]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/tty/serial/amba-pl011.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / drivers / tty / serial / amba-pl011.c
1 /*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62
63 #include "amba-pl011.h"
64
65 #define UART_NR 14
66
67 #define SERIAL_AMBA_MAJOR 204
68 #define SERIAL_AMBA_MINOR 64
69 #define SERIAL_AMBA_NR UART_NR
70
71 #define AMBA_ISR_PASS_LIMIT 256
72
73 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX (1 << 16)
75
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 [REG_DR] = UART01x_DR,
78 [REG_FR] = UART01x_FR,
79 [REG_LCRH_RX] = UART011_LCRH,
80 [REG_LCRH_TX] = UART011_LCRH,
81 [REG_IBRD] = UART011_IBRD,
82 [REG_FBRD] = UART011_FBRD,
83 [REG_CR] = UART011_CR,
84 [REG_IFLS] = UART011_IFLS,
85 [REG_IMSC] = UART011_IMSC,
86 [REG_RIS] = UART011_RIS,
87 [REG_MIS] = UART011_MIS,
88 [REG_ICR] = UART011_ICR,
89 [REG_DMACR] = UART011_DMACR,
90 };
91
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 const u16 *reg_offset;
95 unsigned int ifls;
96 unsigned int fr_busy;
97 unsigned int fr_dsr;
98 unsigned int fr_cts;
99 unsigned int fr_ri;
100 unsigned int inv_fr;
101 bool access_32b;
102 bool oversampling;
103 bool dma_threshold;
104 bool cts_event_workaround;
105 bool always_enabled;
106 bool fixed_options;
107
108 unsigned int (*get_fifosize)(struct amba_device *dev);
109 };
110
111 static unsigned int get_fifosize_arm(struct amba_device *dev)
112 {
113 return amba_rev(dev) < 3 ? 16 : 32;
114 }
115
116 static struct vendor_data vendor_arm = {
117 .reg_offset = pl011_std_offsets,
118 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
119 .fr_busy = UART01x_FR_BUSY,
120 .fr_dsr = UART01x_FR_DSR,
121 .fr_cts = UART01x_FR_CTS,
122 .fr_ri = UART011_FR_RI,
123 .oversampling = false,
124 .dma_threshold = false,
125 .cts_event_workaround = false,
126 .always_enabled = false,
127 .fixed_options = false,
128 .get_fifosize = get_fifosize_arm,
129 };
130
131 static struct vendor_data vendor_sbsa = {
132 .reg_offset = pl011_std_offsets,
133 .fr_busy = UART01x_FR_BUSY,
134 .fr_dsr = UART01x_FR_DSR,
135 .fr_cts = UART01x_FR_CTS,
136 .fr_ri = UART011_FR_RI,
137 .access_32b = true,
138 .oversampling = false,
139 .dma_threshold = false,
140 .cts_event_workaround = false,
141 .always_enabled = true,
142 .fixed_options = true,
143 };
144
145 #ifdef CONFIG_ACPI_SPCR_TABLE
146 static struct vendor_data vendor_qdt_qdf2400_e44 = {
147 .reg_offset = pl011_std_offsets,
148 .fr_busy = UART011_FR_TXFE,
149 .fr_dsr = UART01x_FR_DSR,
150 .fr_cts = UART01x_FR_CTS,
151 .fr_ri = UART011_FR_RI,
152 .inv_fr = UART011_FR_TXFE,
153 .access_32b = true,
154 .oversampling = false,
155 .dma_threshold = false,
156 .cts_event_workaround = false,
157 .always_enabled = true,
158 .fixed_options = true,
159 };
160 #endif
161
162 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
163 [REG_DR] = UART01x_DR,
164 [REG_ST_DMAWM] = ST_UART011_DMAWM,
165 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
166 [REG_FR] = UART01x_FR,
167 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
168 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
169 [REG_IBRD] = UART011_IBRD,
170 [REG_FBRD] = UART011_FBRD,
171 [REG_CR] = UART011_CR,
172 [REG_IFLS] = UART011_IFLS,
173 [REG_IMSC] = UART011_IMSC,
174 [REG_RIS] = UART011_RIS,
175 [REG_MIS] = UART011_MIS,
176 [REG_ICR] = UART011_ICR,
177 [REG_DMACR] = UART011_DMACR,
178 [REG_ST_XFCR] = ST_UART011_XFCR,
179 [REG_ST_XON1] = ST_UART011_XON1,
180 [REG_ST_XON2] = ST_UART011_XON2,
181 [REG_ST_XOFF1] = ST_UART011_XOFF1,
182 [REG_ST_XOFF2] = ST_UART011_XOFF2,
183 [REG_ST_ITCR] = ST_UART011_ITCR,
184 [REG_ST_ITIP] = ST_UART011_ITIP,
185 [REG_ST_ABCR] = ST_UART011_ABCR,
186 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
187 };
188
189 static unsigned int get_fifosize_st(struct amba_device *dev)
190 {
191 return 64;
192 }
193
194 static struct vendor_data vendor_st = {
195 .reg_offset = pl011_st_offsets,
196 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
197 .fr_busy = UART01x_FR_BUSY,
198 .fr_dsr = UART01x_FR_DSR,
199 .fr_cts = UART01x_FR_CTS,
200 .fr_ri = UART011_FR_RI,
201 .oversampling = true,
202 .dma_threshold = true,
203 .cts_event_workaround = true,
204 .always_enabled = false,
205 .fixed_options = false,
206 .get_fifosize = get_fifosize_st,
207 };
208
209 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
210 [REG_DR] = ZX_UART011_DR,
211 [REG_FR] = ZX_UART011_FR,
212 [REG_LCRH_RX] = ZX_UART011_LCRH,
213 [REG_LCRH_TX] = ZX_UART011_LCRH,
214 [REG_IBRD] = ZX_UART011_IBRD,
215 [REG_FBRD] = ZX_UART011_FBRD,
216 [REG_CR] = ZX_UART011_CR,
217 [REG_IFLS] = ZX_UART011_IFLS,
218 [REG_IMSC] = ZX_UART011_IMSC,
219 [REG_RIS] = ZX_UART011_RIS,
220 [REG_MIS] = ZX_UART011_MIS,
221 [REG_ICR] = ZX_UART011_ICR,
222 [REG_DMACR] = ZX_UART011_DMACR,
223 };
224
225 static unsigned int get_fifosize_zte(struct amba_device *dev)
226 {
227 return 16;
228 }
229
230 static struct vendor_data vendor_zte = {
231 .reg_offset = pl011_zte_offsets,
232 .access_32b = true,
233 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
234 .fr_busy = ZX_UART01x_FR_BUSY,
235 .fr_dsr = ZX_UART01x_FR_DSR,
236 .fr_cts = ZX_UART01x_FR_CTS,
237 .fr_ri = ZX_UART011_FR_RI,
238 .get_fifosize = get_fifosize_zte,
239 };
240
241 /* Deals with DMA transactions */
242
243 struct pl011_sgbuf {
244 struct scatterlist sg;
245 char *buf;
246 };
247
248 struct pl011_dmarx_data {
249 struct dma_chan *chan;
250 struct completion complete;
251 bool use_buf_b;
252 struct pl011_sgbuf sgbuf_a;
253 struct pl011_sgbuf sgbuf_b;
254 dma_cookie_t cookie;
255 bool running;
256 struct timer_list timer;
257 unsigned int last_residue;
258 unsigned long last_jiffies;
259 bool auto_poll_rate;
260 unsigned int poll_rate;
261 unsigned int poll_timeout;
262 };
263
264 struct pl011_dmatx_data {
265 struct dma_chan *chan;
266 struct scatterlist sg;
267 char *buf;
268 bool queued;
269 };
270
271 /*
272 * We wrap our port structure around the generic uart_port.
273 */
274 struct uart_amba_port {
275 struct uart_port port;
276 const u16 *reg_offset;
277 struct clk *clk;
278 const struct vendor_data *vendor;
279 unsigned int dmacr; /* dma control reg */
280 unsigned int im; /* interrupt mask */
281 unsigned int old_status;
282 unsigned int fifosize; /* vendor-specific */
283 unsigned int old_cr; /* state during shutdown */
284 bool autorts;
285 unsigned int fixed_baud; /* vendor-set fixed baud rate */
286 char type[12];
287 #ifdef CONFIG_DMA_ENGINE
288 /* DMA stuff */
289 bool using_tx_dma;
290 bool using_rx_dma;
291 struct pl011_dmarx_data dmarx;
292 struct pl011_dmatx_data dmatx;
293 bool dma_probed;
294 #endif
295 };
296
297 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
298 unsigned int reg)
299 {
300 return uap->reg_offset[reg];
301 }
302
303 static unsigned int pl011_read(const struct uart_amba_port *uap,
304 unsigned int reg)
305 {
306 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
307
308 return (uap->port.iotype == UPIO_MEM32) ?
309 readl_relaxed(addr) : readw_relaxed(addr);
310 }
311
312 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
313 unsigned int reg)
314 {
315 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
316
317 if (uap->port.iotype == UPIO_MEM32)
318 writel_relaxed(val, addr);
319 else
320 writew_relaxed(val, addr);
321 }
322
323 /*
324 * Reads up to 256 characters from the FIFO or until it's empty and
325 * inserts them into the TTY layer. Returns the number of characters
326 * read from the FIFO.
327 */
328 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
329 {
330 u16 status;
331 unsigned int ch, flag, max_count = 256;
332 int fifotaken = 0;
333
334 while (max_count--) {
335 status = pl011_read(uap, REG_FR);
336 if (status & UART01x_FR_RXFE)
337 break;
338
339 /* Take chars from the FIFO and update status */
340 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
341 flag = TTY_NORMAL;
342 uap->port.icount.rx++;
343 fifotaken++;
344
345 if (unlikely(ch & UART_DR_ERROR)) {
346 if (ch & UART011_DR_BE) {
347 ch &= ~(UART011_DR_FE | UART011_DR_PE);
348 uap->port.icount.brk++;
349 if (uart_handle_break(&uap->port))
350 continue;
351 } else if (ch & UART011_DR_PE)
352 uap->port.icount.parity++;
353 else if (ch & UART011_DR_FE)
354 uap->port.icount.frame++;
355 if (ch & UART011_DR_OE)
356 uap->port.icount.overrun++;
357
358 ch &= uap->port.read_status_mask;
359
360 if (ch & UART011_DR_BE)
361 flag = TTY_BREAK;
362 else if (ch & UART011_DR_PE)
363 flag = TTY_PARITY;
364 else if (ch & UART011_DR_FE)
365 flag = TTY_FRAME;
366 }
367
368 if (uart_handle_sysrq_char(&uap->port, ch & 255))
369 continue;
370
371 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
372 }
373
374 return fifotaken;
375 }
376
377
378 /*
379 * All the DMA operation mode stuff goes inside this ifdef.
