]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/serial/sh-sci.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / serial / sh-sci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
4 *
5 * Copyright (C) 2002 - 2011 Paul Mundt
6 * Copyright (C) 2015 Glider bvba
7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 * Copyright (C) 1999, 2000 Niibe Yutaka
12 * Copyright (C) 2000 Sugioka Toshinobu
13 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 * Modified to support SecureEdge. David McCullough (2002)
15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 * Removed SH7300 support (Jul 2007).
17 */
18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 #define SUPPORT_SYSRQ
20 #endif
21
22 #undef DEBUG
23
24 #include <linux/clk.h>
25 #include <linux/console.h>
26 #include <linux/ctype.h>
27 #include <linux/cpufreq.h>
28 #include <linux/delay.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/err.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/major.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/platform_device.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/scatterlist.h>
44 #include <linux/serial.h>
45 #include <linux/serial_sci.h>
46 #include <linux/sh_dma.h>
47 #include <linux/slab.h>
48 #include <linux/string.h>
49 #include <linux/sysrq.h>
50 #include <linux/timer.h>
51 #include <linux/tty.h>
52 #include <linux/tty_flip.h>
53
54 #ifdef CONFIG_SUPERH
55 #include <asm/sh_bios.h>
56 #endif
57
58 #include "serial_mctrl_gpio.h"
59 #include "sh-sci.h"
60
61 /* Offsets into the sci_port->irqs array */
62 enum {
63 SCIx_ERI_IRQ,
64 SCIx_RXI_IRQ,
65 SCIx_TXI_IRQ,
66 SCIx_BRI_IRQ,
67 SCIx_NR_IRQS,
68
69 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
70 };
71
72 #define SCIx_IRQ_IS_MUXED(port) \
73 ((port)->irqs[SCIx_ERI_IRQ] == \
74 (port)->irqs[SCIx_RXI_IRQ]) || \
75 ((port)->irqs[SCIx_ERI_IRQ] && \
76 ((port)->irqs[SCIx_RXI_IRQ] < 0))
77
78 enum SCI_CLKS {
79 SCI_FCK, /* Functional Clock */
80 SCI_SCK, /* Optional External Clock */
81 SCI_BRG_INT, /* Optional BRG Internal Clock Source */
82 SCI_SCIF_CLK, /* Optional BRG External Clock Source */
83 SCI_NUM_CLKS
84 };
85
86 /* Bit x set means sampling rate x + 1 is supported */
87 #define SCI_SR(x) BIT((x) - 1)
88 #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
89
90 #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
91 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
92 SCI_SR(19) | SCI_SR(27)
93
94 #define min_sr(_port) ffs((_port)->sampling_rate_mask)
95 #define max_sr(_port) fls((_port)->sampling_rate_mask)
96
97 /* Iterate over all supported sampling rates, from high to low */
98 #define for_each_sr(_sr, _port) \
99 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
100 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
101
102 struct plat_sci_reg {
103 u8 offset, size;
104 };
105
106 struct sci_port_params {
107 const struct plat_sci_reg regs[SCIx_NR_REGS];
108 unsigned int fifosize;
109 unsigned int overrun_reg;
110 unsigned int overrun_mask;
111 unsigned int sampling_rate_mask;
112 unsigned int error_mask;
113 unsigned int error_clear;
114 };
115
116 struct sci_port {
117 struct uart_port port;
118
119 /* Platform configuration */
120 const struct sci_port_params *params;
121 const struct plat_sci_port *cfg;
122 unsigned int sampling_rate_mask;
123 resource_size_t reg_size;
124 struct mctrl_gpios *gpios;
125
126 /* Clocks */
127 struct clk *clks[SCI_NUM_CLKS];
128 unsigned long clk_rates[SCI_NUM_CLKS];
129
130 int irqs[SCIx_NR_IRQS];
131 char *irqstr[SCIx_NR_IRQS];
132
133 struct dma_chan *chan_tx;
134 struct dma_chan *chan_rx;
135
136 #ifdef CONFIG_SERIAL_SH_SCI_DMA
137 dma_cookie_t cookie_tx;
138 dma_cookie_t cookie_rx[2];
139 dma_cookie_t active_rx;
140 dma_addr_t tx_dma_addr;
141 unsigned int tx_dma_len;
142 struct scatterlist sg_rx[2];
143 void *rx_buf[2];
144 size_t buf_len_rx;
145 struct work_struct work_tx;
146 struct timer_list rx_timer;
147 unsigned int rx_timeout;
148 #endif
149 unsigned int rx_frame;
150 int rx_trigger;
151 struct timer_list rx_fifo_timer;
152 int rx_fifo_timeout;
153 u16 hscif_tot;
154
155 bool has_rtscts;
156 bool autorts;
157 };
158
159 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
160
161 static struct sci_port sci_ports[SCI_NPORTS];
162 static struct uart_driver sci_uart_driver;
163
164 static inline struct sci_port *
165 to_sci_port(struct uart_port *uart)
166 {
167 return container_of(uart, struct sci_port, port);
168 }
169
170 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
171 /*
172 * Common SCI definitions, dependent on the port's regshift
173 * value.
174 */
175 [SCIx_SCI_REGTYPE] = {
176 .regs = {
177 [SCSMR] = { 0x00, 8 },
178 [SCBRR] = { 0x01, 8 },
179 [SCSCR] = { 0x02, 8 },
180 [SCxTDR] = { 0x03, 8 },
181 [SCxSR] = { 0x04, 8 },
182 [SCxRDR] = { 0x05, 8 },
183 },
184 .fifosize = 1,
185 .overrun_reg = SCxSR,
186 .overrun_mask = SCI_ORER,
187 .sampling_rate_mask = SCI_SR(32),
188 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
189 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
190 },
191
192 /*
193 * Common definitions for legacy IrDA ports.
194 */
195 [SCIx_IRDA_REGTYPE] = {
196 .regs = {
197 [SCSMR] = { 0x00, 8 },
198 [SCBRR] = { 0x02, 8 },
199 [SCSCR] = { 0x04, 8 },
200 [SCxTDR] = { 0x06, 8 },
201 [SCxSR] = { 0x08, 16 },
202 [SCxRDR] = { 0x0a, 8 },
203 [SCFCR] = { 0x0c, 8 },
204 [SCFDR] = { 0x0e, 16 },
205 },
206 .fifosize = 1,
207 .overrun_reg = SCxSR,
208 .overrun_mask = SCI_ORER,
209 .sampling_rate_mask = SCI_SR(32),
210 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
211 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
212 },
213
214 /*
215 * Common SCIFA definitions.
216 */
217 [SCIx_SCIFA_REGTYPE] = {
218 .regs = {
219 [SCSMR] = { 0x00, 16 },
220 [SCBRR] = { 0x04, 8 },
221 [SCSCR] = { 0x08, 16 },
222 [SCxTDR] = { 0x20, 8 },
223 [SCxSR] = { 0x14, 16 },
224 [SCxRDR] = { 0x24, 8 },
225 [SCFCR] = { 0x18, 16 },
226 [SCFDR] = { 0x1c, 16 },
227 [SCPCR] = { 0x30, 16 },
228 [SCPDR] = { 0x34, 16 },
229 },
230 .fifosize = 64,
231 .overrun_reg = SCxSR,
232 .overrun_mask = SCIFA_ORER,
233 .sampling_rate_mask = SCI_SR_SCIFAB,
234 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
235 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
236 },
237
238 /*
239 * Common SCIFB definitions.
240 */
241 [SCIx_SCIFB_REGTYPE] = {
242 .regs = {
243 [SCSMR] = { 0x00, 16 },
244 [SCBRR] = { 0x04, 8 },
245 [SCSCR] = { 0x08, 16 },
246 [SCxTDR] = { 0x40, 8 },
247 [SCxSR] = { 0x14, 16 },
248 [SCxRDR] = { 0x60, 8 },
249 [SCFCR] = { 0x18, 16 },
250 [SCTFDR] = { 0x38, 16 },
251 [SCRFDR] = { 0x3c, 16 },
252 [SCPCR] = { 0x30, 16 },
253 [SCPDR] = { 0x34, 16 },
254 },
255 .fifosize = 256,
256 .overrun_reg = SCxSR,
257 .overrun_mask = SCIFA_ORER,
258 .sampling_rate_mask = SCI_SR_SCIFAB,
259 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
260 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
261 },
262
263 /*
264 * Common SH-2(A) SCIF definitions for ports with FIFO data
265 * count registers.
