struct uart_amba_port *uap = amba_ports[co->index];
2201 unsigned int old_cr = 0, new_cr;
2202 unsigned long flags;
2203 int locked = 1;
2204
2205 clk_enable(uap->clk);
2206
2207 local_irq_save(flags);
2208 if (uap->port.sysrq)
2209 locked = 0;
2210 else if (oops_in_progress)
2211 locked = spin_trylock(&uap->port.lock);
2212 else
2213 spin_lock(&uap->port.lock);
2214
2215 /*
2216 * First save the CR then disable the interrupts
2217 */
2218 if (!uap->vendor->always_enabled) {
2219 old_cr = pl011_read(uap, REG_CR);
2220 new_cr = old_cr & ~UART011_CR_CTSEN;
2221 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2222 pl011_write(new_cr, uap, REG_CR);
2223 }
2224
2225 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2226
2227 /*
2228 * Finally, wait for transmitter to become empty and restore the
2229 * TCR. Allow feature register bits to be inverted to work around
2230 * errata.
2231 */
2232 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2233 & uap->vendor->fr_busy)
2234 cpu_relax();
2235 if (!uap->vendor->always_enabled)
2236 pl011_write(old_cr, uap, REG_CR);
2237
2238 if (locked)
2239 spin_unlock(&uap->port.lock);
2240 local_irq_restore(flags);
2241
2242 clk_disable(uap->clk);
2243 }
2244
2245 static void __init
2246 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2247 int *parity, int *bits)
2248 {
2249 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2250 unsigned int lcr_h, ibrd, fbrd;
2251
2252 lcr_h = pl011_read(uap, REG_LCRH_TX);
2253
2254 *parity = 'n';
2255 if (lcr_h & UART01x_LCRH_PEN) {
2256 if (lcr_h & UART01x_LCRH_EPS)
2257 *parity = 'e';
2258 else
2259 *parity = 'o';
2260 }
2261
2262 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2263 *bits = 7;
2264 else
2265 *bits = 8;
2266
2267 ibrd = pl011_read(uap, REG_IBRD);
2268 fbrd = pl011_read(uap, REG_FBRD);
2269
2270 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2271
2272 if (uap->vendor->oversampling) {
2273 if (pl011_read(uap, REG_CR)
2274 & ST_UART011_CR_OVSFACT)
2275 *baud *= 2;
2276 }
2277 }
2278 }
2279
2280 static int __init pl011_console_setup(struct console *co, char *options)
2281 {
2282 struct uart_amba_port *uap;
2283 int baud = 38400;
2284 int bits = 8;
2285 int parity = 'n';
2286 int flow = 'n';
2287 int ret;
2288
2289 /*
2290 * Check whether an invalid uart number has been specified, and
2291 * if so, search for the first available port that does have
2292 * console support.
2293 */
2294 if (co->index >= UART_NR)
2295 co->index = 0;
2296 uap = amba_ports[co->index];
2297 if (!uap)
2298 return -ENODEV;
2299
2300 /* Allow pins to be muxed in and configured */
2301 pinctrl_pm_select_default_state(uap->port.dev);
2302
2303 ret = clk_prepare(uap->clk);
2304 if (ret)
2305 return ret;
2306
2307 if (dev_get_platdata(uap->port.dev)) {
2308 struct amba_pl011_data *plat;
2309
2310 plat = dev_get_platdata(uap->port.dev);
2311 if (plat->init)
2312 plat->init();
2313 }
2314
2315 uap->port.uartclk = clk_get_rate(uap->clk);
2316
2317 if (uap->vendor->fixed_options) {
2318 baud = uap->fixed_baud;
2319 } else {
2320 if (options)
2321 uart_parse_options(options,
2322 &baud, &parity, &bits, &flow);
2323 else
2324 pl011_console_get_options(uap, &baud, &parity, &bits);
2325 }
2326
2327 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2328 }
2329
2330 /**
2331 * pl011_console_match - non-standard console matching
2332 * @co: registering console
2333 * @name: name from console command line
2334 * @idx: index from console command line
2335 * @options: ptr to option string from console command line
2336 *
2337 * Only attempts to match console command lines of the form:
2338 * console=pl011,mmio|mmio32,<addr>[,<options>]
2339 * console=pl011,0x<addr>[,<options>]
2340 * This form is used to register an initial earlycon boot console and
2341 * replace it with the amba_console at pl011 driver init.
2342 *
2343 * Performs console setup for a match (as required by interface)
2344 * If no <options> are specified, then assume the h/w is already setup.
