]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/serial/ifx6x60.c
Merge tag 'stable/for-linus-3.9-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / serial / ifx6x60.c
1 /****************************************************************************
2 *
3 * Driver for the IFX 6x60 spi modem.
4 *
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 * Denis Joseph Barrow <d.barow@option.com>
8 * Jan Dumon <j.dumon@option.com>
9 *
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <russ.gorby@intel.com>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 * USA
26 *
27 * Driver modified by Intel from Option gtm501l_spi.c
28 *
29 * Notes
30 * o The driver currently assumes a single device only. If you need to
31 * change this then look for saved_ifx_dev and add a device lookup
32 * o The driver is intended to be big-endian safe but has never been
33 * tested that way (no suitable hardware). There are a couple of FIXME
34 * notes by areas that may need addressing
35 * o Some of the GPIO naming/setup assumptions may need revisiting if
36 * you need to use this driver for another platform.
37 *
38 *****************************************************************************/
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/termios.h>
42 #include <linux/tty.h>
43 #include <linux/device.h>
44 #include <linux/spi/spi.h>
45 #include <linux/kfifo.h>
46 #include <linux/tty_flip.h>
47 #include <linux/timer.h>
48 #include <linux/serial.h>
49 #include <linux/interrupt.h>
50 #include <linux/irq.h>
51 #include <linux/rfkill.h>
52 #include <linux/fs.h>
53 #include <linux/ip.h>
54 #include <linux/dmapool.h>
55 #include <linux/gpio.h>
56 #include <linux/sched.h>
57 #include <linux/time.h>
58 #include <linux/wait.h>
59 #include <linux/pm.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spi/ifx_modem.h>
62 #include <linux/delay.h>
63 #include <linux/reboot.h>
64
65 #include "ifx6x60.h"
66
67 #define IFX_SPI_MORE_MASK 0x10
68 #define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
69 #define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
70 #define IFX_SPI_MODE SPI_MODE_1
71 #define IFX_SPI_TTY_ID 0
72 #define IFX_SPI_TIMEOUT_SEC 2
73 #define IFX_SPI_HEADER_0 (-1)
74 #define IFX_SPI_HEADER_F (-2)
75
76 #define PO_POST_DELAY 200
77 #define IFX_MDM_RST_PMU 4
78
79 /* forward reference */
80 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
81 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
82 unsigned long event, void *data);
83 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
84
85 /* local variables */
86 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
87 static struct tty_driver *tty_drv;
88 static struct ifx_spi_device *saved_ifx_dev;
89 static struct lock_class_key ifx_spi_key;
90
91 static struct notifier_block ifx_modem_reboot_notifier_block = {
92 .notifier_call = ifx_modem_reboot_callback,
93 };
94
95 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
96 {
97 gpio_set_value(IFX_MDM_RST_PMU, 1);
98 msleep(PO_POST_DELAY);
99
100 return 0;
101 }
102
103 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
104 unsigned long event, void *data)
105 {
106 if (saved_ifx_dev)
107 ifx_modem_power_off(saved_ifx_dev);
108 else
109 pr_warn("no ifx modem active;\n");
110
111 return NOTIFY_OK;
112 }
113
114 /* GPIO/GPE settings */
115
116 /**
117 * mrdy_set_high - set MRDY GPIO
118 * @ifx: device we are controlling
119 *
120 */
121 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
122 {
123 gpio_set_value(ifx->gpio.mrdy, 1);
124 }
125
126 /**
127 * mrdy_set_low - clear MRDY GPIO
128 * @ifx: device we are controlling
129 *
130 */
131 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
132 {
133 gpio_set_value(ifx->gpio.mrdy, 0);
134 }
135
136 /**
137 * ifx_spi_power_state_set
138 * @ifx_dev: our SPI device
139 * @val: bits to set
140 *
141 * Set bit in power status and signal power system if status becomes non-0
142 */
143 static void
144 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
145 {
146 unsigned long flags;
147
148 spin_lock_irqsave(&ifx_dev->power_lock, flags);
149
150 /*
151 * if power status is already non-0, just update, else
152 * tell power system
153 */
154 if (!ifx_dev->power_status)
155 pm_runtime_get(&ifx_dev->spi_dev->dev);
156 ifx_dev->power_status |= val;
157
158 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
159 }
160
161 /**
162 * ifx_spi_power_state_clear - clear power bit
163 * @ifx_dev: our SPI device
164 * @val: bits to clear
165 *
166 * clear bit in power status and signal power system if status becomes 0
167 */
168 static void
169 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
170 {
171 unsigned long flags;
172
173 spin_lock_irqsave(&ifx_dev->power_lock, flags);
174
175 if (ifx_dev->power_status) {
176 ifx_dev->power_status &= ~val;
177 if (!ifx_dev->power_status)
178 pm_runtime_put(&ifx_dev->spi_dev->dev);
179 }
180
181 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
182 }
183
184 /**
185 * swap_buf_8
186 * @buf: our buffer
187 * @len : number of bytes (not words) in the buffer
188 * @end: end of buffer
189 *
190 * Swap the contents of a buffer into big endian format
191 */
192 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
193 {
194 /* don't swap buffer if SPI word width is 8 bits */
195 return;
196 }
197
198 /**
199 * swap_buf_16
200 * @buf: our buffer
201 * @len : number of bytes (not words) in the buffer
202 * @end: end of buffer
203 *
204 * Swap the contents of a buffer into big endian format
205 */
206 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
207 {
208 int n;
209
210 u16 *buf_16 = (u16 *)buf;
211 len = ((len + 1) >> 1);
212 if ((void *)&buf_16[len] > end) {
213 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
214 &buf_16[len], end);
215 return;
216 }
217 for (n = 0; n < len; n++) {
218 *buf_16 = cpu_to_be16(*buf_16);
219 buf_16++;
220 }
221 }
222
223 /**
224 * swap_buf_32
225 * @buf: our buffer
226 * @len : number of bytes (not words) in the buffer
227 * @end: end of buffer
228 *
229 * Swap the contents of a buffer into big endian format
230 */
231 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
232 {
233 int n;
234
235 u32 *buf_32 = (u32 *)buf;
236 len = (len + 3) >> 2;
237
238 if ((void *)&buf_32[len] > end) {
239 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
240 &buf_32[len], end);
241 return;
242 }
243 for (n = 0; n < len; n++) {
244 *buf_32 = cpu_to_be32(*buf_32);
245 buf_32++;
246 }
247 }
248
249 /**
250 * mrdy_assert - assert MRDY line
251 * @ifx_dev: our SPI device
252 *
253 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
254 * now.