266 */
267 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
268 .regs = {
269 [SCSMR] = { 0x00, 16 },
270 [SCBRR] = { 0x04, 8 },
271 [SCSCR] = { 0x08, 16 },
272 [SCxTDR] = { 0x0c, 8 },
273 [SCxSR] = { 0x10, 16 },
274 [SCxRDR] = { 0x14, 8 },
275 [SCFCR] = { 0x18, 16 },
276 [SCFDR] = { 0x1c, 16 },
277 [SCSPTR] = { 0x20, 16 },
278 [SCLSR] = { 0x24, 16 },
279 },
280 .fifosize = 16,
281 .overrun_reg = SCLSR,
282 .overrun_mask = SCLSR_ORER,
283 .sampling_rate_mask = SCI_SR(32),
284 .error_mask = SCIF_DEFAULT_ERROR_MASK,
285 .error_clear = SCIF_ERROR_CLEAR,
286 },
287
288 /*
289 * Common SH-3 SCIF definitions.
290 */
291 [SCIx_SH3_SCIF_REGTYPE] = {
292 .regs = {
293 [SCSMR] = { 0x00, 8 },
294 [SCBRR] = { 0x02, 8 },
295 [SCSCR] = { 0x04, 8 },
296 [SCxTDR] = { 0x06, 8 },
297 [SCxSR] = { 0x08, 16 },
298 [SCxRDR] = { 0x0a, 8 },
299 [SCFCR] = { 0x0c, 8 },
300 [SCFDR] = { 0x0e, 16 },
301 },
302 .fifosize = 16,
303 .overrun_reg = SCLSR,
304 .overrun_mask = SCLSR_ORER,
305 .sampling_rate_mask = SCI_SR(32),
306 .error_mask = SCIF_DEFAULT_ERROR_MASK,
307 .error_clear = SCIF_ERROR_CLEAR,
308 },
309
310 /*
311 * Common SH-4(A) SCIF(B) definitions.
312 */
313 [SCIx_SH4_SCIF_REGTYPE] = {
314 .regs = {
315 [SCSMR] = { 0x00, 16 },
316 [SCBRR] = { 0x04, 8 },
317 [SCSCR] = { 0x08, 16 },
318 [SCxTDR] = { 0x0c, 8 },
319 [SCxSR] = { 0x10, 16 },
320 [SCxRDR] = { 0x14, 8 },
321 [SCFCR] = { 0x18, 16 },
322 [SCFDR] = { 0x1c, 16 },
323 [SCSPTR] = { 0x20, 16 },
324 [SCLSR] = { 0x24, 16 },
325 },
326 .fifosize = 16,
327 .overrun_reg = SCLSR,
328 .overrun_mask = SCLSR_ORER,
329 .sampling_rate_mask = SCI_SR(32),
330 .error_mask = SCIF_DEFAULT_ERROR_MASK,
331 .error_clear = SCIF_ERROR_CLEAR,
332 },
333
334 /*
335 * Common SCIF definitions for ports with a Baud Rate Generator for
336 * External Clock (BRG).
337 */
338 [SCIx_SH4_SCIF_BRG_REGTYPE] = {
339 .regs = {
340 [SCSMR] = { 0x00, 16 },
341 [SCBRR] = { 0x04, 8 },
342 [SCSCR] = { 0x08, 16 },
343 [SCxTDR] = { 0x0c, 8 },
344 [SCxSR] = { 0x10, 16 },
345 [SCxRDR] = { 0x14, 8 },
346 [SCFCR] = { 0x18, 16 },
347 [SCFDR] = { 0x1c, 16 },
348 [SCSPTR] = { 0x20, 16 },
349 [SCLSR] = { 0x24, 16 },
350 [SCDL] = { 0x30, 16 },
351 [SCCKS] = { 0x34, 16 },
352 },
353 .fifosize = 16,
354 .overrun_reg = SCLSR,
355 .overrun_mask = SCLSR_ORER,
356 .sampling_rate_mask = SCI_SR(32),
357 .error_mask = SCIF_DEFAULT_ERROR_MASK,
358 .error_clear = SCIF_ERROR_CLEAR,
359 },
360
361 /*
362 * Common HSCIF definitions.
363 */
364 [SCIx_HSCIF_REGTYPE] = {
365 .regs = {
366 [SCSMR] = { 0x00, 16 },
367 [SCBRR] = { 0x04, 8 },
368 [SCSCR] = { 0x08, 16 },
369 [SCxTDR] = { 0x0c, 8 },
370 [SCxSR] = { 0x10, 16 },
371 [SCxRDR] = { 0x14, 8 },
372 [SCFCR] = { 0x18, 16 },
373 [SCFDR] = { 0x1c, 16 },
374 [SCSPTR] = { 0x20, 16 },
375 [SCLSR] = { 0x24, 16 },
376 [HSSRR] = { 0x40, 16 },
377 [SCDL] = { 0x30, 16 },
378 [SCCKS] = { 0x34, 16 },
379 [HSRTRGR] = { 0x54, 16 },
380 [HSTTRGR] = { 0x58, 16 },
381 },
382 .fifosize = 128,
383 .overrun_reg = SCLSR,
384 .overrun_mask = SCLSR_ORER,
385 .sampling_rate_mask = SCI_SR_RANGE(8, 32),
386 .error_mask = SCIF_DEFAULT_ERROR_MASK,
387 .error_clear = SCIF_ERROR_CLEAR,
388 },
389
390 /*
391 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
392 * register.
393 */
394 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
395 .regs = {
396 [SCSMR] = { 0x00, 16 },
397 [SCBRR] = { 0x04, 8 },
398 [SCSCR] = { 0x08, 16 },
399 [SCxTDR] = { 0x0c, 8 },
400 [SCxSR] = { 0x10, 16 },
401 [SCxRDR] = { 0x14, 8 },
402 [SCFCR] = { 0x18, 16 },
403 [SCFDR] = { 0x1c, 16 },
404 [SCLSR] = { 0x24, 16 },
405 },
406 .fifosize = 16,
407 .overrun_reg = SCLSR,
408 .overrun_mask = SCLSR_ORER,
409 .sampling_rate_mask = SCI_SR(32),
410 .error_mask = SCIF_DEFAULT_ERROR_MASK,
411 .error_clear = SCIF_ERROR_CLEAR,
412 },
413
414 /*
415 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
416 * count registers.
417 */
418 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
419 .regs = {
420 [SCSMR] = { 0x00, 16 },
421 [SCBRR] = { 0x04, 8 },
422 [SCSCR] = { 0x08, 16 },
423 [SCxTDR] = { 0x0c, 8 },
424 [SCxSR] = { 0x10, 16 },
425 [SCxRDR] = { 0x14, 8 },
426 [SCFCR] = { 0x18, 16 },
427 [SCFDR] = { 0x1c, 16 },
428 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
429 [SCRFDR] = { 0x20, 16 },
430 [SCSPTR] = { 0x24, 16 },
431 [SCLSR] = { 0x28, 16 },
432 },
433 .fifosize = 16,
434 .overrun_reg = SCLSR,
435 .overrun_mask = SCLSR_ORER,
436 .sampling_rate_mask = SCI_SR(32),
437 .error_mask = SCIF_DEFAULT_ERROR_MASK,
438 .error_clear = SCIF_ERROR_CLEAR,
439 },
440
441 /*
442 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
443 * registers.
444 */
445 [SCIx_SH7705_SCIF_REGTYPE] = {
446 .regs = {
447 [SCSMR] = { 0x00, 16 },
448 [SCBRR] = { 0x04, 8 },
449 [SCSCR] = { 0x08, 16 },
450 [SCxTDR] = { 0x20, 8 },
451 [SCxSR] = { 0x14, 16 },
452 [SCxRDR] = { 0x24, 8 },
453 [SCFCR] = { 0x18, 16 },
454 [SCFDR] = { 0x1c, 16 },
455 },
456 .fifosize = 64,
457 .overrun_reg = SCxSR,
458 .overrun_mask = SCIFA_ORER,
459 .sampling_rate_mask = SCI_SR(16),
460 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
461 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
462 },
463 };
464
465 #define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
466
467 /*
468 * The "offset" here is rather misleading, in that it refers to an enum
469 * value relative to the port mapping rather than the fixed offset
470 * itself, which needs to be manually retrieved from the platform's
471 * register map for the given port.
