]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/serial/amba-pl011.c
Merge tag 'for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / serial / amba-pl011.c
1 /*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/workqueue.h>
62
63 #define UART_NR 14
64
65 #define SERIAL_AMBA_MAJOR 204
66 #define SERIAL_AMBA_MINOR 64
67 #define SERIAL_AMBA_NR UART_NR
68
69 #define AMBA_ISR_PASS_LIMIT 256
70
71 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
72 #define UART_DUMMY_DR_RX (1 << 16)
73
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 unsigned int ifls;
77 unsigned int lcrh_tx;
78 unsigned int lcrh_rx;
79 bool oversampling;
80 bool dma_threshold;
81 bool cts_event_workaround;
82
83 unsigned int (*get_fifosize)(struct amba_device *dev);
84 };
85
86 static unsigned int get_fifosize_arm(struct amba_device *dev)
87 {
88 return amba_rev(dev) < 3 ? 16 : 32;
89 }
90
91 static struct vendor_data vendor_arm = {
92 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
93 .lcrh_tx = UART011_LCRH,
94 .lcrh_rx = UART011_LCRH,
95 .oversampling = false,
96 .dma_threshold = false,
97 .cts_event_workaround = false,
98 .get_fifosize = get_fifosize_arm,
99 };
100
101 static unsigned int get_fifosize_st(struct amba_device *dev)
102 {
103 return 64;
104 }
105
106 static struct vendor_data vendor_st = {
107 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
108 .lcrh_tx = ST_UART011_LCRH_TX,
109 .lcrh_rx = ST_UART011_LCRH_RX,
110 .oversampling = true,
111 .dma_threshold = true,
112 .cts_event_workaround = true,
113 .get_fifosize = get_fifosize_st,
114 };
115
116 /* Deals with DMA transactions */
117
118 struct pl011_sgbuf {
119 struct scatterlist sg;
120 char *buf;
121 };
122
123 struct pl011_dmarx_data {
124 struct dma_chan *chan;
125 struct completion complete;
126 bool use_buf_b;
127 struct pl011_sgbuf sgbuf_a;
128 struct pl011_sgbuf sgbuf_b;
129 dma_cookie_t cookie;
130 bool running;
131 struct timer_list timer;
132 unsigned int last_residue;
133 unsigned long last_jiffies;
134 bool auto_poll_rate;
135 unsigned int poll_rate;
136 unsigned int poll_timeout;
137 };
138
139 struct pl011_dmatx_data {
140 struct dma_chan *chan;
141 struct scatterlist sg;
142 char *buf;
143 bool queued;
144 };
145
146 /*
147 * We wrap our port structure around the generic uart_port.
148 */
149 struct uart_amba_port {
150 struct uart_port port;
151 struct clk *clk;
152 const struct vendor_data *vendor;
153 unsigned int dmacr; /* dma control reg */
154 unsigned int im; /* interrupt mask */
155 unsigned int old_status;
156 unsigned int fifosize; /* vendor-specific */
157 unsigned int lcrh_tx; /* vendor-specific */
158 unsigned int lcrh_rx; /* vendor-specific */
159 unsigned int old_cr; /* state during shutdown */
160 struct delayed_work tx_softirq_work;
161 bool autorts;
162 unsigned int tx_irq_seen; /* 0=none, 1=1, 2=2 or more */
163 char type[12];
164 #ifdef CONFIG_DMA_ENGINE
165 /* DMA stuff */
166 bool using_tx_dma;
167 bool using_rx_dma;
168 struct pl011_dmarx_data dmarx;
169 struct pl011_dmatx_data dmatx;
170 bool dma_probed;
171 #endif
172 };
173
174 /*
175 * Reads up to 256 characters from the FIFO or until it's empty and
176 * inserts them into the TTY layer. Returns the number of characters
177 * read from the FIFO.
178 */
179 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
180 {
181 u16 status, ch;
182 unsigned int flag, max_count = 256;
183 int fifotaken = 0;
184
185 while (max_count--) {
186 status = readw(uap->port.membase + UART01x_FR);
187 if (status & UART01x_FR_RXFE)
188 break;
189
190 /* Take chars from the FIFO and update status */
191 ch = readw(uap->port.membase + UART01x_DR) |
192 UART_DUMMY_DR_RX;
193 flag = TTY_NORMAL;
194 uap->port.icount.rx++;
195 fifotaken++;
196
197 if (unlikely(ch & UART_DR_ERROR)) {
198 if (ch & UART011_DR_BE) {
199 ch &= ~(UART011_DR_FE | UART011_DR_PE);
200 uap->port.icount.brk++;
201 if (uart_handle_break(&uap->port))
202 continue;
203 } else if (ch & UART011_DR_PE)
204 uap->port.icount.parity++;
205 else if (ch & UART011_DR_FE)
206 uap->port.icount.frame++;
207 if (ch & UART011_DR_OE)
208 uap->port.icount.overrun++;
209
210 ch &= uap->port.read_status_mask;
211
212 if (ch & UART011_DR_BE)
213 flag = TTY_BREAK;
214 else if (ch & UART011_DR_PE)
215 flag = TTY_PARITY;
216 else if (ch & UART011_DR_FE)
217 flag = TTY_FRAME;
218 }
219
220 if (uart_handle_sysrq_char(&uap->port, ch & 255))
221 continue;
222
223 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
224 }
225
226 return fifotaken;
227 }
228
229
230 /*
231 * All the DMA operation mode stuff goes inside this ifdef.
232 * This assumes that you have a generic DMA device interface,
233 * no custom DMA interfaces are supported.
234 */
235 #ifdef CONFIG_DMA_ENGINE
236
237 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
238
239 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
240 enum dma_data_direction dir)
241 {
242 dma_addr_t dma_addr;
243
244 sg->buf = dma_alloc_coherent(chan->device->dev,
245 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
246 if (!sg->buf)
247 return -ENOMEM;
248
249 sg_init_table(&sg->sg, 1);
250 sg_set_page(&sg->sg, phys_to_page(dma_addr),
251 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
252 sg_dma_address(&sg->sg) = dma_addr;
253 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
254
255 return 0;
256 }
257
258 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
259 enum dma_data_direction dir)
260 {
261 if (sg->buf) {
262 dma_free_coherent(chan->device->dev,
263 PL011_DMA_BUFFER_SIZE, sg->buf,
264 sg_dma_address(&sg->sg));
265 }
266 }
267
268 static void pl011_dma_probe(struct uart_amba_port *uap)
269 {
270 /* DMA is the sole user of the platform data right now */
271 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
272 struct device *dev = uap->port.dev;
273 struct dma_slave_config tx_conf = {
274 .dst_addr = uap->port.mapbase + UART01x_DR,
275 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
276 .direction = DMA_MEM_TO_DEV,
277 .dst_maxburst = uap->fifosize >> 1,
278 .device_fc = false,
279 };
280 struct dma_chan *chan;
281 dma_cap_mask_t mask;
282
283 uap->dma_probed = true;
284 chan = dma_request_slave_channel_reason(dev, "tx");
285 if (IS_ERR(chan)) {
286 if (PTR_ERR(chan) == -EPROBE_DEFER) {
287 uap->dma_probed = false;
288 return;
289 }
290
291 /* We need platform data */
292 if (!plat || !plat->dma_filter) {
293 dev_info(uap->port.dev, "no DMA platform data\n");
294 return;
295 }
296
297 /* Try to acquire a generic DMA engine slave TX channel */
298 dma_cap_zero(mask);
299 dma_cap_set(DMA_SLAVE, mask);
300
301 chan = dma_request_channel(mask, plat->dma_filter,
302 plat->dma_tx_param);
303 if (!chan) {
304 dev_err(uap->port.dev, "no TX DMA channel!\n");
305 return;
306 }
307 }
308
309 dmaengine_slave_config(chan, &tx_conf);
310 uap->dmatx.chan = chan;
311
312 dev_info(uap->port.dev, "DMA channel TX %s\n",
313 dma_chan_name(uap->dmatx.chan));
314
315 /* Optionally make use of an RX channel as well */
316 chan = dma_request_slave_channel(dev, "rx");
317
318 if (!chan && plat->dma_rx_param) {
319 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
320
321 if (!chan) {
322 dev_err(uap->port.dev, "no RX DMA channel!\n");
323 return;
324 }
325 }
326
327 if (chan) {
328 struct dma_slave_config rx_conf = {
329 .src_addr = uap->port.mapbase + UART01x_DR,
330 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
331 .direction = DMA_DEV_TO_MEM,
332 .src_maxburst = uap->fifosize >> 2,
333 .device_fc = false,
334 };
335 struct dma_slave_caps caps;
336
337 /*
338 * Some DMA controllers provide information on their capabilities.
339 * If the controller does, check for suitable residue processing
340 * otherwise assime all is well.
