]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/tty/serial/sh-sci.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-hirsute-kernel.git] / drivers / tty / serial / sh-sci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
4 *
5 * Copyright (C) 2002 - 2011 Paul Mundt
6 * Copyright (C) 2015 Glider bvba
7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 * Copyright (C) 1999, 2000 Niibe Yutaka
12 * Copyright (C) 2000 Sugioka Toshinobu
13 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 * Modified to support SecureEdge. David McCullough (2002)
15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 * Removed SH7300 support (Jul 2007).
17 */
18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 #define SUPPORT_SYSRQ
20 #endif
21
22 #undef DEBUG
23
24 #include <linux/clk.h>
25 #include <linux/console.h>
26 #include <linux/ctype.h>
27 #include <linux/cpufreq.h>
28 #include <linux/delay.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/err.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/ktime.h>
37 #include <linux/major.h>
38 #include <linux/module.h>
39 #include <linux/mm.h>
40 #include <linux/of.h>
41 #include <linux/of_device.h>
42 #include <linux/platform_device.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/scatterlist.h>
45 #include <linux/serial.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58
59 #include "serial_mctrl_gpio.h"
60 #include "sh-sci.h"
61
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 SCIx_ERI_IRQ,
65 SCIx_RXI_IRQ,
66 SCIx_TXI_IRQ,
67 SCIx_BRI_IRQ,
68 SCIx_NR_IRQS,
69
70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
71 };
72
73 #define SCIx_IRQ_IS_MUXED(port) \
74 ((port)->irqs[SCIx_ERI_IRQ] == \
75 (port)->irqs[SCIx_RXI_IRQ]) || \
76 ((port)->irqs[SCIx_ERI_IRQ] && \
77 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79 enum SCI_CLKS {
80 SCI_FCK, /* Functional Clock */
81 SCI_SCK, /* Optional External Clock */
82 SCI_BRG_INT, /* Optional BRG Internal Clock Source */
83 SCI_SCIF_CLK, /* Optional BRG External Clock Source */
84 SCI_NUM_CLKS
85 };
86
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x) BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
90
91 #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 SCI_SR(19) | SCI_SR(27)
94
95 #define min_sr(_port) ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port) fls((_port)->sampling_rate_mask)
97
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port) \
100 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
101 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102
103 struct plat_sci_reg {
104 u8 offset, size;
105 };
106
107 struct sci_port_params {
108 const struct plat_sci_reg regs[SCIx_NR_REGS];
109 unsigned int fifosize;
110 unsigned int overrun_reg;
111 unsigned int overrun_mask;
112 unsigned int sampling_rate_mask;
113 unsigned int error_mask;
114 unsigned int error_clear;
115 };
116
117 struct sci_port {
118 struct uart_port port;
119
120 /* Platform configuration */
121 const struct sci_port_params *params;
122 const struct plat_sci_port *cfg;
123 unsigned int sampling_rate_mask;
124 resource_size_t reg_size;
125 struct mctrl_gpios *gpios;
126
127 /* Clocks */
128 struct clk *clks[SCI_NUM_CLKS];
129 unsigned long clk_rates[SCI_NUM_CLKS];
130
131 int irqs[SCIx_NR_IRQS];
132 char *irqstr[SCIx_NR_IRQS];
133
134 struct dma_chan *chan_tx;
135 struct dma_chan *chan_rx;
136
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 dma_cookie_t cookie_tx;
139 dma_cookie_t cookie_rx[2];
140 dma_cookie_t active_rx;
141 dma_addr_t tx_dma_addr;
142 unsigned int tx_dma_len;
143 struct scatterlist sg_rx[2];
144 void *rx_buf[2];
145 size_t buf_len_rx;
146 struct work_struct work_tx;
147 struct hrtimer rx_timer;
148 unsigned int rx_timeout; /* microseconds */
149 #endif
150 unsigned int rx_frame;
151 int rx_trigger;
152 struct timer_list rx_fifo_timer;
153 int rx_fifo_timeout;
154 u16 hscif_tot;
155
156 bool has_rtscts;
157 bool autorts;
158 };
159
160 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
161
162 static struct sci_port sci_ports[SCI_NPORTS];
163 static unsigned long sci_ports_in_use;
164 static struct uart_driver sci_uart_driver;
165
166 static inline struct sci_port *
167 to_sci_port(struct uart_port *uart)
168 {
169 return container_of(uart, struct sci_port, port);
170 }
171
172 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
173 /*
174 * Common SCI definitions, dependent on the port's regshift
175 * value.
176 */
177 [SCIx_SCI_REGTYPE] = {
178 .regs = {
179 [SCSMR] = { 0x00, 8 },
180 [SCBRR] = { 0x01, 8 },
181 [SCSCR] = { 0x02, 8 },
182 [SCxTDR] = { 0x03, 8 },
183 [SCxSR] = { 0x04, 8 },
184 [SCxRDR] = { 0x05, 8 },
185 },
186 .fifosize = 1,
187 .overrun_reg = SCxSR,
188 .overrun_mask = SCI_ORER,
189 .sampling_rate_mask = SCI_SR(32),
190 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
191 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
192 },
193
194 /*
195 * Common definitions for legacy IrDA ports.
196 */
197 [SCIx_IRDA_REGTYPE] = {
198 .regs = {
199 [SCSMR] = { 0x00, 8 },
200 [SCBRR] = { 0x02, 8 },
201 [SCSCR] = { 0x04, 8 },
202 [SCxTDR] = { 0x06, 8 },
203 [SCxSR] = { 0x08, 16 },
204 [SCxRDR] = { 0x0a, 8 },
205 [SCFCR] = { 0x0c, 8 },
206 [SCFDR] = { 0x0e, 16 },
207 },
208 .fifosize = 1,
209 .overrun_reg = SCxSR,
210 .overrun_mask = SCI_ORER,
211 .sampling_rate_mask = SCI_SR(32),
212 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
213 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
214 },
215
216 /*
217 * Common SCIFA definitions.
218 */
219 [SCIx_SCIFA_REGTYPE] = {
220 .regs = {
221 [SCSMR] = { 0x00, 16 },
222 [SCBRR] = { 0x04, 8 },
223 [SCSCR] = { 0x08, 16 },
224 [SCxTDR] = { 0x20, 8 },
225 [SCxSR] = { 0x14, 16 },
226 [SCxRDR] = { 0x24, 8 },
227 [SCFCR] = { 0x18, 16 },
228 [SCFDR] = { 0x1c, 16 },
229 [SCPCR] = { 0x30, 16 },
230 [SCPDR] = { 0x34, 16 },
231 },
232 .fifosize = 64,
233 .overrun_reg = SCxSR,
234 .overrun_mask = SCIFA_ORER,
235 .sampling_rate_mask = SCI_SR_SCIFAB,
236 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
237 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
238 },
239
240 /*
241 * Common SCIFB definitions.
242 */
243 [SCIx_SCIFB_REGTYPE] = {
244 .regs = {
245 [SCSMR] = { 0x00, 16 },
246 [SCBRR] = { 0x04, 8 },
247 [SCSCR] = { 0x08, 16 },
248 [SCxTDR] = { 0x40, 8 },
249 [SCxSR] = { 0x14, 16 },
250 [SCxRDR] = { 0x60, 8 },
251 [SCFCR] = { 0x18, 16 },
252 [SCTFDR] = { 0x38, 16 },
253 [SCRFDR] = { 0x3c, 16 },
254 [SCPCR] = { 0x30, 16 },
255 [SCPDR] = { 0x34, 16 },
256 },
257 .fifosize = 256,
258 .overrun_reg = SCxSR,
259 .overrun_mask = SCIFA_ORER,
260 .sampling_rate_mask = SCI_SR_SCIFAB,
261 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
262 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
263 },
264
265 /*
266 * Common SH-2(A) SCIF definitions for ports with FIFO data
267 * count registers.
268 */
269 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
270 .regs = {
271 [SCSMR] = { 0x00, 16 },
272 [SCBRR] = { 0x04, 8 },
273 [SCSCR] = { 0x08, 16 },
274 [SCxTDR] = { 0x0c, 8 },
275 [SCxSR] = { 0x10, 16 },
276 [SCxRDR] = { 0x14, 8 },
277 [SCFCR] = { 0x18, 16 },
278 [SCFDR] = { 0x1c, 16 },
279 [SCSPTR] = { 0x20, 16 },
280 [SCLSR] = { 0x24, 16 },
281 },
282 .fifosize = 16,
283 .overrun_reg = SCLSR,
284 .overrun_mask = SCLSR_ORER,
285 .sampling_rate_mask = SCI_SR(32),
286 .error_mask = SCIF_DEFAULT_ERROR_MASK,
287 .error_clear = SCIF_ERROR_CLEAR,
288 },
289
290 /*
291 * Common SH-3 SCIF definitions.
292 */
293 [SCIx_SH3_SCIF_REGTYPE] = {
294 .regs = {
295 [SCSMR] = { 0x00, 8 },
296 [SCBRR] = { 0x02, 8 },
297 [SCSCR] = { 0x04, 8 },
298 [SCxTDR] = { 0x06, 8 },
299 [SCxSR] = { 0x08, 16 },
300 [SCxRDR] = { 0x0a, 8 },
301 [SCFCR] = { 0x0c, 8 },
302 [SCFDR] = { 0x0e, 16 },
303 },
304 .fifosize = 16,
305 .overrun_reg = SCLSR,
306 .overrun_mask = SCLSR_ORER,
307 .sampling_rate_mask = SCI_SR(32),
308 .error_mask = SCIF_DEFAULT_ERROR_MASK,
309 .error_clear = SCIF_ERROR_CLEAR,
310 },
311
312 /*
313 * Common SH-4(A) SCIF(B) definitions.
314 */
315 [SCIx_SH4_SCIF_REGTYPE] = {
316 .regs = {
317 [SCSMR] = { 0x00, 16 },
318 [SCBRR] = { 0x04, 8 },
319 [SCSCR] = { 0x08, 16 },
320 [SCxTDR] = { 0x0c, 8 },
321 [SCxSR] = { 0x10, 16 },
322 [SCxRDR] = { 0x14, 8 },
323 [SCFCR] = { 0x18, 16 },
324 [SCFDR] = { 0x1c, 16 },
325 [SCSPTR] = { 0x20, 16 },
326 [SCLSR] = { 0x24, 16 },
327 },
328 .fifosize = 16,
329 .overrun_reg = SCLSR,
330 .overrun_mask = SCLSR_ORER,
331 .sampling_rate_mask = SCI_SR(32),
332 .error_mask = SCIF_DEFAULT_ERROR_MASK,
333 .error_clear = SCIF_ERROR_CLEAR,
334 },
335
336 /*
337 * Common SCIF definitions for ports with a Baud Rate Generator for
338 * External Clock (BRG).
339 */
340 [SCIx_SH4_SCIF_BRG_REGTYPE] = {
341 .regs = {
342 [SCSMR] = { 0x00, 16 },
343 [SCBRR] = { 0x04, 8 },
344 [SCSCR] = { 0x08, 16 },
345 [SCxTDR] = { 0x0c, 8 },
346 [SCxSR] = { 0x10, 16 },
347 [SCxRDR] = { 0x14, 8 },
348 [SCFCR] = { 0x18, 16 },
349 [SCFDR] = { 0x1c, 16 },
350 [SCSPTR] = { 0x20, 16 },
351 [SCLSR] = { 0x24, 16 },
352 [SCDL] = { 0x30, 16 },
353 [SCCKS] = { 0x34, 16 },
354 },
355 .fifosize = 16,
356 .overrun_reg = SCLSR,
357 .overrun_mask = SCLSR_ORER,
358 .sampling_rate_mask = SCI_SR(32),
359 .error_mask = SCIF_DEFAULT_ERROR_MASK,
360 .error_clear = SCIF_ERROR_CLEAR,
361 },
362
363 /*
364 * Common HSCIF definitions.
365 */
366 [SCIx_HSCIF_REGTYPE] = {
367 .regs = {
368 [SCSMR] = { 0x00, 16 },
369 [SCBRR] = { 0x04, 8 },
370 [SCSCR] = { 0x08, 16 },
371 [SCxTDR] = { 0x0c, 8 },
372 [SCxSR] = { 0x10, 16 },
373 [SCxRDR] = { 0x14, 8 },
374 [SCFCR] = { 0x18, 16 },
375 [SCFDR] = { 0x1c, 16 },
376 [SCSPTR] = { 0x20, 16 },
377 [SCLSR] = { 0x24, 16 },
378 [HSSRR] = { 0x40, 16 },
379 [SCDL] = { 0x30, 16 },
380 [SCCKS] = { 0x34, 16 },
381 [HSRTRGR] = { 0x54, 16 },
382 [HSTTRGR] = { 0x58, 16 },
383 },
384 .fifosize = 128,
385 .overrun_reg = SCLSR,
386 .overrun_mask = SCLSR_ORER,
387 .sampling_rate_mask = SCI_SR_RANGE(8, 32),
388 .error_mask = SCIF_DEFAULT_ERROR_MASK,
389 .error_clear = SCIF_ERROR_CLEAR,
390 },
391
392 /*
393 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
394 * register.