380 * This assumes that you have a generic DMA device interface,
381 * no custom DMA interfaces are supported.
382 */
383 #ifdef CONFIG_DMA_ENGINE
384
385 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
386
387 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 enum dma_data_direction dir)
389 {
390 dma_addr_t dma_addr;
391
392 sg->buf = dma_alloc_coherent(chan->device->dev,
393 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
394 if (!sg->buf)
395 return -ENOMEM;
396
397 sg_init_table(&sg->sg, 1);
398 sg_set_page(&sg->sg, phys_to_page(dma_addr),
399 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
400 sg_dma_address(&sg->sg) = dma_addr;
401 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
402
403 return 0;
404 }
405
406 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
407 enum dma_data_direction dir)
408 {
409 if (sg->buf) {
410 dma_free_coherent(chan->device->dev,
411 PL011_DMA_BUFFER_SIZE, sg->buf,
412 sg_dma_address(&sg->sg));
413 }
414 }
415
416 static void pl011_dma_probe(struct uart_amba_port *uap)
417 {
418 /* DMA is the sole user of the platform data right now */
419 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
420 struct device *dev = uap->port.dev;
421 struct dma_slave_config tx_conf = {
422 .dst_addr = uap->port.mapbase +
423 pl011_reg_to_offset(uap, REG_DR),
424 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
425 .direction = DMA_MEM_TO_DEV,
426 .dst_maxburst = uap->fifosize >> 1,
427 .device_fc = false,
428 };
429 struct dma_chan *chan;
430 dma_cap_mask_t mask;
431
432 uap->dma_probed = true;
433 chan = dma_request_slave_channel_reason(dev, "tx");
434 if (IS_ERR(chan)) {
435 if (PTR_ERR(chan) == -EPROBE_DEFER) {
436 uap->dma_probed = false;
437 return;
438 }
439
440 /* We need platform data */
441 if (!plat || !plat->dma_filter) {
442 dev_info(uap->port.dev, "no DMA platform data\n");
443 return;
444 }
445
446 /* Try to acquire a generic DMA engine slave TX channel */
447 dma_cap_zero(mask);
448 dma_cap_set(DMA_SLAVE, mask);
449
450 chan = dma_request_channel(mask, plat->dma_filter,
451 plat->dma_tx_param);
452 if (!chan) {
453 dev_err(uap->port.dev, "no TX DMA channel!\n");
454 return;
455 }
456 }
457
458 dmaengine_slave_config(chan, &tx_conf);
459 uap->dmatx.chan = chan;
460
461 dev_info(uap->port.dev, "DMA channel TX %s\n",
462 dma_chan_name(uap->dmatx.chan));
463
464 /* Optionally make use of an RX channel as well */
465 chan = dma_request_slave_channel(dev, "rx");
466
467 if (!chan && plat && plat->dma_rx_param) {
468 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
469
470 if (!chan) {
471 dev_err(uap->port.dev, "no RX DMA channel!\n");
472 return;
473 }
474 }
475
476 if (chan) {
477 struct dma_slave_config rx_conf = {
478 .src_addr = uap->port.mapbase +
479 pl011_reg_to_offset(uap, REG_DR),
480 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
481 .direction = DMA_DEV_TO_MEM,
482 .src_maxburst = uap->fifosize >> 2,
483 .device_fc = false,
484 };
485 struct dma_slave_caps caps;
486
487 /*
488 * Some DMA controllers provide information on their capabilities.
489 * If the controller does, check for suitable residue processing
490 * otherwise assime all is well.
491 */
492 if (0 == dma_get_slave_caps(chan, &caps)) {
493 if (caps.residue_granularity ==
494 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
495 dma_release_channel(chan);
496 dev_info(uap->port.dev,
497 "RX DMA disabled - no residue processing\n");
498 return;
499 }
500 }
501 dmaengine_slave_config(chan, &rx_conf);
502 uap->dmarx.chan = chan;
503
504 uap->dmarx.auto_poll_rate = false;
505 if (plat && plat->dma_rx_poll_enable) {
506 /* Set poll rate if specified. */
507 if (plat->dma_rx_poll_rate) {
508 uap->dmarx.auto_poll_rate = false;
509 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
510 } else {
511 /*
512 * 100 ms defaults to poll rate if not
513 * specified. This will be adjusted with
514 * the baud rate at set_termios.
515 */
516 uap->dmarx.auto_poll_rate = true;
517 uap->dmarx.poll_rate = 100;
518 }
519 /* 3 secs defaults poll_timeout if not specified. */
520 if (plat->dma_rx_poll_timeout)
521 uap->dmarx.poll_timeout =
522 plat->dma_rx_poll_timeout;
523 else
524 uap->dmarx.poll_timeout = 3000;
525 } else if (!plat && dev->of_node) {
526 uap->dmarx.auto_poll_rate = of_property_read_bool(
527 dev->of_node, "auto-poll");
528 if (uap->dmarx.auto_poll_rate) {
529 u32 x;
530
531 if (0 == of_property_read_u32(dev->of_node,
532 "poll-rate-ms", &x))
533 uap->dmarx.poll_rate = x;
534 else
535 uap->dmarx.poll_rate = 100;
536 if (0 == of_property_read_u32(dev->of_node,
537 "poll-timeout-ms", &x))
538 uap->dmarx.poll_timeout = x;
539 else
540 uap->dmarx.poll_timeout = 3000;
541 }
542 }
543 dev_info(uap->port.dev, "DMA channel RX %s\n",
544 dma_chan_name(uap->dmarx.chan));
545 }
546 }
547
548 static void pl011_dma_remove(struct uart_amba_port *uap)
549 {
550 if (uap->dmatx.chan)
551 dma_release_channel(uap->dmatx.chan);
552 if (uap->dmarx.chan)
553 dma_release_channel(uap->dmarx.chan);
554 }
555
556 /* Forward declare these for the refill routine */
557 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
558 static void pl011_start_tx_pio(struct uart_amba_port *uap);
559
560 /*
561 * The current DMA TX buffer has been sent.
562 * Try to queue up another DMA buffer.
563 */
564 static void pl011_dma_tx_callback(void *data)
565 {
566 struct uart_amba_port *uap = data;
567 struct pl011_dmatx_data *dmatx = &uap->dmatx;
568 unsigned long flags;
569 u16 dmacr;
570
571 spin_lock_irqsave(&uap->port.lock, flags);
572 if (uap->dmatx.queued)
573 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
574 DMA_TO_DEVICE);
575
576 dmacr = uap->dmacr;
577 uap->dmacr = dmacr & ~UART011_TXDMAE;
578 pl011_write(uap->dmacr, uap, REG_DMACR);
579
580 /*
581 * If TX DMA was disabled, it means that we've stopped the DMA for
582 * some reason (eg, XOFF received, or we want to send an X-char.)
583 *
584 * Note: we need to be careful here of a potential race between DMA
585 * and the rest of the driver - if the driver disables TX DMA while
586 * a TX buffer completing, we must update the tx queued status to
587 * get further refills (hence we check dmacr).
588 */
589 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
590 uart_circ_empty(&uap->port.state->xmit)) {
591 uap->dmatx.queued = false;
592 spin_unlock_irqrestore(&uap->port.lock, flags);
593 return;
594 }
595
596 if (pl011_dma_tx_refill(uap) <= 0)
597 /*
598 * We didn't queue a DMA buffer for some reason, but we
599 * have data pending to be sent. Re-enable the TX IRQ.
600 */
601 pl011_start_tx_pio(uap);
602
603 spin_unlock_irqrestore(&uap->port.lock, flags);
604 }
605
606 /*
607 * Try to refill the TX DMA buffer.
608 * Locking: called with port lock held and IRQs disabled.
609 * Returns:
610 * 1 if we queued up a TX DMA buffer.
611 * 0 if we didn't want to handle this by DMA
612 * <0 on error
613 */
614 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
615 {
616 struct pl011_dmatx_data *dmatx = &uap->dmatx;
617 struct dma_chan *chan = dmatx->chan;
618 struct dma_device *dma_dev = chan->device;
619 struct dma_async_tx_descriptor *desc;
620 struct circ_buf *xmit = &uap->port.state->xmit;
621 unsigned int count;
622
623 /*
624 * Try to avoid the overhead involved in using DMA if the
625 * transaction fits in the first half of the FIFO, by using
626 * the standard interrupt handling. This ensures that we
627 * issue a uart_write_wakeup() at the appropriate time.
628 */
629 count = uart_circ_chars_pending(xmit);
630 if (count < (uap->fifosize >> 1)) {
631 uap->dmatx.queued = false;
632 return 0;
633 }
634
635 /*
636 * Bodge: don't send the last character by DMA, as this
637 * will prevent XON from notifying us to restart DMA.
638 */
639 count -= 1;
640
641 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
642 if (count > PL011_DMA_BUFFER_SIZE)
643 count = PL011_DMA_BUFFER_SIZE;
644
645 if (xmit->tail < xmit->head)
646 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
647 else {
648 size_t first = UART_XMIT_SIZE - xmit->tail;
649 size_t second;
650
651 if (first > count)
652 first = count;
653 second = count - first;
654
655 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
656 if (second)
657 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
658 }
659
660 dmatx->sg.length = count;
661
662 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
663 uap->dmatx.queued = false;
664 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
665 return -EBUSY;
666 }
667
668 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
669 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
670 if (!desc) {
671 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
672 uap->dmatx.queued = false;
673 /*
674 * If DMA cannot be used right now, we complete this
675 * transaction via IRQ and let the TTY layer retry.
676 */
677 dev_dbg(uap->port.dev, "TX DMA busy\n");
678 return -EBUSY;
679 }
680
681 /* Some data to go along to the callback */
682 desc->callback = pl011_dma_tx_callback;
683 desc->callback_param = uap;
684
685 /* All errors should happen at prepare time */
686 dmaengine_submit(desc);
687
688 /* Fire the DMA transaction */
689 dma_dev->device_issue_pending(chan);
690
691 uap->dmacr |= UART011_TXDMAE;
692 pl011_write(uap->dmacr, uap, REG_DMACR);
693 uap->dmatx.queued = true;
694
695 /*
696 * Now we know that DMA will fire, so advance the ring buffer
697 * with the stuff we just dispatched.
698 */
699 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
700 uap->port.icount.tx += count;
701
702 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
703 uart_write_wakeup(&uap->port);
704
705 return 1;
706 }
707
708 /*
709 * We received a transmit interrupt without a pending X-char but with
710 * pending characters.
711 * Locking: called with port lock held and IRQs disabled.