2345 *
2346 * Returns 0 if console matches; otherwise non-zero to use default matching
2347 */
2348 static int __init pl011_console_match(struct console *co, char *name, int idx,
2349 char *options)
2350 {
2351 unsigned char iotype;
2352 resource_size_t addr;
2353 int i;
2354
2355 /*
2356 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2357 * have a distinct console name, so make sure we check for that.
2358 * The actual implementation of the erratum occurs in the probe
2359 * function.
2360 */
2361 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2362 return -ENODEV;
2363
2364 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2365 return -ENODEV;
2366
2367 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2368 return -ENODEV;
2369
2370 /* try to match the port specified on the command line */
2371 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2372 struct uart_port *port;
2373
2374 if (!amba_ports[i])
2375 continue;
2376
2377 port = &amba_ports[i]->port;
2378
2379 if (port->mapbase != addr)
2380 continue;
2381
2382 co->index = i;
2383 port->cons = co;
2384 return pl011_console_setup(co, options);
2385 }
2386
2387 return -ENODEV;
2388 }
2389
2390 static struct uart_driver amba_reg;
2391 static struct console amba_console = {
2392 .name = "ttyAMA",
2393 .write = pl011_console_write,
2394 .device = uart_console_device,
2395 .setup = pl011_console_setup,
2396 .match = pl011_console_match,
2397 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2398 .index = -1,
2399 .data = &amba_reg,
2400 };
2401
2402 #define AMBA_CONSOLE (&amba_console)
2403
2404 static void qdf2400_e44_putc(struct uart_port *port, int c)
2405 {
2406 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2407 cpu_relax();
2408 writel(c, port->membase + UART01x_DR);
2409 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2410 cpu_relax();
2411 }
2412
2413 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2414 {
2415 struct earlycon_device *dev = con->data;
2416
2417 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2418 }
2419
2420 static void pl011_putc(struct uart_port *port, int c)
2421 {
2422 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2423 cpu_relax();
2424 if (port->iotype == UPIO_MEM32)
2425 writel(c, port->membase + UART01x_DR);
2426 else
2427 writeb(c, port->membase + UART01x_DR);
2428 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2429 cpu_relax();
2430 }
2431
2432 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2433 {
2434 struct earlycon_device *dev = con->data;
2435
2436 uart_console_write(&dev->port, s, n, pl011_putc);
2437 }
2438
2439 /*
2440 * On non-ACPI systems, earlycon is enabled by specifying
2441 * "earlycon=pl011,<address>" on the kernel command line.
2442 *
2443 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2444 * by specifying only "earlycon" on the command line. Because it requires
2445 * SPCR, the console starts after ACPI is parsed, which is later than a
2446 * traditional early console.
2447 *
2448 * To get the traditional early console that starts before ACPI is parsed,
2449 * specify the full "earlycon=pl011,<address>" option.
2450 */
2451 static int __init pl011_early_console_setup(struct earlycon_device *device,
2452 const char *opt)
2453 {
2454 if (!device->port.membase)
2455 return -ENODEV;
2456
2457 device->con->write = pl011_early_write;
2458
2459 return 0;
2460 }
2461 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2462 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2463
2464 /*
2465 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2466 * Erratum 44, traditional earlycon can be enabled by specifying
2467 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2468 *
2469 * Alternatively, you can just specify "earlycon", and the early console
2470 * will be enabled with the information from the SPCR table. In this
2471 * case, the SPCR code will detect the need for the E44 work-around,
2472 * and set the console name to "qdf2400_e44".