255 *
256 * FIXME: Can SRDY even go high as we are running this code ?
257 */
258 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
259 {
260 int val = gpio_get_value(ifx_dev->gpio.srdy);
261 if (!val) {
262 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
263 &ifx_dev->flags)) {
264 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
265
266 }
267 }
268 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
269 mrdy_set_high(ifx_dev);
270 }
271
272 /**
273 * ifx_spi_hangup - hang up an IFX device
274 * @ifx_dev: our SPI device
275 *
276 * Hang up the tty attached to the IFX device if one is currently
277 * open. If not take no action
278 */
279 static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
280 {
281 struct tty_port *pport = &ifx_dev->tty_port;
282 struct tty_struct *tty = tty_port_tty_get(pport);
283 if (tty) {
284 tty_hangup(tty);
285 tty_kref_put(tty);
286 }
287 }
288
289 /**
290 * ifx_spi_timeout - SPI timeout
291 * @arg: our SPI device
292 *
293 * The SPI has timed out: hang up the tty. Users will then see a hangup
294 * and error events.
295 */
296 static void ifx_spi_timeout(unsigned long arg)
297 {
298 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
299
300 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
301 ifx_spi_ttyhangup(ifx_dev);
302 mrdy_set_low(ifx_dev);
303 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
304 }
305
306 /* char/tty operations */
307
308 /**
309 * ifx_spi_tiocmget - get modem lines
310 * @tty: our tty device
311 * @filp: file handle issuing the request
312 *
313 * Map the signal state into Linux modem flags and report the value
314 * in Linux terms
315 */
316 static int ifx_spi_tiocmget(struct tty_struct *tty)
317 {
318 unsigned int value;
319 struct ifx_spi_device *ifx_dev = tty->driver_data;
320
321 value =
322 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
323 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
324 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
325 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
326 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
327 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
328 return value;
329 }
330
331 /**
332 * ifx_spi_tiocmset - set modem bits
333 * @tty: the tty structure
334 * @set: bits to set
335 * @clear: bits to clear
336 *
337 * The IFX6x60 only supports DTR and RTS. Set them accordingly
338 * and flag that an update to the modem is needed.
339 *
340 * FIXME: do we need to kick the tranfers when we do this ?
341 */
342 static int ifx_spi_tiocmset(struct tty_struct *tty,
343 unsigned int set, unsigned int clear)
344 {
345 struct ifx_spi_device *ifx_dev = tty->driver_data;
346
347 if (set & TIOCM_RTS)
348 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
349 if (set & TIOCM_DTR)
350 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
351 if (clear & TIOCM_RTS)
352 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
353 if (clear & TIOCM_DTR)
354 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
355
356 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
357 return 0;
358 }
359
360 /**
361 * ifx_spi_open - called on tty open
362 * @tty: our tty device
363 * @filp: file handle being associated with the tty
364 *
365 * Open the tty interface. We let the tty_port layer do all the work
366 * for us.
367 *
368 * FIXME: Remove single device assumption and saved_ifx_dev
369 */
370 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
371 {
372 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
373 }
374
375 /**
376 * ifx_spi_close - called when our tty closes
377 * @tty: the tty being closed
378 * @filp: the file handle being closed
379 *
380 * Perform the close of the tty. We use the tty_port layer to do all
381 * our hard work.
382 */
383 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
384 {
385 struct ifx_spi_device *ifx_dev = tty->driver_data;
386 tty_port_close(&ifx_dev->tty_port, tty, filp);
387 /* FIXME: should we do an ifx_spi_reset here ? */
388 }
389
390 /**
391 * ifx_decode_spi_header - decode received header
392 * @buffer: the received data
393 * @length: decoded length
394 * @more: decoded more flag
395 * @received_cts: status of cts we received
396 *
397 * Note how received_cts is handled -- if header is all F it is left
398 * the same as it was, if header is all 0 it is set to 0 otherwise it is
399 * taken from the incoming header.
400 *
401 * FIXME: endianness
402 */
403 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
404 unsigned char *more, unsigned char *received_cts)
405 {
406 u16 h1;
407 u16 h2;
408 u16 *in_buffer = (u16 *)buffer;
409
410 h1 = *in_buffer;
411 h2 = *(in_buffer+1);
412
413 if (h1 == 0 && h2 == 0) {
414 *received_cts = 0;
415 return IFX_SPI_HEADER_0;
416 } else if (h1 == 0xffff && h2 == 0xffff) {
417 /* spi_slave_cts remains as it was */
418 return IFX_SPI_HEADER_F;
419 }
420
421 *length = h1 & 0xfff; /* upper bits of byte are flags */
422 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
423 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
424 return 0;
425 }
426
427 /**
428 * ifx_setup_spi_header - set header fields
429 * @txbuffer: pointer to start of SPI buffer
430 * @tx_count: bytes
431 * @more: indicate if more to follow
432 *
433 * Format up an SPI header for a transfer
434 *
435 * FIXME: endianness?