712 * Returns:
713 * false if we want to use PIO to transmit
714 * true if we queued a DMA buffer
715 */
716 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
717 {
718 if (!uap->using_tx_dma)
719 return false;
720
721 /*
722 * If we already have a TX buffer queued, but received a
723 * TX interrupt, it will be because we've just sent an X-char.
724 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
725 */
726 if (uap->dmatx.queued) {
727 uap->dmacr |= UART011_TXDMAE;
728 pl011_write(uap->dmacr, uap, REG_DMACR);
729 uap->im &= ~UART011_TXIM;
730 pl011_write(uap->im, uap, REG_IMSC);
731 return true;
732 }
733
734 /*
735 * We don't have a TX buffer queued, so try to queue one.
736 * If we successfully queued a buffer, mask the TX IRQ.
737 */
738 if (pl011_dma_tx_refill(uap) > 0) {
739 uap->im &= ~UART011_TXIM;
740 pl011_write(uap->im, uap, REG_IMSC);
741 return true;
742 }
743 return false;
744 }
745
746 /*
747 * Stop the DMA transmit (eg, due to received XOFF).
748 * Locking: called with port lock held and IRQs disabled.
749 */
750 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
751 {
752 if (uap->dmatx.queued) {
753 uap->dmacr &= ~UART011_TXDMAE;
754 pl011_write(uap->dmacr, uap, REG_DMACR);
755 }
756 }
757
758 /*
759 * Try to start a DMA transmit, or in the case of an XON/OFF
760 * character queued for send, try to get that character out ASAP.
761 * Locking: called with port lock held and IRQs disabled.
762 * Returns:
763 * false if we want the TX IRQ to be enabled
764 * true if we have a buffer queued
765 */
766 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
767 {
768 u16 dmacr;
769
770 if (!uap->using_tx_dma)
771 return false;
772
773 if (!uap->port.x_char) {
774 /* no X-char, try to push chars out in DMA mode */
775 bool ret = true;
776
777 if (!uap->dmatx.queued) {
778 if (pl011_dma_tx_refill(uap) > 0) {
779 uap->im &= ~UART011_TXIM;
780 pl011_write(uap->im, uap, REG_IMSC);
781 } else
782 ret = false;
783 } else if (!(uap->dmacr & UART011_TXDMAE)) {
784 uap->dmacr |= UART011_TXDMAE;
785 pl011_write(uap->dmacr, uap, REG_DMACR);
786 }
787 return ret;
788 }
789
790 /*
791 * We have an X-char to send. Disable DMA to prevent it loading
792 * the TX fifo, and then see if we can stuff it into the FIFO.
793 */
794 dmacr = uap->dmacr;
795 uap->dmacr &= ~UART011_TXDMAE;
796 pl011_write(uap->dmacr, uap, REG_DMACR);
797
798 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
799 /*
800 * No space in the FIFO, so enable the transmit interrupt
801 * so we know when there is space. Note that once we've
802 * loaded the character, we should just re-enable DMA.
803 */
804 return false;
805 }
806
807 pl011_write(uap->port.x_char, uap, REG_DR);
808 uap->port.icount.tx++;
809 uap->port.x_char = 0;
810
811 /* Success - restore the DMA state */
812 uap->dmacr = dmacr;
813 pl011_write(dmacr, uap, REG_DMACR);
814
815 return true;
816 }
817
818 /*
819 * Flush the transmit buffer.
820 * Locking: called with port lock held and IRQs disabled.
821 */
822 static void pl011_dma_flush_buffer(struct uart_port *port)
823 __releases(&uap->port.lock)
824 __acquires(&uap->port.lock)
825 {
826 struct uart_amba_port *uap =
827 container_of(port, struct uart_amba_port, port);
828
829 if (!uap->using_tx_dma)
830 return;
831
832 /* Avoid deadlock with the DMA engine callback */
833 spin_unlock(&uap->port.lock);
834 dmaengine_terminate_all(uap->dmatx.chan);
835 spin_lock(&uap->port.lock);
836 if (uap->dmatx.queued) {
837 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
838 DMA_TO_DEVICE);
839 uap->dmatx.queued = false;
840 uap->dmacr &= ~UART011_TXDMAE;
841 pl011_write(uap->dmacr, uap, REG_DMACR);
842 }
843 }
844
845 static void pl011_dma_rx_callback(void *data);
846
847 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
848 {
849 struct dma_chan *rxchan = uap->dmarx.chan;
850 struct pl011_dmarx_data *dmarx = &uap->dmarx;
851 struct dma_async_tx_descriptor *desc;
852 struct pl011_sgbuf *sgbuf;
853
854 if (!rxchan)
855 return -EIO;
856
857 /* Start the RX DMA job */
858 sgbuf = uap->dmarx.use_buf_b ?
859 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
860 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
861 DMA_DEV_TO_MEM,
862 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
863 /*
864 * If the DMA engine is busy and cannot prepare a
865 * channel, no big deal, the driver will fall back
866 * to interrupt mode as a result of this error code.
867 */
868 if (!desc) {
869 uap->dmarx.running = false;
870 dmaengine_terminate_all(rxchan);
871 return -EBUSY;
872 }
873
874 /* Some data to go along to the callback */
875 desc->callback = pl011_dma_rx_callback;
876 desc->callback_param = uap;
877 dmarx->cookie = dmaengine_submit(desc);
878 dma_async_issue_pending(rxchan);
879
880 uap->dmacr |= UART011_RXDMAE;
881 pl011_write(uap->dmacr, uap, REG_DMACR);
882 uap->dmarx.running = true;
883
884 uap->im &= ~UART011_RXIM;
885 pl011_write(uap->im, uap, REG_IMSC);
886
887 return 0;
888 }
889
890 /*
891 * This is called when either the DMA job is complete, or
892 * the FIFO timeout interrupt occurred. This must be called
893 * with the port spinlock uap->port.lock held.
894 */
895 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
896 u32 pending, bool use_buf_b,
897 bool readfifo)
898 {
899 struct tty_port *port = &uap->port.state->port;
900 struct pl011_sgbuf *sgbuf = use_buf_b ?
901 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
902 int dma_count = 0;
903 u32 fifotaken = 0; /* only used for vdbg() */
904
905 struct pl011_dmarx_data *dmarx = &uap->dmarx;
906 int dmataken = 0;
907
908 if (uap->dmarx.poll_rate) {
909 /* The data can be taken by polling */
910 dmataken = sgbuf->sg.length - dmarx->last_residue;
911 /* Recalculate the pending size */
912 if (pending >= dmataken)
913 pending -= dmataken;
914 }
915
916 /* Pick the remain data from the DMA */
917 if (pending) {
918
919 /*
920 * First take all chars in the DMA pipe, then look in the FIFO.
921 * Note that tty_insert_flip_buf() tries to take as many chars
922 * as it can.
923 */
924 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
925 pending);
926
927 uap->port.icount.rx += dma_count;
928 if (dma_count < pending)
929 dev_warn(uap->port.dev,
930 "couldn't insert all characters (TTY is full?)\n");
931 }
932
933 /* Reset the last_residue for Rx DMA poll */
934 if (uap->dmarx.poll_rate)
935 dmarx->last_residue = sgbuf->sg.length;
936
937 /*
938 * Only continue with trying to read the FIFO if all DMA chars have
939 * been taken first.
940 */
941 if (dma_count == pending && readfifo) {
942 /* Clear any error flags */
943 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
944 UART011_FEIS, uap, REG_ICR);
945
946 /*
947 * If we read all the DMA'd characters, and we had an
948 * incomplete buffer, that could be due to an rx error, or
949 * maybe we just timed out. Read any pending chars and check
950 * the error status.
951 *
952 * Error conditions will only occur in the FIFO, these will
953 * trigger an immediate interrupt and stop the DMA job, so we
954 * will always find the error in the FIFO, never in the DMA
955 * buffer.
956 */
957 fifotaken = pl011_fifo_to_tty(uap);
958 }
959
960 spin_unlock(&uap->port.lock);
961 dev_vdbg(uap->port.dev,
962 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
963 dma_count, fifotaken);
964 tty_flip_buffer_push(port);
965 spin_lock(&uap->port.lock);
966 }
967
968 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
969 {
970 struct pl011_dmarx_data *dmarx = &uap->dmarx;
971 struct dma_chan *rxchan = dmarx->chan;
972 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
973 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
974 size_t pending;
975 struct dma_tx_state state;
976 enum dma_status dmastat;
977
978 /*
979 * Pause the transfer so we can trust the current counter,
980 * do this before we pause the PL011 block, else we may
981 * overflow the FIFO.
982 */
983 if (dmaengine_pause(rxchan))
984 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
985 dmastat = rxchan->device->device_tx_status(rxchan,
986 dmarx->cookie, &state);
987 if (dmastat != DMA_PAUSED)
988 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
989
990 /* Disable RX DMA - incoming data will wait in the FIFO */
991 uap->dmacr &= ~UART011_RXDMAE;
992 pl011_write(uap->dmacr, uap, REG_DMACR);
993 uap->dmarx.running = false;
994
995 pending = sgbuf->sg.length - state.residue;
996 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
997 /* Then we terminate the transfer - we now know our residue */
998 dmaengine_terminate_all(rxchan);
999
1000 /*
1001 * This will take the chars we have so far and insert
1002 * into the framework.
1003 */
1004 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1005
1006 /* Switch buffer & re-trigger DMA job */
1007 dmarx->use_buf_b = !dmarx->use_buf_b;
1008 if (pl011_dma_rx_trigger_dma(uap)) {
1009 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1010 "fall back to interrupt mode\n");
1011 uap->im |= UART011_RXIM;
1012 pl011_write(uap->im, uap, REG_IMSC);
1013 }
1014 }
1015
1016 static void pl011_dma_rx_callback(void *data)
1017 {
1018 struct uart_amba_port *uap = data;
1019 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1020 struct dma_chan *rxchan = dmarx->chan;
1021 bool lastbuf = dmarx->use_buf_b;
1022 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1023 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1024 size_t pending;
1025 struct dma_tx_state state;
1026 int ret;
1027
1028 /*
1029 * This completion interrupt occurs typically when the
1030 * RX buffer is totally stuffed but no timeout has yet
1031 * occurred. When that happens, we just want the RX
1032 * routine to flush out the secondary DMA buffer while
1033 * we immediately trigger the next DMA job.
1034 */
1035 spin_lock_irq(&uap->port.lock);
1036 /*
1037 * Rx data can be taken by the UART interrupts during
1038 * the DMA irq handler. So we check the residue here.