472 */
473 static unsigned int sci_serial_in(struct uart_port *p, int offset)
474 {
475 const struct plat_sci_reg *reg = sci_getreg(p, offset);
476
477 if (reg->size == 8)
478 return ioread8(p->membase + (reg->offset << p->regshift));
479 else if (reg->size == 16)
480 return ioread16(p->membase + (reg->offset << p->regshift));
481 else
482 WARN(1, "Invalid register access\n");
483
484 return 0;
485 }
486
487 static void sci_serial_out(struct uart_port *p, int offset, int value)
488 {
489 const struct plat_sci_reg *reg = sci_getreg(p, offset);
490
491 if (reg->size == 8)
492 iowrite8(value, p->membase + (reg->offset << p->regshift));
493 else if (reg->size == 16)
494 iowrite16(value, p->membase + (reg->offset << p->regshift));
495 else
496 WARN(1, "Invalid register access\n");
497 }
498
499 static void sci_port_enable(struct sci_port *sci_port)
500 {
501 unsigned int i;
502
503 if (!sci_port->port.dev)
504 return;
505
506 pm_runtime_get_sync(sci_port->port.dev);
507
508 for (i = 0; i < SCI_NUM_CLKS; i++) {
509 clk_prepare_enable(sci_port->clks[i]);
510 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
511 }
512 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
513 }
514
515 static void sci_port_disable(struct sci_port *sci_port)
516 {
517 unsigned int i;
518
519 if (!sci_port->port.dev)
520 return;
521
522 for (i = SCI_NUM_CLKS; i-- > 0; )
523 clk_disable_unprepare(sci_port->clks[i]);
524
525 pm_runtime_put_sync(sci_port->port.dev);
526 }
527
528 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
529 {
530 /*
531 * Not all ports (such as SCIFA) will support REIE. Rather than
532 * special-casing the port type, we check the port initialization
533 * IRQ enable mask to see whether the IRQ is desired at all. If
534 * it's unset, it's logically inferred that there's no point in
535 * testing for it.
536 */
537 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
538 }
539
540 static void sci_start_tx(struct uart_port *port)
541 {
542 struct sci_port *s = to_sci_port(port);
543 unsigned short ctrl;
544
545 #ifdef CONFIG_SERIAL_SH_SCI_DMA
546 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
547 u16 new, scr = serial_port_in(port, SCSCR);
548 if (s->chan_tx)
549 new = scr | SCSCR_TDRQE;
550 else
551 new = scr & ~SCSCR_TDRQE;
552 if (new != scr)
553 serial_port_out(port, SCSCR, new);
554 }
555
556 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
557 dma_submit_error(s->cookie_tx)) {
558 s->cookie_tx = 0;
559 schedule_work(&s->work_tx);
560 }
561 #endif
562
563 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
564 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
565 ctrl = serial_port_in(port, SCSCR);
566 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
567 }
568 }
569
570 static void sci_stop_tx(struct uart_port *port)
571 {
572 unsigned short ctrl;
573
574 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
575 ctrl = serial_port_in(port, SCSCR);
576
577 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
578 ctrl &= ~SCSCR_TDRQE;
579
580 ctrl &= ~SCSCR_TIE;
581
582 serial_port_out(port, SCSCR, ctrl);
583 }
584
585 static void sci_start_rx(struct uart_port *port)
586 {
587 unsigned short ctrl;
588
589 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
590
591 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
592 ctrl &= ~SCSCR_RDRQE;
593
594 serial_port_out(port, SCSCR, ctrl);
595 }
596
597 static void sci_stop_rx(struct uart_port *port)
598 {
599 unsigned short ctrl;
600
601 ctrl = serial_port_in(port, SCSCR);
602
603 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
604 ctrl &= ~SCSCR_RDRQE;
605
606 ctrl &= ~port_rx_irq_mask(port);
607
608 serial_port_out(port, SCSCR, ctrl);
609 }
610
611 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
612 {
613 if (port->type == PORT_SCI) {
614 /* Just store the mask */
615 serial_port_out(port, SCxSR, mask);
616 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
617 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
618 /* Only clear the status bits we want to clear */
619 serial_port_out(port, SCxSR,
620 serial_port_in(port, SCxSR) & mask);
621 } else {
622 /* Store the mask, clear parity/framing errors */
623 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
624 }
625 }
626
627 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
628 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
629
630 #ifdef CONFIG_CONSOLE_POLL
631 static int sci_poll_get_char(struct uart_port *port)
632 {
633 unsigned short status;
634 int c;
635
636 do {
637 status = serial_port_in(port, SCxSR);
638 if (status & SCxSR_ERRORS(port)) {
639 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
640 continue;
641 }
642 break;
643 } while (1);
644
645 if (!(status & SCxSR_RDxF(port)))
646 return NO_POLL_CHAR;
647
648 c = serial_port_in(port, SCxRDR);
649
650 /* Dummy read */
651 serial_port_in(port, SCxSR);
652 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
653
654 return c;
655 }
656 #endif
657
658 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
659 {
660 unsigned short status;
661
662 do {
663 status = serial_port_in(port, SCxSR);
664 } while (!(status & SCxSR_TDxE(port)));
665
666 serial_port_out(port, SCxTDR, c);
667 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
668 }
669 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
670 CONFIG_SERIAL_SH_SCI_EARLYCON */
671
672 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
673 {
674 struct sci_port *s = to_sci_port(port);
675
676 /*
677 * Use port-specific handler if provided.
678 */
679 if (s->cfg->ops && s->cfg->ops->init_pins) {
680 s->cfg->ops->init_pins(port, cflag);
681 return;
682 }
683
684 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
685 u16 data = serial_port_in(port, SCPDR);
686 u16 ctrl = serial_port_in(port, SCPCR);
687
688 /* Enable RXD and TXD pin functions */
689 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
690 if (to_sci_port(port)->has_rtscts) {
691 /* RTS# is output, active low, unless autorts */
692 if (!(port->mctrl & TIOCM_RTS)) {
693 ctrl |= SCPCR_RTSC;
694 data |= SCPDR_RTSD;
695 } else if (!s->autorts) {
696 ctrl |= SCPCR_RTSC;
697 data &= ~SCPDR_RTSD;
698 } else {
699 /* Enable RTS# pin function */
700 ctrl &= ~SCPCR_RTSC;
701 }
702 /* Enable CTS# pin function */
703 ctrl &= ~SCPCR_CTSC;
704 }
705 serial_port_out(port, SCPDR, data);
706 serial_port_out(port, SCPCR, ctrl);
707 } else if (sci_getreg(port, SCSPTR)->size) {
708 u16 status = serial_port_in(port, SCSPTR);
709
710 /* RTS# is always output; and active low, unless autorts */
711 status |= SCSPTR_RTSIO;
712 if (!(port->mctrl & TIOCM_RTS))
713 status |= SCSPTR_RTSDT;
714 else if (!s->autorts)
715 status &= ~SCSPTR_RTSDT;
716 /* CTS# and SCK are inputs */
717 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
718 serial_port_out(port, SCSPTR, status);
719 }
720 }
721
722 static int sci_txfill(struct uart_port *port)
723 {
724 struct sci_port *s = to_sci_port(port);
725 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
726 const struct plat_sci_reg *reg;
727
728 reg = sci_getreg(port, SCTFDR);
729 if (reg->size)
730 return serial_port_in(port, SCTFDR) & fifo_mask;
731
732 reg = sci_getreg(port, SCFDR);
733 if (reg->size)
734 return serial_port_in(port, SCFDR) >> 8;
735
736 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
737 }
738
739 static int sci_txroom(struct uart_port *port)
740 {
741 return port->fifosize - sci_txfill(port);
742 }
743
744 static int sci_rxfill(struct uart_port *port)
745 {
746 struct sci_port *s = to_sci_port(port);
747 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
748 const struct plat_sci_reg *reg;
749
750 reg = sci_getreg(port, SCRFDR);
751 if (reg->size)
752 return serial_port_in(port, SCRFDR) & fifo_mask;
753
754 reg = sci_getreg(port, SCFDR);
755 if (reg->size)