436 */
437 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
438 unsigned char more)
439 {
440 *(u16 *)(txbuffer) = tx_count;
441 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
442 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
443 }
444
445 /**
446 * ifx_spi_wakeup_serial - SPI space made
447 * @port_data: our SPI device
448 *
449 * We have emptied the FIFO enough that we want to get more data
450 * queued into it. Poke the line discipline via tty_wakeup so that
451 * it will feed us more bits
452 */
453 static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
454 {
455 struct tty_struct *tty;
456
457 tty = tty_port_tty_get(&ifx_dev->tty_port);
458 if (!tty)
459 return;
460 tty_wakeup(tty);
461 tty_kref_put(tty);
462 }
463
464 /**
465 * ifx_spi_prepare_tx_buffer - prepare transmit frame
466 * @ifx_dev: our SPI device
467 *
468 * The transmit buffr needs a header and various other bits of
469 * information followed by as much data as we can pull from the FIFO
470 * and transfer. This function formats up a suitable buffer in the
471 * ifx_dev->tx_buffer
472 *
473 * FIXME: performance - should we wake the tty when the queue is half
474 * empty ?
475 */
476 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
477 {
478 int temp_count;
479 int queue_length;
480 int tx_count;
481 unsigned char *tx_buffer;
482
483 tx_buffer = ifx_dev->tx_buffer;
484
485 /* make room for required SPI header */
486 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
487 tx_count = IFX_SPI_HEADER_OVERHEAD;
488
489 /* clear to signal no more data if this turns out to be the
490 * last buffer sent in a sequence */
491 ifx_dev->spi_more = 0;
492
493 /* if modem cts is set, just send empty buffer */
494 if (!ifx_dev->spi_slave_cts) {
495 /* see if there's tx data */
496 queue_length = kfifo_len(&ifx_dev->tx_fifo);
497 if (queue_length != 0) {
498 /* data to mux -- see if there's room for it */
499 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
500 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
501 tx_buffer, temp_count,
502 &ifx_dev->fifo_lock);
503
504 /* update buffer pointer and data count in message */
505 tx_buffer += temp_count;
506 tx_count += temp_count;
507 if (temp_count == queue_length)
508 /* poke port to get more data */
509 ifx_spi_wakeup_serial(ifx_dev);
510 else /* more data in port, use next SPI message */
511 ifx_dev->spi_more = 1;
512 }
513 }
514 /* have data and info for header -- set up SPI header in buffer */
515 /* spi header needs payload size, not entire buffer size */
516 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
517 tx_count-IFX_SPI_HEADER_OVERHEAD,
518 ifx_dev->spi_more);
519 /* swap actual data in the buffer */
520 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
521 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
522 return tx_count;
523 }
524
525 /**
526 * ifx_spi_write - line discipline write
527 * @tty: our tty device
528 * @buf: pointer to buffer to write (kernel space)
529 * @count: size of buffer
530 *
531 * Write the characters we have been given into the FIFO. If the device
532 * is not active then activate it, when the SRDY line is asserted back
533 * this will commence I/O
534 */
535 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
536 int count)
537 {
538 struct ifx_spi_device *ifx_dev = tty->driver_data;
539 unsigned char *tmp_buf = (unsigned char *)buf;
540 unsigned long flags;
541 bool is_fifo_empty;
542 int tx_count;
543
544 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
545 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
546 tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
547 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
548 if (is_fifo_empty)
549 mrdy_assert(ifx_dev);
550
551 return tx_count;
552 }
553
554 /**
555 * ifx_spi_chars_in_buffer - line discipline helper
556 * @tty: our tty device
557 *
558 * Report how much data we can accept before we drop bytes. As we use
559 * a simple FIFO this is nice and easy.
560 */
561 static int ifx_spi_write_room(struct tty_struct *tty)
562 {
563 struct ifx_spi_device *ifx_dev = tty->driver_data;
564 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
565 }
566
567 /**
568 * ifx_spi_chars_in_buffer - line discipline helper
569 * @tty: our tty device
570 *
571 * Report how many characters we have buffered. In our case this is the
572 * number of bytes sitting in our transmit FIFO.
573 */
574 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
575 {
576 struct ifx_spi_device *ifx_dev = tty->driver_data;
577 return kfifo_len(&ifx_dev->tx_fifo);
578 }
579
580 /**
581 * ifx_port_hangup
582 * @port: our tty port
583 *
584 * tty port hang up. Called when tty_hangup processing is invoked either
585 * by loss of carrier, or by software (eg vhangup). Serialized against
586 * activate/shutdown by the tty layer.
587 */
588 static void ifx_spi_hangup(struct tty_struct *tty)
589 {
590 struct ifx_spi_device *ifx_dev = tty->driver_data;
591 tty_port_hangup(&ifx_dev->tty_port);
592 }
593
594 /**
595 * ifx_port_activate
596 * @port: our tty port
597 *
598 * tty port activate method - called for first open. Serialized
599 * with hangup and shutdown by the tty layer.