1039 */
1040 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1041 pending = sgbuf->sg.length - state.residue;
1042 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1043 /* Then we terminate the transfer - we now know our residue */
1044 dmaengine_terminate_all(rxchan);
1045
1046 uap->dmarx.running = false;
1047 dmarx->use_buf_b = !lastbuf;
1048 ret = pl011_dma_rx_trigger_dma(uap);
1049
1050 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1051 spin_unlock_irq(&uap->port.lock);
1052 /*
1053 * Do this check after we picked the DMA chars so we don't
1054 * get some IRQ immediately from RX.
1055 */
1056 if (ret) {
1057 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1058 "fall back to interrupt mode\n");
1059 uap->im |= UART011_RXIM;
1060 pl011_write(uap->im, uap, REG_IMSC);
1061 }
1062 }
1063
1064 /*
1065 * Stop accepting received characters, when we're shutting down or
1066 * suspending this port.
1067 * Locking: called with port lock held and IRQs disabled.
1068 */
1069 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1070 {
1071 /* FIXME. Just disable the DMA enable */
1072 uap->dmacr &= ~UART011_RXDMAE;
1073 pl011_write(uap->dmacr, uap, REG_DMACR);
1074 }
1075
1076 /*
1077 * Timer handler for Rx DMA polling.
1078 * Every polling, It checks the residue in the dma buffer and transfer
1079 * data to the tty. Also, last_residue is updated for the next polling.
1080 */
1081 static void pl011_dma_rx_poll(unsigned long args)
1082 {
1083 struct uart_amba_port *uap = (struct uart_amba_port *)args;
1084 struct tty_port *port = &uap->port.state->port;
1085 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1086 struct dma_chan *rxchan = uap->dmarx.chan;
1087 unsigned long flags = 0;
1088 unsigned int dmataken = 0;
1089 unsigned int size = 0;
1090 struct pl011_sgbuf *sgbuf;
1091 int dma_count;
1092 struct dma_tx_state state;
1093
1094 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1095 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1096 if (likely(state.residue < dmarx->last_residue)) {
1097 dmataken = sgbuf->sg.length - dmarx->last_residue;
1098 size = dmarx->last_residue - state.residue;
1099 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1100 size);
1101 if (dma_count == size)
1102 dmarx->last_residue = state.residue;
1103 dmarx->last_jiffies = jiffies;
1104 }
1105 tty_flip_buffer_push(port);
1106
1107 /*
1108 * If no data is received in poll_timeout, the driver will fall back
1109 * to interrupt mode. We will retrigger DMA at the first interrupt.
1110 */
1111 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1112 > uap->dmarx.poll_timeout) {
1113
1114 spin_lock_irqsave(&uap->port.lock, flags);
1115 pl011_dma_rx_stop(uap);
1116 uap->im |= UART011_RXIM;
1117 pl011_write(uap->im, uap, REG_IMSC);
1118 spin_unlock_irqrestore(&uap->port.lock, flags);
1119
1120 uap->dmarx.running = false;
1121 dmaengine_terminate_all(rxchan);
1122 del_timer(&uap->dmarx.timer);
1123 } else {
1124 mod_timer(&uap->dmarx.timer,
1125 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1126 }
1127 }
1128
1129 static void pl011_dma_startup(struct uart_amba_port *uap)
1130 {
1131 int ret;
1132
1133 if (!uap->dma_probed)
1134 pl011_dma_probe(uap);
1135
1136 if (!uap->dmatx.chan)
1137 return;
1138
1139 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1140 if (!uap->dmatx.buf) {
1141 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1142 uap->port.fifosize = uap->fifosize;
1143 return;
1144 }
1145
1146 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1147
1148 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1149 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1150 uap->using_tx_dma = true;
1151
1152 if (!uap->dmarx.chan)
1153 goto skip_rx;
1154
1155 /* Allocate and map DMA RX buffers */
1156 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1157 DMA_FROM_DEVICE);
1158 if (ret) {
1159 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1160 "RX buffer A", ret);
1161 goto skip_rx;
1162 }
1163
1164 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1165 DMA_FROM_DEVICE);
1166 if (ret) {
1167 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1168 "RX buffer B", ret);
1169 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1170 DMA_FROM_DEVICE);
1171 goto skip_rx;
1172 }
1173
1174 uap->using_rx_dma = true;
1175
1176 skip_rx:
1177 /* Turn on DMA error (RX/TX will be enabled on demand) */
1178 uap->dmacr |= UART011_DMAONERR;
1179 pl011_write(uap->dmacr, uap, REG_DMACR);
1180
1181 /*
1182 * ST Micro variants has some specific dma burst threshold
1183 * compensation. Set this to 16 bytes, so burst will only
1184 * be issued above/below 16 bytes.
1185 */
1186 if (uap->vendor->dma_threshold)
1187 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1188 uap, REG_ST_DMAWM);
1189
1190 if (uap->using_rx_dma) {
1191 if (pl011_dma_rx_trigger_dma(uap))
1192 dev_dbg(uap->port.dev, "could not trigger initial "
1193 "RX DMA job, fall back to interrupt mode\n");
1194 if (uap->dmarx.poll_rate) {
1195 init_timer(&(uap->dmarx.timer));
1196 uap->dmarx.timer.function = pl011_dma_rx_poll;
1197 uap->dmarx.timer.data = (unsigned long)uap;
1198 mod_timer(&uap->dmarx.timer,
1199 jiffies +
1200 msecs_to_jiffies(uap->dmarx.poll_rate));
1201 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1202 uap->dmarx.last_jiffies = jiffies;
1203 }
1204 }
1205 }
1206
1207 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1208 {
1209 if (!(uap->using_tx_dma || uap->using_rx_dma))
1210 return;
1211
1212 /* Disable RX and TX DMA */
1213 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1214 cpu_relax();
1215
1216 spin_lock_irq(&uap->port.lock);
1217 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1218 pl011_write(uap->dmacr, uap, REG_DMACR);
1219 spin_unlock_irq(&uap->port.lock);
1220
1221 if (uap->using_tx_dma) {
1222 /* In theory, this should already be done by pl011_dma_flush_buffer */
1223 dmaengine_terminate_all(uap->dmatx.chan);
1224 if (uap->dmatx.queued) {
1225 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1226 DMA_TO_DEVICE);
1227 uap->dmatx.queued = false;
1228 }
1229
1230 kfree(uap->dmatx.buf);
1231 uap->using_tx_dma = false;
1232 }
1233
1234 if (uap->using_rx_dma) {
1235 dmaengine_terminate_all(uap->dmarx.chan);
1236 /* Clean up the RX DMA */
1237 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1238 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1239 if (uap->dmarx.poll_rate)
1240 del_timer_sync(&uap->dmarx.timer);
1241 uap->using_rx_dma = false;
1242 }
1243 }
1244
1245 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1246 {
1247 return uap->using_rx_dma;
1248 }
1249
1250 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1251 {
1252 return uap->using_rx_dma && uap->dmarx.running;
1253 }
1254
1255 #else
1256 /* Blank functions if the DMA engine is not available */
1257 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1258 {
1259 }
1260
1261 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1262 {
1263 }
1264
1265 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1266 {
1267 }
1268
1269 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1270 {
1271 }
1272
1273 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1274 {
1275 return false;
1276 }
1277
1278 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1279 {
1280 }
1281
1282 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1283 {
1284 return false;
1285 }
1286
1287 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1288 {
1289 }
1290
1291 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1292 {
1293 }
1294
1295 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1296 {
1297 return -EIO;
1298 }
1299
1300 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1301 {
1302 return false;
1303 }
1304
1305 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1306 {
1307 return false;
1308 }
1309
1310 #define pl011_dma_flush_buffer NULL
1311 #endif
1312
1313 static void pl011_stop_tx(struct uart_port *port)
1314 {
1315 struct uart_amba_port *uap =
1316 container_of(port, struct uart_amba_port, port);
1317
1318 uap->im &= ~UART011_TXIM;
1319 pl011_write(uap->im, uap, REG_IMSC);
1320 pl011_dma_tx_stop(uap);
1321 }
1322
1323 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1324
1325 /* Start TX with programmed I/O only (no DMA) */
1326 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1327 {
1328 uap->im |= UART011_TXIM;
1329 pl011_write(uap->im, uap, REG_IMSC);
1330 pl011_tx_chars(uap, false);
1331 }
1332
1333 static void pl011_start_tx(struct uart_port *port)
1334 {
1335 struct uart_amba_port *uap =
1336 container_of(port, struct uart_amba_port, port);
1337
1338 if (!pl011_dma_tx_start(uap))
1339 pl011_start_tx_pio(uap);
1340 }
1341
1342 static void pl011_stop_rx(struct uart_port *port)
1343 {
1344 struct uart_amba_port *uap =
1345 container_of(port, struct uart_amba_port, port);
1346
1347 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1348 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1349 pl011_write(uap->im, uap, REG_IMSC);
1350
1351 pl011_dma_rx_stop(uap);
1352 }
1353
1354 static void pl011_enable_ms(struct uart_port *port)
1355 {
1356 struct uart_amba_port *uap =
1357 container_of(port, struct uart_amba_port, port);
1358
1359 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1360 pl011_write(uap->im, uap, REG_IMSC);
1361 }
1362
1363 static void pl011_rx_chars(struct uart_amba_port *uap)
1364 __releases(&uap->port.lock)
1365 __acquires(&uap->port.lock)
1366 {
1367 pl011_fifo_to_tty(uap);
1368
1369 spin_unlock(&uap->port.lock);
1370 tty_flip_buffer_push(&uap->port.state->port);
1371 /*
1372 * If we were temporarily out of DMA mode for a while,
1373 * attempt to switch back to DMA mode again.