756 return serial_port_in(port, SCFDR) & fifo_mask;
757
758 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
759 }
760
761 /* ********************************************************************** *
762 * the interrupt related routines *
763 * ********************************************************************** */
764
765 static void sci_transmit_chars(struct uart_port *port)
766 {
767 struct circ_buf *xmit = &port->state->xmit;
768 unsigned int stopped = uart_tx_stopped(port);
769 unsigned short status;
770 unsigned short ctrl;
771 int count;
772
773 status = serial_port_in(port, SCxSR);
774 if (!(status & SCxSR_TDxE(port))) {
775 ctrl = serial_port_in(port, SCSCR);
776 if (uart_circ_empty(xmit))
777 ctrl &= ~SCSCR_TIE;
778 else
779 ctrl |= SCSCR_TIE;
780 serial_port_out(port, SCSCR, ctrl);
781 return;
782 }
783
784 count = sci_txroom(port);
785
786 do {
787 unsigned char c;
788
789 if (port->x_char) {
790 c = port->x_char;
791 port->x_char = 0;
792 } else if (!uart_circ_empty(xmit) && !stopped) {
793 c = xmit->buf[xmit->tail];
794 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
795 } else {
796 break;
797 }
798
799 serial_port_out(port, SCxTDR, c);
800
801 port->icount.tx++;
802 } while (--count > 0);
803
804 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
805
806 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
807 uart_write_wakeup(port);
808 if (uart_circ_empty(xmit)) {
809 sci_stop_tx(port);
810 } else {
811 ctrl = serial_port_in(port, SCSCR);
812
813 if (port->type != PORT_SCI) {
814 serial_port_in(port, SCxSR); /* Dummy read */
815 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
816 }
817
818 ctrl |= SCSCR_TIE;
819 serial_port_out(port, SCSCR, ctrl);
820 }
821 }
822
823 /* On SH3, SCIF may read end-of-break as a space->mark char */
824 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
825
826 static void sci_receive_chars(struct uart_port *port)
827 {
828 struct tty_port *tport = &port->state->port;
829 int i, count, copied = 0;
830 unsigned short status;
831 unsigned char flag;
832
833 status = serial_port_in(port, SCxSR);
834 if (!(status & SCxSR_RDxF(port)))
835 return;
836
837 while (1) {
838 /* Don't copy more bytes than there is room for in the buffer */
839 count = tty_buffer_request_room(tport, sci_rxfill(port));
840
841 /* If for any reason we can't copy more data, we're done! */
842 if (count == 0)
843 break;
844
845 if (port->type == PORT_SCI) {
846 char c = serial_port_in(port, SCxRDR);
847 if (uart_handle_sysrq_char(port, c))
848 count = 0;
849 else
850 tty_insert_flip_char(tport, c, TTY_NORMAL);
851 } else {
852 for (i = 0; i < count; i++) {
853 char c = serial_port_in(port, SCxRDR);
854
855 status = serial_port_in(port, SCxSR);
856 if (uart_handle_sysrq_char(port, c)) {
857 count--; i--;
858 continue;
859 }
860
861 /* Store data and status */
862 if (status & SCxSR_FER(port)) {
863 flag = TTY_FRAME;
864 port->icount.frame++;
865 dev_notice(port->dev, "frame error\n");
866 } else if (status & SCxSR_PER(port)) {
867 flag = TTY_PARITY;
868 port->icount.parity++;
869 dev_notice(port->dev, "parity error\n");
870 } else
871 flag = TTY_NORMAL;
872
873 tty_insert_flip_char(tport, c, flag);
874 }
875 }
876
877 serial_port_in(port, SCxSR); /* dummy read */
878 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
879
880 copied += count;
881 port->icount.rx += count;
882 }
883
884 if (copied) {
885 /* Tell the rest of the system the news. New characters! */
886 tty_flip_buffer_push(tport);
887 } else {
888 serial_port_in(port, SCxSR); /* dummy read */
889 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
890 }
891 }
892
893 static int sci_handle_errors(struct uart_port *port)
894 {
895 int copied = 0;
896 unsigned short status = serial_port_in(port, SCxSR);
897 struct tty_port *tport = &port->state->port;
898 struct sci_port *s = to_sci_port(port);
899
900 /* Handle overruns */
901 if (status & s->params->overrun_mask) {
902 port->icount.overrun++;
903
904 /* overrun error */
905 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
906 copied++;
907
908 dev_notice(port->dev, "overrun error\n");
909 }
910
911 if (status & SCxSR_FER(port)) {
912 /* frame error */
913 port->icount.frame++;
914
915 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
916 copied++;
917
918 dev_notice(port->dev, "frame error\n");
919 }
920
921 if (status & SCxSR_PER(port)) {
922 /* parity error */
923 port->icount.parity++;
924
925 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
926 copied++;
927
928 dev_notice(port->dev, "parity error\n");
929 }
930
931 if (copied)
932 tty_flip_buffer_push(tport);
933
934 return copied;
935 }
936
937 static int sci_handle_fifo_overrun(struct uart_port *port)
938 {
939 struct tty_port *tport = &port->state->port;
940 struct sci_port *s = to_sci_port(port);
941 const struct plat_sci_reg *reg;
942 int copied = 0;
943 u16 status;
944
945 reg = sci_getreg(port, s->params->overrun_reg);
946 if (!reg->size)
947 return 0;
948
949 status = serial_port_in(port, s->params->overrun_reg);
950 if (status & s->params->overrun_mask) {
951 status &= ~s->params->overrun_mask;
952 serial_port_out(port, s->params->overrun_reg, status);
953
954 port->icount.overrun++;
955
956 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
957 tty_flip_buffer_push(tport);
958
959 dev_dbg(port->dev, "overrun error\n");
960 copied++;
961 }
962
963 return copied;
964 }
965
966 static int sci_handle_breaks(struct uart_port *port)
967 {
968 int copied = 0;
969 unsigned short status = serial_port_in(port, SCxSR);
970 struct tty_port *tport = &port->state->port;
971
972 if (uart_handle_break(port))
973 return 0;
974
975 if (status & SCxSR_BRK(port)) {
976 port->icount.brk++;
977
978 /* Notify of BREAK */
979 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
980 copied++;
981
982 dev_dbg(port->dev, "BREAK detected\n");
983 }
984
985 if (copied)
986 tty_flip_buffer_push(tport);
987
988 copied += sci_handle_fifo_overrun(port);
989
990 return copied;
991 }
992
993 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
994 {
995 unsigned int bits;
996
997 if (rx_trig < 1)
998 rx_trig = 1;
999 if (rx_trig >= port->fifosize)
1000 rx_trig = port->fifosize;
1001
1002 /* HSCIF can be set to an arbitrary level. */
1003 if (sci_getreg(port, HSRTRGR)->size) {
1004 serial_port_out(port, HSRTRGR, rx_trig);
1005 return rx_trig;
1006 }
1007
1008 switch (port->type) {
1009 case PORT_SCIF:
1010 if (rx_trig < 4) {
1011 bits = 0;
1012 rx_trig = 1;
1013 } else if (rx_trig < 8) {
1014 bits = SCFCR_RTRG0;
1015 rx_trig = 4;
1016 } else if (rx_trig < 14) {
1017 bits = SCFCR_RTRG1;
1018 rx_trig = 8;
1019 } else {
1020 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1021 rx_trig = 14;
1022 }
1023 break;
1024 case PORT_SCIFA:
1025 case PORT_SCIFB:
1026 if (rx_trig < 16) {
1027 bits = 0;
1028 rx_trig = 1;
1029 } else if (rx_trig < 32) {
1030 bits = SCFCR_RTRG0;
1031 rx_trig = 16;
1032 } else if (rx_trig < 48) {
1033 bits = SCFCR_RTRG1;
1034 rx_trig = 32;
1035 } else {
1036 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1037 rx_trig = 48;
1038 }
1039 break;
1040 default:
1041 WARN(1, "unknown FIFO configuration");
1042 return 1;
1043 }
1044
1045 serial_port_out(port, SCFCR,
1046 (serial_port_in(port, SCFCR) &
1047 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1048
1049 return rx_trig;
1050 }
1051
1052 static int scif_rtrg_enabled(struct uart_port *port)
1053 {
1054 if (sci_getreg(port, HSRTRGR)->size)
1055 return serial_port_in(port, HSRTRGR) != 0;
1056 else
1057 return (serial_port_in(port, SCFCR) &
1058 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1059 }
1060
1061 static void rx_fifo_timer_fn(struct timer_list *t)
1062 {
1063 struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1064 struct uart_port *port = &s->port;