341 */
342 if (0 == dma_get_slave_caps(chan, &caps)) {
343 if (caps.residue_granularity ==
344 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
345 dma_release_channel(chan);
346 dev_info(uap->port.dev,
347 "RX DMA disabled - no residue processing\n");
348 return;
349 }
350 }
351 dmaengine_slave_config(chan, &rx_conf);
352 uap->dmarx.chan = chan;
353
354 uap->dmarx.auto_poll_rate = false;
355 if (plat && plat->dma_rx_poll_enable) {
356 /* Set poll rate if specified. */
357 if (plat->dma_rx_poll_rate) {
358 uap->dmarx.auto_poll_rate = false;
359 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
360 } else {
361 /*
362 * 100 ms defaults to poll rate if not
363 * specified. This will be adjusted with
364 * the baud rate at set_termios.
365 */
366 uap->dmarx.auto_poll_rate = true;
367 uap->dmarx.poll_rate = 100;
368 }
369 /* 3 secs defaults poll_timeout if not specified. */
370 if (plat->dma_rx_poll_timeout)
371 uap->dmarx.poll_timeout =
372 plat->dma_rx_poll_timeout;
373 else
374 uap->dmarx.poll_timeout = 3000;
375 } else if (!plat && dev->of_node) {
376 uap->dmarx.auto_poll_rate = of_property_read_bool(
377 dev->of_node, "auto-poll");
378 if (uap->dmarx.auto_poll_rate) {
379 u32 x;
380
381 if (0 == of_property_read_u32(dev->of_node,
382 "poll-rate-ms", &x))
383 uap->dmarx.poll_rate = x;
384 else
385 uap->dmarx.poll_rate = 100;
386 if (0 == of_property_read_u32(dev->of_node,
387 "poll-timeout-ms", &x))
388 uap->dmarx.poll_timeout = x;
389 else
390 uap->dmarx.poll_timeout = 3000;
391 }
392 }
393 dev_info(uap->port.dev, "DMA channel RX %s\n",
394 dma_chan_name(uap->dmarx.chan));
395 }
396 }
397
398 static void pl011_dma_remove(struct uart_amba_port *uap)
399 {
400 if (uap->dmatx.chan)
401 dma_release_channel(uap->dmatx.chan);
402 if (uap->dmarx.chan)
403 dma_release_channel(uap->dmarx.chan);
404 }
405
406 /* Forward declare these for the refill routine */
407 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
408 static void pl011_start_tx_pio(struct uart_amba_port *uap);
409
410 /*
411 * The current DMA TX buffer has been sent.
412 * Try to queue up another DMA buffer.
413 */
414 static void pl011_dma_tx_callback(void *data)
415 {
416 struct uart_amba_port *uap = data;
417 struct pl011_dmatx_data *dmatx = &uap->dmatx;
418 unsigned long flags;
419 u16 dmacr;
420
421 spin_lock_irqsave(&uap->port.lock, flags);
422 if (uap->dmatx.queued)
423 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
424 DMA_TO_DEVICE);
425
426 dmacr = uap->dmacr;
427 uap->dmacr = dmacr & ~UART011_TXDMAE;
428 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
429
430 /*
431 * If TX DMA was disabled, it means that we've stopped the DMA for
432 * some reason (eg, XOFF received, or we want to send an X-char.)
433 *
434 * Note: we need to be careful here of a potential race between DMA
435 * and the rest of the driver - if the driver disables TX DMA while
436 * a TX buffer completing, we must update the tx queued status to
437 * get further refills (hence we check dmacr).
438 */
439 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
440 uart_circ_empty(&uap->port.state->xmit)) {
441 uap->dmatx.queued = false;
442 spin_unlock_irqrestore(&uap->port.lock, flags);
443 return;
444 }
445
446 if (pl011_dma_tx_refill(uap) <= 0)
447 /*
448 * We didn't queue a DMA buffer for some reason, but we
449 * have data pending to be sent. Re-enable the TX IRQ.
450 */
451 pl011_start_tx_pio(uap);
452
453 spin_unlock_irqrestore(&uap->port.lock, flags);
454 }
455
456 /*
457 * Try to refill the TX DMA buffer.
458 * Locking: called with port lock held and IRQs disabled.
459 * Returns:
460 * 1 if we queued up a TX DMA buffer.
461 * 0 if we didn't want to handle this by DMA
462 * <0 on error
463 */
464 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
465 {
466 struct pl011_dmatx_data *dmatx = &uap->dmatx;
467 struct dma_chan *chan = dmatx->chan;
468 struct dma_device *dma_dev = chan->device;
469 struct dma_async_tx_descriptor *desc;
470 struct circ_buf *xmit = &uap->port.state->xmit;
471 unsigned int count;
472
473 /*
474 * Try to avoid the overhead involved in using DMA if the
475 * transaction fits in the first half of the FIFO, by using
476 * the standard interrupt handling. This ensures that we
477 * issue a uart_write_wakeup() at the appropriate time.
478 */
479 count = uart_circ_chars_pending(xmit);
480 if (count < (uap->fifosize >> 1)) {
481 uap->dmatx.queued = false;
482 return 0;
483 }
484
485 /*
486 * Bodge: don't send the last character by DMA, as this
487 * will prevent XON from notifying us to restart DMA.
488 */
489 count -= 1;
490
491 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
492 if (count > PL011_DMA_BUFFER_SIZE)
493 count = PL011_DMA_BUFFER_SIZE;
494
495 if (xmit->tail < xmit->head)
496 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
497 else {
498 size_t first = UART_XMIT_SIZE - xmit->tail;
499 size_t second;
500
501 if (first > count)
502 first = count;
503 second = count - first;
504
505 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
506 if (second)
507 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
508 }
509
510 dmatx->sg.length = count;
511
512 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
513 uap->dmatx.queued = false;
514 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
515 return -EBUSY;
516 }
517
518 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
519 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
520 if (!desc) {
521 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
522 uap->dmatx.queued = false;
523 /*
524 * If DMA cannot be used right now, we complete this
525 * transaction via IRQ and let the TTY layer retry.
526 */
527 dev_dbg(uap->port.dev, "TX DMA busy\n");
528 return -EBUSY;
529 }
530
531 /* Some data to go along to the callback */
532 desc->callback = pl011_dma_tx_callback;
533 desc->callback_param = uap;
534
535 /* All errors should happen at prepare time */
536 dmaengine_submit(desc);
537
538 /* Fire the DMA transaction */
539 dma_dev->device_issue_pending(chan);
540
541 uap->dmacr |= UART011_TXDMAE;
542 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
543 uap->dmatx.queued = true;
544
545 /*
546 * Now we know that DMA will fire, so advance the ring buffer
547 * with the stuff we just dispatched.
548 */
549 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
550 uap->port.icount.tx += count;
551
552 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
553 uart_write_wakeup(&uap->port);
554
555 return 1;
556 }
557
558 /*
559 * We received a transmit interrupt without a pending X-char but with
560 * pending characters.
561 * Locking: called with port lock held and IRQs disabled.
562 * Returns:
563 * false if we want to use PIO to transmit
564 * true if we queued a DMA buffer
565 */
566 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
567 {
568 if (!uap->using_tx_dma)
569 return false;
570
571 /*
572 * If we already have a TX buffer queued, but received a
573 * TX interrupt, it will be because we've just sent an X-char.
574 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
575 */
576 if (uap->dmatx.queued) {
577 uap->dmacr |= UART011_TXDMAE;
578 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
579 uap->im &= ~UART011_TXIM;
580 writew(uap->im, uap->port.membase + UART011_IMSC);
581 return true;
582 }
583
584 /*
585 * We don't have a TX buffer queued, so try to queue one.
586 * If we successfully queued a buffer, mask the TX IRQ.
587 */
588 if (pl011_dma_tx_refill(uap) > 0) {
589 uap->im &= ~UART011_TXIM;
590 writew(uap->im, uap->port.membase + UART011_IMSC);
591 return true;
592 }
593 return false;
594 }
595
596 /*
597 * Stop the DMA transmit (eg, due to received XOFF).
598 * Locking: called with port lock held and IRQs disabled.
599 */
600 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
601 {
602 if (uap->dmatx.queued) {
603 uap->dmacr &= ~UART011_TXDMAE;
604 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
605 }
606 }
607
608 /*
609 * Try to start a DMA transmit, or in the case of an XON/OFF
610 * character queued for send, try to get that character out ASAP.
611 * Locking: called with port lock held and IRQs disabled.
612 * Returns:
613 * false if we want the TX IRQ to be enabled
614 * true if we have a buffer queued
615 */
616 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
617 {
618 u16 dmacr;
619
620 if (!uap->using_tx_dma)
621 return false;
622
623 if (!uap->port.x_char) {
624 /* no X-char, try to push chars out in DMA mode */
625 bool ret = true;
626
627 if (!uap->dmatx.queued) {
628 if (pl011_dma_tx_refill(uap) > 0) {
629 uap->im &= ~UART011_TXIM;
630 writew(uap->im, uap->port.membase +
631 UART011_IMSC);
632 } else
633 ret = false;
634 } else if (!(uap->dmacr & UART011_TXDMAE)) {
635 uap->dmacr |= UART011_TXDMAE;
636 writew(uap->dmacr,
637 uap->port.membase + UART011_DMACR);
638 }
639 return ret;
640 }
641
642 /*
643 * We have an X-char to send. Disable DMA to prevent it loading
644 * the TX fifo, and then see if we can stuff it into the FIFO.