2473 */
2474 static int __init
2475 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2476 const char *opt)
2477 {
2478 if (!device->port.membase)
2479 return -ENODEV;
2480
2481 device->con->write = qdf2400_e44_early_write;
2482 return 0;
2483 }
2484 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2485
2486 #else
2487 #define AMBA_CONSOLE NULL
2488 #endif
2489
2490 static struct uart_driver amba_reg = {
2491 .owner = THIS_MODULE,
2492 .driver_name = "ttyAMA",
2493 .dev_name = "ttyAMA",
2494 .major = SERIAL_AMBA_MAJOR,
2495 .minor = SERIAL_AMBA_MINOR,
2496 .nr = UART_NR,
2497 .cons = AMBA_CONSOLE,
2498 };
2499
2500 static int pl011_probe_dt_alias(int index, struct device *dev)
2501 {
2502 struct device_node *np;
2503 static bool seen_dev_with_alias = false;
2504 static bool seen_dev_without_alias = false;
2505 int ret = index;
2506
2507 if (!IS_ENABLED(CONFIG_OF))
2508 return ret;
2509
2510 np = dev->of_node;
2511 if (!np)
2512 return ret;
2513
2514 ret = of_alias_get_id(np, "serial");
2515 if (ret < 0) {
2516 seen_dev_without_alias = true;
2517 ret = index;
2518 } else {
2519 seen_dev_with_alias = true;
2520 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2521 dev_warn(dev, "requested serial port %d not available.\n", ret);
2522 ret = index;
2523 }
2524 }
2525
2526 if (seen_dev_with_alias && seen_dev_without_alias)
2527 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2528
2529 return ret;
2530 }
2531
2532 /* unregisters the driver also if no more ports are left */
2533 static void pl011_unregister_port(struct uart_amba_port *uap)
2534 {
2535 int i;
2536 bool busy = false;
2537
2538 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2539 if (amba_ports[i] == uap)
2540 amba_ports[i] = NULL;
2541 else if (amba_ports[i])
2542 busy = true;
2543 }
2544 pl011_dma_remove(uap);
2545 if (!busy)
2546 uart_unregister_driver(&amba_reg);
2547 }
2548
2549 static int pl011_find_free_port(void)
2550 {
2551 int i;
2552
2553 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2554 if (amba_ports[i] == NULL)
2555 return i;
2556
2557 return -EBUSY;
2558 }
2559
2560 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2561 struct resource *mmiobase, int index)
2562 {
2563 void __iomem *base;
2564
2565 base = devm_ioremap_resource(dev, mmiobase);
2566 if (IS_ERR(base))
2567 return PTR_ERR(base);
2568
2569 index = pl011_probe_dt_alias(index, dev);
2570
2571 uap->old_cr = 0;
2572 uap->port.dev = dev;
2573 uap->port.mapbase = mmiobase->start;
2574 uap->port.membase = base;
2575 uap->port.fifosize = uap->fifosize;
2576 uap->port.flags = UPF_BOOT_AUTOCONF;
2577 uap->port.line = index;
2578
2579 amba_ports[index] = uap;
2580
2581 return 0;
2582 }
2583
2584 static int pl011_register_port(struct uart_amba_port *uap)
2585 {
2586 int ret;
2587
2588 /* Ensure interrupts from this UART are masked and cleared */
2589 pl011_write(0, uap, REG_IMSC);
2590 pl011_write(0xffff, uap, REG_ICR);
2591
2592 if (!amba_reg.state) {
2593 ret = uart_register_driver(&amba_reg);
2594 if (ret < 0) {
2595 dev_err(uap->port.dev,
2596 "Failed to register AMBA-PL011 driver\n");
2597 return ret;
2598 }
2599 }
2600
2601 ret = uart_add_one_port(&amba_reg, &uap->port);
2602 if (ret)
2603 pl011_unregister_port(uap);
2604
2605 return ret;
2606 }
2607
2608 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2609 {
2610 struct uart_amba_port *uap;
2611 struct vendor_data *vendor = id->data;
2612 int portnr, ret;
2613
2614 portnr = pl011_find_free_port();
2615 if (portnr < 0)
2616 return portnr;
2617
2618 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2619 GFP_KERNEL);
2620 if (!uap)
2621 return -ENOMEM;
2622
2623 uap->clk = devm_clk_get(&dev->dev, NULL);
2624 if (IS_ERR(uap->clk))
2625 return PTR_ERR(uap->clk);
2626
2627 uap->reg_offset = vendor->reg_offset;
2628 uap->vendor = vendor;
2629 uap->fifosize = vendor->get_fifosize(dev);
2630 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2631 uap->port.irq = dev->irq[0];
2632 uap->port.ops = &amba_pl011_pops;
2633
2634 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2635
2636 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2637 if (ret)
2638 return ret;
2639
2640 amba_set_drvdata(dev, uap);
2641
2642 return pl011_register_port(uap);
2643 }
2644
2645 static int pl011_remove(struct amba_device *dev)
2646 {
2647 struct uart_amba_port *uap = amba_get_drvdata(dev);
2648
2649 uart_remove_one_port(&amba_reg, &uap->port);
2650 pl011_unregister_port(uap);
2651 return 0;
2652 }
2653
2654 #ifdef CONFIG_PM_SLEEP
2655 static int pl011_suspend(struct device *dev)
2656 {
2657 struct uart_amba_port *uap = dev_get_drvdata(dev);
2658
2659 if (!uap)
2660 return -EINVAL;
2661
2662 return uart_suspend_port(&amba_reg, &uap->port);
2663 }
2664
2665 static int pl011_resume(struct device *dev)
2666 {
2667 struct uart_amba_port *uap = dev_get_drvdata(dev);
2668
2669 if (!uap)
2670 return -EINVAL;
2671
2672 return uart_resume_port(&amba_reg, &uap->port);
2673 }
2674 #endif
2675
2676 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2677
2678 static int sbsa_uart_probe(struct platform_device *pdev)
2679 {
2680 struct uart_amba_port *uap;
2681 struct resource *r;
2682 int portnr, ret;
2683 int baudrate;
2684
2685 /*
2686 * Check the mandatory baud rate parameter in the DT node early
2687 * so that we can easily exit with the error.