1065
1066 dev_dbg(port->dev, "Rx timed out\n");
1067 scif_set_rtrg(port, 1);
1068 }
1069
1070 static ssize_t rx_trigger_show(struct device *dev,
1071 struct device_attribute *attr,
1072 char *buf)
1073 {
1074 struct uart_port *port = dev_get_drvdata(dev);
1075 struct sci_port *sci = to_sci_port(port);
1076
1077 return sprintf(buf, "%d\n", sci->rx_trigger);
1078 }
1079
1080 static ssize_t rx_trigger_store(struct device *dev,
1081 struct device_attribute *attr,
1082 const char *buf,
1083 size_t count)
1084 {
1085 struct uart_port *port = dev_get_drvdata(dev);
1086 struct sci_port *sci = to_sci_port(port);
1087 int ret;
1088 long r;
1089
1090 ret = kstrtol(buf, 0, &r);
1091 if (ret)
1092 return ret;
1093
1094 sci->rx_trigger = scif_set_rtrg(port, r);
1095 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1096 scif_set_rtrg(port, 1);
1097
1098 return count;
1099 }
1100
1101 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1102
1103 static ssize_t rx_fifo_timeout_show(struct device *dev,
1104 struct device_attribute *attr,
1105 char *buf)
1106 {
1107 struct uart_port *port = dev_get_drvdata(dev);
1108 struct sci_port *sci = to_sci_port(port);
1109 int v;
1110
1111 if (port->type == PORT_HSCIF)
1112 v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1113 else
1114 v = sci->rx_fifo_timeout;
1115
1116 return sprintf(buf, "%d\n", v);
1117 }
1118
1119 static ssize_t rx_fifo_timeout_store(struct device *dev,
1120 struct device_attribute *attr,
1121 const char *buf,
1122 size_t count)
1123 {
1124 struct uart_port *port = dev_get_drvdata(dev);
1125 struct sci_port *sci = to_sci_port(port);
1126 int ret;
1127 long r;
1128
1129 ret = kstrtol(buf, 0, &r);
1130 if (ret)
1131 return ret;
1132
1133 if (port->type == PORT_HSCIF) {
1134 if (r < 0 || r > 3)
1135 return -EINVAL;
1136 sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1137 } else {
1138 sci->rx_fifo_timeout = r;
1139 scif_set_rtrg(port, 1);
1140 if (r > 0)
1141 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1142 }
1143
1144 return count;
1145 }
1146
1147 static DEVICE_ATTR(rx_fifo_timeout, 0644, rx_fifo_timeout_show, rx_fifo_timeout_store);
1148
1149
1150 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1151 static void sci_dma_tx_complete(void *arg)
1152 {
1153 struct sci_port *s = arg;
1154 struct uart_port *port = &s->port;
1155 struct circ_buf *xmit = &port->state->xmit;
1156 unsigned long flags;
1157
1158 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1159
1160 spin_lock_irqsave(&port->lock, flags);
1161
1162 xmit->tail += s->tx_dma_len;
1163 xmit->tail &= UART_XMIT_SIZE - 1;
1164
1165 port->icount.tx += s->tx_dma_len;
1166
1167 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1168 uart_write_wakeup(port);
1169
1170 if (!uart_circ_empty(xmit)) {
1171 s->cookie_tx = 0;
1172 schedule_work(&s->work_tx);
1173 } else {
1174 s->cookie_tx = -EINVAL;
1175 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1176 u16 ctrl = serial_port_in(port, SCSCR);
1177 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1178 }
1179 }
1180
1181 spin_unlock_irqrestore(&port->lock, flags);
1182 }
1183
1184 /* Locking: called with port lock held */
1185 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1186 {
1187 struct uart_port *port = &s->port;
1188 struct tty_port *tport = &port->state->port;
1189 int copied;
1190
1191 copied = tty_insert_flip_string(tport, buf, count);
1192 if (copied < count)
1193 port->icount.buf_overrun++;
1194
1195 port->icount.rx += copied;
1196
1197 return copied;
1198 }
1199
1200 static int sci_dma_rx_find_active(struct sci_port *s)
1201 {
1202 unsigned int i;
1203
1204 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1205 if (s->active_rx == s->cookie_rx[i])
1206 return i;
1207
1208 return -1;
1209 }
1210
1211 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1212 {
1213 struct dma_chan *chan = s->chan_rx;
1214 struct uart_port *port = &s->port;
1215 unsigned long flags;
1216
1217 spin_lock_irqsave(&port->lock, flags);
1218 s->chan_rx = NULL;
1219 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1220 spin_unlock_irqrestore(&port->lock, flags);
1221 dmaengine_terminate_all(chan);
1222 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1223 sg_dma_address(&s->sg_rx[0]));
1224 dma_release_channel(chan);
1225 if (enable_pio) {
1226 spin_lock_irqsave(&port->lock, flags);
1227 sci_start_rx(port);
1228 spin_unlock_irqrestore(&port->lock, flags);
1229 }
1230 }
1231
1232 static void sci_dma_rx_complete(void *arg)
1233 {
1234 struct sci_port *s = arg;
1235 struct dma_chan *chan = s->chan_rx;
1236 struct uart_port *port = &s->port;
1237 struct dma_async_tx_descriptor *desc;
1238 unsigned long flags;
1239 int active, count = 0;
1240
1241 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1242 s->active_rx);
1243
1244 spin_lock_irqsave(&port->lock, flags);
1245
1246 active = sci_dma_rx_find_active(s);
1247 if (active >= 0)
1248 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1249
1250 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1251
1252 if (count)
1253 tty_flip_buffer_push(&port->state->port);
1254
1255 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1256 DMA_DEV_TO_MEM,
1257 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1258 if (!desc)
1259 goto fail;
1260
1261 desc->callback = sci_dma_rx_complete;
1262 desc->callback_param = s;
1263 s->cookie_rx[active] = dmaengine_submit(desc);
1264 if (dma_submit_error(s->cookie_rx[active]))
1265 goto fail;
1266
1267 s->active_rx = s->cookie_rx[!active];
1268
1269 dma_async_issue_pending(chan);
1270
1271 spin_unlock_irqrestore(&port->lock, flags);
1272 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1273 __func__, s->cookie_rx[active], active, s->active_rx);
1274 return;
1275
1276 fail:
1277 spin_unlock_irqrestore(&port->lock, flags);
1278 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1279 sci_rx_dma_release(s, true);
1280 }
1281
1282 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1283 {
1284 struct dma_chan *chan = s->chan_tx;
1285 struct uart_port *port = &s->port;
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&port->lock, flags);
1289 s->chan_tx = NULL;
1290 s->cookie_tx = -EINVAL;
1291 spin_unlock_irqrestore(&port->lock, flags);
1292 dmaengine_terminate_all(chan);
1293 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1294 DMA_TO_DEVICE);
1295 dma_release_channel(chan);
1296 if (enable_pio) {
1297 spin_lock_irqsave(&port->lock, flags);
1298 sci_start_tx(port);
1299 spin_unlock_irqrestore(&port->lock, flags);
1300 }
1301 }
1302
1303 static void sci_submit_rx(struct sci_port *s)
1304 {
1305 struct dma_chan *chan = s->chan_rx;
1306 int i;
1307
1308 for (i = 0; i < 2; i++) {
1309 struct scatterlist *sg = &s->sg_rx[i];
1310 struct dma_async_tx_descriptor *desc;
1311
1312 desc = dmaengine_prep_slave_sg(chan,
1313 sg, 1, DMA_DEV_TO_MEM,
1314 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1315 if (!desc)
1316 goto fail;
1317
1318 desc->callback = sci_dma_rx_complete;
1319 desc->callback_param = s;
1320 s->cookie_rx[i] = dmaengine_submit(desc);
1321 if (dma_submit_error(s->cookie_rx[i]))
1322 goto fail;
1323
1324 }
1325
1326 s->active_rx = s->cookie_rx[0];
1327
1328 dma_async_issue_pending(chan);
1329 return;
1330
1331 fail:
1332 if (i)
1333 dmaengine_terminate_all(chan);
1334 for (i = 0; i < 2; i++)
1335 s->cookie_rx[i] = -EINVAL;
1336 s->active_rx = -EINVAL;
1337 sci_rx_dma_release(s, true);
1338 }
1339
1340 static void work_fn_tx(struct work_struct *work)
1341 {
1342 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1343 struct dma_async_tx_descriptor *desc;
1344 struct dma_chan *chan = s->chan_tx;
1345 struct uart_port *port = &s->port;
1346 struct circ_buf *xmit = &port->state->xmit;
1347 dma_addr_t buf;
1348
1349 /*
1350 * DMA is idle now.