395 */
396 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
397 .regs = {
398 [SCSMR] = { 0x00, 16 },
399 [SCBRR] = { 0x04, 8 },
400 [SCSCR] = { 0x08, 16 },
401 [SCxTDR] = { 0x0c, 8 },
402 [SCxSR] = { 0x10, 16 },
403 [SCxRDR] = { 0x14, 8 },
404 [SCFCR] = { 0x18, 16 },
405 [SCFDR] = { 0x1c, 16 },
406 [SCLSR] = { 0x24, 16 },
407 },
408 .fifosize = 16,
409 .overrun_reg = SCLSR,
410 .overrun_mask = SCLSR_ORER,
411 .sampling_rate_mask = SCI_SR(32),
412 .error_mask = SCIF_DEFAULT_ERROR_MASK,
413 .error_clear = SCIF_ERROR_CLEAR,
414 },
415
416 /*
417 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
418 * count registers.
419 */
420 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
421 .regs = {
422 [SCSMR] = { 0x00, 16 },
423 [SCBRR] = { 0x04, 8 },
424 [SCSCR] = { 0x08, 16 },
425 [SCxTDR] = { 0x0c, 8 },
426 [SCxSR] = { 0x10, 16 },
427 [SCxRDR] = { 0x14, 8 },
428 [SCFCR] = { 0x18, 16 },
429 [SCFDR] = { 0x1c, 16 },
430 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
431 [SCRFDR] = { 0x20, 16 },
432 [SCSPTR] = { 0x24, 16 },
433 [SCLSR] = { 0x28, 16 },
434 },
435 .fifosize = 16,
436 .overrun_reg = SCLSR,
437 .overrun_mask = SCLSR_ORER,
438 .sampling_rate_mask = SCI_SR(32),
439 .error_mask = SCIF_DEFAULT_ERROR_MASK,
440 .error_clear = SCIF_ERROR_CLEAR,
441 },
442
443 /*
444 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
445 * registers.
446 */
447 [SCIx_SH7705_SCIF_REGTYPE] = {
448 .regs = {
449 [SCSMR] = { 0x00, 16 },
450 [SCBRR] = { 0x04, 8 },
451 [SCSCR] = { 0x08, 16 },
452 [SCxTDR] = { 0x20, 8 },
453 [SCxSR] = { 0x14, 16 },
454 [SCxRDR] = { 0x24, 8 },
455 [SCFCR] = { 0x18, 16 },
456 [SCFDR] = { 0x1c, 16 },
457 },
458 .fifosize = 64,
459 .overrun_reg = SCxSR,
460 .overrun_mask = SCIFA_ORER,
461 .sampling_rate_mask = SCI_SR(16),
462 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
463 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
464 },
465 };
466
467 #define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
468
469 /*
470 * The "offset" here is rather misleading, in that it refers to an enum
471 * value relative to the port mapping rather than the fixed offset
472 * itself, which needs to be manually retrieved from the platform's
473 * register map for the given port.
474 */
475 static unsigned int sci_serial_in(struct uart_port *p, int offset)
476 {
477 const struct plat_sci_reg *reg = sci_getreg(p, offset);
478
479 if (reg->size == 8)
480 return ioread8(p->membase + (reg->offset << p->regshift));
481 else if (reg->size == 16)
482 return ioread16(p->membase + (reg->offset << p->regshift));
483 else
484 WARN(1, "Invalid register access\n");
485
486 return 0;
487 }
488
489 static void sci_serial_out(struct uart_port *p, int offset, int value)
490 {
491 const struct plat_sci_reg *reg = sci_getreg(p, offset);
492
493 if (reg->size == 8)
494 iowrite8(value, p->membase + (reg->offset << p->regshift));
495 else if (reg->size == 16)
496 iowrite16(value, p->membase + (reg->offset << p->regshift));
497 else
498 WARN(1, "Invalid register access\n");
499 }
500
501 static void sci_port_enable(struct sci_port *sci_port)
502 {
503 unsigned int i;
504
505 if (!sci_port->port.dev)
506 return;
507
508 pm_runtime_get_sync(sci_port->port.dev);
509
510 for (i = 0; i < SCI_NUM_CLKS; i++) {
511 clk_prepare_enable(sci_port->clks[i]);
512 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
513 }
514 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
515 }
516
517 static void sci_port_disable(struct sci_port *sci_port)
518 {
519 unsigned int i;
520
521 if (!sci_port->port.dev)
522 return;
523
524 for (i = SCI_NUM_CLKS; i-- > 0; )
525 clk_disable_unprepare(sci_port->clks[i]);
526
527 pm_runtime_put_sync(sci_port->port.dev);
528 }
529
530 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
531 {
532 /*
533 * Not all ports (such as SCIFA) will support REIE. Rather than
534 * special-casing the port type, we check the port initialization
535 * IRQ enable mask to see whether the IRQ is desired at all. If
536 * it's unset, it's logically inferred that there's no point in
537 * testing for it.
538 */
539 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
540 }
541
542 static void sci_start_tx(struct uart_port *port)
543 {
544 struct sci_port *s = to_sci_port(port);
545 unsigned short ctrl;
546
547 #ifdef CONFIG_SERIAL_SH_SCI_DMA
548 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
549 u16 new, scr = serial_port_in(port, SCSCR);
550 if (s->chan_tx)
551 new = scr | SCSCR_TDRQE;
552 else
553 new = scr & ~SCSCR_TDRQE;
554 if (new != scr)
555 serial_port_out(port, SCSCR, new);
556 }
557
558 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
559 dma_submit_error(s->cookie_tx)) {
560 s->cookie_tx = 0;
561 schedule_work(&s->work_tx);
562 }
563 #endif
564
565 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
566 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
567 ctrl = serial_port_in(port, SCSCR);
568 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
569 }
570 }
571
572 static void sci_stop_tx(struct uart_port *port)
573 {
574 unsigned short ctrl;
575
576 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
577 ctrl = serial_port_in(port, SCSCR);
578
579 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
580 ctrl &= ~SCSCR_TDRQE;
581
582 ctrl &= ~SCSCR_TIE;
583
584 serial_port_out(port, SCSCR, ctrl);
585 }
586
587 static void sci_start_rx(struct uart_port *port)
588 {
589 unsigned short ctrl;
590
591 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
592
593 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
594 ctrl &= ~SCSCR_RDRQE;
595
596 serial_port_out(port, SCSCR, ctrl);
597 }
598
599 static void sci_stop_rx(struct uart_port *port)
600 {
601 unsigned short ctrl;
602
603 ctrl = serial_port_in(port, SCSCR);
604
605 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
606 ctrl &= ~SCSCR_RDRQE;
607
608 ctrl &= ~port_rx_irq_mask(port);
609
610 serial_port_out(port, SCSCR, ctrl);
611 }
612
613 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
614 {
615 if (port->type == PORT_SCI) {
616 /* Just store the mask */
617 serial_port_out(port, SCxSR, mask);
618 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
619 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
620 /* Only clear the status bits we want to clear */
621 serial_port_out(port, SCxSR,
622 serial_port_in(port, SCxSR) & mask);
623 } else {
624 /* Store the mask, clear parity/framing errors */
625 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
626 }
627 }
628
629 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
630 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
631
632 #ifdef CONFIG_CONSOLE_POLL
633 static int sci_poll_get_char(struct uart_port *port)
634 {
635 unsigned short status;
636 int c;
637
638 do {
639 status = serial_port_in(port, SCxSR);
640 if (status & SCxSR_ERRORS(port)) {
641 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
642 continue;
643 }
644 break;
645 } while (1);
646
647 if (!(status & SCxSR_RDxF(port)))
648 return NO_POLL_CHAR;
649
650 c = serial_port_in(port, SCxRDR);
651
652 /* Dummy read */
653 serial_port_in(port, SCxSR);
654 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
655
656 return c;
657 }
658 #endif
659
660 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
661 {
662 unsigned short status;
663
664 do {
665 status = serial_port_in(port, SCxSR);
666 } while (!(status & SCxSR_TDxE(port)));
667
668 serial_port_out(port, SCxTDR, c);
669 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
670 }
671 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
672 CONFIG_SERIAL_SH_SCI_EARLYCON */
673
674 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
675 {
676 struct sci_port *s = to_sci_port(port);
677
678 /*
679 * Use port-specific handler if provided.
680 */
681 if (s->cfg->ops && s->cfg->ops->init_pins) {
682 s->cfg->ops->init_pins(port, cflag);
683 return;
684 }
685
686 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
687 u16 data = serial_port_in(port, SCPDR);
688 u16 ctrl = serial_port_in(port, SCPCR);
689
690 /* Enable RXD and TXD pin functions */
691 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
692 if (to_sci_port(port)->has_rtscts) {
693 /* RTS# is output, active low, unless autorts */
694 if (!(port->mctrl & TIOCM_RTS)) {
695 ctrl |= SCPCR_RTSC;
696 data |= SCPDR_RTSD;
697 } else if (!s->autorts) {
698 ctrl |= SCPCR_RTSC;
699 data &= ~SCPDR_RTSD;
700 } else {
701 /* Enable RTS# pin function */
702 ctrl &= ~SCPCR_RTSC;
703 }
704 /* Enable CTS# pin function */
705 ctrl &= ~SCPCR_CTSC;
706 }
707 serial_port_out(port, SCPDR, data);
708 serial_port_out(port, SCPCR, ctrl);
709 } else if (sci_getreg(port, SCSPTR)->size) {
710 u16 status = serial_port_in(port, SCSPTR);
711
712 /* RTS# is always output; and active low, unless autorts */
713 status |= SCSPTR_RTSIO;
714 if (!(port->mctrl & TIOCM_RTS))
715 status |= SCSPTR_RTSDT;
716 else if (!s->autorts)
717 status &= ~SCSPTR_RTSDT;
718 /* CTS# and SCK are inputs */
719 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
720 serial_port_out(port, SCSPTR, status);
721 }
722 }
723
724 static int sci_txfill(struct uart_port *port)
725 {
726 struct sci_port *s = to_sci_port(port);
727 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
728 const struct plat_sci_reg *reg;
729
730 reg = sci_getreg(port, SCTFDR);
731 if (reg->size)
732 return serial_port_in(port, SCTFDR) & fifo_mask;
733
734 reg = sci_getreg(port, SCFDR);
735 if (reg->size)
736 return serial_port_in(port, SCFDR) >> 8;
737
738 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
739 }
740
741 static int sci_txroom(struct uart_port *port)
742 {
743 return port->fifosize - sci_txfill(port);
744 }
745
746 static int sci_rxfill(struct uart_port *port)
747 {
748 struct sci_port *s = to_sci_port(port);
749 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
750 const struct plat_sci_reg *reg;
751
752 reg = sci_getreg(port, SCRFDR);
753 if (reg->size)
754 return serial_port_in(port, SCRFDR) & fifo_mask;
755
756 reg = sci_getreg(port, SCFDR);
757 if (reg->size)
758 return serial_port_in(port, SCFDR) & fifo_mask;
759
760 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
761 }
762
763 /* ********************************************************************** *
764 * the interrupt related routines *
765 * ********************************************************************** */
766
767 static void sci_transmit_chars(struct uart_port *port)
768 {
769 struct circ_buf *xmit = &port->state->xmit;
770 unsigned int stopped = uart_tx_stopped(port);
771 unsigned short status;
772 unsigned short ctrl;
773 int count;
774
775 status = serial_port_in(port, SCxSR);
776 if (!(status & SCxSR_TDxE(port))) {
777 ctrl = serial_port_in(port, SCSCR);
778 if (uart_circ_empty(xmit))
779 ctrl &= ~SCSCR_TIE;
780 else
781 ctrl |= SCSCR_TIE;
782 serial_port_out(port, SCSCR, ctrl);
783 return;
784 }
785
786 count = sci_txroom(port);
787
788 do {
789 unsigned char c;
790
791 if (port->x_char) {
792 c = port->x_char;
793 port->x_char = 0;
794 } else if (!uart_circ_empty(xmit) && !stopped) {
795 c = xmit->buf[xmit->tail];
796 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
797 } else {
798 break;
799 }
800
801 serial_port_out(port, SCxTDR, c);
802
803 port->icount.tx++;
804 } while (--count > 0);
805
806 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
807
808 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
809 uart_write_wakeup(port);
810 if (uart_circ_empty(xmit)) {
811 sci_stop_tx(port);
812 } else {
813 ctrl = serial_port_in(port, SCSCR);
814
815 if (port->type != PORT_SCI) {
816 serial_port_in(port, SCxSR); /* Dummy read */
817 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
818 }
819
820 ctrl |= SCSCR_TIE;
821 serial_port_out(port, SCSCR, ctrl);
822 }
823 }
824
825 /* On SH3, SCIF may read end-of-break as a space->mark char */
826 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
827
828 static void sci_receive_chars(struct uart_port *port)
829 {
830 struct tty_port *tport = &port->state->port;
831 int i, count, copied = 0;
832 unsigned short status;
833 unsigned char flag;
834
835 status = serial_port_in(port, SCxSR);
836 if (!(status & SCxSR_RDxF(port)))
837 return;
838
839 while (1) {
840 /* Don't copy more bytes than there is room for in the buffer */
841 count = tty_buffer_request_room(tport, sci_rxfill(port));
842
843 /* If for any reason we can't copy more data, we're done! */
844 if (count == 0)
845 break;
846
847 if (port->type == PORT_SCI) {
848 char c = serial_port_in(port, SCxRDR);
849 if (uart_handle_sysrq_char(port, c))
850 count = 0;
851 else
852 tty_insert_flip_char(tport, c, TTY_NORMAL);
853 } else {
854 for (i = 0; i < count; i++) {
855 char c = serial_port_in(port, SCxRDR);
856
857 status = serial_port_in(port, SCxSR);
858 if (uart_handle_sysrq_char(port, c)) {
859 count--; i--;
860 continue;
861 }
862
863 /* Store data and status */
864 if (status & SCxSR_FER(port)) {
865 flag = TTY_FRAME;
866 port->icount.frame++;