600 */
601 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
602 {
603 struct ifx_spi_device *ifx_dev =
604 container_of(port, struct ifx_spi_device, tty_port);
605
606 /* clear any old data; can't do this in 'close' */
607 kfifo_reset(&ifx_dev->tx_fifo);
608
609 /* clear any flag which may be set in port shutdown procedure */
610 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
611 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
612
613 /* put port data into this tty */
614 tty->driver_data = ifx_dev;
615
616 /* allows flip string push from int context */
617 port->low_latency = 1;
618
619 /* set flag to allows data transfer */
620 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
621
622 return 0;
623 }
624
625 /**
626 * ifx_port_shutdown
627 * @port: our tty port
628 *
629 * tty port shutdown method - called for last port close. Serialized
630 * with hangup and activate by the tty layer.
631 */
632 static void ifx_port_shutdown(struct tty_port *port)
633 {
634 struct ifx_spi_device *ifx_dev =
635 container_of(port, struct ifx_spi_device, tty_port);
636
637 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
638 mrdy_set_low(ifx_dev);
639 del_timer(&ifx_dev->spi_timer);
640 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
641 tasklet_kill(&ifx_dev->io_work_tasklet);
642 }
643
644 static const struct tty_port_operations ifx_tty_port_ops = {
645 .activate = ifx_port_activate,
646 .shutdown = ifx_port_shutdown,
647 };
648
649 static const struct tty_operations ifx_spi_serial_ops = {
650 .open = ifx_spi_open,
651 .close = ifx_spi_close,
652 .write = ifx_spi_write,
653 .hangup = ifx_spi_hangup,
654 .write_room = ifx_spi_write_room,
655 .chars_in_buffer = ifx_spi_chars_in_buffer,
656 .tiocmget = ifx_spi_tiocmget,
657 .tiocmset = ifx_spi_tiocmset,
658 };
659
660 /**
661 * ifx_spi_insert_fip_string - queue received data
662 * @ifx_ser: our SPI device
663 * @chars: buffer we have received
664 * @size: number of chars reeived
665 *
666 * Queue bytes to the tty assuming the tty side is currently open. If
667 * not the discard the data.
668 */
669 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
670 unsigned char *chars, size_t size)
671 {
672 tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
673 tty_flip_buffer_push(&ifx_dev->tty_port);
674 }
675
676 /**
677 * ifx_spi_complete - SPI transfer completed
678 * @ctx: our SPI device
679 *
680 * An SPI transfer has completed. Process any received data and kick off
681 * any further transmits we can commence.
682 */
683 static void ifx_spi_complete(void *ctx)
684 {
685 struct ifx_spi_device *ifx_dev = ctx;
686 struct tty_struct *tty;
687 struct tty_ldisc *ldisc = NULL;
688 int length;
689 int actual_length;
690 unsigned char more;
691 unsigned char cts;
692 int local_write_pending = 0;
693 int queue_length;
694 int srdy;
695 int decode_result;
696
697 mrdy_set_low(ifx_dev);
698
699 if (!ifx_dev->spi_msg.status) {
700 /* check header validity, get comm flags */
701 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
702 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
703 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
704 &length, &more, &cts);
705 if (decode_result == IFX_SPI_HEADER_0) {
706 dev_dbg(&ifx_dev->spi_dev->dev,
707 "ignore input: invalid header 0");
708 ifx_dev->spi_slave_cts = 0;
709 goto complete_exit;
710 } else if (decode_result == IFX_SPI_HEADER_F) {
711 dev_dbg(&ifx_dev->spi_dev->dev,
712 "ignore input: invalid header F");
713 goto complete_exit;
714 }
715
716 ifx_dev->spi_slave_cts = cts;
717
718 actual_length = min((unsigned int)length,
719 ifx_dev->spi_msg.actual_length);
720 ifx_dev->swap_buf(
721 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
722 actual_length,
723 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
724 ifx_spi_insert_flip_string(
725 ifx_dev,
726 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
727 (size_t)actual_length);
728 } else {
729 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
730 ifx_dev->spi_msg.status);
731 }
732
733 complete_exit:
734 if (ifx_dev->write_pending) {
735 ifx_dev->write_pending = 0;
736 local_write_pending = 1;
737 }
738
739 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
740
741 queue_length = kfifo_len(&ifx_dev->tx_fifo);
742 srdy = gpio_get_value(ifx_dev->gpio.srdy);
743 if (!srdy)
744 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
745
746 /* schedule output if there is more to do */
747 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
748 tasklet_schedule(&ifx_dev->io_work_tasklet);
749 else {
750 if (more || ifx_dev->spi_more || queue_length > 0 ||
751 local_write_pending) {
752 if (ifx_dev->spi_slave_cts) {
753 if (more)
754 mrdy_assert(ifx_dev);
755 } else
756 mrdy_assert(ifx_dev);
757 } else {
758 /*
759 * poke line discipline driver if any for more data
760 * may or may not get more data to write
761 * for now, say not busy
762 */
763 ifx_spi_power_state_clear(ifx_dev,
764 IFX_SPI_POWER_DATA_PENDING);
765 tty = tty_port_tty_get(&ifx_dev->tty_port);
766 if (tty) {
767 ldisc = tty_ldisc_ref(tty);
768 if (ldisc) {
769 ldisc->ops->write_wakeup(tty);
770 tty_ldisc_deref(ldisc);
771 }
772 tty_kref_put(tty);
773 }
774 }
775 }
776 }
777
778 /**
779 * ifx_spio_io - I/O tasklet
780 * @data: our SPI device
781 *
782 * Queue data for transmission if possible and then kick off the
783 * transfer.