645 */
646 dmacr = uap->dmacr;
647 uap->dmacr &= ~UART011_TXDMAE;
648 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
649
650 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
651 /*
652 * No space in the FIFO, so enable the transmit interrupt
653 * so we know when there is space. Note that once we've
654 * loaded the character, we should just re-enable DMA.
655 */
656 return false;
657 }
658
659 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
660 uap->port.icount.tx++;
661 uap->port.x_char = 0;
662
663 /* Success - restore the DMA state */
664 uap->dmacr = dmacr;
665 writew(dmacr, uap->port.membase + UART011_DMACR);
666
667 return true;
668 }
669
670 /*
671 * Flush the transmit buffer.
672 * Locking: called with port lock held and IRQs disabled.
673 */
674 static void pl011_dma_flush_buffer(struct uart_port *port)
675 __releases(&uap->port.lock)
676 __acquires(&uap->port.lock)
677 {
678 struct uart_amba_port *uap =
679 container_of(port, struct uart_amba_port, port);
680
681 if (!uap->using_tx_dma)
682 return;
683
684 /* Avoid deadlock with the DMA engine callback */
685 spin_unlock(&uap->port.lock);
686 dmaengine_terminate_all(uap->dmatx.chan);
687 spin_lock(&uap->port.lock);
688 if (uap->dmatx.queued) {
689 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
690 DMA_TO_DEVICE);
691 uap->dmatx.queued = false;
692 uap->dmacr &= ~UART011_TXDMAE;
693 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
694 }
695 }
696
697 static void pl011_dma_rx_callback(void *data);
698
699 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
700 {
701 struct dma_chan *rxchan = uap->dmarx.chan;
702 struct pl011_dmarx_data *dmarx = &uap->dmarx;
703 struct dma_async_tx_descriptor *desc;
704 struct pl011_sgbuf *sgbuf;
705
706 if (!rxchan)
707 return -EIO;
708
709 /* Start the RX DMA job */
710 sgbuf = uap->dmarx.use_buf_b ?
711 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
712 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
713 DMA_DEV_TO_MEM,
714 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
715 /*
716 * If the DMA engine is busy and cannot prepare a
717 * channel, no big deal, the driver will fall back
718 * to interrupt mode as a result of this error code.
719 */
720 if (!desc) {
721 uap->dmarx.running = false;
722 dmaengine_terminate_all(rxchan);
723 return -EBUSY;
724 }
725
726 /* Some data to go along to the callback */
727 desc->callback = pl011_dma_rx_callback;
728 desc->callback_param = uap;
729 dmarx->cookie = dmaengine_submit(desc);
730 dma_async_issue_pending(rxchan);
731
732 uap->dmacr |= UART011_RXDMAE;
733 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
734 uap->dmarx.running = true;
735
736 uap->im &= ~UART011_RXIM;
737 writew(uap->im, uap->port.membase + UART011_IMSC);
738
739 return 0;
740 }
741
742 /*
743 * This is called when either the DMA job is complete, or
744 * the FIFO timeout interrupt occurred. This must be called
745 * with the port spinlock uap->port.lock held.
746 */
747 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
748 u32 pending, bool use_buf_b,
749 bool readfifo)
750 {
751 struct tty_port *port = &uap->port.state->port;
752 struct pl011_sgbuf *sgbuf = use_buf_b ?
753 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
754 int dma_count = 0;
755 u32 fifotaken = 0; /* only used for vdbg() */
756
757 struct pl011_dmarx_data *dmarx = &uap->dmarx;
758 int dmataken = 0;
759
760 if (uap->dmarx.poll_rate) {
761 /* The data can be taken by polling */
762 dmataken = sgbuf->sg.length - dmarx->last_residue;
763 /* Recalculate the pending size */
764 if (pending >= dmataken)
765 pending -= dmataken;
766 }
767
768 /* Pick the remain data from the DMA */
769 if (pending) {
770
771 /*
772 * First take all chars in the DMA pipe, then look in the FIFO.
773 * Note that tty_insert_flip_buf() tries to take as many chars
774 * as it can.
775 */
776 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
777 pending);
778
779 uap->port.icount.rx += dma_count;
780 if (dma_count < pending)
781 dev_warn(uap->port.dev,
782 "couldn't insert all characters (TTY is full?)\n");
783 }
784
785 /* Reset the last_residue for Rx DMA poll */
786 if (uap->dmarx.poll_rate)
787 dmarx->last_residue = sgbuf->sg.length;
788
789 /*
790 * Only continue with trying to read the FIFO if all DMA chars have
791 * been taken first.
792 */
793 if (dma_count == pending && readfifo) {
794 /* Clear any error flags */
795 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
796 uap->port.membase + UART011_ICR);
797
798 /*
799 * If we read all the DMA'd characters, and we had an
800 * incomplete buffer, that could be due to an rx error, or
801 * maybe we just timed out. Read any pending chars and check
802 * the error status.
803 *
804 * Error conditions will only occur in the FIFO, these will
805 * trigger an immediate interrupt and stop the DMA job, so we
806 * will always find the error in the FIFO, never in the DMA
807 * buffer.
808 */
809 fifotaken = pl011_fifo_to_tty(uap);
810 }
811
812 spin_unlock(&uap->port.lock);
813 dev_vdbg(uap->port.dev,
814 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
815 dma_count, fifotaken);
816 tty_flip_buffer_push(port);
817 spin_lock(&uap->port.lock);
818 }
819
820 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
821 {
822 struct pl011_dmarx_data *dmarx = &uap->dmarx;
823 struct dma_chan *rxchan = dmarx->chan;
824 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
825 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
826 size_t pending;
827 struct dma_tx_state state;
828 enum dma_status dmastat;
829
830 /*
831 * Pause the transfer so we can trust the current counter,
832 * do this before we pause the PL011 block, else we may
833 * overflow the FIFO.
834 */
835 if (dmaengine_pause(rxchan))
836 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
837 dmastat = rxchan->device->device_tx_status(rxchan,
838 dmarx->cookie, &state);
839 if (dmastat != DMA_PAUSED)
840 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
841
842 /* Disable RX DMA - incoming data will wait in the FIFO */
843 uap->dmacr &= ~UART011_RXDMAE;
844 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
845 uap->dmarx.running = false;
846
847 pending = sgbuf->sg.length - state.residue;
848 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
849 /* Then we terminate the transfer - we now know our residue */
850 dmaengine_terminate_all(rxchan);
851
852 /*
853 * This will take the chars we have so far and insert
854 * into the framework.
855 */
856 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
857
858 /* Switch buffer & re-trigger DMA job */
859 dmarx->use_buf_b = !dmarx->use_buf_b;
860 if (pl011_dma_rx_trigger_dma(uap)) {
861 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
862 "fall back to interrupt mode\n");
863 uap->im |= UART011_RXIM;
864 writew(uap->im, uap->port.membase + UART011_IMSC);
865 }
866 }
867
868 static void pl011_dma_rx_callback(void *data)
869 {
870 struct uart_amba_port *uap = data;
871 struct pl011_dmarx_data *dmarx = &uap->dmarx;
872 struct dma_chan *rxchan = dmarx->chan;
873 bool lastbuf = dmarx->use_buf_b;
874 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
875 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
876 size_t pending;
877 struct dma_tx_state state;
878 int ret;
879
880 /*
881 * This completion interrupt occurs typically when the
882 * RX buffer is totally stuffed but no timeout has yet
883 * occurred. When that happens, we just want the RX
884 * routine to flush out the secondary DMA buffer while
885 * we immediately trigger the next DMA job.
886 */
887 spin_lock_irq(&uap->port.lock);
888 /*
889 * Rx data can be taken by the UART interrupts during
890 * the DMA irq handler. So we check the residue here.
891 */
892 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
893 pending = sgbuf->sg.length - state.residue;
894 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
895 /* Then we terminate the transfer - we now know our residue */
896 dmaengine_terminate_all(rxchan);
897
898 uap->dmarx.running = false;
899 dmarx->use_buf_b = !lastbuf;
900 ret = pl011_dma_rx_trigger_dma(uap);
901
902 pl011_dma_rx_chars(uap, pending, lastbuf, false);
903 spin_unlock_irq(&uap->port.lock);
904 /*
905 * Do this check after we picked the DMA chars so we don't
906 * get some IRQ immediately from RX.
907 */
908 if (ret) {
909 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
910 "fall back to interrupt mode\n");
911 uap->im |= UART011_RXIM;
912 writew(uap->im, uap->port.membase + UART011_IMSC);
913 }
914 }
915
916 /*
917 * Stop accepting received characters, when we're shutting down or
918 * suspending this port.