867 dev_notice(port->dev, "frame error\n");
868 } else if (status & SCxSR_PER(port)) {
869 flag = TTY_PARITY;
870 port->icount.parity++;
871 dev_notice(port->dev, "parity error\n");
872 } else
873 flag = TTY_NORMAL;
874
875 tty_insert_flip_char(tport, c, flag);
876 }
877 }
878
879 serial_port_in(port, SCxSR); /* dummy read */
880 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
881
882 copied += count;
883 port->icount.rx += count;
884 }
885
886 if (copied) {
887 /* Tell the rest of the system the news. New characters! */
888 tty_flip_buffer_push(tport);
889 } else {
890 /* TTY buffers full; read from RX reg to prevent lockup */
891 serial_port_in(port, SCxRDR);
892 serial_port_in(port, SCxSR); /* dummy read */
893 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
894 }
895 }
896
897 static int sci_handle_errors(struct uart_port *port)
898 {
899 int copied = 0;
900 unsigned short status = serial_port_in(port, SCxSR);
901 struct tty_port *tport = &port->state->port;
902 struct sci_port *s = to_sci_port(port);
903
904 /* Handle overruns */
905 if (status & s->params->overrun_mask) {
906 port->icount.overrun++;
907
908 /* overrun error */
909 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
910 copied++;
911
912 dev_notice(port->dev, "overrun error\n");
913 }
914
915 if (status & SCxSR_FER(port)) {
916 /* frame error */
917 port->icount.frame++;
918
919 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
920 copied++;
921
922 dev_notice(port->dev, "frame error\n");
923 }
924
925 if (status & SCxSR_PER(port)) {
926 /* parity error */
927 port->icount.parity++;
928
929 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
930 copied++;
931
932 dev_notice(port->dev, "parity error\n");
933 }
934
935 if (copied)
936 tty_flip_buffer_push(tport);
937
938 return copied;
939 }
940
941 static int sci_handle_fifo_overrun(struct uart_port *port)
942 {
943 struct tty_port *tport = &port->state->port;
944 struct sci_port *s = to_sci_port(port);
945 const struct plat_sci_reg *reg;
946 int copied = 0;
947 u16 status;
948
949 reg = sci_getreg(port, s->params->overrun_reg);
950 if (!reg->size)
951 return 0;
952
953 status = serial_port_in(port, s->params->overrun_reg);
954 if (status & s->params->overrun_mask) {
955 status &= ~s->params->overrun_mask;
956 serial_port_out(port, s->params->overrun_reg, status);
957
958 port->icount.overrun++;
959
960 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
961 tty_flip_buffer_push(tport);
962
963 dev_dbg(port->dev, "overrun error\n");
964 copied++;
965 }
966
967 return copied;
968 }
969
970 static int sci_handle_breaks(struct uart_port *port)
971 {
972 int copied = 0;
973 unsigned short status = serial_port_in(port, SCxSR);
974 struct tty_port *tport = &port->state->port;
975
976 if (uart_handle_break(port))
977 return 0;
978
979 if (status & SCxSR_BRK(port)) {
980 port->icount.brk++;
981
982 /* Notify of BREAK */
983 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
984 copied++;
985
986 dev_dbg(port->dev, "BREAK detected\n");
987 }
988
989 if (copied)
990 tty_flip_buffer_push(tport);
991
992 copied += sci_handle_fifo_overrun(port);
993
994 return copied;
995 }
996
997 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
998 {
999 unsigned int bits;
1000
1001 if (rx_trig < 1)
1002 rx_trig = 1;
1003 if (rx_trig >= port->fifosize)
1004 rx_trig = port->fifosize;
1005
1006 /* HSCIF can be set to an arbitrary level. */
1007 if (sci_getreg(port, HSRTRGR)->size) {
1008 serial_port_out(port, HSRTRGR, rx_trig);
1009 return rx_trig;
1010 }
1011
1012 switch (port->type) {
1013 case PORT_SCIF:
1014 if (rx_trig < 4) {
1015 bits = 0;
1016 rx_trig = 1;
1017 } else if (rx_trig < 8) {
1018 bits = SCFCR_RTRG0;
1019 rx_trig = 4;
1020 } else if (rx_trig < 14) {
1021 bits = SCFCR_RTRG1;
1022 rx_trig = 8;
1023 } else {
1024 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1025 rx_trig = 14;
1026 }
1027 break;
1028 case PORT_SCIFA:
1029 case PORT_SCIFB:
1030 if (rx_trig < 16) {
1031 bits = 0;
1032 rx_trig = 1;
1033 } else if (rx_trig < 32) {
1034 bits = SCFCR_RTRG0;
1035 rx_trig = 16;
1036 } else if (rx_trig < 48) {
1037 bits = SCFCR_RTRG1;
1038 rx_trig = 32;
1039 } else {
1040 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1041 rx_trig = 48;
1042 }
1043 break;
1044 default:
1045 WARN(1, "unknown FIFO configuration");
1046 return 1;
1047 }
1048
1049 serial_port_out(port, SCFCR,
1050 (serial_port_in(port, SCFCR) &
1051 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1052
1053 return rx_trig;
1054 }
1055
1056 static int scif_rtrg_enabled(struct uart_port *port)
1057 {
1058 if (sci_getreg(port, HSRTRGR)->size)
1059 return serial_port_in(port, HSRTRGR) != 0;
1060 else
1061 return (serial_port_in(port, SCFCR) &
1062 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1063 }
1064
1065 static void rx_fifo_timer_fn(struct timer_list *t)
1066 {
1067 struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1068 struct uart_port *port = &s->port;
1069
1070 dev_dbg(port->dev, "Rx timed out\n");
1071 scif_set_rtrg(port, 1);
1072 }
1073
1074 static ssize_t rx_trigger_show(struct device *dev,
1075 struct device_attribute *attr,
1076 char *buf)
1077 {
1078 struct uart_port *port = dev_get_drvdata(dev);
1079 struct sci_port *sci = to_sci_port(port);
1080
1081 return sprintf(buf, "%d\n", sci->rx_trigger);
1082 }
1083
1084 static ssize_t rx_trigger_store(struct device *dev,
1085 struct device_attribute *attr,
1086 const char *buf,
1087 size_t count)
1088 {
1089 struct uart_port *port = dev_get_drvdata(dev);
1090 struct sci_port *sci = to_sci_port(port);
1091 int ret;
1092 long r;
1093
1094 ret = kstrtol(buf, 0, &r);
1095 if (ret)
1096 return ret;
1097
1098 sci->rx_trigger = scif_set_rtrg(port, r);
1099 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1100 scif_set_rtrg(port, 1);
1101
1102 return count;
1103 }
1104
1105 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1106
1107 static ssize_t rx_fifo_timeout_show(struct device *dev,
1108 struct device_attribute *attr,
1109 char *buf)
1110 {
1111 struct uart_port *port = dev_get_drvdata(dev);
1112 struct sci_port *sci = to_sci_port(port);
1113 int v;
1114
1115 if (port->type == PORT_HSCIF)
1116 v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1117 else
1118 v = sci->rx_fifo_timeout;
1119
1120 return sprintf(buf, "%d\n", v);
1121 }
1122
1123 static ssize_t rx_fifo_timeout_store(struct device *dev,
1124 struct device_attribute *attr,
1125 const char *buf,
1126 size_t count)
1127 {
1128 struct uart_port *port = dev_get_drvdata(dev);
1129 struct sci_port *sci = to_sci_port(port);
1130 int ret;
1131 long r;
1132
1133 ret = kstrtol(buf, 0, &r);
1134 if (ret)
1135 return ret;
1136
1137 if (port->type == PORT_HSCIF) {
1138 if (r < 0 || r > 3)
1139 return -EINVAL;
1140 sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1141 } else {
1142 sci->rx_fifo_timeout = r;
1143 scif_set_rtrg(port, 1);
1144 if (r > 0)
1145 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1146 }
1147
1148 return count;
1149 }
1150
1151 static DEVICE_ATTR_RW(rx_fifo_timeout);
1152
1153
1154 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1155 static void sci_dma_tx_complete(void *arg)
1156 {
1157 struct sci_port *s = arg;
1158 struct uart_port *port = &s->port;
1159 struct circ_buf *xmit = &port->state->xmit;
1160 unsigned long flags;
1161
1162 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1163
1164 spin_lock_irqsave(&port->lock, flags);
1165
1166 xmit->tail += s->tx_dma_len;
1167 xmit->tail &= UART_XMIT_SIZE - 1;
1168
1169 port->icount.tx += s->tx_dma_len;
1170
1171 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1172 uart_write_wakeup(port);
1173
1174 if (!uart_circ_empty(xmit)) {
1175 s->cookie_tx = 0;
1176 schedule_work(&s->work_tx);
1177 } else {
1178 s->cookie_tx = -EINVAL;
1179 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1180 u16 ctrl = serial_port_in(port, SCSCR);
1181 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1182 }
1183 }
1184
1185 spin_unlock_irqrestore(&port->lock, flags);
1186 }
1187
1188 /* Locking: called with port lock held */
1189 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1190 {
1191 struct uart_port *port = &s->port;
1192 struct tty_port *tport = &port->state->port;
1193 int copied;
1194
1195 copied = tty_insert_flip_string(tport, buf, count);
1196 if (copied < count)
1197 port->icount.buf_overrun++;
1198
1199 port->icount.rx += copied;
1200
1201 return copied;
1202 }
1203
1204 static int sci_dma_rx_find_active(struct sci_port *s)
1205 {
1206 unsigned int i;
1207
1208 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1209 if (s->active_rx == s->cookie_rx[i])
1210 return i;
1211
1212 return -1;
1213 }
1214
1215 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1216 {
1217 struct dma_chan *chan = s->chan_rx;
1218 struct uart_port *port = &s->port;
1219 unsigned long flags;
1220
1221 spin_lock_irqsave(&port->lock, flags);
1222 s->chan_rx = NULL;
1223 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1224 spin_unlock_irqrestore(&port->lock, flags);
1225 dmaengine_terminate_all(chan);
1226 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1227 sg_dma_address(&s->sg_rx[0]));
1228 dma_release_channel(chan);
1229 if (enable_pio) {
1230 spin_lock_irqsave(&port->lock, flags);
1231 sci_start_rx(port);
1232 spin_unlock_irqrestore(&port->lock, flags);
1233 }
1234 }
1235
1236 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1237 {
1238 long sec = usec / 1000000;
1239 long nsec = (usec % 1000000) * 1000;
1240 ktime_t t = ktime_set(sec, nsec);
1241
1242 hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1243 }
1244
1245 static void sci_dma_rx_complete(void *arg)
1246 {
1247 struct sci_port *s = arg;
1248 struct dma_chan *chan = s->chan_rx;
1249 struct uart_port *port = &s->port;
1250 struct dma_async_tx_descriptor *desc;
1251 unsigned long flags;
1252 int active, count = 0;
1253
1254 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1255 s->active_rx);
1256
1257 spin_lock_irqsave(&port->lock, flags);
1258
1259 active = sci_dma_rx_find_active(s);
1260 if (active >= 0)
1261 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1262
1263 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1264
1265 if (count)
1266 tty_flip_buffer_push(&port->state->port);
1267
1268 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1269 DMA_DEV_TO_MEM,
1270 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1271 if (!desc)
1272 goto fail;
1273
1274 desc->callback = sci_dma_rx_complete;
1275 desc->callback_param = s;
1276 s->cookie_rx[active] = dmaengine_submit(desc);
1277 if (dma_submit_error(s->cookie_rx[active]))
1278 goto fail;
1279
1280 s->active_rx = s->cookie_rx[!active];
1281
1282 dma_async_issue_pending(chan);
1283
1284 spin_unlock_irqrestore(&port->lock, flags);
1285 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1286 __func__, s->cookie_rx[active], active, s->active_rx);
1287 return;
1288
1289 fail:
1290 spin_unlock_irqrestore(&port->lock, flags);
1291 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1292 sci_rx_dma_release(s, true);
1293 }
1294
1295 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1296 {
1297 struct dma_chan *chan = s->chan_tx;
1298 struct uart_port *port = &s->port;
1299 unsigned long flags;
1300
1301 spin_lock_irqsave(&port->lock, flags);
1302 s->chan_tx = NULL;
1303 s->cookie_tx = -EINVAL;
1304 spin_unlock_irqrestore(&port->lock, flags);
1305 dmaengine_terminate_all(chan);
1306 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1307 DMA_TO_DEVICE);
1308 dma_release_channel(chan);
1309 if (enable_pio) {
1310 spin_lock_irqsave(&port->lock, flags);
1311 sci_start_tx(port);
1312 spin_unlock_irqrestore(&port->lock, flags);
1313 }
1314 }
1315
1316 static void sci_submit_rx(struct sci_port *s)
1317 {
1318 struct dma_chan *chan = s->chan_rx;
1319 int i;
1320
1321 for (i = 0; i < 2; i++) {
1322 struct scatterlist *sg = &s->sg_rx[i];
1323 struct dma_async_tx_descriptor *desc;
1324
1325 desc = dmaengine_prep_slave_sg(chan,
1326 sg, 1, DMA_DEV_TO_MEM,
1327 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1328 if (!desc)
1329 goto fail;
1330
1331 desc->callback = sci_dma_rx_complete;
1332 desc->callback_param = s;
1333 s->cookie_rx[i] = dmaengine_submit(desc);
1334 if (dma_submit_error(s->cookie_rx[i]))
1335 goto fail;
1336
1337 }
1338
1339 s->active_rx = s->cookie_rx[0];
1340
1341 dma_async_issue_pending(chan);
1342 return;
1343
1344 fail:
1345 if (i)
1346 dmaengine_terminate_all(chan);
1347 for (i = 0; i < 2; i++)
1348 s->cookie_rx[i] = -EINVAL;
1349 s->active_rx = -EINVAL;
1350 sci_rx_dma_release(s, true);
1351 }
1352
1353 static void work_fn_tx(struct work_struct *work)
1354 {
1355 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1356 struct dma_async_tx_descriptor *desc;
1357 struct dma_chan *chan = s->chan_tx;
1358 struct uart_port *port = &s->port;
1359 struct circ_buf *xmit = &port->state->xmit;
1360 dma_addr_t buf;
1361
1362 /*
1363 * DMA is idle now.