1374 */
1375 if (pl011_dma_rx_available(uap)) {
1376 if (pl011_dma_rx_trigger_dma(uap)) {
1377 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1378 "fall back to interrupt mode again\n");
1379 uap->im |= UART011_RXIM;
1380 pl011_write(uap->im, uap, REG_IMSC);
1381 } else {
1382 #ifdef CONFIG_DMA_ENGINE
1383 /* Start Rx DMA poll */
1384 if (uap->dmarx.poll_rate) {
1385 uap->dmarx.last_jiffies = jiffies;
1386 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1387 mod_timer(&uap->dmarx.timer,
1388 jiffies +
1389 msecs_to_jiffies(uap->dmarx.poll_rate));
1390 }
1391 #endif
1392 }
1393 }
1394 spin_lock(&uap->port.lock);
1395 }
1396
1397 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1398 bool from_irq)
1399 {
1400 if (unlikely(!from_irq) &&
1401 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1402 return false; /* unable to transmit character */
1403
1404 pl011_write(c, uap, REG_DR);
1405 uap->port.icount.tx++;
1406
1407 return true;
1408 }
1409
1410 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1411 {
1412 struct circ_buf *xmit = &uap->port.state->xmit;
1413 int count = uap->fifosize >> 1;
1414
1415 if (uap->port.x_char) {
1416 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1417 return;
1418 uap->port.x_char = 0;
1419 --count;
1420 }
1421 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1422 pl011_stop_tx(&uap->port);
1423 return;
1424 }
1425
1426 /* If we are using DMA mode, try to send some characters. */
1427 if (pl011_dma_tx_irq(uap))
1428 return;
1429
1430 do {
1431 if (likely(from_irq) && count-- == 0)
1432 break;
1433
1434 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1435 break;
1436
1437 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1438 } while (!uart_circ_empty(xmit));
1439
1440 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1441 uart_write_wakeup(&uap->port);
1442
1443 if (uart_circ_empty(xmit))
1444 pl011_stop_tx(&uap->port);
1445 }
1446
1447 static void pl011_modem_status(struct uart_amba_port *uap)
1448 {
1449 unsigned int status, delta;
1450
1451 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1452
1453 delta = status ^ uap->old_status;
1454 uap->old_status = status;
1455
1456 if (!delta)
1457 return;
1458
1459 if (delta & UART01x_FR_DCD)
1460 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1461
1462 if (delta & uap->vendor->fr_dsr)
1463 uap->port.icount.dsr++;
1464
1465 if (delta & uap->vendor->fr_cts)
1466 uart_handle_cts_change(&uap->port,
1467 status & uap->vendor->fr_cts);
1468
1469 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1470 }
1471
1472 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1473 {
1474 unsigned int dummy_read;
1475
1476 if (!uap->vendor->cts_event_workaround)
1477 return;
1478
1479 /* workaround to make sure that all bits are unlocked.. */
1480 pl011_write(0x00, uap, REG_ICR);
1481
1482 /*
1483 * WA: introduce 26ns(1 uart clk) delay before W1C;
1484 * single apb access will incur 2 pclk(133.12Mhz) delay,
1485 * so add 2 dummy reads
1486 */
1487 dummy_read = pl011_read(uap, REG_ICR);
1488 dummy_read = pl011_read(uap, REG_ICR);
1489 }
1490
1491 static irqreturn_t pl011_int(int irq, void *dev_id)
1492 {
1493 struct uart_amba_port *uap = dev_id;
1494 unsigned long flags;
1495 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1496 u16 imsc;
1497 int handled = 0;
1498
1499 spin_lock_irqsave(&uap->port.lock, flags);
1500 imsc = pl011_read(uap, REG_IMSC);
1501 status = pl011_read(uap, REG_RIS) & imsc;
1502 if (status) {
1503 do {
1504 check_apply_cts_event_workaround(uap);
1505
1506 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1507 UART011_RXIS),
1508 uap, REG_ICR);
1509
1510 if (status & (UART011_RTIS|UART011_RXIS)) {
1511 if (pl011_dma_rx_running(uap))
1512 pl011_dma_rx_irq(uap);
1513 else
1514 pl011_rx_chars(uap);
1515 }
1516 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1517 UART011_CTSMIS|UART011_RIMIS))
1518 pl011_modem_status(uap);
1519 if (status & UART011_TXIS)
1520 pl011_tx_chars(uap, true);
1521
1522 if (pass_counter-- == 0)
1523 break;
1524
1525 status = pl011_read(uap, REG_RIS) & imsc;
1526 } while (status != 0);
1527 handled = 1;
1528 }
1529
1530 spin_unlock_irqrestore(&uap->port.lock, flags);
1531
1532 return IRQ_RETVAL(handled);
1533 }
1534
1535 static unsigned int pl011_tx_empty(struct uart_port *port)
1536 {
1537 struct uart_amba_port *uap =
1538 container_of(port, struct uart_amba_port, port);
1539
1540 /* Allow feature register bits to be inverted to work around errata */
1541 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1542
1543 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1544 0 : TIOCSER_TEMT;
1545 }
1546
1547 static unsigned int pl011_get_mctrl(struct uart_port *port)
1548 {
1549 struct uart_amba_port *uap =
1550 container_of(port, struct uart_amba_port, port);
1551 unsigned int result = 0;
1552 unsigned int status = pl011_read(uap, REG_FR);
1553
1554 #define TIOCMBIT(uartbit, tiocmbit) \
1555 if (status & uartbit) \
1556 result |= tiocmbit
1557
1558 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1559 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1560 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1561 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1562 #undef TIOCMBIT
1563 return result;
1564 }
1565
1566 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1567 {
1568 struct uart_amba_port *uap =
1569 container_of(port, struct uart_amba_port, port);
1570 unsigned int cr;
1571
1572 cr = pl011_read(uap, REG_CR);
1573
1574 #define TIOCMBIT(tiocmbit, uartbit) \
1575 if (mctrl & tiocmbit) \
1576 cr |= uartbit; \
1577 else \
1578 cr &= ~uartbit
1579
1580 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1581 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1582 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1583 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1584 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1585
1586 if (uap->autorts) {
1587 /* We need to disable auto-RTS if we want to turn RTS off */
1588 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1589 }
1590 #undef TIOCMBIT
1591
1592 pl011_write(cr, uap, REG_CR);
1593 }
1594
1595 static void pl011_break_ctl(struct uart_port *port, int break_state)
1596 {
1597 struct uart_amba_port *uap =
1598 container_of(port, struct uart_amba_port, port);
1599 unsigned long flags;
1600 unsigned int lcr_h;
1601
1602 spin_lock_irqsave(&uap->port.lock, flags);
1603 lcr_h = pl011_read(uap, REG_LCRH_TX);
1604 if (break_state == -1)
1605 lcr_h |= UART01x_LCRH_BRK;
1606 else
1607 lcr_h &= ~UART01x_LCRH_BRK;
1608 pl011_write(lcr_h, uap, REG_LCRH_TX);
1609 spin_unlock_irqrestore(&uap->port.lock, flags);
1610 }
1611
1612 #ifdef CONFIG_CONSOLE_POLL
1613
1614 static void pl011_quiesce_irqs(struct uart_port *port)
1615 {
1616 struct uart_amba_port *uap =
1617 container_of(port, struct uart_amba_port, port);
1618
1619 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1620 /*
1621 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1622 * we simply mask it. start_tx() will unmask it.
1623 *
1624 * Note we can race with start_tx(), and if the race happens, the
1625 * polling user might get another interrupt just after we clear it.
1626 * But it should be OK and can happen even w/o the race, e.g.
1627 * controller immediately got some new data and raised the IRQ.
1628 *
1629 * And whoever uses polling routines assumes that it manages the device
1630 * (including tx queue), so we're also fine with start_tx()'s caller
1631 * side.
1632 */
1633 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1634 REG_IMSC);
1635 }
1636
1637 static int pl011_get_poll_char(struct uart_port *port)
1638 {
1639 struct uart_amba_port *uap =
1640 container_of(port, struct uart_amba_port, port);
1641 unsigned int status;
1642
1643 /*
1644 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1645 * debugger.
1646 */
1647 pl011_quiesce_irqs(port);
1648
1649 status = pl011_read(uap, REG_FR);
1650 if (status & UART01x_FR_RXFE)
1651 return NO_POLL_CHAR;
1652
1653 return pl011_read(uap, REG_DR);
1654 }
1655
1656 static void pl011_put_poll_char(struct uart_port *port,
1657 unsigned char ch)
1658 {
1659 struct uart_amba_port *uap =
1660 container_of(port, struct uart_amba_port, port);
1661
1662 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1663 cpu_relax();
1664
1665 pl011_write(ch, uap, REG_DR);
1666 }
1667
1668 #endif /* CONFIG_CONSOLE_POLL */
1669
1670 static int pl011_hwinit(struct uart_port *port)
1671 {
1672 struct uart_amba_port *uap =
1673 container_of(port, struct uart_amba_port, port);
1674 int retval;
1675
1676 /* Optionaly enable pins to be muxed in and configured */
1677 pinctrl_pm_select_default_state(port->dev);
1678
1679 /*
1680 * Try to enable the clock producer.
1681 */
1682 retval = clk_prepare_enable(uap->clk);
1683 if (retval)
1684 return retval;
1685
1686 uap->port.uartclk = clk_get_rate(uap->clk);
1687
1688 /* Clear pending error and receive interrupts */
1689 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1690 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1691 uap, REG_ICR);
1692
1693 /*
1694 * Save interrupts enable mask, and enable RX interrupts in case if
1695 * the interrupt is used for NMI entry.
1696 */
1697 uap->im = pl011_read(uap, REG_IMSC);
1698 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1699
1700 if (dev_get_platdata(uap->port.dev)) {
1701 struct amba_pl011_data *plat;
1702
1703 plat = dev_get_platdata(uap->port.dev);
1704 if (plat->init)
1705 plat->init();
1706 }
1707 return 0;
1708 }
1709
1710 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1711 {
1712 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1713 pl011_reg_to_offset(uap, REG_LCRH_TX);
1714 }
1715
1716 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1717 {
1718 pl011_write(lcr_h, uap, REG_LCRH_RX);
1719 if (pl011_split_lcrh(uap)) {
1720 int i;
1721 /*
1722 * Wait 10 PCLKs before writing LCRH_TX register,
1723 * to get this delay write read only register 10 times
1724 */
1725 for (i = 0; i < 10; ++i)
1726 pl011_write(0xff, uap, REG_MIS);
1727 pl011_write(lcr_h, uap, REG_LCRH_TX);
1728 }
1729 }
1730
1731 static int pl011_allocate_irq(struct uart_amba_port *uap)
1732 {
1733 pl011_write(uap->im, uap, REG_IMSC);
1734
1735 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1736 }
1737
1738 /*
1739 * Enable interrupts, only timeouts when using DMA
1740 * if initial RX DMA job failed, start in interrupt mode
1741 * as well.