919 * Locking: called with port lock held and IRQs disabled.
920 */
921 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
922 {
923 /* FIXME. Just disable the DMA enable */
924 uap->dmacr &= ~UART011_RXDMAE;
925 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
926 }
927
928 /*
929 * Timer handler for Rx DMA polling.
930 * Every polling, It checks the residue in the dma buffer and transfer
931 * data to the tty. Also, last_residue is updated for the next polling.
932 */
933 static void pl011_dma_rx_poll(unsigned long args)
934 {
935 struct uart_amba_port *uap = (struct uart_amba_port *)args;
936 struct tty_port *port = &uap->port.state->port;
937 struct pl011_dmarx_data *dmarx = &uap->dmarx;
938 struct dma_chan *rxchan = uap->dmarx.chan;
939 unsigned long flags = 0;
940 unsigned int dmataken = 0;
941 unsigned int size = 0;
942 struct pl011_sgbuf *sgbuf;
943 int dma_count;
944 struct dma_tx_state state;
945
946 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
947 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
948 if (likely(state.residue < dmarx->last_residue)) {
949 dmataken = sgbuf->sg.length - dmarx->last_residue;
950 size = dmarx->last_residue - state.residue;
951 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
952 size);
953 if (dma_count == size)
954 dmarx->last_residue = state.residue;
955 dmarx->last_jiffies = jiffies;
956 }
957 tty_flip_buffer_push(port);
958
959 /*
960 * If no data is received in poll_timeout, the driver will fall back
961 * to interrupt mode. We will retrigger DMA at the first interrupt.
962 */
963 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
964 > uap->dmarx.poll_timeout) {
965
966 spin_lock_irqsave(&uap->port.lock, flags);
967 pl011_dma_rx_stop(uap);
968 uap->im |= UART011_RXIM;
969 writew(uap->im, uap->port.membase + UART011_IMSC);
970 spin_unlock_irqrestore(&uap->port.lock, flags);
971
972 uap->dmarx.running = false;
973 dmaengine_terminate_all(rxchan);
974 del_timer(&uap->dmarx.timer);
975 } else {
976 mod_timer(&uap->dmarx.timer,
977 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
978 }
979 }
980
981 static void pl011_dma_startup(struct uart_amba_port *uap)
982 {
983 int ret;
984
985 if (!uap->dma_probed)
986 pl011_dma_probe(uap);
987
988 if (!uap->dmatx.chan)
989 return;
990
991 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
992 if (!uap->dmatx.buf) {
993 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
994 uap->port.fifosize = uap->fifosize;
995 return;
996 }
997
998 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
999
1000 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1001 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1002 uap->using_tx_dma = true;
1003
1004 if (!uap->dmarx.chan)
1005 goto skip_rx;
1006
1007 /* Allocate and map DMA RX buffers */
1008 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1009 DMA_FROM_DEVICE);
1010 if (ret) {
1011 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1012 "RX buffer A", ret);
1013 goto skip_rx;
1014 }
1015
1016 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1017 DMA_FROM_DEVICE);
1018 if (ret) {
1019 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1020 "RX buffer B", ret);
1021 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1022 DMA_FROM_DEVICE);
1023 goto skip_rx;
1024 }
1025
1026 uap->using_rx_dma = true;
1027
1028 skip_rx:
1029 /* Turn on DMA error (RX/TX will be enabled on demand) */
1030 uap->dmacr |= UART011_DMAONERR;
1031 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1032
1033 /*
1034 * ST Micro variants has some specific dma burst threshold
1035 * compensation. Set this to 16 bytes, so burst will only
1036 * be issued above/below 16 bytes.
1037 */
1038 if (uap->vendor->dma_threshold)
1039 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1040 uap->port.membase + ST_UART011_DMAWM);
1041
1042 if (uap->using_rx_dma) {
1043 if (pl011_dma_rx_trigger_dma(uap))
1044 dev_dbg(uap->port.dev, "could not trigger initial "
1045 "RX DMA job, fall back to interrupt mode\n");
1046 if (uap->dmarx.poll_rate) {
1047 init_timer(&(uap->dmarx.timer));
1048 uap->dmarx.timer.function = pl011_dma_rx_poll;
1049 uap->dmarx.timer.data = (unsigned long)uap;
1050 mod_timer(&uap->dmarx.timer,
1051 jiffies +
1052 msecs_to_jiffies(uap->dmarx.poll_rate));
1053 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1054 uap->dmarx.last_jiffies = jiffies;
1055 }
1056 }
1057 }
1058
1059 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1060 {
1061 if (!(uap->using_tx_dma || uap->using_rx_dma))
1062 return;
1063
1064 /* Disable RX and TX DMA */
1065 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1066 barrier();
1067
1068 spin_lock_irq(&uap->port.lock);
1069 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1070 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1071 spin_unlock_irq(&uap->port.lock);
1072
1073 if (uap->using_tx_dma) {
1074 /* In theory, this should already be done by pl011_dma_flush_buffer */
1075 dmaengine_terminate_all(uap->dmatx.chan);
1076 if (uap->dmatx.queued) {
1077 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1078 DMA_TO_DEVICE);
1079 uap->dmatx.queued = false;
1080 }
1081
1082 kfree(uap->dmatx.buf);
1083 uap->using_tx_dma = false;
1084 }
1085
1086 if (uap->using_rx_dma) {
1087 dmaengine_terminate_all(uap->dmarx.chan);
1088 /* Clean up the RX DMA */
1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1090 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1091 if (uap->dmarx.poll_rate)
1092 del_timer_sync(&uap->dmarx.timer);
1093 uap->using_rx_dma = false;
1094 }
1095 }
1096
1097 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1098 {
1099 return uap->using_rx_dma;
1100 }
1101
1102 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1103 {
1104 return uap->using_rx_dma && uap->dmarx.running;
1105 }
1106
1107 #else
1108 /* Blank functions if the DMA engine is not available */
1109 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1110 {
1111 }
1112
1113 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1114 {
1115 }
1116
1117 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1118 {
1119 }
1120
1121 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1122 {
1123 }
1124
1125 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1126 {
1127 return false;
1128 }
1129
1130 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1131 {
1132 }
1133
1134 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1135 {
1136 return false;
1137 }
1138
1139 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1140 {
1141 }
1142
1143 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1144 {
1145 }
1146
1147 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1148 {
1149 return -EIO;
1150 }
1151
1152 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1153 {
1154 return false;
1155 }
1156
1157 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1158 {
1159 return false;
1160 }
1161
1162 #define pl011_dma_flush_buffer NULL
1163 #endif
1164
1165 static void pl011_stop_tx(struct uart_port *port)
1166 {
1167 struct uart_amba_port *uap =
1168 container_of(port, struct uart_amba_port, port);
1169
1170 uap->im &= ~UART011_TXIM;
1171 writew(uap->im, uap->port.membase + UART011_IMSC);
1172 pl011_dma_tx_stop(uap);
1173 }
1174
1175 static bool pl011_tx_chars(struct uart_amba_port *uap);
1176
1177 /* Start TX with programmed I/O only (no DMA) */
1178 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1179 {
1180 uap->im |= UART011_TXIM;
1181 writew(uap->im, uap->port.membase + UART011_IMSC);
1182 if (!uap->tx_irq_seen)
1183 pl011_tx_chars(uap);
1184 }
1185
1186 static void pl011_start_tx(struct uart_port *port)
1187 {
1188 struct uart_amba_port *uap =
1189 container_of(port, struct uart_amba_port, port);
1190
1191 if (!pl011_dma_tx_start(uap))
1192 pl011_start_tx_pio(uap);
1193 }
1194
1195 static void pl011_stop_rx(struct uart_port *port)
1196 {
1197 struct uart_amba_port *uap =
1198 container_of(port, struct uart_amba_port, port);
1199
1200 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1201 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1202 writew(uap->im, uap->port.membase + UART011_IMSC);
1203
1204 pl011_dma_rx_stop(uap);
1205 }
1206
1207 static void pl011_enable_ms(struct uart_port *port)
1208 {
1209 struct uart_amba_port *uap =
1210 container_of(port, struct uart_amba_port, port);
1211
1212 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1213 writew(uap->im, uap->port.membase + UART011_IMSC);
1214 }
1215
1216 static void pl011_rx_chars(struct uart_amba_port *uap)
1217 __releases(&uap->port.lock)
1218 __acquires(&uap->port.lock)
1219 {
1220 pl011_fifo_to_tty(uap);
1221
1222 spin_unlock(&uap->port.lock);
1223 tty_flip_buffer_push(&uap->port.state->port);
1224 /*
1225 * If we were temporarily out of DMA mode for a while,
1226 * attempt to switch back to DMA mode again.