1351 * Port xmit buffer is already mapped, and it is one page... Just adjust
1352 * offsets and lengths. Since it is a circular buffer, we have to
1353 * transmit till the end, and then the rest. Take the port lock to get a
1354 * consistent xmit buffer state.
1355 */
1356 spin_lock_irq(&port->lock);
1357 buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1358 s->tx_dma_len = min_t(unsigned int,
1359 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1360 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1361 spin_unlock_irq(&port->lock);
1362
1363 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1364 DMA_MEM_TO_DEV,
1365 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1366 if (!desc) {
1367 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1368 /* switch to PIO */
1369 sci_tx_dma_release(s, true);
1370 return;
1371 }
1372
1373 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1374 DMA_TO_DEVICE);
1375
1376 spin_lock_irq(&port->lock);
1377 desc->callback = sci_dma_tx_complete;
1378 desc->callback_param = s;
1379 spin_unlock_irq(&port->lock);
1380 s->cookie_tx = dmaengine_submit(desc);
1381 if (dma_submit_error(s->cookie_tx)) {
1382 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1383 /* switch to PIO */
1384 sci_tx_dma_release(s, true);
1385 return;
1386 }
1387
1388 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1389 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1390
1391 dma_async_issue_pending(chan);
1392 }
1393
1394 static void rx_timer_fn(struct timer_list *t)
1395 {
1396 struct sci_port *s = from_timer(s, t, rx_timer);
1397 struct dma_chan *chan = s->chan_rx;
1398 struct uart_port *port = &s->port;
1399 struct dma_tx_state state;
1400 enum dma_status status;
1401 unsigned long flags;
1402 unsigned int read;
1403 int active, count;
1404 u16 scr;
1405
1406 dev_dbg(port->dev, "DMA Rx timed out\n");
1407
1408 spin_lock_irqsave(&port->lock, flags);
1409
1410 active = sci_dma_rx_find_active(s);
1411 if (active < 0) {
1412 spin_unlock_irqrestore(&port->lock, flags);
1413 return;
1414 }
1415
1416 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1417 if (status == DMA_COMPLETE) {
1418 spin_unlock_irqrestore(&port->lock, flags);
1419 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1420 s->active_rx, active);
1421
1422 /* Let packet complete handler take care of the packet */
1423 return;
1424 }
1425
1426 dmaengine_pause(chan);
1427
1428 /*
1429 * sometimes DMA transfer doesn't stop even if it is stopped and
1430 * data keeps on coming until transaction is complete so check
1431 * for DMA_COMPLETE again
1432 * Let packet complete handler take care of the packet
1433 */
1434 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1435 if (status == DMA_COMPLETE) {
1436 spin_unlock_irqrestore(&port->lock, flags);
1437 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1438 return;
1439 }
1440
1441 /* Handle incomplete DMA receive */
1442 dmaengine_terminate_all(s->chan_rx);
1443 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1444
1445 if (read) {
1446 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1447 if (count)
1448 tty_flip_buffer_push(&port->state->port);
1449 }
1450
1451 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1452 sci_submit_rx(s);
1453
1454 /* Direct new serial port interrupts back to CPU */
1455 scr = serial_port_in(port, SCSCR);
1456 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1457 scr &= ~SCSCR_RDRQE;
1458 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1459 }
1460 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1461
1462 spin_unlock_irqrestore(&port->lock, flags);
1463 }
1464
1465 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1466 enum dma_transfer_direction dir)
1467 {
1468 struct dma_chan *chan;
1469 struct dma_slave_config cfg;
1470 int ret;
1471
1472 chan = dma_request_slave_channel(port->dev,
1473 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1474 if (!chan) {
1475 dev_warn(port->dev, "dma_request_slave_channel failed\n");
1476 return NULL;
1477 }
1478
1479 memset(&cfg, 0, sizeof(cfg));
1480 cfg.direction = dir;
1481 if (dir == DMA_MEM_TO_DEV) {
1482 cfg.dst_addr = port->mapbase +
1483 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1484 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1485 } else {
1486 cfg.src_addr = port->mapbase +
1487 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1488 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1489 }
1490
1491 ret = dmaengine_slave_config(chan, &cfg);
1492 if (ret) {
1493 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1494 dma_release_channel(chan);
1495 return NULL;
1496 }
1497
1498 return chan;
1499 }
1500
1501 static void sci_request_dma(struct uart_port *port)
1502 {
1503 struct sci_port *s = to_sci_port(port);
1504 struct dma_chan *chan;
1505
1506 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1507
1508 if (!port->dev->of_node)
1509 return;
1510
1511 s->cookie_tx = -EINVAL;
1512
1513 /*
1514 * Don't request a dma channel if no channel was specified
1515 * in the device tree.
1516 */
1517 if (!of_find_property(port->dev->of_node, "dmas", NULL))
1518 return;
1519
1520 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1521 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1522 if (chan) {
1523 s->chan_tx = chan;
1524 /* UART circular tx buffer is an aligned page. */
1525 s->tx_dma_addr = dma_map_single(chan->device->dev,
1526 port->state->xmit.buf,
1527 UART_XMIT_SIZE,
1528 DMA_TO_DEVICE);
1529 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1530 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1531 dma_release_channel(chan);
1532 s->chan_tx = NULL;
1533 } else {
1534 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1535 __func__, UART_XMIT_SIZE,
1536 port->state->xmit.buf, &s->tx_dma_addr);
1537 }
1538
1539 INIT_WORK(&s->work_tx, work_fn_tx);
1540 }
1541
1542 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1543 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1544 if (chan) {
1545 unsigned int i;
1546 dma_addr_t dma;
1547 void *buf;
1548
1549 s->chan_rx = chan;
1550
1551 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1552 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1553 &dma, GFP_KERNEL);
1554 if (!buf) {
1555 dev_warn(port->dev,
1556 "Failed to allocate Rx dma buffer, using PIO\n");
1557 dma_release_channel(chan);
1558 s->chan_rx = NULL;
1559 return;
1560 }
1561
1562 for (i = 0; i < 2; i++) {
1563 struct scatterlist *sg = &s->sg_rx[i];
1564
1565 sg_init_table(sg, 1);
1566 s->rx_buf[i] = buf;
1567 sg_dma_address(sg) = dma;
1568 sg_dma_len(sg) = s->buf_len_rx;
1569
1570 buf += s->buf_len_rx;
1571 dma += s->buf_len_rx;
1572 }
1573
1574 timer_setup(&s->rx_timer, rx_timer_fn, 0);
1575
1576 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1577 sci_submit_rx(s);
1578 }
1579 }
1580
1581 static void sci_free_dma(struct uart_port *port)
1582 {
1583 struct sci_port *s = to_sci_port(port);
1584
1585 if (s->chan_tx)
1586 sci_tx_dma_release(s, false);
1587 if (s->chan_rx)
1588 sci_rx_dma_release(s, false);
1589 }
1590
1591 static void sci_flush_buffer(struct uart_port *port)
1592 {
1593 /*
1594 * In uart_flush_buffer(), the xmit circular buffer has just been
1595 * cleared, so we have to reset tx_dma_len accordingly.
1596 */
1597 to_sci_port(port)->tx_dma_len = 0;
1598 }
1599 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1600 static inline void sci_request_dma(struct uart_port *port)
1601 {
1602 }
1603
1604 static inline void sci_free_dma(struct uart_port *port)
1605 {
1606 }
1607
1608 #define sci_flush_buffer NULL
1609 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1610
1611 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1612 {
1613 struct uart_port *port = ptr;
1614 struct sci_port *s = to_sci_port(port);
1615
1616 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1617 if (s->chan_rx) {
1618 u16 scr = serial_port_in(port, SCSCR);
1619 u16 ssr = serial_port_in(port, SCxSR);
1620
1621 /* Disable future Rx interrupts */
1622 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1623 disable_irq_nosync(irq);
1624 scr |= SCSCR_RDRQE;
1625 } else {
1626 scr &= ~SCSCR_RIE;
1627 sci_submit_rx(s);
1628 }
1629 serial_port_out(port, SCSCR, scr);
1630 /* Clear current interrupt */
1631 serial_port_out(port, SCxSR,
1632 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1633 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1634 jiffies, s->rx_timeout);
1635 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1636
1637 return IRQ_HANDLED;
1638 }
1639 #endif
1640
1641 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1642 if (!scif_rtrg_enabled(port))
1643 scif_set_rtrg(port, s->rx_trigger);
1644
1645 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1646 s->rx_frame * s->rx_fifo_timeout, 1000));
1647 }
1648
1649 /* I think sci_receive_chars has to be called irrespective
1650 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1651 * to be disabled?