784 */
785 static void ifx_spi_io(unsigned long data)
786 {
787 int retval;
788 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
789
790 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
791 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
792 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
793 ifx_dev->gpio.unack_srdy_int_nb--;
794
795 ifx_spi_prepare_tx_buffer(ifx_dev);
796
797 spi_message_init(&ifx_dev->spi_msg);
798 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
799
800 ifx_dev->spi_msg.context = ifx_dev;
801 ifx_dev->spi_msg.complete = ifx_spi_complete;
802
803 /* set up our spi transfer */
804 /* note len is BYTES, not transfers */
805 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
806 ifx_dev->spi_xfer.cs_change = 0;
807 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
808 /* ifx_dev->spi_xfer.speed_hz = 390625; */
809 ifx_dev->spi_xfer.bits_per_word =
810 ifx_dev->spi_dev->bits_per_word;
811
812 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
813 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
814
815 /*
816 * setup dma pointers
817 */
818 if (ifx_dev->use_dma) {
819 ifx_dev->spi_msg.is_dma_mapped = 1;
820 ifx_dev->tx_dma = ifx_dev->tx_bus;
821 ifx_dev->rx_dma = ifx_dev->rx_bus;
822 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
823 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
824 } else {
825 ifx_dev->spi_msg.is_dma_mapped = 0;
826 ifx_dev->tx_dma = (dma_addr_t)0;
827 ifx_dev->rx_dma = (dma_addr_t)0;
828 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
829 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
830 }
831
832 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
833
834 /* Assert MRDY. This may have already been done by the write
835 * routine.
836 */
837 mrdy_assert(ifx_dev);
838
839 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
840 if (retval) {
841 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
842 &ifx_dev->flags);
843 tasklet_schedule(&ifx_dev->io_work_tasklet);
844 return;
845 }
846 } else
847 ifx_dev->write_pending = 1;
848 }
849
850 /**
851 * ifx_spi_free_port - free up the tty side
852 * @ifx_dev: IFX device going away
853 *
854 * Unregister and free up a port when the device goes away
855 */
856 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
857 {
858 if (ifx_dev->tty_dev)
859 tty_unregister_device(tty_drv, ifx_dev->minor);
860 tty_port_destroy(&ifx_dev->tty_port);
861 kfifo_free(&ifx_dev->tx_fifo);
862 }
863
864 /**
865 * ifx_spi_create_port - create a new port
866 * @ifx_dev: our spi device
867 *
868 * Allocate and initialise the tty port that goes with this interface
869 * and add it to the tty layer so that it can be opened.
870 */
871 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
872 {
873 int ret = 0;
874 struct tty_port *pport = &ifx_dev->tty_port;
875
876 spin_lock_init(&ifx_dev->fifo_lock);
877 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
878 &ifx_spi_key, 0);
879
880 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
881 ret = -ENOMEM;
882 goto error_ret;
883 }
884
885 tty_port_init(pport);
886 pport->ops = &ifx_tty_port_ops;
887 ifx_dev->minor = IFX_SPI_TTY_ID;
888 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
889 ifx_dev->minor, &ifx_dev->spi_dev->dev);
890 if (IS_ERR(ifx_dev->tty_dev)) {
891 dev_dbg(&ifx_dev->spi_dev->dev,
892 "%s: registering tty device failed", __func__);
893 ret = PTR_ERR(ifx_dev->tty_dev);
894 goto error_port;
895 }
896 return 0;
897
898 error_port:
899 tty_port_destroy(pport);
900 error_ret:
901 ifx_spi_free_port(ifx_dev);
902 return ret;
903 }
904
905 /**
906 * ifx_spi_handle_srdy - handle SRDY
907 * @ifx_dev: device asserting SRDY
908 *
909 * Check our device state and see what we need to kick off when SRDY
910 * is asserted. This usually means killing the timer and firing off the
911 * I/O processing.
912 */
913 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
914 {
915 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
916 del_timer(&ifx_dev->spi_timer);
917 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
918 }
919
920 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
921
922 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
923 tasklet_schedule(&ifx_dev->io_work_tasklet);
924 else
925 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
926 }
927
928 /**
929 * ifx_spi_srdy_interrupt - SRDY asserted
930 * @irq: our IRQ number
931 * @dev: our ifx device
932 *
933 * The modem asserted SRDY. Handle the srdy event
934 */
935 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
936 {
937 struct ifx_spi_device *ifx_dev = dev;
938 ifx_dev->gpio.unack_srdy_int_nb++;
939 ifx_spi_handle_srdy(ifx_dev);
940 return IRQ_HANDLED;
941 }
942
943 /**
944 * ifx_spi_reset_interrupt - Modem has changed reset state
945 * @irq: interrupt number
946 * @dev: our device pointer
947 *
948 * The modem has either entered or left reset state. Check the GPIO
949 * line to see which.