1227 */
1228 if (pl011_dma_rx_available(uap)) {
1229 if (pl011_dma_rx_trigger_dma(uap)) {
1230 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1231 "fall back to interrupt mode again\n");
1232 uap->im |= UART011_RXIM;
1233 writew(uap->im, uap->port.membase + UART011_IMSC);
1234 } else {
1235 #ifdef CONFIG_DMA_ENGINE
1236 /* Start Rx DMA poll */
1237 if (uap->dmarx.poll_rate) {
1238 uap->dmarx.last_jiffies = jiffies;
1239 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1240 mod_timer(&uap->dmarx.timer,
1241 jiffies +
1242 msecs_to_jiffies(uap->dmarx.poll_rate));
1243 }
1244 #endif
1245 }
1246 }
1247 spin_lock(&uap->port.lock);
1248 }
1249
1250 /*
1251 * Transmit a character
1252 * There must be at least one free entry in the TX FIFO to accept the char.
1253 *
1254 * Returns true if the FIFO might have space in it afterwards;
1255 * returns false if the FIFO definitely became full.
1256 */
1257 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c)
1258 {
1259 writew(c, uap->port.membase + UART01x_DR);
1260 uap->port.icount.tx++;
1261
1262 if (likely(uap->tx_irq_seen > 1))
1263 return true;
1264
1265 return !(readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF);
1266 }
1267
1268 static bool pl011_tx_chars(struct uart_amba_port *uap)
1269 {
1270 struct circ_buf *xmit = &uap->port.state->xmit;
1271 int count;
1272
1273 if (unlikely(uap->tx_irq_seen < 2))
1274 /*
1275 * Initial FIFO fill level unknown: we must check TXFF
1276 * after each write, so just try to fill up the FIFO.
1277 */
1278 count = uap->fifosize;
1279 else /* tx_irq_seen >= 2 */
1280 /*
1281 * FIFO initially at least half-empty, so we can simply
1282 * write half the FIFO without polling TXFF.
1283
1284 * Note: the *first* TX IRQ can still race with
1285 * pl011_start_tx_pio(), which can result in the FIFO
1286 * being fuller than expected in that case.
1287 */
1288 count = uap->fifosize >> 1;
1289
1290 /*
1291 * If the FIFO is full we're guaranteed a TX IRQ at some later point,
1292 * and can't transmit immediately in any case:
1293 */
1294 if (unlikely(uap->tx_irq_seen < 2 &&
1295 readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF))
1296 return false;
1297
1298 if (uap->port.x_char) {
1299 pl011_tx_char(uap, uap->port.x_char);
1300 uap->port.x_char = 0;
1301 --count;
1302 }
1303 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1304 pl011_stop_tx(&uap->port);
1305 goto done;
1306 }
1307
1308 /* If we are using DMA mode, try to send some characters. */
1309 if (pl011_dma_tx_irq(uap))
1310 goto done;
1311
1312 while (count-- > 0 && pl011_tx_char(uap, xmit->buf[xmit->tail])) {
1313 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1314 if (uart_circ_empty(xmit))
1315 break;
1316 }
1317
1318 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1319 uart_write_wakeup(&uap->port);
1320
1321 if (uart_circ_empty(xmit)) {
1322 pl011_stop_tx(&uap->port);
1323 goto done;
1324 }
1325
1326 if (unlikely(!uap->tx_irq_seen))
1327 schedule_delayed_work(&uap->tx_softirq_work, uap->port.timeout);
1328
1329 done:
1330 return false;
1331 }
1332
1333 static void pl011_modem_status(struct uart_amba_port *uap)
1334 {
1335 unsigned int status, delta;
1336
1337 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1338
1339 delta = status ^ uap->old_status;
1340 uap->old_status = status;
1341
1342 if (!delta)
1343 return;
1344
1345 if (delta & UART01x_FR_DCD)
1346 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1347
1348 if (delta & UART01x_FR_DSR)
1349 uap->port.icount.dsr++;
1350
1351 if (delta & UART01x_FR_CTS)
1352 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1353
1354 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1355 }
1356
1357 static void pl011_tx_softirq(struct work_struct *work)
1358 {
1359 struct delayed_work *dwork = to_delayed_work(work);
1360 struct uart_amba_port *uap =
1361 container_of(dwork, struct uart_amba_port, tx_softirq_work);
1362
1363 spin_lock(&uap->port.lock);
1364 while (pl011_tx_chars(uap)) ;
1365 spin_unlock(&uap->port.lock);
1366 }
1367
1368 static void pl011_tx_irq_seen(struct uart_amba_port *uap)
1369 {
1370 if (likely(uap->tx_irq_seen > 1))
1371 return;
1372
1373 uap->tx_irq_seen++;
1374 if (uap->tx_irq_seen < 2)
1375 /* first TX IRQ */
1376 cancel_delayed_work(&uap->tx_softirq_work);
1377 }
1378
1379 static irqreturn_t pl011_int(int irq, void *dev_id)
1380 {
1381 struct uart_amba_port *uap = dev_id;
1382 unsigned long flags;
1383 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1384 int handled = 0;
1385 unsigned int dummy_read;
1386
1387 spin_lock_irqsave(&uap->port.lock, flags);
1388 status = readw(uap->port.membase + UART011_MIS);
1389 if (status) {
1390 do {
1391 if (uap->vendor->cts_event_workaround) {
1392 /* workaround to make sure that all bits are unlocked.. */
1393 writew(0x00, uap->port.membase + UART011_ICR);
1394
1395 /*
1396 * WA: introduce 26ns(1 uart clk) delay before W1C;
1397 * single apb access will incur 2 pclk(133.12Mhz) delay,
1398 * so add 2 dummy reads
1399 */
1400 dummy_read = readw(uap->port.membase + UART011_ICR);
1401 dummy_read = readw(uap->port.membase + UART011_ICR);
1402 }
1403
1404 writew(status & ~(UART011_TXIS|UART011_RTIS|
1405 UART011_RXIS),
1406 uap->port.membase + UART011_ICR);
1407
1408 if (status & (UART011_RTIS|UART011_RXIS)) {
1409 if (pl011_dma_rx_running(uap))
1410 pl011_dma_rx_irq(uap);
1411 else
1412 pl011_rx_chars(uap);
1413 }
1414 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1415 UART011_CTSMIS|UART011_RIMIS))
1416 pl011_modem_status(uap);
1417 if (status & UART011_TXIS) {
1418 pl011_tx_irq_seen(uap);
1419 pl011_tx_chars(uap);
1420 }
1421
1422 if (pass_counter-- == 0)
1423 break;
1424
1425 status = readw(uap->port.membase + UART011_MIS);
1426 } while (status != 0);
1427 handled = 1;
1428 }
1429
1430 spin_unlock_irqrestore(&uap->port.lock, flags);
1431
1432 return IRQ_RETVAL(handled);
1433 }
1434
1435 static unsigned int pl011_tx_empty(struct uart_port *port)
1436 {
1437 struct uart_amba_port *uap =
1438 container_of(port, struct uart_amba_port, port);
1439 unsigned int status = readw(uap->port.membase + UART01x_FR);
1440 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1441 }
1442
1443 static unsigned int pl011_get_mctrl(struct uart_port *port)
1444 {
1445 struct uart_amba_port *uap =
1446 container_of(port, struct uart_amba_port, port);
1447 unsigned int result = 0;
1448 unsigned int status = readw(uap->port.membase + UART01x_FR);
1449
1450 #define TIOCMBIT(uartbit, tiocmbit) \
1451 if (status & uartbit) \
1452 result |= tiocmbit
1453
1454 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1455 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1456 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1457 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1458 #undef TIOCMBIT
1459 return result;
1460 }
1461
1462 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1463 {
1464 struct uart_amba_port *uap =
1465 container_of(port, struct uart_amba_port, port);
1466 unsigned int cr;
1467
1468 cr = readw(uap->port.membase + UART011_CR);
1469
1470 #define TIOCMBIT(tiocmbit, uartbit) \
1471 if (mctrl & tiocmbit) \
1472 cr |= uartbit; \
1473 else \
1474 cr &= ~uartbit
1475
1476 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1477 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1478 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1479 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1480 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1481
1482 if (uap->autorts) {
1483 /* We need to disable auto-RTS if we want to turn RTS off */
1484 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1485 }
1486 #undef TIOCMBIT
1487
1488 writew(cr, uap->port.membase + UART011_CR);
1489 }
1490
1491 static void pl011_break_ctl(struct uart_port *port, int break_state)
1492 {
1493 struct uart_amba_port *uap =
1494 container_of(port, struct uart_amba_port, port);
1495 unsigned long flags;
1496 unsigned int lcr_h;
1497
1498 spin_lock_irqsave(&uap->port.lock, flags);
1499 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1500 if (break_state == -1)
1501 lcr_h |= UART01x_LCRH_BRK;
1502 else
1503 lcr_h &= ~UART01x_LCRH_BRK;
1504 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1505 spin_unlock_irqrestore(&uap->port.lock, flags);
1506 }
1507
1508 #ifdef CONFIG_CONSOLE_POLL
1509
1510 static void pl011_quiesce_irqs(struct uart_port *port)
1511 {
1512 struct uart_amba_port *uap =
1513 container_of(port, struct uart_amba_port, port);
1514 unsigned char __iomem *regs = uap->port.membase;
1515
1516 writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1517 /*
1518 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1519 * we simply mask it. start_tx() will unmask it.