1364 * Port xmit buffer is already mapped, and it is one page... Just adjust
1365 * offsets and lengths. Since it is a circular buffer, we have to
1366 * transmit till the end, and then the rest. Take the port lock to get a
1367 * consistent xmit buffer state.
1368 */
1369 spin_lock_irq(&port->lock);
1370 buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1371 s->tx_dma_len = min_t(unsigned int,
1372 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1373 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1374 spin_unlock_irq(&port->lock);
1375
1376 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1377 DMA_MEM_TO_DEV,
1378 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1379 if (!desc) {
1380 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1381 /* switch to PIO */
1382 sci_tx_dma_release(s, true);
1383 return;
1384 }
1385
1386 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1387 DMA_TO_DEVICE);
1388
1389 spin_lock_irq(&port->lock);
1390 desc->callback = sci_dma_tx_complete;
1391 desc->callback_param = s;
1392 spin_unlock_irq(&port->lock);
1393 s->cookie_tx = dmaengine_submit(desc);
1394 if (dma_submit_error(s->cookie_tx)) {
1395 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1396 /* switch to PIO */
1397 sci_tx_dma_release(s, true);
1398 return;
1399 }
1400
1401 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1402 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1403
1404 dma_async_issue_pending(chan);
1405 }
1406
1407 static enum hrtimer_restart rx_timer_fn(struct hrtimer *t)
1408 {
1409 struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1410 struct dma_chan *chan = s->chan_rx;
1411 struct uart_port *port = &s->port;
1412 struct dma_tx_state state;
1413 enum dma_status status;
1414 unsigned long flags;
1415 unsigned int read;
1416 int active, count;
1417 u16 scr;
1418
1419 dev_dbg(port->dev, "DMA Rx timed out\n");
1420
1421 spin_lock_irqsave(&port->lock, flags);
1422
1423 active = sci_dma_rx_find_active(s);
1424 if (active < 0) {
1425 spin_unlock_irqrestore(&port->lock, flags);
1426 return HRTIMER_NORESTART;
1427 }
1428
1429 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1430 if (status == DMA_COMPLETE) {
1431 spin_unlock_irqrestore(&port->lock, flags);
1432 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1433 s->active_rx, active);
1434
1435 /* Let packet complete handler take care of the packet */
1436 return HRTIMER_NORESTART;
1437 }
1438
1439 dmaengine_pause(chan);
1440
1441 /*
1442 * sometimes DMA transfer doesn't stop even if it is stopped and
1443 * data keeps on coming until transaction is complete so check
1444 * for DMA_COMPLETE again
1445 * Let packet complete handler take care of the packet
1446 */
1447 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1448 if (status == DMA_COMPLETE) {
1449 spin_unlock_irqrestore(&port->lock, flags);
1450 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1451 return HRTIMER_NORESTART;
1452 }
1453
1454 /* Handle incomplete DMA receive */
1455 dmaengine_terminate_all(s->chan_rx);
1456 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1457
1458 if (read) {
1459 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1460 if (count)
1461 tty_flip_buffer_push(&port->state->port);
1462 }
1463
1464 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1465 sci_submit_rx(s);
1466
1467 /* Direct new serial port interrupts back to CPU */
1468 scr = serial_port_in(port, SCSCR);
1469 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1470 scr &= ~SCSCR_RDRQE;
1471 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1472 }
1473 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1474
1475 spin_unlock_irqrestore(&port->lock, flags);
1476
1477 return HRTIMER_NORESTART;
1478 }
1479
1480 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1481 enum dma_transfer_direction dir)
1482 {
1483 struct dma_chan *chan;
1484 struct dma_slave_config cfg;
1485 int ret;
1486
1487 chan = dma_request_slave_channel(port->dev,
1488 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1489 if (!chan) {
1490 dev_warn(port->dev, "dma_request_slave_channel failed\n");
1491 return NULL;
1492 }
1493
1494 memset(&cfg, 0, sizeof(cfg));
1495 cfg.direction = dir;
1496 if (dir == DMA_MEM_TO_DEV) {
1497 cfg.dst_addr = port->mapbase +
1498 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1499 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1500 } else {
1501 cfg.src_addr = port->mapbase +
1502 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1503 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1504 }
1505
1506 ret = dmaengine_slave_config(chan, &cfg);
1507 if (ret) {
1508 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1509 dma_release_channel(chan);
1510 return NULL;
1511 }
1512
1513 return chan;
1514 }
1515
1516 static void sci_request_dma(struct uart_port *port)
1517 {
1518 struct sci_port *s = to_sci_port(port);
1519 struct dma_chan *chan;
1520
1521 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1522
1523 if (!port->dev->of_node)
1524 return;
1525
1526 s->cookie_tx = -EINVAL;
1527
1528 /*
1529 * Don't request a dma channel if no channel was specified
1530 * in the device tree.
1531 */
1532 if (!of_find_property(port->dev->of_node, "dmas", NULL))
1533 return;
1534
1535 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1536 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1537 if (chan) {
1538 s->chan_tx = chan;
1539 /* UART circular tx buffer is an aligned page. */
1540 s->tx_dma_addr = dma_map_single(chan->device->dev,
1541 port->state->xmit.buf,
1542 UART_XMIT_SIZE,
1543 DMA_TO_DEVICE);
1544 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1545 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1546 dma_release_channel(chan);
1547 s->chan_tx = NULL;
1548 } else {
1549 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1550 __func__, UART_XMIT_SIZE,
1551 port->state->xmit.buf, &s->tx_dma_addr);
1552 }
1553
1554 INIT_WORK(&s->work_tx, work_fn_tx);
1555 }
1556
1557 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1558 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1559 if (chan) {
1560 unsigned int i;
1561 dma_addr_t dma;
1562 void *buf;
1563
1564 s->chan_rx = chan;
1565
1566 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1567 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1568 &dma, GFP_KERNEL);
1569 if (!buf) {
1570 dev_warn(port->dev,
1571 "Failed to allocate Rx dma buffer, using PIO\n");
1572 dma_release_channel(chan);
1573 s->chan_rx = NULL;
1574 return;
1575 }
1576
1577 for (i = 0; i < 2; i++) {
1578 struct scatterlist *sg = &s->sg_rx[i];
1579
1580 sg_init_table(sg, 1);
1581 s->rx_buf[i] = buf;
1582 sg_dma_address(sg) = dma;
1583 sg_dma_len(sg) = s->buf_len_rx;
1584
1585 buf += s->buf_len_rx;
1586 dma += s->buf_len_rx;
1587 }
1588
1589 hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1590 s->rx_timer.function = rx_timer_fn;
1591
1592 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1593 sci_submit_rx(s);
1594 }
1595 }
1596
1597 static void sci_free_dma(struct uart_port *port)
1598 {
1599 struct sci_port *s = to_sci_port(port);
1600
1601 if (s->chan_tx)
1602 sci_tx_dma_release(s, false);
1603 if (s->chan_rx)
1604 sci_rx_dma_release(s, false);
1605 }
1606
1607 static void sci_flush_buffer(struct uart_port *port)
1608 {
1609 /*
1610 * In uart_flush_buffer(), the xmit circular buffer has just been
1611 * cleared, so we have to reset tx_dma_len accordingly.
1612 */
1613 to_sci_port(port)->tx_dma_len = 0;
1614 }
1615 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1616 static inline void sci_request_dma(struct uart_port *port)
1617 {
1618 }
1619
1620 static inline void sci_free_dma(struct uart_port *port)
1621 {
1622 }
1623
1624 #define sci_flush_buffer NULL
1625 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1626
1627 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1628 {
1629 struct uart_port *port = ptr;
1630 struct sci_port *s = to_sci_port(port);
1631
1632 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1633 if (s->chan_rx) {
1634 u16 scr = serial_port_in(port, SCSCR);
1635 u16 ssr = serial_port_in(port, SCxSR);
1636
1637 /* Disable future Rx interrupts */
1638 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1639 disable_irq_nosync(irq);
1640 scr |= SCSCR_RDRQE;
1641 } else {
1642 scr &= ~SCSCR_RIE;
1643 sci_submit_rx(s);
1644 }
1645 serial_port_out(port, SCSCR, scr);
1646 /* Clear current interrupt */
1647 serial_port_out(port, SCxSR,
1648 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1649 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1650 jiffies, s->rx_timeout);
1651 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1652
1653 return IRQ_HANDLED;
1654 }
1655 #endif
1656
1657 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1658 if (!scif_rtrg_enabled(port))
1659 scif_set_rtrg(port, s->rx_trigger);
1660
1661 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1662 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1663 }
1664
1665 /* I think sci_receive_chars has to be called irrespective
1666 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1667 * to be disabled?