2688 */
2689 if (pdev->dev.of_node) {
2690 struct device_node *np = pdev->dev.of_node;
2691
2692 ret = of_property_read_u32(np, "current-speed", &baudrate);
2693 if (ret)
2694 return ret;
2695 } else {
2696 baudrate = 115200;
2697 }
2698
2699 portnr = pl011_find_free_port();
2700 if (portnr < 0)
2701 return portnr;
2702
2703 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2704 GFP_KERNEL);
2705 if (!uap)
2706 return -ENOMEM;
2707
2708 ret = platform_get_irq(pdev, 0);
2709 if (ret < 0) {
2710 if (ret != -EPROBE_DEFER)
2711 dev_err(&pdev->dev, "cannot obtain irq\n");
2712 return ret;
2713 }
2714 uap->port.irq = ret;
2715
2716 #ifdef CONFIG_ACPI_SPCR_TABLE
2717 if (qdf2400_e44_present) {
2718 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2719 uap->vendor = &vendor_qdt_qdf2400_e44;
2720 } else
2721 #endif
2722 uap->vendor = &vendor_sbsa;
2723
2724 uap->reg_offset = uap->vendor->reg_offset;
2725 uap->fifosize = 32;
2726 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2727 uap->port.ops = &sbsa_uart_pops;
2728 uap->fixed_baud = baudrate;
2729
2730 snprintf(uap->type, sizeof(uap->type), "SBSA");
2731
2732 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2733
2734 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2735 if (ret)
2736 return ret;
2737
2738 platform_set_drvdata(pdev, uap);
2739
2740 return pl011_register_port(uap);
2741 }
2742
2743 static int sbsa_uart_remove(struct platform_device *pdev)
2744 {
2745 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2746
2747 uart_remove_one_port(&amba_reg, &uap->port);
2748 pl011_unregister_port(uap);
2749 return 0;
2750 }
2751
2752 static const struct of_device_id sbsa_uart_of_match[] = {
2753 { .compatible = "arm,sbsa-uart", },
2754 {},
2755 };
2756 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2757
2758 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2759 { "ARMH0011", 0 },
2760 {},
2761 };
2762 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2763
2764 static struct platform_driver arm_sbsa_uart_platform_driver = {
2765 .probe = sbsa_uart_probe,
2766 .remove = sbsa_uart_remove,
2767 .driver = {
2768 .name = "sbsa-uart",
2769 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2770 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2771 },
2772 };
2773
2774 static const struct amba_id pl011_ids[] = {
2775 {
2776 .id = 0x00041011,
2777 .mask = 0x000fffff,
2778 .data = &vendor_arm,
2779 },
2780 {
2781 .id = 0x00380802,
2782 .mask = 0x00ffffff,
2783 .data = &vendor_st,
2784 },
2785 {
2786 .id = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2787 .mask = 0x00ffffff,
2788 .data = &vendor_zte,
2789 },
2790 { 0, 0 },
2791 };
2792
2793 MODULE_DEVICE_TABLE(amba, pl011_ids);
2794
2795 static struct amba_driver pl011_driver = {
2796 .drv = {
2797 .name = "uart-pl011",
2798 .pm = &pl011_dev_pm_ops,
2799 },
2800 .id_table = pl011_ids,
2801 .probe = pl011_probe,
2802 .remove = pl011_remove,
2803 };
2804
2805 static int __init pl011_init(void)
2806 {
2807 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2808
2809 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2810 pr_warn("could not register SBSA UART platform driver\n");
2811 return amba_driver_register(&pl011_driver);
2812 }
2813
2814 static void __exit pl011_exit(void)
2815 {
2816 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2817 amba_driver_unregister(&pl011_driver);
2818 }
2819
2820 /*
2821 * While this can be a module, if builtin it's most likely the console
2822 * So let's leave module_exit but move module_init to an earlier place
2823 */
2824 arch_initcall(pl011_init);
2825 module_exit(pl011_exit);
2826
2827 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2828 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2829 MODULE_LICENSE("GPL");