1520 *
1521 * Note we can race with start_tx(), and if the race happens, the
1522 * polling user might get another interrupt just after we clear it.
1523 * But it should be OK and can happen even w/o the race, e.g.
1524 * controller immediately got some new data and raised the IRQ.
1525 *
1526 * And whoever uses polling routines assumes that it manages the device
1527 * (including tx queue), so we're also fine with start_tx()'s caller
1528 * side.
1529 */
1530 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1531 }
1532
1533 static int pl011_get_poll_char(struct uart_port *port)
1534 {
1535 struct uart_amba_port *uap =
1536 container_of(port, struct uart_amba_port, port);
1537 unsigned int status;
1538
1539 /*
1540 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1541 * debugger.
1542 */
1543 pl011_quiesce_irqs(port);
1544
1545 status = readw(uap->port.membase + UART01x_FR);
1546 if (status & UART01x_FR_RXFE)
1547 return NO_POLL_CHAR;
1548
1549 return readw(uap->port.membase + UART01x_DR);
1550 }
1551
1552 static void pl011_put_poll_char(struct uart_port *port,
1553 unsigned char ch)
1554 {
1555 struct uart_amba_port *uap =
1556 container_of(port, struct uart_amba_port, port);
1557
1558 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1559 barrier();
1560
1561 writew(ch, uap->port.membase + UART01x_DR);
1562 }
1563
1564 #endif /* CONFIG_CONSOLE_POLL */
1565
1566 static int pl011_hwinit(struct uart_port *port)
1567 {
1568 struct uart_amba_port *uap =
1569 container_of(port, struct uart_amba_port, port);
1570 int retval;
1571
1572 /* Optionaly enable pins to be muxed in and configured */
1573 pinctrl_pm_select_default_state(port->dev);
1574
1575 /*
1576 * Try to enable the clock producer.
1577 */
1578 retval = clk_prepare_enable(uap->clk);
1579 if (retval)
1580 return retval;
1581
1582 uap->port.uartclk = clk_get_rate(uap->clk);
1583
1584 /* Clear pending error and receive interrupts */
1585 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1586 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1587
1588 /*
1589 * Save interrupts enable mask, and enable RX interrupts in case if
1590 * the interrupt is used for NMI entry.
1591 */
1592 uap->im = readw(uap->port.membase + UART011_IMSC);
1593 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1594
1595 if (dev_get_platdata(uap->port.dev)) {
1596 struct amba_pl011_data *plat;
1597
1598 plat = dev_get_platdata(uap->port.dev);
1599 if (plat->init)
1600 plat->init();
1601 }
1602 return 0;
1603 }
1604
1605 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1606 {
1607 writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1608 if (uap->lcrh_rx != uap->lcrh_tx) {
1609 int i;
1610 /*
1611 * Wait 10 PCLKs before writing LCRH_TX register,
1612 * to get this delay write read only register 10 times
1613 */
1614 for (i = 0; i < 10; ++i)
1615 writew(0xff, uap->port.membase + UART011_MIS);
1616 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1617 }
1618 }
1619
1620 static int pl011_startup(struct uart_port *port)
1621 {
1622 struct uart_amba_port *uap =
1623 container_of(port, struct uart_amba_port, port);
1624 unsigned int cr;
1625 int retval;
1626
1627 retval = pl011_hwinit(port);
1628 if (retval)
1629 goto clk_dis;
1630
1631 writew(uap->im, uap->port.membase + UART011_IMSC);
1632
1633 /*
1634 * Allocate the IRQ
1635 */
1636 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1637 if (retval)
1638 goto clk_dis;
1639
1640 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1641
1642 spin_lock_irq(&uap->port.lock);
1643
1644 /* restore RTS and DTR */
1645 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1646 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1647 writew(cr, uap->port.membase + UART011_CR);
1648
1649 spin_unlock_irq(&uap->port.lock);
1650
1651 /*
1652 * initialise the old status of the modem signals
1653 */
1654 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1655
1656 /* Startup DMA */
1657 pl011_dma_startup(uap);
1658
1659 /*
1660 * Finally, enable interrupts, only timeouts when using DMA
1661 * if initial RX DMA job failed, start in interrupt mode
1662 * as well.
1663 */
1664 spin_lock_irq(&uap->port.lock);
1665 /* Clear out any spuriously appearing RX interrupts */
1666 writew(UART011_RTIS | UART011_RXIS,
1667 uap->port.membase + UART011_ICR);
1668 uap->im = UART011_RTIM;
1669 if (!pl011_dma_rx_running(uap))
1670 uap->im |= UART011_RXIM;
1671 writew(uap->im, uap->port.membase + UART011_IMSC);
1672 spin_unlock_irq(&uap->port.lock);
1673
1674 return 0;
1675
1676 clk_dis:
1677 clk_disable_unprepare(uap->clk);
1678 return retval;
1679 }
1680
1681 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1682 unsigned int lcrh)
1683 {
1684 unsigned long val;
1685
1686 val = readw(uap->port.membase + lcrh);
1687 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1688 writew(val, uap->port.membase + lcrh);
1689 }
1690
1691 static void pl011_shutdown(struct uart_port *port)
1692 {
1693 struct uart_amba_port *uap =
1694 container_of(port, struct uart_amba_port, port);
1695 unsigned int cr;
1696
1697 cancel_delayed_work_sync(&uap->tx_softirq_work);
1698
1699 /*
1700 * disable all interrupts
1701 */
1702 spin_lock_irq(&uap->port.lock);
1703 uap->im = 0;
1704 writew(uap->im, uap->port.membase + UART011_IMSC);
1705 writew(0xffff & ~UART011_TXIS, uap->port.membase + UART011_ICR);
1706 spin_unlock_irq(&uap->port.lock);
1707
1708 pl011_dma_shutdown(uap);
1709
1710 /*
1711 * Free the interrupt
1712 */
1713 free_irq(uap->port.irq, uap);
1714
1715 /*
1716 * disable the port
1717 * disable the port. It should not disable RTS and DTR.
1718 * Also RTS and DTR state should be preserved to restore
1719 * it during startup().
1720 */
1721 uap->autorts = false;
1722 spin_lock_irq(&uap->port.lock);
1723 cr = readw(uap->port.membase + UART011_CR);
1724 uap->old_cr = cr;
1725 cr &= UART011_CR_RTS | UART011_CR_DTR;
1726 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1727 writew(cr, uap->port.membase + UART011_CR);
1728 spin_unlock_irq(&uap->port.lock);
1729
1730 /*
1731 * disable break condition and fifos
1732 */
1733 pl011_shutdown_channel(uap, uap->lcrh_rx);
1734 if (uap->lcrh_rx != uap->lcrh_tx)
1735 pl011_shutdown_channel(uap, uap->lcrh_tx);
1736
1737 /*
1738 * Shut down the clock producer
1739 */
1740 clk_disable_unprepare(uap->clk);
1741 /* Optionally let pins go into sleep states */
1742 pinctrl_pm_select_sleep_state(port->dev);
1743
1744 if (dev_get_platdata(uap->port.dev)) {
1745 struct amba_pl011_data *plat;
1746
1747 plat = dev_get_platdata(uap->port.dev);
1748 if (plat->exit)
1749 plat->exit();
1750 }
1751
1752 if (uap->port.ops->flush_buffer)
1753 uap->port.ops->flush_buffer(port);
1754 }
1755
1756 static void
1757 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1758 struct ktermios *old)
1759 {
1760 struct uart_amba_port *uap =
1761 container_of(port, struct uart_amba_port, port);
1762 unsigned int lcr_h, old_cr;
1763 unsigned long flags;
1764 unsigned int baud, quot, clkdiv;
1765
1766 if (uap->vendor->oversampling)
1767 clkdiv = 8;
1768 else
1769 clkdiv = 16;
1770
1771 /*
1772 * Ask the core to calculate the divisor for us.
1773 */
1774 baud = uart_get_baud_rate(port, termios, old, 0,
1775 port->uartclk / clkdiv);
1776 #ifdef CONFIG_DMA_ENGINE
1777 /*
1778 * Adjust RX DMA polling rate with baud rate if not specified.