1668 */
1669 sci_receive_chars(ptr);
1670
1671 return IRQ_HANDLED;
1672 }
1673
1674 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1675 {
1676 struct uart_port *port = ptr;
1677 unsigned long flags;
1678
1679 spin_lock_irqsave(&port->lock, flags);
1680 sci_transmit_chars(port);
1681 spin_unlock_irqrestore(&port->lock, flags);
1682
1683 return IRQ_HANDLED;
1684 }
1685
1686 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1687 {
1688 struct uart_port *port = ptr;
1689 struct sci_port *s = to_sci_port(port);
1690
1691 /* Handle errors */
1692 if (port->type == PORT_SCI) {
1693 if (sci_handle_errors(port)) {
1694 /* discard character in rx buffer */
1695 serial_port_in(port, SCxSR);
1696 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1697 }
1698 } else {
1699 sci_handle_fifo_overrun(port);
1700 if (!s->chan_rx)
1701 sci_receive_chars(ptr);
1702 }
1703
1704 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1705
1706 /* Kick the transmission */
1707 if (!s->chan_tx)
1708 sci_tx_interrupt(irq, ptr);
1709
1710 return IRQ_HANDLED;
1711 }
1712
1713 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1714 {
1715 struct uart_port *port = ptr;
1716
1717 /* Handle BREAKs */
1718 sci_handle_breaks(port);
1719 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1720
1721 return IRQ_HANDLED;
1722 }
1723
1724 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1725 {
1726 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1727 struct uart_port *port = ptr;
1728 struct sci_port *s = to_sci_port(port);
1729 irqreturn_t ret = IRQ_NONE;
1730
1731 ssr_status = serial_port_in(port, SCxSR);
1732 scr_status = serial_port_in(port, SCSCR);
1733 if (s->params->overrun_reg == SCxSR)
1734 orer_status = ssr_status;
1735 else if (sci_getreg(port, s->params->overrun_reg)->size)
1736 orer_status = serial_port_in(port, s->params->overrun_reg);
1737
1738 err_enabled = scr_status & port_rx_irq_mask(port);
1739
1740 /* Tx Interrupt */
1741 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1742 !s->chan_tx)
1743 ret = sci_tx_interrupt(irq, ptr);
1744
1745 /*
1746 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1747 * DR flags
1748 */
1749 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1750 (scr_status & SCSCR_RIE))
1751 ret = sci_rx_interrupt(irq, ptr);
1752
1753 /* Error Interrupt */
1754 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1755 ret = sci_er_interrupt(irq, ptr);
1756
1757 /* Break Interrupt */
1758 if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1759 ret = sci_br_interrupt(irq, ptr);
1760
1761 /* Overrun Interrupt */
1762 if (orer_status & s->params->overrun_mask) {
1763 sci_handle_fifo_overrun(port);
1764 ret = IRQ_HANDLED;
1765 }
1766
1767 return ret;
1768 }
1769
1770 static const struct sci_irq_desc {
1771 const char *desc;
1772 irq_handler_t handler;
1773 } sci_irq_desc[] = {
1774 /*
1775 * Split out handlers, the default case.
1776 */
1777 [SCIx_ERI_IRQ] = {
1778 .desc = "rx err",
1779 .handler = sci_er_interrupt,
1780 },
1781
1782 [SCIx_RXI_IRQ] = {
1783 .desc = "rx full",
1784 .handler = sci_rx_interrupt,
1785 },
1786
1787 [SCIx_TXI_IRQ] = {
1788 .desc = "tx empty",
1789 .handler = sci_tx_interrupt,
1790 },
1791
1792 [SCIx_BRI_IRQ] = {
1793 .desc = "break",
1794 .handler = sci_br_interrupt,
1795 },
1796
1797 /*
1798 * Special muxed handler.
1799 */
1800 [SCIx_MUX_IRQ] = {
1801 .desc = "mux",
1802 .handler = sci_mpxed_interrupt,
1803 },
1804 };
1805
1806 static int sci_request_irq(struct sci_port *port)
1807 {
1808 struct uart_port *up = &port->port;
1809 int i, j, ret = 0;
1810
1811 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1812 const struct sci_irq_desc *desc;
1813 int irq;
1814
1815 if (SCIx_IRQ_IS_MUXED(port)) {
1816 i = SCIx_MUX_IRQ;
1817 irq = up->irq;
1818 } else {
1819 irq = port->irqs[i];
1820
1821 /*
1822 * Certain port types won't support all of the
1823 * available interrupt sources.
1824 */
1825 if (unlikely(irq < 0))
1826 continue;
1827 }
1828
1829 desc = sci_irq_desc + i;
1830 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1831 dev_name(up->dev), desc->desc);
1832 if (!port->irqstr[j]) {
1833 ret = -ENOMEM;
1834 goto out_nomem;
1835 }
1836
1837 ret = request_irq(irq, desc->handler, up->irqflags,
1838 port->irqstr[j], port);
1839 if (unlikely(ret)) {
1840 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1841 goto out_noirq;
1842 }
1843 }
1844
1845 return 0;
1846
1847 out_noirq:
1848 while (--i >= 0)
1849 free_irq(port->irqs[i], port);
1850
1851 out_nomem:
1852 while (--j >= 0)
1853 kfree(port->irqstr[j]);
1854
1855 return ret;
1856 }
1857
1858 static void sci_free_irq(struct sci_port *port)
1859 {
1860 int i;
1861
1862 /*
1863 * Intentionally in reverse order so we iterate over the muxed
1864 * IRQ first.
1865 */
1866 for (i = 0; i < SCIx_NR_IRQS; i++) {
1867 int irq = port->irqs[i];
1868
1869 /*
1870 * Certain port types won't support all of the available
1871 * interrupt sources.
1872 */
1873 if (unlikely(irq < 0))
1874 continue;
1875
1876 free_irq(port->irqs[i], port);
1877 kfree(port->irqstr[i]);
1878
1879 if (SCIx_IRQ_IS_MUXED(port)) {
1880 /* If there's only one IRQ, we're done. */
1881 return;
1882 }
1883 }
1884 }
1885
1886 static unsigned int sci_tx_empty(struct uart_port *port)
1887 {
1888 unsigned short status = serial_port_in(port, SCxSR);
1889 unsigned short in_tx_fifo = sci_txfill(port);
1890
1891 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1892 }
1893
1894 static void sci_set_rts(struct uart_port *port, bool state)
1895 {
1896 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1897 u16 data = serial_port_in(port, SCPDR);
1898
1899 /* Active low */
1900 if (state)
1901 data &= ~SCPDR_RTSD;
1902 else
1903 data |= SCPDR_RTSD;
1904 serial_port_out(port, SCPDR, data);
1905
1906 /* RTS# is output */
1907 serial_port_out(port, SCPCR,
1908 serial_port_in(port, SCPCR) | SCPCR_RTSC);
1909 } else if (sci_getreg(port, SCSPTR)->size) {
1910 u16 ctrl = serial_port_in(port, SCSPTR);
1911
1912 /* Active low */
1913 if (state)
1914 ctrl &= ~SCSPTR_RTSDT;
1915 else
1916 ctrl |= SCSPTR_RTSDT;
1917 serial_port_out(port, SCSPTR, ctrl);
1918 }
1919 }
1920
1921 static bool sci_get_cts(struct uart_port *port)
1922 {
1923 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1924 /* Active low */
1925 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1926 } else if (sci_getreg(port, SCSPTR)->size) {
1927 /* Active low */
1928 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1929 }
1930
1931 return true;
1932 }
1933
1934 /*
1935 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1936 * CTS/RTS is supported in hardware by at least one port and controlled
1937 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1938 * handled via the ->init_pins() op, which is a bit of a one-way street,
1939 * lacking any ability to defer pin control -- this will later be
1940 * converted over to the GPIO framework).
1941 *
1942 * Other modes (such as loopback) are supported generically on certain
1943 * port types, but not others. For these it's sufficient to test for the
1944 * existence of the support register and simply ignore the port type.
1945 */
1946 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1947 {
1948 struct sci_port *s = to_sci_port(port);
1949
1950 if (mctrl & TIOCM_LOOP) {
1951 const struct plat_sci_reg *reg;
1952
1953 /*
1954 * Standard loopback mode for SCFCR ports.
1955 */
1956 reg = sci_getreg(port, SCFCR);
1957 if (reg->size)
1958 serial_port_out(port, SCFCR,
1959 serial_port_in(port, SCFCR) |
1960 SCFCR_LOOP);
1961 }
1962
1963 mctrl_gpio_set(s->gpios, mctrl);
1964
1965 if (!s->has_rtscts)
1966 return;
1967
1968 if (!(mctrl & TIOCM_RTS)) {
1969 /* Disable Auto RTS */
1970 serial_port_out(port, SCFCR,
1971 serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1972
1973 /* Clear RTS */
1974 sci_set_rts(port, 0);
1975 } else if (s->autorts) {
1976 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1977 /* Enable RTS# pin function */
1978 serial_port_out(port, SCPCR,
1979 serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1980 }
1981
1982 /* Enable Auto RTS */
1983 serial_port_out(port, SCFCR,
1984 serial_port_in(port, SCFCR) | SCFCR_MCE);
1985 } else {
1986 /* Set RTS */
1987 sci_set_rts(port, 1);
1988 }
1989 }
1990
1991 static unsigned int sci_get_mctrl(struct uart_port *port)
1992 {
1993 struct sci_port *s = to_sci_port(port);
1994 struct mctrl_gpios *gpios = s->gpios;
1995 unsigned int mctrl = 0;
1996
1997 mctrl_gpio_get(gpios, &mctrl);
1998
1999 /*
2000 * CTS/RTS is handled in hardware when supported, while nothing
2001 * else is wired up.
2002 */
2003 if (s->autorts) {
2004 if (sci_get_cts(port))
2005 mctrl |= TIOCM_CTS;
2006 } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2007 mctrl |= TIOCM_CTS;
2008 }
2009 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2010 mctrl |= TIOCM_DSR;
2011 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2012 mctrl |= TIOCM_CAR;
2013
2014 return mctrl;
2015 }
2016
2017 static void sci_enable_ms(struct uart_port *port)
2018 {
2019 mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2020 }
2021
2022 static void sci_break_ctl(struct uart_port *port, int break_state)
2023 {
2024 unsigned short scscr, scsptr;
2025 unsigned long flags;
2026
2027 /* check wheter the port has SCSPTR */
2028 if (!sci_getreg(port, SCSPTR)->size) {
2029 /*
2030 * Not supported by hardware. Most parts couple break and rx
2031 * interrupts together, with break detection always enabled.
2032 */
2033 return;
2034 }
2035
2036 spin_lock_irqsave(&port->lock, flags);
2037 scsptr = serial_port_in(port, SCSPTR);
2038 scscr = serial_port_in(port, SCSCR);
2039
2040 if (break_state == -1) {
2041 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2042 scscr &= ~SCSCR_TE;
2043 } else {
2044 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2045 scscr |= SCSCR_TE;
2046 }
2047
2048 serial_port_out(port, SCSPTR, scsptr);
2049 serial_port_out(port, SCSCR, scscr);
2050 spin_unlock_irqrestore(&port->lock, flags);
2051 }
2052
2053 static int sci_startup(struct uart_port *port)
2054 {
2055 struct sci_port *s = to_sci_port(port);
2056 int ret;
2057
2058 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2059
2060 sci_request_dma(port);
2061
2062 ret = sci_request_irq(s);
2063 if (unlikely(ret < 0)) {
2064 sci_free_dma(port);
2065 return ret;
2066 }
2067
2068 return 0;
2069 }
2070
2071 static void sci_shutdown(struct uart_port *port)
2072 {
2073 struct sci_port *s = to_sci_port(port);
2074 unsigned long flags;
2075 u16 scr;
2076
2077 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2078
2079 s->autorts = false;
2080 mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2081
2082 spin_lock_irqsave(&port->lock, flags);
2083 sci_stop_rx(port);
2084 sci_stop_tx(port);
2085 /*
2086 * Stop RX and TX, disable related interrupts, keep clock source
2087 * and HSCIF TOT bits
2088 */
2089 scr = serial_port_in(port, SCSCR);
2090 serial_port_out(port, SCSCR, scr &
2091 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2092 spin_unlock_irqrestore(&port->lock, flags);
2093
2094 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2095 if (s->chan_rx) {
2096 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2097 port->line);
2098 hrtimer_cancel(&s->rx_timer);
2099 }
2100 #endif
2101
2102 sci_free_irq(s);
2103 sci_free_dma(port);
2104 }
2105
2106 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2107 unsigned int *srr)
2108 {
2109 unsigned long freq = s->clk_rates[SCI_SCK];
2110 int err, min_err = INT_MAX;
2111 unsigned int sr;
2112
2113 if (s->port.type != PORT_HSCIF)
2114 freq *= 2;
2115
2116 for_each_sr(sr, s) {
2117 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2118 if (abs(err) >= abs(min_err))
2119 continue;
2120
2121 min_err = err;
2122 *srr = sr - 1;
2123
2124 if (!err)
2125 break;
2126 }
2127
2128 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2129 *srr + 1);
2130 return min_err;
2131 }
2132
2133 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2134 unsigned long freq, unsigned int *dlr,
2135 unsigned int *srr)
2136 {
2137 int err, min_err = INT_MAX;
2138 unsigned int sr, dl;
2139
2140 if (s->port.type != PORT_HSCIF)
2141 freq *= 2;
2142
2143 for_each_sr(sr, s) {
2144 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2145 dl = clamp(dl, 1U, 65535U);
2146
2147 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2148 if (abs(err) >= abs(min_err))
2149 continue;
2150
2151 min_err = err;
2152 *dlr = dl;
2153 *srr = sr - 1;
2154
2155 if (!err)
2156 break;
2157 }
2158
2159 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2160 min_err, *dlr, *srr + 1);
2161 return min_err;
2162 }
2163
2164 /* calculate sample rate, BRR, and clock select */
2165 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2166 unsigned int *brr, unsigned int *srr,
2167 unsigned int *cks)
2168 {
2169 unsigned long freq = s->clk_rates[SCI_FCK];
2170 unsigned int sr, br, prediv, scrate, c;
2171 int err, min_err = INT_MAX;
2172
2173 if (s->port.type != PORT_HSCIF)
2174 freq *= 2;
2175
2176 /*
2177 * Find the combination of sample rate and clock select with the
2178 * smallest deviation from the desired baud rate.