1742 */
1743 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1744 {
1745 spin_lock_irq(&uap->port.lock);
1746
1747 /* Clear out any spuriously appearing RX interrupts */
1748 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1749 uap->im = UART011_RTIM;
1750 if (!pl011_dma_rx_running(uap))
1751 uap->im |= UART011_RXIM;
1752 pl011_write(uap->im, uap, REG_IMSC);
1753 spin_unlock_irq(&uap->port.lock);
1754 }
1755
1756 static int pl011_startup(struct uart_port *port)
1757 {
1758 struct uart_amba_port *uap =
1759 container_of(port, struct uart_amba_port, port);
1760 unsigned int cr;
1761 int retval;
1762
1763 retval = pl011_hwinit(port);
1764 if (retval)
1765 goto clk_dis;
1766
1767 retval = pl011_allocate_irq(uap);
1768 if (retval)
1769 goto clk_dis;
1770
1771 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1772
1773 spin_lock_irq(&uap->port.lock);
1774
1775 /* restore RTS and DTR */
1776 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1777 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1778 pl011_write(cr, uap, REG_CR);
1779
1780 spin_unlock_irq(&uap->port.lock);
1781
1782 /*
1783 * initialise the old status of the modem signals
1784 */
1785 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1786
1787 /* Startup DMA */
1788 pl011_dma_startup(uap);
1789
1790 pl011_enable_interrupts(uap);
1791
1792 return 0;
1793
1794 clk_dis:
1795 clk_disable_unprepare(uap->clk);
1796 return retval;
1797 }
1798
1799 static int sbsa_uart_startup(struct uart_port *port)
1800 {
1801 struct uart_amba_port *uap =
1802 container_of(port, struct uart_amba_port, port);
1803 int retval;
1804
1805 retval = pl011_hwinit(port);
1806 if (retval)
1807 return retval;
1808
1809 retval = pl011_allocate_irq(uap);
1810 if (retval)
1811 return retval;
1812
1813 /* The SBSA UART does not support any modem status lines. */
1814 uap->old_status = 0;
1815
1816 pl011_enable_interrupts(uap);
1817
1818 return 0;
1819 }
1820
1821 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1822 unsigned int lcrh)
1823 {
1824 unsigned long val;
1825
1826 val = pl011_read(uap, lcrh);
1827 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1828 pl011_write(val, uap, lcrh);
1829 }
1830
1831 /*
1832 * disable the port. It should not disable RTS and DTR.
1833 * Also RTS and DTR state should be preserved to restore
1834 * it during startup().
1835 */
1836 static void pl011_disable_uart(struct uart_amba_port *uap)
1837 {
1838 unsigned int cr;
1839
1840 uap->autorts = false;
1841 spin_lock_irq(&uap->port.lock);
1842 cr = pl011_read(uap, REG_CR);
1843 uap->old_cr = cr;
1844 cr &= UART011_CR_RTS | UART011_CR_DTR;
1845 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1846 pl011_write(cr, uap, REG_CR);
1847 spin_unlock_irq(&uap->port.lock);
1848
1849 /*
1850 * disable break condition and fifos
1851 */
1852 pl011_shutdown_channel(uap, REG_LCRH_RX);
1853 if (pl011_split_lcrh(uap))
1854 pl011_shutdown_channel(uap, REG_LCRH_TX);
1855 }
1856
1857 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1858 {
1859 spin_lock_irq(&uap->port.lock);
1860
1861 /* mask all interrupts and clear all pending ones */
1862 uap->im = 0;
1863 pl011_write(uap->im, uap, REG_IMSC);
1864 pl011_write(0xffff, uap, REG_ICR);
1865
1866 spin_unlock_irq(&uap->port.lock);
1867 }
1868
1869 static void pl011_shutdown(struct uart_port *port)
1870 {
1871 struct uart_amba_port *uap =
1872 container_of(port, struct uart_amba_port, port);
1873
1874 pl011_disable_interrupts(uap);
1875
1876 pl011_dma_shutdown(uap);
1877
1878 free_irq(uap->port.irq, uap);
1879
1880 pl011_disable_uart(uap);
1881
1882 /*
1883 * Shut down the clock producer
1884 */
1885 clk_disable_unprepare(uap->clk);
1886 /* Optionally let pins go into sleep states */
1887 pinctrl_pm_select_sleep_state(port->dev);
1888
1889 if (dev_get_platdata(uap->port.dev)) {
1890 struct amba_pl011_data *plat;
1891
1892 plat = dev_get_platdata(uap->port.dev);
1893 if (plat->exit)
1894 plat->exit();
1895 }
1896
1897 if (uap->port.ops->flush_buffer)
1898 uap->port.ops->flush_buffer(port);
1899 }
1900
1901 static void sbsa_uart_shutdown(struct uart_port *port)
1902 {
1903 struct uart_amba_port *uap =
1904 container_of(port, struct uart_amba_port, port);
1905
1906 pl011_disable_interrupts(uap);
1907
1908 free_irq(uap->port.irq, uap);
1909
1910 if (uap->port.ops->flush_buffer)
1911 uap->port.ops->flush_buffer(port);
1912 }
1913
1914 static void
1915 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1916 {
1917 port->read_status_mask = UART011_DR_OE | 255;
1918 if (termios->c_iflag & INPCK)
1919 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1920 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1921 port->read_status_mask |= UART011_DR_BE;
1922
1923 /*
1924 * Characters to ignore
1925 */
1926 port->ignore_status_mask = 0;
1927 if (termios->c_iflag & IGNPAR)
1928 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1929 if (termios->c_iflag & IGNBRK) {
1930 port->ignore_status_mask |= UART011_DR_BE;
1931 /*
1932 * If we're ignoring parity and break indicators,
1933 * ignore overruns too (for real raw support).
1934 */
1935 if (termios->c_iflag & IGNPAR)
1936 port->ignore_status_mask |= UART011_DR_OE;
1937 }
1938
1939 /*
1940 * Ignore all characters if CREAD is not set.
1941 */
1942 if ((termios->c_cflag & CREAD) == 0)
1943 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1944 }
1945
1946 static void
1947 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1948 struct ktermios *old)
1949 {
1950 struct uart_amba_port *uap =
1951 container_of(port, struct uart_amba_port, port);
1952 unsigned int lcr_h, old_cr;
1953 unsigned long flags;
1954 unsigned int baud, quot, clkdiv;
1955
1956 if (uap->vendor->oversampling)
1957 clkdiv = 8;
1958 else
1959 clkdiv = 16;
1960
1961 /*
1962 * Ask the core to calculate the divisor for us.
1963 */
1964 baud = uart_get_baud_rate(port, termios, old, 0,
1965 port->uartclk / clkdiv);
1966 #ifdef CONFIG_DMA_ENGINE
1967 /*
1968 * Adjust RX DMA polling rate with baud rate if not specified.
1969 */
1970 if (uap->dmarx.auto_poll_rate)
1971 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1972 #endif
1973
1974 if (baud > port->uartclk/16)
1975 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1976 else
1977 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1978
1979 switch (termios->c_cflag & CSIZE) {
1980 case CS5:
1981 lcr_h = UART01x_LCRH_WLEN_5;
1982 break;
1983 case CS6:
1984 lcr_h = UART01x_LCRH_WLEN_6;
1985 break;
1986 case CS7:
1987 lcr_h = UART01x_LCRH_WLEN_7;
1988 break;
1989 default: // CS8
1990 lcr_h = UART01x_LCRH_WLEN_8;
1991 break;
1992 }
1993 if (termios->c_cflag & CSTOPB)
1994 lcr_h |= UART01x_LCRH_STP2;
1995 if (termios->c_cflag & PARENB) {
1996 lcr_h |= UART01x_LCRH_PEN;
1997 if (!(termios->c_cflag & PARODD))
1998 lcr_h |= UART01x_LCRH_EPS;
1999 if (termios->c_cflag & CMSPAR)
2000 lcr_h |= UART011_LCRH_SPS;
2001 }
2002 if (uap->fifosize > 1)
2003 lcr_h |= UART01x_LCRH_FEN;
2004
2005 spin_lock_irqsave(&port->lock, flags);
2006
2007 /*
2008 * Update the per-port timeout.
2009 */
2010 uart_update_timeout(port, termios->c_cflag, baud);
2011
2012 pl011_setup_status_masks(port, termios);
2013
2014 if (UART_ENABLE_MS(port, termios->c_cflag))
2015 pl011_enable_ms(port);
2016
2017 /* first, disable everything */
2018 old_cr = pl011_read(uap, REG_CR);
2019 pl011_write(0, uap, REG_CR);
2020
2021 if (termios->c_cflag & CRTSCTS) {
2022 if (old_cr & UART011_CR_RTS)
2023 old_cr |= UART011_CR_RTSEN;
2024
2025 old_cr |= UART011_CR_CTSEN;
2026 uap->autorts = true;
2027 } else {
2028 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2029 uap->autorts = false;
2030 }
2031
2032 if (uap->vendor->oversampling) {
2033 if (baud > port->uartclk / 16)
2034 old_cr |= ST_UART011_CR_OVSFACT;
2035 else
2036 old_cr &= ~ST_UART011_CR_OVSFACT;
2037 }
2038
2039 /*
2040 * Workaround for the ST Micro oversampling variants to
2041 * increase the bitrate slightly, by lowering the divisor,
2042 * to avoid delayed sampling of start bit at high speeds,
2043 * else we see data corruption.
2044 */
2045 if (uap->vendor->oversampling) {
2046 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2047 quot -= 1;
2048 else if ((baud > 3250000) && (quot > 2))
2049 quot -= 2;
2050 }
2051 /* Set baud rate */
2052 pl011_write(quot & 0x3f, uap, REG_FBRD);
2053 pl011_write(quot >> 6, uap, REG_IBRD);
2054
2055 /*
2056 * ----------v----------v----------v----------v-----
2057 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2058 * REG_FBRD & REG_IBRD.
2059 * ----------^----------^----------^----------^-----
2060 */
2061 pl011_write_lcr_h(uap, lcr_h);
2062 pl011_write(old_cr, uap, REG_CR);
2063
2064 spin_unlock_irqrestore(&port->lock, flags);
2065 }
2066
2067 static void
2068 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2069 struct ktermios *old)
2070 {
2071 struct uart_amba_port *uap =
2072 container_of(port, struct uart_amba_port, port);
2073 unsigned long flags;
2074
2075 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2076
2077 /* The SBSA UART only supports 8n1 without hardware flow control. */
2078 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2079 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2080 termios->c_cflag |= CS8 | CLOCAL;
2081
2082 spin_lock_irqsave(&port->lock, flags);
2083 uart_update_timeout(port, CS8, uap->fixed_baud);
2084 pl011_setup_status_masks(port, termios);
2085 spin_unlock_irqrestore(&port->lock, flags);
2086 }
2087
2088 static const char *pl011_type(struct uart_port *port)
2089 {
2090 struct uart_amba_port *uap =
2091 container_of(port, struct uart_amba_port, port);
2092 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2093 }
2094
2095 /*
2096 * Release the memory region(s) being used by 'port'
2097 */
2098 static void pl011_release_port(struct uart_port *port)
2099 {
2100 release_mem_region(port->mapbase, SZ_4K);
2101 }
2102
2103 /*
2104 * Request the memory region(s) being used by 'port'
2105 */
2106 static int pl011_request_port(struct uart_port *port)
2107 {
2108 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2109 != NULL ? 0 : -EBUSY;
2110 }
2111
2112 /*
2113 * Configure/autoconfigure the port.