1779 */
1780 if (uap->dmarx.auto_poll_rate)
1781 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1782 #endif
1783
1784 if (baud > port->uartclk/16)
1785 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1786 else
1787 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1788
1789 switch (termios->c_cflag & CSIZE) {
1790 case CS5:
1791 lcr_h = UART01x_LCRH_WLEN_5;
1792 break;
1793 case CS6:
1794 lcr_h = UART01x_LCRH_WLEN_6;
1795 break;
1796 case CS7:
1797 lcr_h = UART01x_LCRH_WLEN_7;
1798 break;
1799 default: // CS8
1800 lcr_h = UART01x_LCRH_WLEN_8;
1801 break;
1802 }
1803 if (termios->c_cflag & CSTOPB)
1804 lcr_h |= UART01x_LCRH_STP2;
1805 if (termios->c_cflag & PARENB) {
1806 lcr_h |= UART01x_LCRH_PEN;
1807 if (!(termios->c_cflag & PARODD))
1808 lcr_h |= UART01x_LCRH_EPS;
1809 }
1810 if (uap->fifosize > 1)
1811 lcr_h |= UART01x_LCRH_FEN;
1812
1813 spin_lock_irqsave(&port->lock, flags);
1814
1815 /*
1816 * Update the per-port timeout.
1817 */
1818 uart_update_timeout(port, termios->c_cflag, baud);
1819
1820 port->read_status_mask = UART011_DR_OE | 255;
1821 if (termios->c_iflag & INPCK)
1822 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1823 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1824 port->read_status_mask |= UART011_DR_BE;
1825
1826 /*
1827 * Characters to ignore
1828 */
1829 port->ignore_status_mask = 0;
1830 if (termios->c_iflag & IGNPAR)
1831 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1832 if (termios->c_iflag & IGNBRK) {
1833 port->ignore_status_mask |= UART011_DR_BE;
1834 /*
1835 * If we're ignoring parity and break indicators,
1836 * ignore overruns too (for real raw support).
1837 */
1838 if (termios->c_iflag & IGNPAR)
1839 port->ignore_status_mask |= UART011_DR_OE;
1840 }
1841
1842 /*
1843 * Ignore all characters if CREAD is not set.
1844 */
1845 if ((termios->c_cflag & CREAD) == 0)
1846 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1847
1848 if (UART_ENABLE_MS(port, termios->c_cflag))
1849 pl011_enable_ms(port);
1850
1851 /* first, disable everything */
1852 old_cr = readw(port->membase + UART011_CR);
1853 writew(0, port->membase + UART011_CR);
1854
1855 if (termios->c_cflag & CRTSCTS) {
1856 if (old_cr & UART011_CR_RTS)
1857 old_cr |= UART011_CR_RTSEN;
1858
1859 old_cr |= UART011_CR_CTSEN;
1860 uap->autorts = true;
1861 } else {
1862 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1863 uap->autorts = false;
1864 }
1865
1866 if (uap->vendor->oversampling) {
1867 if (baud > port->uartclk / 16)
1868 old_cr |= ST_UART011_CR_OVSFACT;
1869 else
1870 old_cr &= ~ST_UART011_CR_OVSFACT;
1871 }
1872
1873 /*
1874 * Workaround for the ST Micro oversampling variants to
1875 * increase the bitrate slightly, by lowering the divisor,
1876 * to avoid delayed sampling of start bit at high speeds,
1877 * else we see data corruption.
1878 */
1879 if (uap->vendor->oversampling) {
1880 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1881 quot -= 1;
1882 else if ((baud > 3250000) && (quot > 2))
1883 quot -= 2;
1884 }
1885 /* Set baud rate */
1886 writew(quot & 0x3f, port->membase + UART011_FBRD);
1887 writew(quot >> 6, port->membase + UART011_IBRD);
1888
1889 /*
1890 * ----------v----------v----------v----------v-----
1891 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1892 * UART011_FBRD & UART011_IBRD.
1893 * ----------^----------^----------^----------^-----
1894 */
1895 pl011_write_lcr_h(uap, lcr_h);
1896 writew(old_cr, port->membase + UART011_CR);
1897
1898 spin_unlock_irqrestore(&port->lock, flags);
1899 }
1900
1901 static const char *pl011_type(struct uart_port *port)
1902 {
1903 struct uart_amba_port *uap =
1904 container_of(port, struct uart_amba_port, port);
1905 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1906 }
1907
1908 /*
1909 * Release the memory region(s) being used by 'port'
1910 */
1911 static void pl011_release_port(struct uart_port *port)
1912 {
1913 release_mem_region(port->mapbase, SZ_4K);
1914 }
1915
1916 /*
1917 * Request the memory region(s) being used by 'port'
1918 */
1919 static int pl011_request_port(struct uart_port *port)
1920 {
1921 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1922 != NULL ? 0 : -EBUSY;
1923 }
1924
1925 /*
1926 * Configure/autoconfigure the port.
1927 */
1928 static void pl011_config_port(struct uart_port *port, int flags)
1929 {
1930 if (flags & UART_CONFIG_TYPE) {
1931 port->type = PORT_AMBA;
1932 pl011_request_port(port);
1933 }
1934 }
1935
1936 /*
1937 * verify the new serial_struct (for TIOCSSERIAL).
1938 */
1939 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1940 {
1941 int ret = 0;
1942 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1943 ret = -EINVAL;
1944 if (ser->irq < 0 || ser->irq >= nr_irqs)
1945 ret = -EINVAL;
1946 if (ser->baud_base < 9600)
1947 ret = -EINVAL;
1948 return ret;
1949 }
1950
1951 static struct uart_ops amba_pl011_pops = {
1952 .tx_empty = pl011_tx_empty,
1953 .set_mctrl = pl011_set_mctrl,
1954 .get_mctrl = pl011_get_mctrl,
1955 .stop_tx = pl011_stop_tx,
1956 .start_tx = pl011_start_tx,
1957 .stop_rx = pl011_stop_rx,
1958 .enable_ms = pl011_enable_ms,
1959 .break_ctl = pl011_break_ctl,
1960 .startup = pl011_startup,
1961 .shutdown = pl011_shutdown,
1962 .flush_buffer = pl011_dma_flush_buffer,
1963 .set_termios = pl011_set_termios,
1964 .type = pl011_type,
1965 .release_port = pl011_release_port,
1966 .request_port = pl011_request_port,
1967 .config_port = pl011_config_port,
1968 .verify_port = pl011_verify_port,
1969 #ifdef CONFIG_CONSOLE_POLL
1970 .poll_init = pl011_hwinit,
1971 .poll_get_char = pl011_get_poll_char,
1972 .poll_put_char = pl011_put_poll_char,
1973 #endif
1974 };
1975
1976 static struct uart_amba_port *amba_ports[UART_NR];
1977
1978 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1979
1980 static void pl011_console_putchar(struct uart_port *port, int ch)
1981 {
1982 struct uart_amba_port *uap =
1983 container_of(port, struct uart_amba_port, port);
1984
1985 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1986 barrier();
1987 writew(ch, uap->port.membase + UART01x_DR);
1988 }
1989
1990 static void
1991 pl011_console_write(struct console *co, const char *s, unsigned int count)
1992 {
1993 struct uart_amba_port *uap = amba_ports[co->index];
1994 unsigned int status, old_cr, new_cr;
1995 unsigned long flags;
1996 int locked = 1;
1997
1998 clk_enable(uap->clk);
1999
2000 local_irq_save(flags);
2001 if (uap->port.sysrq)
2002 locked = 0;
2003 else if (oops_in_progress)
2004 locked = spin_trylock(&uap->port.lock);
2005 else
2006 spin_lock(&uap->port.lock);
2007
2008 /*
2009 * First save the CR then disable the interrupts
2010 */
2011 old_cr = readw(uap->port.membase + UART011_CR);
2012 new_cr = old_cr & ~UART011_CR_CTSEN;
2013 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2014 writew(new_cr, uap->port.membase + UART011_CR);
2015
2016 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2017
2018 /*
2019 * Finally, wait for transmitter to become empty
2020 * and restore the TCR
2021 */
2022 do {
2023 status = readw(uap->port.membase + UART01x_FR);
2024 } while (status & UART01x_FR_BUSY);
2025 writew(old_cr, uap->port.membase + UART011_CR);
2026
2027 if (locked)
2028 spin_unlock(&uap->port.lock);
2029 local_irq_restore(flags);
2030
2031 clk_disable(uap->clk);
2032 }
2033
2034 static void __init
2035 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2036 int *parity, int *bits)
2037 {
2038 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
2039 unsigned int lcr_h, ibrd, fbrd;
2040
2041 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
2042
2043 *parity = 'n';
2044 if (lcr_h & UART01x_LCRH_PEN) {
2045 if (lcr_h & UART01x_LCRH_EPS)
2046 *parity = 'e';
2047 else
2048 *parity = 'o';
2049 }
2050
2051 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2052 *bits = 7;
2053 else
2054 *bits = 8;
2055
2056 ibrd = readw(uap->port.membase + UART011_IBRD);
2057 fbrd = readw(uap->port.membase + UART011_FBRD);
2058
2059 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2060
2061 if (uap->vendor->oversampling) {
2062 if (readw(uap->port.membase + UART011_CR)
2063 & ST_UART011_CR_OVSFACT)
2064 *baud *= 2;
2065 }
2066 }
2067 }
2068
2069 static int __init pl011_console_setup(struct console *co, char *options)
2070 {
2071 struct uart_amba_port *uap;
2072 int baud = 38400;
2073 int bits = 8;
2074 int parity = 'n';
2075 int flow = 'n';
2076 int ret;
2077
2078 /*
2079 * Check whether an invalid uart number has been specified, and
2080 * if so, search for the first available port that does have
2081 * console support.