950 *
951 * FIXME: review locking on MR_INPROGRESS versus
952 * parallel unsolicited reset/solicited reset
953 */
954 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
955 {
956 struct ifx_spi_device *ifx_dev = dev;
957 int val = gpio_get_value(ifx_dev->gpio.reset_out);
958 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
959
960 if (val == 0) {
961 /* entered reset */
962 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
963 if (!solreset) {
964 /* unsolicited reset */
965 ifx_spi_ttyhangup(ifx_dev);
966 }
967 } else {
968 /* exited reset */
969 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
970 if (solreset) {
971 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
972 wake_up(&ifx_dev->mdm_reset_wait);
973 }
974 }
975 return IRQ_HANDLED;
976 }
977
978 /**
979 * ifx_spi_free_device - free device
980 * @ifx_dev: device to free
981 *
982 * Free the IFX device
983 */
984 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
985 {
986 ifx_spi_free_port(ifx_dev);
987 dma_free_coherent(&ifx_dev->spi_dev->dev,
988 IFX_SPI_TRANSFER_SIZE,
989 ifx_dev->tx_buffer,
990 ifx_dev->tx_bus);
991 dma_free_coherent(&ifx_dev->spi_dev->dev,
992 IFX_SPI_TRANSFER_SIZE,
993 ifx_dev->rx_buffer,
994 ifx_dev->rx_bus);
995 }
996
997 /**
998 * ifx_spi_reset - reset modem
999 * @ifx_dev: modem to reset
1000 *
1001 * Perform a reset on the modem
1002 */
1003 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
1004 {
1005 int ret;
1006 /*
1007 * set up modem power, reset
1008 *
1009 * delays are required on some platforms for the modem
1010 * to reset properly
1011 */
1012 set_bit(MR_START, &ifx_dev->mdm_reset_state);
1013 gpio_set_value(ifx_dev->gpio.po, 0);
1014 gpio_set_value(ifx_dev->gpio.reset, 0);
1015 msleep(25);
1016 gpio_set_value(ifx_dev->gpio.reset, 1);
1017 msleep(1);
1018 gpio_set_value(ifx_dev->gpio.po, 1);
1019 msleep(1);
1020 gpio_set_value(ifx_dev->gpio.po, 0);
1021 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
1022 test_bit(MR_COMPLETE,
1023 &ifx_dev->mdm_reset_state),
1024 IFX_RESET_TIMEOUT);
1025 if (!ret)
1026 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
1027 ifx_dev->mdm_reset_state);
1028
1029 ifx_dev->mdm_reset_state = 0;
1030 return ret;
1031 }
1032
1033 /**
1034 * ifx_spi_spi_probe - probe callback
1035 * @spi: our possible matching SPI device
1036 *
1037 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
1038 * GPIO setup.
1039 *
1040 * FIXME:
1041 * - Support for multiple devices
1042 * - Split out MID specific GPIO handling eventually
1043 */
1044
1045 static int ifx_spi_spi_probe(struct spi_device *spi)
1046 {
1047 int ret;
1048 int srdy;
1049 struct ifx_modem_platform_data *pl_data;
1050 struct ifx_spi_device *ifx_dev;
1051
1052 if (saved_ifx_dev) {
1053 dev_dbg(&spi->dev, "ignoring subsequent detection");
1054 return -ENODEV;
1055 }
1056
1057 pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
1058 if (!pl_data) {
1059 dev_err(&spi->dev, "missing platform data!");
1060 return -ENODEV;
1061 }
1062
1063 /* initialize structure to hold our device variables */
1064 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1065 if (!ifx_dev) {
1066 dev_err(&spi->dev, "spi device allocation failed");
1067 return -ENOMEM;
1068 }
1069 saved_ifx_dev = ifx_dev;
1070 ifx_dev->spi_dev = spi;
1071 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1072 spin_lock_init(&ifx_dev->write_lock);
1073 spin_lock_init(&ifx_dev->power_lock);
1074 ifx_dev->power_status = 0;
1075 init_timer(&ifx_dev->spi_timer);
1076 ifx_dev->spi_timer.function = ifx_spi_timeout;
1077 ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1078 ifx_dev->modem = pl_data->modem_type;
1079 ifx_dev->use_dma = pl_data->use_dma;
1080 ifx_dev->max_hz = pl_data->max_hz;
1081 /* initialize spi mode, etc */
1082 spi->max_speed_hz = ifx_dev->max_hz;
1083 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1084 spi->bits_per_word = spi_bpw;
1085 ret = spi_setup(spi);
1086 if (ret) {
1087 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1088 return -ENODEV;
1089 }
1090
1091 /* init swap_buf function according to word width configuration */
1092 if (spi->bits_per_word == 32)
1093 ifx_dev->swap_buf = swap_buf_32;
1094 else if (spi->bits_per_word == 16)
1095 ifx_dev->swap_buf = swap_buf_16;
1096 else
1097 ifx_dev->swap_buf = swap_buf_8;
1098
1099 /* ensure SPI protocol flags are initialized to enable transfer */
1100 ifx_dev->spi_more = 0;
1101 ifx_dev->spi_slave_cts = 0;
1102
1103 /*initialize transfer and dma buffers */
1104 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1105 IFX_SPI_TRANSFER_SIZE,
1106 &ifx_dev->tx_bus,
1107 GFP_KERNEL);
1108 if (!ifx_dev->tx_buffer) {
1109 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1110 ret = -ENOMEM;
1111 goto error_ret;
1112 }
1113 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1114 IFX_SPI_TRANSFER_SIZE,
1115 &ifx_dev->rx_bus,
1116 GFP_KERNEL);
1117 if (!ifx_dev->rx_buffer) {
1118 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1119 ret = -ENOMEM;
1120 goto error_ret;
1121 }
1122
1123 /* initialize waitq for modem reset */
1124 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1125
1126 spi_set_drvdata(spi, ifx_dev);
1127 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1128 (unsigned long)ifx_dev);
1129
1130 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1131
1132 /* create our tty port */
1133 ret = ifx_spi_create_port(ifx_dev);
1134 if (ret != 0) {
1135 dev_err(&spi->dev, "create default tty port failed");
1136 goto error_ret;
1137 }
1138
1139 ifx_dev->gpio.reset = pl_data->rst_pmu;
1140 ifx_dev->gpio.po = pl_data->pwr_on;
1141 ifx_dev->gpio.mrdy = pl_data->mrdy;
1142 ifx_dev->gpio.srdy = pl_data->srdy;
1143 ifx_dev->gpio.reset_out = pl_data->rst_out;
1144