2114 */
2115 static void pl011_config_port(struct uart_port *port, int flags)
2116 {
2117 if (flags & UART_CONFIG_TYPE) {
2118 port->type = PORT_AMBA;
2119 pl011_request_port(port);
2120 }
2121 }
2122
2123 /*
2124 * verify the new serial_struct (for TIOCSSERIAL).
2125 */
2126 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2127 {
2128 int ret = 0;
2129 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2130 ret = -EINVAL;
2131 if (ser->irq < 0 || ser->irq >= nr_irqs)
2132 ret = -EINVAL;
2133 if (ser->baud_base < 9600)
2134 ret = -EINVAL;
2135 return ret;
2136 }
2137
2138 static struct uart_ops amba_pl011_pops = {
2139 .tx_empty = pl011_tx_empty,
2140 .set_mctrl = pl011_set_mctrl,
2141 .get_mctrl = pl011_get_mctrl,
2142 .stop_tx = pl011_stop_tx,
2143 .start_tx = pl011_start_tx,
2144 .stop_rx = pl011_stop_rx,
2145 .enable_ms = pl011_enable_ms,
2146 .break_ctl = pl011_break_ctl,
2147 .startup = pl011_startup,
2148 .shutdown = pl011_shutdown,
2149 .flush_buffer = pl011_dma_flush_buffer,
2150 .set_termios = pl011_set_termios,
2151 .type = pl011_type,
2152 .release_port = pl011_release_port,
2153 .request_port = pl011_request_port,
2154 .config_port = pl011_config_port,
2155 .verify_port = pl011_verify_port,
2156 #ifdef CONFIG_CONSOLE_POLL
2157 .poll_init = pl011_hwinit,
2158 .poll_get_char = pl011_get_poll_char,
2159 .poll_put_char = pl011_put_poll_char,
2160 #endif
2161 };
2162
2163 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2164 {
2165 }
2166
2167 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2168 {
2169 return 0;
2170 }
2171
2172 static const struct uart_ops sbsa_uart_pops = {
2173 .tx_empty = pl011_tx_empty,
2174 .set_mctrl = sbsa_uart_set_mctrl,
2175 .get_mctrl = sbsa_uart_get_mctrl,
2176 .stop_tx = pl011_stop_tx,
2177 .start_tx = pl011_start_tx,
2178 .stop_rx = pl011_stop_rx,
2179 .startup = sbsa_uart_startup,
2180 .shutdown = sbsa_uart_shutdown,
2181 .set_termios = sbsa_uart_set_termios,
2182 .type = pl011_type,
2183 .release_port = pl011_release_port,
2184 .request_port = pl011_request_port,
2185 .config_port = pl011_config_port,
2186 .verify_port = pl011_verify_port,
2187 #ifdef CONFIG_CONSOLE_POLL
2188 .poll_init = pl011_hwinit,
2189 .poll_get_char = pl011_get_poll_char,
2190 .poll_put_char = pl011_put_poll_char,
2191 #endif
2192 };
2193
2194 static struct uart_amba_port *amba_ports[UART_NR];
2195
2196 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2197
2198 static void pl011_console_putchar(struct uart_port *port, int ch)
2199 {
2200 struct uart_amba_port *uap =
2201 container_of(port, struct uart_amba_port, port);
2202
2203 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2204 cpu_relax();
2205 pl011_write(ch, uap, REG_DR);
2206 }
2207
2208 static void
2209 pl011_console_write(struct console *co, const char *s, unsigned int count)
2210 {
2211 struct uart_amba_port *uap = amba_ports[co->index];
2212 unsigned int old_cr = 0, new_cr;
2213 unsigned long flags;
2214 int locked = 1;
2215
2216 clk_enable(uap->clk);
2217
2218 local_irq_save(flags);
2219 if (uap->port.sysrq)
2220 locked = 0;
2221 else if (oops_in_progress)
2222 locked = spin_trylock(&uap->port.lock);
2223 else
2224 spin_lock(&uap->port.lock);
2225
2226 /*
2227 * First save the CR then disable the interrupts
2228 */
2229 if (!uap->vendor->always_enabled) {
2230 old_cr = pl011_read(uap, REG_CR);
2231 new_cr = old_cr & ~UART011_CR_CTSEN;
2232 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2233 pl011_write(new_cr, uap, REG_CR);
2234 }
2235
2236 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2237
2238 /*
2239 * Finally, wait for transmitter to become empty and restore the
2240 * TCR. Allow feature register bits to be inverted to work around
2241 * errata.
2242 */
2243 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2244 & uap->vendor->fr_busy)
2245 cpu_relax();
2246 if (!uap->vendor->always_enabled)
2247 pl011_write(old_cr, uap, REG_CR);
2248
2249 if (locked)
2250 spin_unlock(&uap->port.lock);
2251 local_irq_restore(flags);
2252
2253 clk_disable(uap->clk);
2254 }
2255
2256 static void __init
2257 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2258 int *parity, int *bits)
2259 {
2260 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2261 unsigned int lcr_h, ibrd, fbrd;
2262
2263 lcr_h = pl011_read(uap, REG_LCRH_TX);
2264
2265 *parity = 'n';
2266 if (lcr_h & UART01x_LCRH_PEN) {
2267 if (lcr_h & UART01x_LCRH_EPS)
2268 *parity = 'e';
2269 else
2270 *parity = 'o';
2271 }
2272
2273 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2274 *bits = 7;
2275 else
2276 *bits = 8;
2277
2278 ibrd = pl011_read(uap, REG_IBRD);
2279 fbrd = pl011_read(uap, REG_FBRD);
2280
2281 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2282
2283 if (uap->vendor->oversampling) {
2284 if (pl011_read(uap, REG_CR)
2285 & ST_UART011_CR_OVSFACT)
2286 *baud *= 2;
2287 }
2288 }
2289 }
2290
2291 static int __init pl011_console_setup(struct console *co, char *options)
2292 {
2293 struct uart_amba_port *uap;
2294 int baud = 38400;
2295 int bits = 8;
2296 int parity = 'n';
2297 int flow = 'n';
2298 int ret;
2299
2300 /*
2301 * Check whether an invalid uart number has been specified, and
2302 * if so, search for the first available port that does have
2303 * console support.
2304 */
2305 if (co->index >= UART_NR)
2306 co->index = 0;
2307 uap = amba_ports[co->index];
2308 if (!uap)
2309 return -ENODEV;
2310
2311 /* Allow pins to be muxed in and configured */
2312 pinctrl_pm_select_default_state(uap->port.dev);
2313
2314 ret = clk_prepare(uap->clk);
2315 if (ret)
2316 return ret;
2317
2318 if (dev_get_platdata(uap->port.dev)) {
2319 struct amba_pl011_data *plat;
2320
2321 plat = dev_get_platdata(uap->port.dev);
2322 if (plat->init)
2323 plat->init();
2324 }
2325
2326 uap->port.uartclk = clk_get_rate(uap->clk);
2327
2328 if (uap->vendor->fixed_options) {
2329 baud = uap->fixed_baud;
2330 } else {
2331 if (options)
2332 uart_parse_options(options,
2333 &baud, &parity, &bits, &flow);
2334 else
2335 pl011_console_get_options(uap, &baud, &parity, &bits);
2336 }
2337
2338 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2339 }
2340
2341 /**
2342 * pl011_console_match - non-standard console matching
2343 * @co: registering console
2344 * @name: name from console command line
2345 * @idx: index from console command line
2346 * @options: ptr to option string from console command line
2347 *
2348 * Only attempts to match console command lines of the form:
2349 * console=pl011,mmio|mmio32,<addr>[,<options>]
2350 * console=pl011,0x<addr>[,<options>]
2351 * This form is used to register an initial earlycon boot console and
2352 * replace it with the amba_console at pl011 driver init.
2353 *
2354 * Performs console setup for a match (as required by interface)
2355 * If no <options> are specified, then assume the h/w is already setup.
2356 *
2357 * Returns 0 if console matches; otherwise non-zero to use default matching
2358 */
2359 static int __init pl011_console_match(struct console *co, char *name, int idx,
2360 char *options)
2361 {
2362 unsigned char iotype;
2363 resource_size_t addr;
2364 int i;
2365
2366 /*
2367 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2368 * have a distinct console name, so make sure we check for that.
2369 * The actual implementation of the erratum occurs in the probe
2370 * function.
2371 */
2372 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2373 return -ENODEV;
2374
2375 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2376 return -ENODEV;
2377
2378 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2379 return -ENODEV;
2380
2381 /* try to match the port specified on the command line */
2382 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2383 struct uart_port *port;
2384
2385 if (!amba_ports[i])
2386 continue;
2387
2388 port = &amba_ports[i]->port;
2389
2390 if (port->mapbase != addr)
2391 continue;
2392
2393 co->index = i;
2394 port->cons = co;
2395 return pl011_console_setup(co, options);
2396 }
2397
2398 return -ENODEV;
2399 }
2400
2401 static struct uart_driver amba_reg;
2402 static struct console amba_console = {
2403 .name = "ttyAMA",
2404 .write = pl011_console_write,
2405 .device = uart_console_device,
2406 .setup = pl011_console_setup,
2407 .match = pl011_console_match,
2408 .flags = CON_PRINTBUFFER,
2409 .index = -1,
2410 .data = &amba_reg,
2411 };
2412
2413 #define AMBA_CONSOLE (&amba_console)
2414
2415 static void qdf2400_e44_putc(struct uart_port *port, int c)
2416 {
2417 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2418 cpu_relax();
2419 writel(c, port->membase + UART01x_DR);
2420 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2421 cpu_relax();
2422 }
2423
2424 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2425 {
2426 struct earlycon_device *dev = con->data;
2427
2428 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2429 }
2430
2431 static void pl011_putc(struct uart_port *port, int c)
2432 {
2433 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2434 cpu_relax();
2435 if (port->iotype == UPIO_MEM32)
2436 writel(c, port->membase + UART01x_DR);
2437 else
2438 writeb(c, port->membase + UART01x_DR);
2439 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2440 cpu_relax();
2441 }
2442
2443 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2444 {
2445 struct earlycon_device *dev = con->data;
2446
2447 uart_console_write(&dev->port, s, n, pl011_putc);
2448 }
2449
2450 /*
2451 * On non-ACPI systems, earlycon is enabled by specifying
2452 * "earlycon=pl011,<address>" on the kernel command line.
2453 *
2454 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2455 * by specifying only "earlycon" on the command line. Because it requires
2456 * SPCR, the console starts after ACPI is parsed, which is later than a
2457 * traditional early console.
2458 *
2459 * To get the traditional early console that starts before ACPI is parsed,
2460 * specify the full "earlycon=pl011,<address>" option.