1652 */
1653 sci_receive_chars(ptr);
1654
1655 return IRQ_HANDLED;
1656 }
1657
1658 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1659 {
1660 struct uart_port *port = ptr;
1661 unsigned long flags;
1662
1663 spin_lock_irqsave(&port->lock, flags);
1664 sci_transmit_chars(port);
1665 spin_unlock_irqrestore(&port->lock, flags);
1666
1667 return IRQ_HANDLED;
1668 }
1669
1670 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1671 {
1672 struct uart_port *port = ptr;
1673 struct sci_port *s = to_sci_port(port);
1674
1675 /* Handle errors */
1676 if (port->type == PORT_SCI) {
1677 if (sci_handle_errors(port)) {
1678 /* discard character in rx buffer */
1679 serial_port_in(port, SCxSR);
1680 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1681 }
1682 } else {
1683 sci_handle_fifo_overrun(port);
1684 if (!s->chan_rx)
1685 sci_receive_chars(ptr);
1686 }
1687
1688 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1689
1690 /* Kick the transmission */
1691 if (!s->chan_tx)
1692 sci_tx_interrupt(irq, ptr);
1693
1694 return IRQ_HANDLED;
1695 }
1696
1697 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1698 {
1699 struct uart_port *port = ptr;
1700
1701 /* Handle BREAKs */
1702 sci_handle_breaks(port);
1703 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1704
1705 return IRQ_HANDLED;
1706 }
1707
1708 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1709 {
1710 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1711 struct uart_port *port = ptr;
1712 struct sci_port *s = to_sci_port(port);
1713 irqreturn_t ret = IRQ_NONE;
1714
1715 ssr_status = serial_port_in(port, SCxSR);
1716 scr_status = serial_port_in(port, SCSCR);
1717 if (s->params->overrun_reg == SCxSR)
1718 orer_status = ssr_status;
1719 else if (sci_getreg(port, s->params->overrun_reg)->size)
1720 orer_status = serial_port_in(port, s->params->overrun_reg);
1721
1722 err_enabled = scr_status & port_rx_irq_mask(port);
1723
1724 /* Tx Interrupt */
1725 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1726 !s->chan_tx)
1727 ret = sci_tx_interrupt(irq, ptr);
1728
1729 /*
1730 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1731 * DR flags
1732 */
1733 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1734 (scr_status & SCSCR_RIE))
1735 ret = sci_rx_interrupt(irq, ptr);
1736
1737 /* Error Interrupt */
1738 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1739 ret = sci_er_interrupt(irq, ptr);
1740
1741 /* Break Interrupt */
1742 if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1743 ret = sci_br_interrupt(irq, ptr);
1744
1745 /* Overrun Interrupt */
1746 if (orer_status & s->params->overrun_mask) {
1747 sci_handle_fifo_overrun(port);
1748 ret = IRQ_HANDLED;
1749 }
1750
1751 return ret;
1752 }
1753
1754 static const struct sci_irq_desc {
1755 const char *desc;
1756 irq_handler_t handler;
1757 } sci_irq_desc[] = {
1758 /*
1759 * Split out handlers, the default case.
1760 */
1761 [SCIx_ERI_IRQ] = {
1762 .desc = "rx err",
1763 .handler = sci_er_interrupt,
1764 },
1765
1766 [SCIx_RXI_IRQ] = {
1767 .desc = "rx full",
1768 .handler = sci_rx_interrupt,
1769 },
1770
1771 [SCIx_TXI_IRQ] = {
1772 .desc = "tx empty",
1773 .handler = sci_tx_interrupt,
1774 },
1775
1776 [SCIx_BRI_IRQ] = {
1777 .desc = "break",
1778 .handler = sci_br_interrupt,
1779 },
1780
1781 /*
1782 * Special muxed handler.
1783 */
1784 [SCIx_MUX_IRQ] = {
1785 .desc = "mux",
1786 .handler = sci_mpxed_interrupt,
1787 },
1788 };
1789
1790 static int sci_request_irq(struct sci_port *port)
1791 {
1792 struct uart_port *up = &port->port;
1793 int i, j, ret = 0;
1794
1795 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1796 const struct sci_irq_desc *desc;
1797 int irq;
1798
1799 if (SCIx_IRQ_IS_MUXED(port)) {
1800 i = SCIx_MUX_IRQ;
1801 irq = up->irq;
1802 } else {
1803 irq = port->irqs[i];
1804
1805 /*
1806 * Certain port types won't support all of the
1807 * available interrupt sources.
1808 */
1809 if (unlikely(irq < 0))
1810 continue;
1811 }
1812
1813 desc = sci_irq_desc + i;
1814 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1815 dev_name(up->dev), desc->desc);
1816 if (!port->irqstr[j]) {
1817 ret = -ENOMEM;
1818 goto out_nomem;
1819 }
1820
1821 ret = request_irq(irq, desc->handler, up->irqflags,
1822 port->irqstr[j], port);
1823 if (unlikely(ret)) {
1824 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1825 goto out_noirq;
1826 }
1827 }
1828
1829 return 0;
1830
1831 out_noirq:
1832 while (--i >= 0)
1833 free_irq(port->irqs[i], port);
1834
1835 out_nomem:
1836 while (--j >= 0)
1837 kfree(port->irqstr[j]);
1838
1839 return ret;
1840 }
1841
1842 static void sci_free_irq(struct sci_port *port)
1843 {
1844 int i;
1845
1846 /*
1847 * Intentionally in reverse order so we iterate over the muxed
1848 * IRQ first.
1849 */
1850 for (i = 0; i < SCIx_NR_IRQS; i++) {
1851 int irq = port->irqs[i];
1852
1853 /*
1854 * Certain port types won't support all of the available
1855 * interrupt sources.
1856 */
1857 if (unlikely(irq < 0))
1858 continue;
1859
1860 free_irq(port->irqs[i], port);
1861 kfree(port->irqstr[i]);
1862
1863 if (SCIx_IRQ_IS_MUXED(port)) {
1864 /* If there's only one IRQ, we're done. */
1865 return;
1866 }
1867 }
1868 }
1869
1870 static unsigned int sci_tx_empty(struct uart_port *port)
1871 {
1872 unsigned short status = serial_port_in(port, SCxSR);
1873 unsigned short in_tx_fifo = sci_txfill(port);
1874
1875 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1876 }
1877
1878 static void sci_set_rts(struct uart_port *port, bool state)
1879 {
1880 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1881 u16 data = serial_port_in(port, SCPDR);
1882
1883 /* Active low */
1884 if (state)
1885 data &= ~SCPDR_RTSD;
1886 else
1887 data |= SCPDR_RTSD;
1888 serial_port_out(port, SCPDR, data);
1889
1890 /* RTS# is output */
1891 serial_port_out(port, SCPCR,
1892 serial_port_in(port, SCPCR) | SCPCR_RTSC);
1893 } else if (sci_getreg(port, SCSPTR)->size) {
1894 u16 ctrl = serial_port_in(port, SCSPTR);
1895
1896 /* Active low */
1897 if (state)
1898 ctrl &= ~SCSPTR_RTSDT;
1899 else
1900 ctrl |= SCSPTR_RTSDT;
1901 serial_port_out(port, SCSPTR, ctrl);
1902 }
1903 }
1904
1905 static bool sci_get_cts(struct uart_port *port)
1906 {
1907 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1908 /* Active low */
1909 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1910 } else if (sci_getreg(port, SCSPTR)->size) {
1911 /* Active low */
1912 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1913 }
1914
1915 return true;
1916 }
1917
1918 /*
1919 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1920 * CTS/RTS is supported in hardware by at least one port and controlled
1921 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1922 * handled via the ->init_pins() op, which is a bit of a one-way street,
1923 * lacking any ability to defer pin control -- this will later be
1924 * converted over to the GPIO framework).
1925 *
1926 * Other modes (such as loopback) are supported generically on certain
1927 * port types, but not others. For these it's sufficient to test for the
1928 * existence of the support register and simply ignore the port type.
1929 */
1930 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1931 {
1932 struct sci_port *s = to_sci_port(port);
1933
1934 if (mctrl & TIOCM_LOOP) {
1935 const struct plat_sci_reg *reg;
1936
1937 /*
1938 * Standard loopback mode for SCFCR ports.