2082 */
2083 if (co->index >= UART_NR)
2084 co->index = 0;
2085 uap = amba_ports[co->index];
2086 if (!uap)
2087 return -ENODEV;
2088
2089 /* Allow pins to be muxed in and configured */
2090 pinctrl_pm_select_default_state(uap->port.dev);
2091
2092 ret = clk_prepare(uap->clk);
2093 if (ret)
2094 return ret;
2095
2096 if (dev_get_platdata(uap->port.dev)) {
2097 struct amba_pl011_data *plat;
2098
2099 plat = dev_get_platdata(uap->port.dev);
2100 if (plat->init)
2101 plat->init();
2102 }
2103
2104 uap->port.uartclk = clk_get_rate(uap->clk);
2105
2106 if (options)
2107 uart_parse_options(options, &baud, &parity, &bits, &flow);
2108 else
2109 pl011_console_get_options(uap, &baud, &parity, &bits);
2110
2111 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2112 }
2113
2114 static struct uart_driver amba_reg;
2115 static struct console amba_console = {
2116 .name = "ttyAMA",
2117 .write = pl011_console_write,
2118 .device = uart_console_device,
2119 .setup = pl011_console_setup,
2120 .flags = CON_PRINTBUFFER,
2121 .index = -1,
2122 .data = &amba_reg,
2123 };
2124
2125 #define AMBA_CONSOLE (&amba_console)
2126
2127 static void pl011_putc(struct uart_port *port, int c)
2128 {
2129 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2130 ;
2131 writeb(c, port->membase + UART01x_DR);
2132 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2133 ;
2134 }
2135
2136 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2137 {
2138 struct earlycon_device *dev = con->data;
2139
2140 uart_console_write(&dev->port, s, n, pl011_putc);
2141 }
2142
2143 static int __init pl011_early_console_setup(struct earlycon_device *device,
2144 const char *opt)
2145 {
2146 if (!device->port.membase)
2147 return -ENODEV;
2148
2149 device->con->write = pl011_early_write;
2150 return 0;
2151 }
2152 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2153 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2154
2155 #else
2156 #define AMBA_CONSOLE NULL
2157 #endif
2158
2159 static struct uart_driver amba_reg = {
2160 .owner = THIS_MODULE,
2161 .driver_name = "ttyAMA",
2162 .dev_name = "ttyAMA",
2163 .major = SERIAL_AMBA_MAJOR,
2164 .minor = SERIAL_AMBA_MINOR,
2165 .nr = UART_NR,
2166 .cons = AMBA_CONSOLE,
2167 };
2168
2169 static int pl011_probe_dt_alias(int index, struct device *dev)
2170 {
2171 struct device_node *np;
2172 static bool seen_dev_with_alias = false;
2173 static bool seen_dev_without_alias = false;
2174 int ret = index;
2175
2176 if (!IS_ENABLED(CONFIG_OF))
2177 return ret;
2178
2179 np = dev->of_node;
2180 if (!np)
2181 return ret;
2182
2183 ret = of_alias_get_id(np, "serial");
2184 if (IS_ERR_VALUE(ret)) {
2185 seen_dev_without_alias = true;
2186 ret = index;
2187 } else {
2188 seen_dev_with_alias = true;
2189 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2190 dev_warn(dev, "requested serial port %d not available.\n", ret);
2191 ret = index;
2192 }
2193 }
2194
2195 if (seen_dev_with_alias && seen_dev_without_alias)
2196 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2197
2198 return ret;
2199 }
2200
2201 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2202 {
2203 struct uart_amba_port *uap;
2204 struct vendor_data *vendor = id->data;
2205 void __iomem *base;
2206 int i, ret;
2207
2208 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2209 if (amba_ports[i] == NULL)
2210 break;
2211
2212 if (i == ARRAY_SIZE(amba_ports))
2213 return -EBUSY;
2214
2215 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2216 GFP_KERNEL);
2217 if (uap == NULL)
2218 return -ENOMEM;
2219
2220 i = pl011_probe_dt_alias(i, &dev->dev);
2221
2222 base = devm_ioremap(&dev->dev, dev->res.start,
2223 resource_size(&dev->res));
2224 if (!base)
2225 return -ENOMEM;
2226
2227 uap->clk = devm_clk_get(&dev->dev, NULL);
2228 if (IS_ERR(uap->clk))
2229 return PTR_ERR(uap->clk);
2230
2231 uap->vendor = vendor;
2232 uap->lcrh_rx = vendor->lcrh_rx;
2233 uap->lcrh_tx = vendor->lcrh_tx;
2234 uap->old_cr = 0;
2235 uap->fifosize = vendor->get_fifosize(dev);
2236 uap->port.dev = &dev->dev;
2237 uap->port.mapbase = dev->res.start;
2238 uap->port.membase = base;
2239 uap->port.iotype = UPIO_MEM;
2240 uap->port.irq = dev->irq[0];
2241 uap->port.fifosize = uap->fifosize;
2242 uap->port.ops = &amba_pl011_pops;
2243 uap->port.flags = UPF_BOOT_AUTOCONF;
2244 uap->port.line = i;
2245 INIT_DELAYED_WORK(&uap->tx_softirq_work, pl011_tx_softirq);
2246
2247 /* Ensure interrupts from this UART are masked and cleared */
2248 writew(0, uap->port.membase + UART011_IMSC);
2249 writew(0xffff, uap->port.membase + UART011_ICR);
2250
2251 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2252
2253 amba_ports[i] = uap;
2254
2255 amba_set_drvdata(dev, uap);
2256
2257 if (!amba_reg.state) {
2258 ret = uart_register_driver(&amba_reg);
2259 if (ret < 0) {
2260 dev_err(&dev->dev,
2261 "Failed to register AMBA-PL011 driver\n");
2262 return ret;
2263 }
2264 }
2265
2266 ret = uart_add_one_port(&amba_reg, &uap->port);
2267 if (ret) {
2268 amba_ports[i] = NULL;
2269 uart_unregister_driver(&amba_reg);
2270 }
2271
2272 return ret;
2273 }
2274
2275 static int pl011_remove(struct amba_device *dev)
2276 {
2277 struct uart_amba_port *uap = amba_get_drvdata(dev);
2278 bool busy = false;
2279 int i;
2280
2281 uart_remove_one_port(&amba_reg, &uap->port);
2282
2283 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2284 if (amba_ports[i] == uap)
2285 amba_ports[i] = NULL;
2286 else if (amba_ports[i])
2287 busy = true;
2288
2289 pl011_dma_remove(uap);
2290 if (!busy)
2291 uart_unregister_driver(&amba_reg);
2292 return 0;
2293 }
2294
2295 #ifdef CONFIG_PM_SLEEP
2296 static int pl011_suspend(struct device *dev)
2297 {
2298 struct uart_amba_port *uap = dev_get_drvdata(dev);
2299
2300 if (!uap)
2301 return -EINVAL;
2302
2303 return uart_suspend_port(&amba_reg, &uap->port);
2304 }
2305
2306 static int pl011_resume(struct device *dev)
2307 {
2308 struct uart_amba_port *uap = dev_get_drvdata(dev);
2309
2310 if (!uap)
2311 return -EINVAL;
2312
2313 return uart_resume_port(&amba_reg, &uap->port);
2314 }
2315 #endif
2316
2317 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2318
2319 static struct amba_id pl011_ids[] = {
2320 {
2321 .id = 0x00041011,
2322 .mask = 0x000fffff,
2323 .data = &vendor_arm,
2324 },
2325 {
2326 .id = 0x00380802,
2327 .mask = 0x00ffffff,
2328 .data = &vendor_st,
2329 },
2330 { 0, 0 },
2331 };
2332
2333 MODULE_DEVICE_TABLE(amba, pl011_ids);
2334
2335 static struct amba_driver pl011_driver = {
2336 .drv = {
2337 .name = "uart-pl011",
2338 .pm = &pl011_dev_pm_ops,
2339 },
2340 .id_table = pl011_ids,
2341 .probe = pl011_probe,
2342 .remove = pl011_remove,
2343 };
2344
2345 static int __init pl011_init(void)
2346 {
2347 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2348
2349 return amba_driver_register(&pl011_driver);
2350 }
2351
2352 static void __exit pl011_exit(void)
2353 {
2354 amba_driver_unregister(&pl011_driver);
2355 }
2356
2357 /*
2358 * While this can be a module, if builtin it's most likely the console
2359 * So let's leave module_exit but move module_init to an earlier place
2360 */
2361 arch_initcall(pl011_init);
2362 module_exit(pl011_exit);
2363
2364 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2365 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2366 MODULE_LICENSE("GPL");