1145 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1146 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1147 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1148
1149 /* Configure gpios */
1150 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1151 if (ret < 0) {
1152 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1153 ifx_dev->gpio.reset);
1154 goto error_ret;
1155 }
1156 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1157 ret += gpio_export(ifx_dev->gpio.reset, 1);
1158 if (ret) {
1159 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1160 ifx_dev->gpio.reset);
1161 ret = -EBUSY;
1162 goto error_ret2;
1163 }
1164
1165 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1166 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1167 ret += gpio_export(ifx_dev->gpio.po, 1);
1168 if (ret) {
1169 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1170 ifx_dev->gpio.po);
1171 ret = -EBUSY;
1172 goto error_ret3;
1173 }
1174
1175 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1176 if (ret < 0) {
1177 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1178 ifx_dev->gpio.mrdy);
1179 goto error_ret3;
1180 }
1181 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1182 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1183 if (ret) {
1184 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1185 ifx_dev->gpio.mrdy);
1186 ret = -EBUSY;
1187 goto error_ret4;
1188 }
1189
1190 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1191 if (ret < 0) {
1192 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1193 ifx_dev->gpio.srdy);
1194 ret = -EBUSY;
1195 goto error_ret4;
1196 }
1197 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1198 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1199 if (ret) {
1200 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1201 ifx_dev->gpio.srdy);
1202 ret = -EBUSY;
1203 goto error_ret5;
1204 }
1205
1206 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1207 if (ret < 0) {
1208 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1209 ifx_dev->gpio.reset_out);
1210 goto error_ret5;
1211 }
1212 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1213 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1214 if (ret) {
1215 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1216 ifx_dev->gpio.reset_out);
1217 ret = -EBUSY;
1218 goto error_ret6;
1219 }
1220
1221 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1222 ifx_spi_reset_interrupt,
1223 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1224 (void *)ifx_dev);
1225 if (ret) {
1226 dev_err(&spi->dev, "Unable to get irq %x\n",
1227 gpio_to_irq(ifx_dev->gpio.reset_out));
1228 goto error_ret6;
1229 }
1230
1231 ret = ifx_spi_reset(ifx_dev);
1232
1233 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1234 ifx_spi_srdy_interrupt,
1235 IRQF_TRIGGER_RISING, DRVNAME,
1236 (void *)ifx_dev);
1237 if (ret) {
1238 dev_err(&spi->dev, "Unable to get irq %x",
1239 gpio_to_irq(ifx_dev->gpio.srdy));
1240 goto error_ret7;
1241 }
1242
1243 /* set pm runtime power state and register with power system */
1244 pm_runtime_set_active(&spi->dev);
1245 pm_runtime_enable(&spi->dev);
1246
1247 /* handle case that modem is already signaling SRDY */
1248 /* no outgoing tty open at this point, this just satisfies the
1249 * modem's read and should reset communication properly
1250 */
1251 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1252
1253 if (srdy) {
1254 mrdy_assert(ifx_dev);
1255 ifx_spi_handle_srdy(ifx_dev);
1256 } else
1257 mrdy_set_low(ifx_dev);
1258 return 0;
1259
1260 error_ret7:
1261 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1262 error_ret6:
1263 gpio_free(ifx_dev->gpio.srdy);
1264 error_ret5:
1265 gpio_free(ifx_dev->gpio.mrdy);
1266 error_ret4:
1267 gpio_free(ifx_dev->gpio.reset);
1268 error_ret3:
1269 gpio_free(ifx_dev->gpio.po);
1270 error_ret2:
1271 gpio_free(ifx_dev->gpio.reset_out);
1272 error_ret:
1273 ifx_spi_free_device(ifx_dev);
1274 saved_ifx_dev = NULL;
1275 return ret;
1276 }
1277
1278 /**
1279 * ifx_spi_spi_remove - SPI device was removed
1280 * @spi: SPI device
1281 *
1282 * FIXME: We should be shutting the device down here not in
1283 * the module unload path.
1284 */
1285
1286 static int ifx_spi_spi_remove(struct spi_device *spi)
1287 {
1288 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1289 /* stop activity */
1290 tasklet_kill(&ifx_dev->io_work_tasklet);
1291 /* free irq */
1292 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1293 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1294
1295 gpio_free(ifx_dev->gpio.srdy);
1296 gpio_free(ifx_dev->gpio.mrdy);
1297 gpio_free(ifx_dev->gpio.reset);
1298 gpio_free(ifx_dev->gpio.po);
1299 gpio_free(ifx_dev->gpio.reset_out);
1300
1301 /* free allocations */
1302 ifx_spi_free_device(ifx_dev);
1303
1304 saved_ifx_dev = NULL;
1305 return 0;
1306 }
1307
1308 /**
1309 * ifx_spi_spi_shutdown - called on SPI shutdown
1310 * @spi: SPI device
1311 *
1312 * No action needs to be taken here
1313 */
1314
1315 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1316 {
1317 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1318
1319 ifx_modem_power_off(ifx_dev);
1320 }
1321
1322 /*
1323 * various suspends and resumes have nothing to do
1324 * no hardware to save state for
1325 */
1326
1327 /**
1328 * ifx_spi_spi_suspend - suspend SPI on system suspend
1329 * @dev: device being suspended
1330 *
1331 * Suspend the SPI side. No action needed on Intel MID platforms, may
1332 * need extending for other systems.
1333 */
1334 static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1335 {
1336 return 0;
1337 }
1338
1339 /**
1340 * ifx_spi_spi_resume - resume SPI side on system resume
1341 * @dev: device being suspended
1342 *
1343 * Suspend the SPI side. No action needed on Intel MID platforms, may
1344 * need extending for other systems.