2179 * Prefer high sample rates to maximise the receive margin.
2180 *
2181 * M: Receive margin (%)
2182 * N: Ratio of bit rate to clock (N = sampling rate)
2183 * D: Clock duty (D = 0 to 1.0)
2184 * L: Frame length (L = 9 to 12)
2185 * F: Absolute value of clock frequency deviation
2186 *
2187 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2188 * (|D - 0.5| / N * (1 + F))|
2189 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2190 */
2191 for_each_sr(sr, s) {
2192 for (c = 0; c <= 3; c++) {
2193 /* integerized formulas from HSCIF documentation */
2194 prediv = sr * (1 << (2 * c + 1));
2195
2196 /*
2197 * We need to calculate:
2198 *
2199 * br = freq / (prediv * bps) clamped to [1..256]
2200 * err = freq / (br * prediv) - bps
2201 *
2202 * Watch out for overflow when calculating the desired
2203 * sampling clock rate!
2204 */
2205 if (bps > UINT_MAX / prediv)
2206 break;
2207
2208 scrate = prediv * bps;
2209 br = DIV_ROUND_CLOSEST(freq, scrate);
2210 br = clamp(br, 1U, 256U);
2211
2212 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2213 if (abs(err) >= abs(min_err))
2214 continue;
2215
2216 min_err = err;
2217 *brr = br - 1;
2218 *srr = sr - 1;
2219 *cks = c;
2220
2221 if (!err)
2222 goto found;
2223 }
2224 }
2225
2226 found:
2227 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2228 min_err, *brr, *srr + 1, *cks);
2229 return min_err;
2230 }
2231
2232 static void sci_reset(struct uart_port *port)
2233 {
2234 const struct plat_sci_reg *reg;
2235 unsigned int status;
2236 struct sci_port *s = to_sci_port(port);
2237
2238 serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
2239
2240 reg = sci_getreg(port, SCFCR);
2241 if (reg->size)
2242 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2243
2244 sci_clear_SCxSR(port,
2245 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2246 SCxSR_BREAK_CLEAR(port));
2247 if (sci_getreg(port, SCLSR)->size) {
2248 status = serial_port_in(port, SCLSR);
2249 status &= ~(SCLSR_TO | SCLSR_ORER);
2250 serial_port_out(port, SCLSR, status);
2251 }
2252
2253 if (s->rx_trigger > 1) {
2254 if (s->rx_fifo_timeout) {
2255 scif_set_rtrg(port, 1);
2256 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2257 } else {
2258 if (port->type == PORT_SCIFA ||
2259 port->type == PORT_SCIFB)
2260 scif_set_rtrg(port, 1);
2261 else
2262 scif_set_rtrg(port, s->rx_trigger);
2263 }
2264 }
2265 }
2266
2267 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2268 struct ktermios *old)
2269 {
2270 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2271 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2272 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2273 struct sci_port *s = to_sci_port(port);
2274 const struct plat_sci_reg *reg;
2275 int min_err = INT_MAX, err;
2276 unsigned long max_freq = 0;
2277 int best_clk = -1;
2278 unsigned long flags;
2279
2280 if ((termios->c_cflag & CSIZE) == CS7)
2281 smr_val |= SCSMR_CHR;
2282 if (termios->c_cflag & PARENB)
2283 smr_val |= SCSMR_PE;
2284 if (termios->c_cflag & PARODD)
2285 smr_val |= SCSMR_PE | SCSMR_ODD;
2286 if (termios->c_cflag & CSTOPB)
2287 smr_val |= SCSMR_STOP;
2288
2289 /*
2290 * earlyprintk comes here early on with port->uartclk set to zero.
2291 * the clock framework is not up and running at this point so here
2292 * we assume that 115200 is the maximum baud rate. please note that
2293 * the baud rate is not programmed during earlyprintk - it is assumed
2294 * that the previous boot loader has enabled required clocks and
2295 * setup the baud rate generator hardware for us already.
2296 */
2297 if (!port->uartclk) {
2298 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2299 goto done;
2300 }
2301
2302 for (i = 0; i < SCI_NUM_CLKS; i++)
2303 max_freq = max(max_freq, s->clk_rates[i]);
2304
2305 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2306 if (!baud)
2307 goto done;
2308
2309 /*
2310 * There can be multiple sources for the sampling clock. Find the one
2311 * that gives us the smallest deviation from the desired baud rate.
2312 */
2313
2314 /* Optional Undivided External Clock */
2315 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2316 port->type != PORT_SCIFB) {
2317 err = sci_sck_calc(s, baud, &srr1);
2318 if (abs(err) < abs(min_err)) {
2319 best_clk = SCI_SCK;
2320 scr_val = SCSCR_CKE1;
2321 sccks = SCCKS_CKS;
2322 min_err = err;
2323 srr = srr1;
2324 if (!err)
2325 goto done;
2326 }
2327 }
2328
2329 /* Optional BRG Frequency Divided External Clock */
2330 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2331 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2332 &srr1);
2333 if (abs(err) < abs(min_err)) {
2334 best_clk = SCI_SCIF_CLK;
2335 scr_val = SCSCR_CKE1;
2336 sccks = 0;
2337 min_err = err;
2338 dl = dl1;
2339 srr = srr1;
2340 if (!err)
2341 goto done;
2342 }
2343 }
2344
2345 /* Optional BRG Frequency Divided Internal Clock */
2346 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2347 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2348 &srr1);
2349 if (abs(err) < abs(min_err)) {
2350 best_clk = SCI_BRG_INT;
2351 scr_val = SCSCR_CKE1;
2352 sccks = SCCKS_XIN;
2353 min_err = err;
2354 dl = dl1;
2355 srr = srr1;
2356 if (!min_err)
2357 goto done;
2358 }
2359 }
2360
2361 /* Divided Functional Clock using standard Bit Rate Register */
2362 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2363 if (abs(err) < abs(min_err)) {
2364 best_clk = SCI_FCK;
2365 scr_val = 0;
2366 min_err = err;
2367 brr = brr1;
2368 srr = srr1;
2369 cks = cks1;
2370 }
2371
2372 done:
2373 if (best_clk >= 0)
2374 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2375 s->clks[best_clk], baud, min_err);
2376
2377 sci_port_enable(s);
2378
2379 /*
2380 * Program the optional External Baud Rate Generator (BRG) first.
2381 * It controls the mux to select (H)SCK or frequency divided clock.
2382 */
2383 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2384 serial_port_out(port, SCDL, dl);
2385 serial_port_out(port, SCCKS, sccks);
2386 }
2387
2388 spin_lock_irqsave(&port->lock, flags);
2389
2390 sci_reset(port);
2391
2392 uart_update_timeout(port, termios->c_cflag, baud);
2393
2394 /* byte size and parity */
2395 switch (termios->c_cflag & CSIZE) {
2396 case CS5:
2397 bits = 7;
2398 break;
2399 case CS6:
2400 bits = 8;
2401 break;
2402 case CS7:
2403 bits = 9;
2404 break;
2405 default:
2406 bits = 10;
2407 break;
2408 }
2409
2410 if (termios->c_cflag & CSTOPB)
2411 bits++;
2412 if (termios->c_cflag & PARENB)
2413 bits++;
2414
2415 if (best_clk >= 0) {
2416 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2417 switch (srr + 1) {
2418 case 5: smr_val |= SCSMR_SRC_5; break;
2419 case 7: smr_val |= SCSMR_SRC_7; break;
2420 case 11: smr_val |= SCSMR_SRC_11; break;
2421 case 13: smr_val |= SCSMR_SRC_13; break;
2422 case 16: smr_val |= SCSMR_SRC_16; break;
2423 case 17: smr_val |= SCSMR_SRC_17; break;
2424 case 19: smr_val |= SCSMR_SRC_19; break;
2425 case 27: smr_val |= SCSMR_SRC_27; break;
2426 }
2427 smr_val |= cks;
2428 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2429 serial_port_out(port, SCSMR, smr_val);
2430 serial_port_out(port, SCBRR, brr);
2431 if (sci_getreg(port, HSSRR)->size) {
2432 unsigned int hssrr = srr | HSCIF_SRE;
2433 /* Calculate deviation from intended rate at the
2434 * center of the last stop bit in sampling clocks.
2435 */
2436 int last_stop = bits * 2 - 1;
2437 int deviation = min_err * srr * last_stop / 2 / baud;
2438
2439 if (abs(deviation) >= 2) {
2440 /* At least two sampling clocks off at the
2441 * last stop bit; we can increase the error
2442 * margin by shifting the sampling point.
2443 */
2444 int shift = min(-8, max(7, deviation / 2));
2445
2446 hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2447 HSCIF_SRHP_MASK;
2448 hssrr |= HSCIF_SRDE;
2449 }
2450 serial_port_out(port, HSSRR, hssrr);
2451 }
2452
2453 /* Wait one bit interval */
2454 udelay((1000000 + (baud - 1)) / baud);
2455 } else {
2456 /* Don't touch the bit rate configuration */
2457 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2458 smr_val |= serial_port_in(port, SCSMR) &
2459 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2460 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2461 serial_port_out(port, SCSMR, smr_val);
2462 }
2463
2464 sci_init_pins(port, termios->c_cflag);
2465
2466 port->status &= ~UPSTAT_AUTOCTS;
2467 s->autorts = false;
2468 reg = sci_getreg(port, SCFCR);
2469 if (reg->size) {
2470 unsigned short ctrl = serial_port_in(port, SCFCR);
2471
2472 if ((port->flags & UPF_HARD_FLOW) &&
2473 (termios->c_cflag & CRTSCTS)) {
2474 /* There is no CTS interrupt to restart the hardware */
2475 port->status |= UPSTAT_AUTOCTS;
2476 /* MCE is enabled when RTS is raised */
2477 s->autorts = true;
2478 }
2479
2480 /*
2481 * As we've done a sci_reset() above, ensure we don't
2482 * interfere with the FIFOs while toggling MCE. As the
2483 * reset values could still be set, simply mask them out.
2484 */
2485 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2486
2487 serial_port_out(port, SCFCR, ctrl);
2488 }
2489 if (port->flags & UPF_HARD_FLOW) {
2490 /* Refresh (Auto) RTS */
2491 sci_set_mctrl(port, port->mctrl);
2492 }
2493
2494 scr_val |= SCSCR_RE | SCSCR_TE |
2495 (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2496 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2497 if ((srr + 1 == 5) &&
2498 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2499 /*
2500 * In asynchronous mode, when the sampling rate is 1/5, first
2501 * received data may become invalid on some SCIFA and SCIFB.
2502 * To avoid this problem wait more than 1 serial data time (1
2503 * bit time x serial data number) after setting SCSCR.RE = 1.
2504 */
2505 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2506 }
2507
2508 /*
2509 * Calculate delay for 2 DMA buffers (4 FIFO).
2510 * See serial_core.c::uart_update_timeout().