2461 */
2462 static int __init pl011_early_console_setup(struct earlycon_device *device,
2463 const char *opt)
2464 {
2465 if (!device->port.membase)
2466 return -ENODEV;
2467
2468 device->con->write = pl011_early_write;
2469
2470 return 0;
2471 }
2472 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2473 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2474
2475 /*
2476 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2477 * Erratum 44, traditional earlycon can be enabled by specifying
2478 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2479 *
2480 * Alternatively, you can just specify "earlycon", and the early console
2481 * will be enabled with the information from the SPCR table. In this
2482 * case, the SPCR code will detect the need for the E44 work-around,
2483 * and set the console name to "qdf2400_e44".
2484 */
2485 static int __init
2486 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2487 const char *opt)
2488 {
2489 if (!device->port.membase)
2490 return -ENODEV;
2491
2492 device->con->write = qdf2400_e44_early_write;
2493 return 0;
2494 }
2495 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2496
2497 #else
2498 #define AMBA_CONSOLE NULL
2499 #endif
2500
2501 static struct uart_driver amba_reg = {
2502 .owner = THIS_MODULE,
2503 .driver_name = "ttyAMA",
2504 .dev_name = "ttyAMA",
2505 .major = SERIAL_AMBA_MAJOR,
2506 .minor = SERIAL_AMBA_MINOR,
2507 .nr = UART_NR,
2508 .cons = AMBA_CONSOLE,
2509 };
2510
2511 static int pl011_probe_dt_alias(int index, struct device *dev)
2512 {
2513 struct device_node *np;
2514 static bool seen_dev_with_alias = false;
2515 static bool seen_dev_without_alias = false;
2516 int ret = index;
2517
2518 if (!IS_ENABLED(CONFIG_OF))
2519 return ret;
2520
2521 np = dev->of_node;
2522 if (!np)
2523 return ret;
2524
2525 ret = of_alias_get_id(np, "serial");
2526 if (ret < 0) {
2527 seen_dev_without_alias = true;
2528 ret = index;
2529 } else {
2530 seen_dev_with_alias = true;
2531 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2532 dev_warn(dev, "requested serial port %d not available.\n", ret);
2533 ret = index;
2534 }
2535 }
2536
2537 if (seen_dev_with_alias && seen_dev_without_alias)
2538 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2539
2540 return ret;
2541 }
2542
2543 /* unregisters the driver also if no more ports are left */
2544 static void pl011_unregister_port(struct uart_amba_port *uap)
2545 {
2546 int i;
2547 bool busy = false;
2548
2549 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2550 if (amba_ports[i] == uap)
2551 amba_ports[i] = NULL;
2552 else if (amba_ports[i])
2553 busy = true;
2554 }
2555 pl011_dma_remove(uap);
2556 if (!busy)
2557 uart_unregister_driver(&amba_reg);
2558 }
2559
2560 static int pl011_find_free_port(void)
2561 {
2562 int i;
2563
2564 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2565 if (amba_ports[i] == NULL)
2566 return i;
2567
2568 return -EBUSY;
2569 }
2570
2571 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2572 struct resource *mmiobase, int index)
2573 {
2574 void __iomem *base;
2575
2576 base = devm_ioremap_resource(dev, mmiobase);
2577 if (IS_ERR(base))
2578 return PTR_ERR(base);
2579
2580 index = pl011_probe_dt_alias(index, dev);
2581
2582 uap->old_cr = 0;
2583 uap->port.dev = dev;
2584 uap->port.mapbase = mmiobase->start;
2585 uap->port.membase = base;
2586 uap->port.fifosize = uap->fifosize;
2587 uap->port.flags = UPF_BOOT_AUTOCONF;
2588 uap->port.line = index;
2589
2590 amba_ports[index] = uap;
2591
2592 return 0;
2593 }
2594
2595 static int pl011_register_port(struct uart_amba_port *uap)
2596 {
2597 int ret;
2598
2599 /* Ensure interrupts from this UART are masked and cleared */
2600 pl011_write(0, uap, REG_IMSC);
2601 pl011_write(0xffff, uap, REG_ICR);
2602
2603 if (!amba_reg.state) {
2604 ret = uart_register_driver(&amba_reg);
2605 if (ret < 0) {
2606 dev_err(uap->port.dev,
2607 "Failed to register AMBA-PL011 driver\n");
2608 return ret;
2609 }
2610 }
2611
2612 ret = uart_add_one_port(&amba_reg, &uap->port);
2613 if (ret)
2614 pl011_unregister_port(uap);
2615
2616 return ret;
2617 }
2618
2619 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2620 {
2621 struct uart_amba_port *uap;
2622 struct vendor_data *vendor = id->data;
2623 int portnr, ret;
2624
2625 portnr = pl011_find_free_port();
2626 if (portnr < 0)
2627 return portnr;
2628
2629 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2630 GFP_KERNEL);
2631 if (!uap)
2632 return -ENOMEM;
2633
2634 uap->clk = devm_clk_get(&dev->dev, NULL);
2635 if (IS_ERR(uap->clk))
2636 return PTR_ERR(uap->clk);
2637
2638 uap->reg_offset = vendor->reg_offset;
2639 uap->vendor = vendor;
2640 uap->fifosize = vendor->get_fifosize(dev);
2641 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2642 uap->port.irq = dev->irq[0];
2643 uap->port.ops = &amba_pl011_pops;
2644
2645 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2646
2647 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2648 if (ret)
2649 return ret;
2650
2651 amba_set_drvdata(dev, uap);
2652
2653 return pl011_register_port(uap);
2654 }
2655
2656 static int pl011_remove(struct amba_device *dev)
2657 {
2658 struct uart_amba_port *uap = amba_get_drvdata(dev);
2659
2660 uart_remove_one_port(&amba_reg, &uap->port);
2661 pl011_unregister_port(uap);
2662 return 0;
2663 }
2664
2665 #ifdef CONFIG_PM_SLEEP
2666 static int pl011_suspend(struct device *dev)
2667 {
2668 struct uart_amba_port *uap = dev_get_drvdata(dev);
2669
2670 if (!uap)
2671 return -EINVAL;
2672
2673 return uart_suspend_port(&amba_reg, &uap->port);
2674 }
2675
2676 static int pl011_resume(struct device *dev)
2677 {
2678 struct uart_amba_port *uap = dev_get_drvdata(dev);
2679
2680 if (!uap)
2681 return -EINVAL;
2682
2683 return uart_resume_port(&amba_reg, &uap->port);
2684 }
2685 #endif
2686
2687 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2688
2689 static int sbsa_uart_probe(struct platform_device *pdev)
2690 {
2691 struct uart_amba_port *uap;
2692 struct resource *r;
2693 int portnr, ret;
2694 int baudrate;
2695
2696 /*
2697 * Check the mandatory baud rate parameter in the DT node early
2698 * so that we can easily exit with the error.
2699 */
2700 if (pdev->dev.of_node) {
2701 struct device_node *np = pdev->dev.of_node;
2702
2703 ret = of_property_read_u32(np, "current-speed", &baudrate);
2704 if (ret)
2705 return ret;
2706 } else {
2707 baudrate = 115200;
2708 }
2709
2710 portnr = pl011_find_free_port();
2711 if (portnr < 0)
2712 return portnr;
2713
2714 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2715 GFP_KERNEL);
2716 if (!uap)
2717 return -ENOMEM;
2718
2719 ret = platform_get_irq(pdev, 0);
2720 if (ret < 0) {
2721 if (ret != -EPROBE_DEFER)
2722 dev_err(&pdev->dev, "cannot obtain irq\n");
2723 return ret;
2724 }
2725 uap->port.irq = ret;
2726
2727 #ifdef CONFIG_ACPI_SPCR_TABLE
2728 if (qdf2400_e44_present) {
2729 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2730 uap->vendor = &vendor_qdt_qdf2400_e44;
2731 } else
2732 #endif
2733 uap->vendor = &vendor_sbsa;
2734
2735 uap->reg_offset = uap->vendor->reg_offset;
2736 uap->fifosize = 32;
2737 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2738 uap->port.ops = &sbsa_uart_pops;
2739 uap->fixed_baud = baudrate;
2740
2741 snprintf(uap->type, sizeof(uap->type), "SBSA");
2742
2743 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2744
2745 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2746 if (ret)
2747 return ret;
2748
2749 platform_set_drvdata(pdev, uap);
2750
2751 return pl011_register_port(uap);
2752 }
2753
2754 static int sbsa_uart_remove(struct platform_device *pdev)
2755 {
2756 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2757
2758 uart_remove_one_port(&amba_reg, &uap->port);
2759 pl011_unregister_port(uap);
2760 return 0;
2761 }
2762
2763 static const struct of_device_id sbsa_uart_of_match[] = {
2764 { .compatible = "arm,sbsa-uart", },
2765 {},
2766 };
2767 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2768
2769 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2770 { "ARMH0011", 0 },
2771 {},
2772 };
2773 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2774
2775 static struct platform_driver arm_sbsa_uart_platform_driver = {
2776 .probe = sbsa_uart_probe,
2777 .remove = sbsa_uart_remove,
2778 .driver = {
2779 .name = "sbsa-uart",
2780 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2781 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2782 },
2783 };
2784
2785 static struct amba_id pl011_ids[] = {
2786 {
2787 .id = 0x00041011,
2788 .mask = 0x000fffff,
2789 .data = &vendor_arm,
2790 },
2791 {
2792 .id = 0x00380802,
2793 .mask = 0x00ffffff,
2794 .data = &vendor_st,
2795 },
2796 {
2797 .id = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2798 .mask = 0x00ffffff,
2799 .data = &vendor_zte,
2800 },
2801 { 0, 0 },
2802 };
2803
2804 MODULE_DEVICE_TABLE(amba, pl011_ids);
2805
2806 static struct amba_driver pl011_driver = {
2807 .drv = {
2808 .name = "uart-pl011",
2809 .pm = &pl011_dev_pm_ops,
2810 },
2811 .id_table = pl011_ids,
2812 .probe = pl011_probe,
2813 .remove = pl011_remove,
2814 };
2815
2816 static int __init pl011_init(void)
2817 {
2818 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2819
2820 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2821 pr_warn("could not register SBSA UART platform driver\n");
2822 return amba_driver_register(&pl011_driver);
2823 }
2824
2825 static void __exit pl011_exit(void)
2826 {
2827 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2828 amba_driver_unregister(&pl011_driver);
2829 }
2830
2831 /*
2832 * While this can be a module, if builtin it's most likely the console
2833 * So let's leave module_exit but move module_init to an earlier place
2834 */
2835 arch_initcall(pl011_init);
2836 module_exit(pl011_exit);
2837
2838 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2839 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2840 MODULE_LICENSE("GPL");