1345 */
1346 static int ifx_spi_spi_resume(struct spi_device *spi)
1347 {
1348 return 0;
1349 }
1350
1351 /**
1352 * ifx_spi_pm_suspend - suspend modem on system suspend
1353 * @dev: device being suspended
1354 *
1355 * Suspend the modem. No action needed on Intel MID platforms, may
1356 * need extending for other systems.
1357 */
1358 static int ifx_spi_pm_suspend(struct device *dev)
1359 {
1360 return 0;
1361 }
1362
1363 /**
1364 * ifx_spi_pm_resume - resume modem on system resume
1365 * @dev: device being suspended
1366 *
1367 * Allow the modem to resume. No action needed.
1368 *
1369 * FIXME: do we need to reset anything here ?
1370 */
1371 static int ifx_spi_pm_resume(struct device *dev)
1372 {
1373 return 0;
1374 }
1375
1376 /**
1377 * ifx_spi_pm_runtime_resume - suspend modem
1378 * @dev: device being suspended
1379 *
1380 * Allow the modem to resume. No action needed.
1381 */
1382 static int ifx_spi_pm_runtime_resume(struct device *dev)
1383 {
1384 return 0;
1385 }
1386
1387 /**
1388 * ifx_spi_pm_runtime_suspend - suspend modem
1389 * @dev: device being suspended
1390 *
1391 * Allow the modem to suspend and thus suspend to continue up the
1392 * device tree.
1393 */
1394 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1395 {
1396 return 0;
1397 }
1398
1399 /**
1400 * ifx_spi_pm_runtime_idle - check if modem idle
1401 * @dev: our device
1402 *
1403 * Check conditions and queue runtime suspend if idle.
1404 */
1405 static int ifx_spi_pm_runtime_idle(struct device *dev)
1406 {
1407 struct spi_device *spi = to_spi_device(dev);
1408 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1409
1410 if (!ifx_dev->power_status)
1411 pm_runtime_suspend(dev);
1412
1413 return 0;
1414 }
1415
1416 static const struct dev_pm_ops ifx_spi_pm = {
1417 .resume = ifx_spi_pm_resume,
1418 .suspend = ifx_spi_pm_suspend,
1419 .runtime_resume = ifx_spi_pm_runtime_resume,
1420 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1421 .runtime_idle = ifx_spi_pm_runtime_idle
1422 };
1423
1424 static const struct spi_device_id ifx_id_table[] = {
1425 {"ifx6160", 0},
1426 {"ifx6260", 0},
1427 { }
1428 };
1429 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1430
1431 /* spi operations */
1432 static struct spi_driver ifx_spi_driver = {
1433 .driver = {
1434 .name = DRVNAME,
1435 .pm = &ifx_spi_pm,
1436 .owner = THIS_MODULE},
1437 .probe = ifx_spi_spi_probe,
1438 .shutdown = ifx_spi_spi_shutdown,
1439 .remove = ifx_spi_spi_remove,
1440 .suspend = ifx_spi_spi_suspend,
1441 .resume = ifx_spi_spi_resume,
1442 .id_table = ifx_id_table
1443 };
1444
1445 /**
1446 * ifx_spi_exit - module exit
1447 *
1448 * Unload the module.
1449 */
1450
1451 static void __exit ifx_spi_exit(void)
1452 {
1453 /* unregister */
1454 tty_unregister_driver(tty_drv);
1455 put_tty_driver(tty_drv);
1456 spi_unregister_driver((void *)&ifx_spi_driver);
1457 unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1458 }
1459
1460 /**
1461 * ifx_spi_init - module entry point
1462 *
1463 * Initialise the SPI and tty interfaces for the IFX SPI driver
1464 * We need to initialize upper-edge spi driver after the tty
1465 * driver because otherwise the spi probe will race
1466 */
1467
1468 static int __init ifx_spi_init(void)
1469 {
1470 int result;
1471
1472 tty_drv = alloc_tty_driver(1);
1473 if (!tty_drv) {
1474 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1475 return -ENOMEM;
1476 }
1477
1478 tty_drv->driver_name = DRVNAME;
1479 tty_drv->name = TTYNAME;
1480 tty_drv->minor_start = IFX_SPI_TTY_ID;
1481 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1482 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1483 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1484 tty_drv->init_termios = tty_std_termios;
1485
1486 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1487
1488 result = tty_register_driver(tty_drv);
1489 if (result) {
1490 pr_err("%s: tty_register_driver failed(%d)",
1491 DRVNAME, result);
1492 goto err_free_tty;
1493 }
1494
1495 result = spi_register_driver((void *)&ifx_spi_driver);
1496 if (result) {
1497 pr_err("%s: spi_register_driver failed(%d)",
1498 DRVNAME, result);
1499 goto err_unreg_tty;
1500 }
1501
1502 result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1503 if (result) {
1504 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1505 DRVNAME, result);
1506 goto err_unreg_spi;
1507 }
1508
1509 return 0;
1510 err_unreg_spi:
1511 spi_unregister_driver((void *)&ifx_spi_driver);
1512 err_unreg_tty:
1513 tty_unregister_driver(tty_drv);
1514 err_free_tty:
1515 put_tty_driver(tty_drv);
1516
1517 return result;
1518 }
1519
1520 module_init(ifx_spi_init);
1521 module_exit(ifx_spi_exit);
1522
1523 MODULE_AUTHOR("Intel");
1524 MODULE_DESCRIPTION("IFX6x60 spi driver");
1525 MODULE_LICENSE("GPL");
1526 MODULE_INFO(Version, "0.1-IFX6x60");