2511 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2512 * function calculates 1 jiffie for the data plus 5 jiffies for the
2513 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2514 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2515 * value obtained by this formula is too small. Therefore, if the value
2516 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2517 */
2518 s->rx_frame = (10000 * bits) / (baud / 100);
2519 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2520 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2521 if (s->rx_timeout < 20)
2522 s->rx_timeout = 20;
2523 #endif
2524
2525 if ((termios->c_cflag & CREAD) != 0)
2526 sci_start_rx(port);
2527
2528 spin_unlock_irqrestore(&port->lock, flags);
2529
2530 sci_port_disable(s);
2531
2532 if (UART_ENABLE_MS(port, termios->c_cflag))
2533 sci_enable_ms(port);
2534 }
2535
2536 static void sci_pm(struct uart_port *port, unsigned int state,
2537 unsigned int oldstate)
2538 {
2539 struct sci_port *sci_port = to_sci_port(port);
2540
2541 switch (state) {
2542 case UART_PM_STATE_OFF:
2543 sci_port_disable(sci_port);
2544 break;
2545 default:
2546 sci_port_enable(sci_port);
2547 break;
2548 }
2549 }
2550
2551 static const char *sci_type(struct uart_port *port)
2552 {
2553 switch (port->type) {
2554 case PORT_IRDA:
2555 return "irda";
2556 case PORT_SCI:
2557 return "sci";
2558 case PORT_SCIF:
2559 return "scif";
2560 case PORT_SCIFA:
2561 return "scifa";
2562 case PORT_SCIFB:
2563 return "scifb";
2564 case PORT_HSCIF:
2565 return "hscif";
2566 }
2567
2568 return NULL;
2569 }
2570
2571 static int sci_remap_port(struct uart_port *port)
2572 {
2573 struct sci_port *sport = to_sci_port(port);
2574
2575 /*
2576 * Nothing to do if there's already an established membase.
2577 */
2578 if (port->membase)
2579 return 0;
2580
2581 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2582 port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2583 if (unlikely(!port->membase)) {
2584 dev_err(port->dev, "can't remap port#%d\n", port->line);
2585 return -ENXIO;
2586 }
2587 } else {
2588 /*
2589 * For the simple (and majority of) cases where we don't
2590 * need to do any remapping, just cast the cookie
2591 * directly.
2592 */
2593 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2594 }
2595
2596 return 0;
2597 }
2598
2599 static void sci_release_port(struct uart_port *port)
2600 {
2601 struct sci_port *sport = to_sci_port(port);
2602
2603 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2604 iounmap(port->membase);
2605 port->membase = NULL;
2606 }
2607
2608 release_mem_region(port->mapbase, sport->reg_size);
2609 }
2610
2611 static int sci_request_port(struct uart_port *port)
2612 {
2613 struct resource *res;
2614 struct sci_port *sport = to_sci_port(port);
2615 int ret;
2616
2617 res = request_mem_region(port->mapbase, sport->reg_size,
2618 dev_name(port->dev));
2619 if (unlikely(res == NULL)) {
2620 dev_err(port->dev, "request_mem_region failed.");
2621 return -EBUSY;
2622 }
2623
2624 ret = sci_remap_port(port);
2625 if (unlikely(ret != 0)) {
2626 release_resource(res);
2627 return ret;
2628 }
2629
2630 return 0;
2631 }
2632
2633 static void sci_config_port(struct uart_port *port, int flags)
2634 {
2635 if (flags & UART_CONFIG_TYPE) {
2636 struct sci_port *sport = to_sci_port(port);
2637
2638 port->type = sport->cfg->type;
2639 sci_request_port(port);
2640 }
2641 }
2642
2643 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2644 {
2645 if (ser->baud_base < 2400)
2646 /* No paper tape reader for Mitch.. */
2647 return -EINVAL;
2648
2649 return 0;
2650 }
2651
2652 static const struct uart_ops sci_uart_ops = {
2653 .tx_empty = sci_tx_empty,
2654 .set_mctrl = sci_set_mctrl,
2655 .get_mctrl = sci_get_mctrl,
2656 .start_tx = sci_start_tx,
2657 .stop_tx = sci_stop_tx,
2658 .stop_rx = sci_stop_rx,
2659 .enable_ms = sci_enable_ms,
2660 .break_ctl = sci_break_ctl,
2661 .startup = sci_startup,
2662 .shutdown = sci_shutdown,
2663 .flush_buffer = sci_flush_buffer,
2664 .set_termios = sci_set_termios,
2665 .pm = sci_pm,
2666 .type = sci_type,
2667 .release_port = sci_release_port,
2668 .request_port = sci_request_port,
2669 .config_port = sci_config_port,
2670 .verify_port = sci_verify_port,
2671 #ifdef CONFIG_CONSOLE_POLL
2672 .poll_get_char = sci_poll_get_char,
2673 .poll_put_char = sci_poll_put_char,
2674 #endif
2675 };
2676
2677 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2678 {
2679 const char *clk_names[] = {
2680 [SCI_FCK] = "fck",
2681 [SCI_SCK] = "sck",
2682 [SCI_BRG_INT] = "brg_int",
2683 [SCI_SCIF_CLK] = "scif_clk",
2684 };
2685 struct clk *clk;
2686 unsigned int i;
2687
2688 if (sci_port->cfg->type == PORT_HSCIF)
2689 clk_names[SCI_SCK] = "hsck";
2690
2691 for (i = 0; i < SCI_NUM_CLKS; i++) {
2692 clk = devm_clk_get(dev, clk_names[i]);
2693 if (PTR_ERR(clk) == -EPROBE_DEFER)
2694 return -EPROBE_DEFER;
2695
2696 if (IS_ERR(clk) && i == SCI_FCK) {
2697 /*
2698 * "fck" used to be called "sci_ick", and we need to
2699 * maintain DT backward compatibility.
2700 */
2701 clk = devm_clk_get(dev, "sci_ick");
2702 if (PTR_ERR(clk) == -EPROBE_DEFER)
2703 return -EPROBE_DEFER;
2704
2705 if (!IS_ERR(clk))
2706 goto found;
2707
2708 /*
2709 * Not all SH platforms declare a clock lookup entry
2710 * for SCI devices, in which case we need to get the
2711 * global "peripheral_clk" clock.
2712 */
2713 clk = devm_clk_get(dev, "peripheral_clk");
2714 if (!IS_ERR(clk))
2715 goto found;
2716
2717 dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2718 PTR_ERR(clk));
2719 return PTR_ERR(clk);
2720 }
2721
2722 found:
2723 if (IS_ERR(clk))
2724 dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2725 PTR_ERR(clk));
2726 else
2727 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2728 clk, clk_get_rate(clk));
2729 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2730 }
2731 return 0;
2732 }
2733
2734 static const struct sci_port_params *
2735 sci_probe_regmap(const struct plat_sci_port *cfg)
2736 {
2737 unsigned int regtype;
2738
2739 if (cfg->regtype != SCIx_PROBE_REGTYPE)
2740 return &sci_port_params[cfg->regtype];
2741
2742 switch (cfg->type) {
2743 case PORT_SCI:
2744 regtype = SCIx_SCI_REGTYPE;
2745 break;
2746 case PORT_IRDA:
2747 regtype = SCIx_IRDA_REGTYPE;
2748 break;
2749 case PORT_SCIFA:
2750 regtype = SCIx_SCIFA_REGTYPE;
2751 break;
2752 case PORT_SCIFB:
2753 regtype = SCIx_SCIFB_REGTYPE;
2754 break;
2755 case PORT_SCIF:
2756 /*
2757 * The SH-4 is a bit of a misnomer here, although that's
2758 * where this particular port layout originated. This
2759 * configuration (or some slight variation thereof)
2760 * remains the dominant model for all SCIFs.
2761 */
2762 regtype = SCIx_SH4_SCIF_REGTYPE;
2763 break;
2764 case PORT_HSCIF:
2765 regtype = SCIx_HSCIF_REGTYPE;
2766 break;
2767 default:
2768 pr_err("Can't probe register map for given port\n");
2769 return NULL;
2770 }
2771
2772 return &sci_port_params[regtype];
2773 }
2774
2775 static int sci_init_single(struct platform_device *dev,
2776 struct sci_port *sci_port, unsigned int index,
2777 const struct plat_sci_port *p, bool early)
2778 {
2779 struct uart_port *port = &sci_port->port;
2780 const struct resource *res;
2781 unsigned int i;
2782 int ret;
2783
2784 sci_port->cfg = p;
2785
2786 port->ops = &sci_uart_ops;
2787 port->iotype = UPIO_MEM;
2788 port->line = index;
2789
2790 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2791 if (res == NULL)
2792 return -ENOMEM;
2793
2794 port->mapbase = res->start;
2795 sci_port->reg_size = resource_size(res);
2796
2797 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2798 sci_port->irqs[i] = platform_get_irq(dev, i);
2799
2800 /* The SCI generates several interrupts. They can be muxed together or
2801 * connected to different interrupt lines. In the muxed case only one
2802 * interrupt resource is specified. In the non-muxed case three or four
2803 * interrupt resources are specified, as the BRI interrupt is optional.
2804 */
2805 if (sci_port->irqs[0] < 0)
2806 return -ENXIO;
2807
2808 if (sci_port->irqs[1] < 0) {
2809 sci_port->irqs[1] = sci_port->irqs[0];
2810 sci_port->irqs[2] = sci_port->irqs[0];
2811 sci_port->irqs[3] = sci_port->irqs[0];
2812 }
2813
2814 sci_port->params = sci_probe_regmap(p);
2815 if (unlikely(sci_port->params == NULL))
2816 return -EINVAL;
2817
2818 switch (p->type) {
2819 case PORT_SCIFB:
2820 sci_port->rx_trigger = 48;
2821 break;
2822 case PORT_HSCIF:
2823 sci_port->rx_trigger = 64;
2824 break;
2825 case PORT_SCIFA:
2826 sci_port->rx_trigger = 32;
2827 break;
2828 case PORT_SCIF:
2829 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2830 /* RX triggering not implemented for this IP */
2831 sci_port->rx_trigger = 1;
2832 else
2833 sci_port->rx_trigger = 8;
2834 break;
2835 default:
2836 sci_port->rx_trigger = 1;
2837 break;
2838 }
2839
2840 sci_port->rx_fifo_timeout = 0;
2841 sci_port->hscif_tot = 0;
2842
2843 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2844 * match the SoC datasheet, this should be investigated. Let platform
2845 * data override the sampling rate for now.
2846 */
2847 sci_port->sampling_rate_mask = p->sampling_rate
2848 ? SCI_SR(p->sampling_rate)
2849 : sci_port->params->sampling_rate_mask;
2850
2851 if (!early) {
2852 ret = sci_init_clocks(sci_port, &dev->dev);
2853 if (ret < 0)
2854 return ret;
2855
2856 port->dev = &dev->dev;
2857
2858 pm_runtime_enable(&dev->dev);
2859 }
2860
2861 port->type = p->type;
2862 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2863 port->fifosize = sci_port->params->fifosize;
2864
2865 if (port->type == PORT_SCI) {
2866 if (sci_port->reg_size >= 0x20)
2867 port->regshift = 2;
2868 else
2869 port->regshift = 1;
2870 }
2871
2872 /*
2873 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2874 * for the multi-IRQ ports, which is where we are primarily
2875 * concerned with the shutdown path synchronization.
2876 *
2877 * For the muxed case there's nothing more to do.
2878 */
2879 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
2880 port->irqflags = 0;
2881
2882 port->serial_in = sci_serial_in;
2883 port->serial_out = sci_serial_out;
2884
2885 return 0;
2886 }
2887
2888 static void sci_cleanup_single(struct sci_port *port)
2889 {
2890 pm_runtime_disable(port->port.dev);
2891 }
2892
2893 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2894 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2895 static void serial_console_putchar(struct uart_port *port, int ch)
2896 {
2897 sci_poll_put_char(port, ch);
2898 }
2899
2900 /*
2901 * Print a string to the serial port trying not to disturb
2902 * any possible real use of the port...
2903 */
2904 static void serial_console_write(struct console *co, const char *s,
2905 unsigned count)
2906 {
2907 struct sci_port *sci_port = &sci_ports[co->index];
2908 struct uart_port *port = &sci_port->port;
2909 unsigned short bits, ctrl, ctrl_temp;
2910 unsigned long flags;
2911 int locked = 1;
2912
2913 #if defined(SUPPORT_SYSRQ)
2914 if (port->sysrq)
2915 locked = 0;
2916 else
2917 #endif
2918 if (oops_in_progress)
2919 locked = spin_trylock_irqsave(&port->lock, flags);
2920 else
2921 spin_lock_irqsave(&port->lock, flags);
2922
2923 /* first save SCSCR then disable interrupts, keep clock source */
2924 ctrl = serial_port_in(port, SCSCR);
2925 ctrl_temp = SCSCR_RE | SCSCR_TE |
2926 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2927 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2928 serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2929
2930 uart_console_write(port, s, count, serial_console_putchar);
2931
2932 /* wait until fifo is empty and last bit has been transmitted */
2933 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2934 while ((serial_port_in(port, SCxSR) & bits) != bits)
2935 cpu_relax();
2936
2937 /* restore the SCSCR */
2938 serial_port_out(port, SCSCR, ctrl);
2939
2940 if (locked)
2941 spin_unlock_irqrestore(&port->lock, flags);
2942 }
2943
2944 static int serial_console_setup(struct console *co, char *options)
2945 {
2946 struct sci_port *sci_port;
2947 struct uart_port *port;
2948 int baud = 115200;
2949 int bits = 8;
2950 int parity = 'n';
2951 int flow = 'n';
2952 int ret;
2953
2954 /*
2955 * Refuse to handle any bogus ports.
2956 */
2957 if (co->index < 0 || co->index >= SCI_NPORTS)
2958 return -ENODEV;
2959
2960 sci_port = &sci_ports[co->index];
2961 port = &sci_port->port;
2962
2963 /*
2964 * Refuse to handle uninitialized ports.
2965 */
2966 if (!port->ops)
2967 return -ENODEV;
2968
2969 ret = sci_remap_port(port);
2970 if (unlikely(ret != 0))
2971 return ret;
2972
2973 if (options)
2974 uart_parse_options(options, &baud, &parity, &bits, &flow);
2975
2976 return uart_set_options(port, co, baud, parity, bits, flow);
2977 }
2978
2979 static struct console serial_console = {
2980 .name = "ttySC",
2981 .device = uart_console_device,
2982 .write = serial_console_write,
2983 .setup = serial_console_setup,
2984 .flags = CON_PRINTBUFFER,
2985 .index = -1,
2986 .data = &sci_uart_driver,
2987 };
2988
2989 static struct console early_serial_console = {
2990 .name = "early_ttySC",
2991 .write = serial_console_write,
2992 .flags = CON_PRINTBUFFER,
2993 .index = -1,
2994 };
2995
2996 static char early_serial_buf[32];
2997
2998 static int sci_probe_earlyprintk(struct platform_device *pdev)
2999 {
3000 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3001
3002 if (early_serial_console.data)
3003 return -EEXIST;
3004
3005 early_serial_console.index = pdev->id;
3006
3007 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3008
3009 serial_console_setup(&early_serial_console, early_serial_buf);
3010
3011 if (!strstr(early_serial_buf, "keep"))
3012 early_serial_console.flags |= CON_BOOT;
3013
3014 register_console(&early_serial_console);
3015 return 0;
3016 }
3017
3018 #define SCI_CONSOLE (&serial_console)
3019
3020 #else
3021 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3022 {
3023 return -EINVAL;
3024 }
3025
3026 #define SCI_CONSOLE NULL
3027
3028 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3029
3030 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3031
3032 static DEFINE_MUTEX(sci_uart_registration_lock);
3033 static struct uart_driver sci_uart_driver = {
3034 .owner = THIS_MODULE,
3035 .driver_name = "sci",
3036 .dev_name = "ttySC",
3037 .major = SCI_MAJOR,
3038 .minor = SCI_MINOR_START,
3039 .nr = SCI_NPORTS,
3040 .cons = SCI_CONSOLE,
3041 };
3042
3043 static int sci_remove(struct platform_device *dev)
3044 {
3045 struct sci_port *port = platform_get_drvdata(dev);
3046
3047 sci_ports_in_use &= ~BIT(port->port.line);
3048 uart_remove_one_port(&sci_uart_driver, &port->port);
3049
3050 sci_cleanup_single(port);
3051
3052 if (port->port.fifosize > 1) {
3053 sysfs_remove_file(&dev->dev.kobj,
3054 &dev_attr_rx_fifo_trigger.attr);
3055 }
3056 if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3057 port->port.type == PORT_HSCIF) {
3058 sysfs_remove_file(&dev->dev.kobj,
3059 &dev_attr_rx_fifo_timeout.attr);
3060 }
3061
3062 return 0;
3063 }
3064
3065
3066 #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
3067 #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
3068 #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
3069
3070 static const struct of_device_id of_sci_match[] = {
3071 /* SoC-specific types */
3072 {
3073 .compatible = "renesas,scif-r7s72100",
3074 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3075 },
3076 /* Family-specific types */
3077 {
3078 .compatible = "renesas,rcar-gen1-scif",
3079 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3080 }, {
3081 .compatible = "renesas,rcar-gen2-scif",
3082 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3083 }, {
3084 .compatible = "renesas,rcar-gen3-scif",
3085 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3086 },
3087 /* Generic types */
3088 {
3089 .compatible = "renesas,scif",
3090 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3091 }, {
3092 .compatible = "renesas,scifa",
3093 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3094 }, {
3095 .compatible = "renesas,scifb",
3096 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3097 }, {
3098 .compatible = "renesas,hscif",
3099 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3100 }, {
3101 .compatible = "renesas,sci",
3102 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3103 }, {
3104 /* Terminator */
3105 },
3106 };
3107 MODULE_DEVICE_TABLE(of, of_sci_match);
3108
3109 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3110 unsigned int *dev_id)
3111 {
3112 struct device_node *np = pdev->dev.of_node;
3113 struct plat_sci_port *p;
3114 struct sci_port *sp;
3115 const void *data;
3116 int id;
3117
3118 if (!IS_ENABLED(CONFIG_OF) || !np)
3119 return NULL;
3120
3121 data = of_device_get_match_data(&pdev->dev);
3122
3123 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3124 if (!p)
3125 return NULL;
3126
3127 /* Get the line number from the aliases node. */
3128 id = of_alias_get_id(np, "serial");
3129 if (id < 0 && ~sci_ports_in_use)
3130 id = ffz(sci_ports_in_use);
3131 if (id < 0) {
3132 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3133 return NULL;
3134 }
3135 if (id >= ARRAY_SIZE(sci_ports)) {
3136 dev_err(&pdev->dev, "serial%d out of range\n", id);
3137 return NULL;
3138 }
3139
3140 sp = &sci_ports[id];
3141 *dev_id = id;
3142
3143 p->type = SCI_OF_TYPE(data);
3144 p->regtype = SCI_OF_REGTYPE(data);
3145
3146 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3147
3148 return p;
3149 }
3150
3151 static int sci_probe_single(struct platform_device *dev,
3152 unsigned int index,
3153 struct plat_sci_port *p,
3154 struct sci_port *sciport)
3155 {
3156 int ret;
3157
3158 /* Sanity check */
3159 if (unlikely(index >= SCI_NPORTS)) {
3160 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3161 index+1, SCI_NPORTS);
3162 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3163 return -EINVAL;
3164 }
3165 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3166 if (sci_ports_in_use & BIT(index))
3167 return -EBUSY;
3168
3169 mutex_lock(&sci_uart_registration_lock);
3170 if (!sci_uart_driver.state) {
3171 ret = uart_register_driver(&sci_uart_driver);
3172 if (ret) {
3173 mutex_unlock(&sci_uart_registration_lock);
3174 return ret;
3175 }
3176 }
3177 mutex_unlock(&sci_uart_registration_lock);
3178
3179 ret = sci_init_single(dev, sciport, index, p, false);
3180 if (ret)
3181 return ret;
3182
3183 sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3184 if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3185 return PTR_ERR(sciport->gpios);
3186
3187 if (sciport->has_rtscts) {
3188 if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3189 UART_GPIO_CTS)) ||
3190 !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3191 UART_GPIO_RTS))) {
3192 dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3193 return -EINVAL;
3194 }
3195 sciport->port.flags |= UPF_HARD_FLOW;
3196 }
3197
3198 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3199 if (ret) {
3200 sci_cleanup_single(sciport);
3201 return ret;
3202 }
3203
3204 return 0;
3205 }
3206
3207 static int sci_probe(struct platform_device *dev)
3208 {
3209 struct plat_sci_port *p;
3210 struct sci_port *sp;
3211 unsigned int dev_id;
3212 int ret;
3213
3214 /*
3215 * If we've come here via earlyprintk initialization, head off to
3216 * the special early probe. We don't have sufficient device state
3217 * to make it beyond this yet.
3218 */
3219 if (is_early_platform_device(dev))
3220 return sci_probe_earlyprintk(dev);
3221
3222 if (dev->dev.of_node) {
3223 p = sci_parse_dt(dev, &dev_id);
3224 if (p == NULL)
3225 return -EINVAL;
3226 } else {
3227 p = dev->dev.platform_data;
3228 if (p == NULL) {
3229 dev_err(&dev->dev, "no platform data supplied\n");
3230 return -EINVAL;
3231 }
3232
3233 dev_id = dev->id;
3234 }
3235
3236 sp = &sci_ports[dev_id];
3237 platform_set_drvdata(dev, sp);
3238
3239 ret = sci_probe_single(dev, dev_id, p, sp);
3240 if (ret)
3241 return ret;
3242
3243 if (sp->port.fifosize > 1) {
3244 ret = sysfs_create_file(&dev->dev.kobj,
3245 &dev_attr_rx_fifo_trigger.attr);
3246 if (ret)
3247 return ret;
3248 }
3249 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3250 sp->port.type == PORT_HSCIF) {
3251 ret = sysfs_create_file(&dev->dev.kobj,
3252 &dev_attr_rx_fifo_timeout.attr);
3253 if (ret) {
3254 if (sp->port.fifosize > 1) {
3255 sysfs_remove_file(&dev->dev.kobj,
3256 &dev_attr_rx_fifo_trigger.attr);
3257 }
3258 return ret;
3259 }
3260 }
3261
3262 #ifdef CONFIG_SH_STANDARD_BIOS
3263 sh_bios_gdb_detach();
3264 #endif
3265
3266 sci_ports_in_use |= BIT(dev_id);
3267 return 0;
3268 }
3269
3270 static __maybe_unused int sci_suspend(struct device *dev)
3271 {
3272 struct sci_port *sport = dev_get_drvdata(dev);
3273
3274 if (sport)
3275 uart_suspend_port(&sci_uart_driver, &sport->port);
3276
3277 return 0;
3278 }
3279
3280 static __maybe_unused int sci_resume(struct device *dev)
3281 {
3282 struct sci_port *sport = dev_get_drvdata(dev);
3283
3284 if (sport)
3285 uart_resume_port(&sci_uart_driver, &sport->port);
3286
3287 return 0;
3288 }
3289
3290 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3291
3292 static struct platform_driver sci_driver = {
3293 .probe = sci_probe,
3294 .remove = sci_remove,
3295 .driver = {
3296 .name = "sh-sci",
3297 .pm = &sci_dev_pm_ops,
3298 .of_match_table = of_match_ptr(of_sci_match),
3299 },
3300 };
3301
3302 static int __init sci_init(void)
3303 {
3304 pr_info("%s\n", banner);
3305
3306 return platform_driver_register(&sci_driver);
3307 }
3308
3309 static void __exit sci_exit(void)
3310 {
3311 platform_driver_unregister(&sci_driver);
3312
3313 if (sci_uart_driver.state)
3314 uart_unregister_driver(&sci_uart_driver);
3315 }
3316
3317 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3318 early_platform_init_buffer("earlyprintk", &sci_driver,
3319 early_serial_buf, ARRAY_SIZE(early_serial_buf));
3320 #endif
3321 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3322 static struct plat_sci_port port_cfg __initdata;
3323
3324 static int __init early_console_setup(struct earlycon_device *device,
3325 int type)
3326 {
3327 if (!device->port.membase)
3328 return -ENODEV;
3329
3330 device->port.serial_in = sci_serial_in;
3331 device->port.serial_out = sci_serial_out;
3332 device->port.type = type;
3333 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3334 port_cfg.type = type;
3335 sci_ports[0].cfg = &port_cfg;
3336 sci_ports[0].params = sci_probe_regmap(&port_cfg);
3337 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3338 sci_serial_out(&sci_ports[0].port, SCSCR,
3339 SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3340
3341 device->con->write = serial_console_write;
3342 return 0;
3343 }
3344 static int __init sci_early_console_setup(struct earlycon_device *device,
3345 const char *opt)
3346 {
3347 return early_console_setup(device, PORT_SCI);
3348 }
3349 static int __init scif_early_console_setup(struct earlycon_device *device,
3350 const char *opt)
3351 {
3352 return early_console_setup(device, PORT_SCIF);
3353 }
3354 static int __init scifa_early_console_setup(struct earlycon_device *device,
3355 const char *opt)
3356 {
3357 return early_console_setup(device, PORT_SCIFA);
3358 }
3359 static int __init scifb_early_console_setup(struct earlycon_device *device,
3360 const char *opt)
3361 {
3362 return early_console_setup(device, PORT_SCIFB);
3363 }
3364 static int __init hscif_early_console_setup(struct earlycon_device *device,
3365 const char *opt)
3366 {
3367 return early_console_setup(device, PORT_HSCIF);
3368 }
3369
3370 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3371 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3372 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3373 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3374 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3375 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3376
3377 module_init(sci_init);
3378 module_exit(sci_exit);
3379
3380 MODULE_LICENSE("GPL");
3381 MODULE_ALIAS("platform:sh-sci");
3382 MODULE_AUTHOR("Paul Mundt");
3383 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");