1939 */
1940 reg = sci_getreg(port, SCFCR);
1941 if (reg->size)
1942 serial_port_out(port, SCFCR,
1943 serial_port_in(port, SCFCR) |
1944 SCFCR_LOOP);
1945 }
1946
1947 mctrl_gpio_set(s->gpios, mctrl);
1948
1949 if (!s->has_rtscts)
1950 return;
1951
1952 if (!(mctrl & TIOCM_RTS)) {
1953 /* Disable Auto RTS */
1954 serial_port_out(port, SCFCR,
1955 serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1956
1957 /* Clear RTS */
1958 sci_set_rts(port, 0);
1959 } else if (s->autorts) {
1960 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1961 /* Enable RTS# pin function */
1962 serial_port_out(port, SCPCR,
1963 serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1964 }
1965
1966 /* Enable Auto RTS */
1967 serial_port_out(port, SCFCR,
1968 serial_port_in(port, SCFCR) | SCFCR_MCE);
1969 } else {
1970 /* Set RTS */
1971 sci_set_rts(port, 1);
1972 }
1973 }
1974
1975 static unsigned int sci_get_mctrl(struct uart_port *port)
1976 {
1977 struct sci_port *s = to_sci_port(port);
1978 struct mctrl_gpios *gpios = s->gpios;
1979 unsigned int mctrl = 0;
1980
1981 mctrl_gpio_get(gpios, &mctrl);
1982
1983 /*
1984 * CTS/RTS is handled in hardware when supported, while nothing
1985 * else is wired up.
1986 */
1987 if (s->autorts) {
1988 if (sci_get_cts(port))
1989 mctrl |= TIOCM_CTS;
1990 } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1991 mctrl |= TIOCM_CTS;
1992 }
1993 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1994 mctrl |= TIOCM_DSR;
1995 if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1996 mctrl |= TIOCM_CAR;
1997
1998 return mctrl;
1999 }
2000
2001 static void sci_enable_ms(struct uart_port *port)
2002 {
2003 mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2004 }
2005
2006 static void sci_break_ctl(struct uart_port *port, int break_state)
2007 {
2008 unsigned short scscr, scsptr;
2009 unsigned long flags;
2010
2011 /* check wheter the port has SCSPTR */
2012 if (!sci_getreg(port, SCSPTR)->size) {
2013 /*
2014 * Not supported by hardware. Most parts couple break and rx
2015 * interrupts together, with break detection always enabled.
2016 */
2017 return;
2018 }
2019
2020 spin_lock_irqsave(&port->lock, flags);
2021 scsptr = serial_port_in(port, SCSPTR);
2022 scscr = serial_port_in(port, SCSCR);
2023
2024 if (break_state == -1) {
2025 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2026 scscr &= ~SCSCR_TE;
2027 } else {
2028 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2029 scscr |= SCSCR_TE;
2030 }
2031
2032 serial_port_out(port, SCSPTR, scsptr);
2033 serial_port_out(port, SCSCR, scscr);
2034 spin_unlock_irqrestore(&port->lock, flags);
2035 }
2036
2037 static int sci_startup(struct uart_port *port)
2038 {
2039 struct sci_port *s = to_sci_port(port);
2040 int ret;
2041
2042 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2043
2044 sci_request_dma(port);
2045
2046 ret = sci_request_irq(s);
2047 if (unlikely(ret < 0)) {
2048 sci_free_dma(port);
2049 return ret;
2050 }
2051
2052 return 0;
2053 }
2054
2055 static void sci_shutdown(struct uart_port *port)
2056 {
2057 struct sci_port *s = to_sci_port(port);
2058 unsigned long flags;
2059 u16 scr;
2060
2061 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2062
2063 s->autorts = false;
2064 mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2065
2066 spin_lock_irqsave(&port->lock, flags);
2067 sci_stop_rx(port);
2068 sci_stop_tx(port);
2069 /*
2070 * Stop RX and TX, disable related interrupts, keep clock source
2071 * and HSCIF TOT bits
2072 */
2073 scr = serial_port_in(port, SCSCR);
2074 serial_port_out(port, SCSCR, scr &
2075 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2076 spin_unlock_irqrestore(&port->lock, flags);
2077
2078 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2079 if (s->chan_rx) {
2080 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2081 port->line);
2082 del_timer_sync(&s->rx_timer);
2083 }
2084 #endif
2085
2086 sci_free_irq(s);
2087 sci_free_dma(port);
2088 }
2089
2090 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2091 unsigned int *srr)
2092 {
2093 unsigned long freq = s->clk_rates[SCI_SCK];
2094 int err, min_err = INT_MAX;
2095 unsigned int sr;
2096
2097 if (s->port.type != PORT_HSCIF)
2098 freq *= 2;
2099
2100 for_each_sr(sr, s) {
2101 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2102 if (abs(err) >= abs(min_err))
2103 continue;
2104
2105 min_err = err;
2106 *srr = sr - 1;
2107
2108 if (!err)
2109 break;
2110 }
2111
2112 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2113 *srr + 1);
2114 return min_err;
2115 }
2116
2117 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2118 unsigned long freq, unsigned int *dlr,
2119 unsigned int *srr)
2120 {
2121 int err, min_err = INT_MAX;
2122 unsigned int sr, dl;
2123
2124 if (s->port.type != PORT_HSCIF)
2125 freq *= 2;
2126
2127 for_each_sr(sr, s) {
2128 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2129 dl = clamp(dl, 1U, 65535U);
2130
2131 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2132 if (abs(err) >= abs(min_err))
2133 continue;
2134
2135 min_err = err;
2136 *dlr = dl;
2137 *srr = sr - 1;
2138
2139 if (!err)
2140 break;
2141 }
2142
2143 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2144 min_err, *dlr, *srr + 1);
2145 return min_err;
2146 }
2147
2148 /* calculate sample rate, BRR, and clock select */
2149 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2150 unsigned int *brr, unsigned int *srr,
2151 unsigned int *cks)
2152 {
2153 unsigned long freq = s->clk_rates[SCI_FCK];
2154 unsigned int sr, br, prediv, scrate, c;
2155 int err, min_err = INT_MAX;
2156
2157 if (s->port.type != PORT_HSCIF)
2158 freq *= 2;
2159
2160 /*
2161 * Find the combination of sample rate and clock select with the
2162 * smallest deviation from the desired baud rate.
2163 * Prefer high sample rates to maximise the receive margin.
2164 *
2165 * M: Receive margin (%)
2166 * N: Ratio of bit rate to clock (N = sampling rate)
2167 * D: Clock duty (D = 0 to 1.0)
2168 * L: Frame length (L = 9 to 12)
2169 * F: Absolute value of clock frequency deviation
2170 *
2171 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2172 * (|D - 0.5| / N * (1 + F))|
2173 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2174 */
2175 for_each_sr(sr, s) {
2176 for (c = 0; c <= 3; c++) {
2177 /* integerized formulas from HSCIF documentation */
2178 prediv = sr * (1 << (2 * c + 1));
2179
2180 /*
2181 * We need to calculate:
2182 *
2183 * br = freq / (prediv * bps) clamped to [1..256]
2184 * err = freq / (br * prediv) - bps
2185 *
2186 * Watch out for overflow when calculating the desired
2187 * sampling clock rate!
2188 */
2189 if (bps > UINT_MAX / prediv)
2190 break;
2191
2192 scrate = prediv * bps;
2193 br = DIV_ROUND_CLOSEST(freq, scrate);
2194 br = clamp(br, 1U, 256U);
2195
2196 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2197 if (abs(err) >= abs(min_err))
2198 continue;
2199
2200 min_err = err;
2201 *brr = br - 1;
2202 *srr = sr - 1;
2203 *cks = c;
2204
2205 if (!err)
2206 goto found;
2207 }
2208 }
2209
2210 found:
2211 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2212 min_err, *brr, *srr + 1, *cks);
2213 return min_err;
2214 }
2215
2216 static void sci_reset(struct uart_port *port)
2217 {
2218 const struct plat_sci_reg *reg;
2219 unsigned int status;
2220 struct sci_port *s = to_sci_port(port);
2221
2222 serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
2223
2224 reg = sci_getreg(port, SCFCR);
2225 if (reg->size)
2226 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2227
2228 sci_clear_SCxSR(port,
2229 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2230 SCxSR_BREAK_CLEAR(port));
2231 if (sci_getreg(port, SCLSR)->size) {
2232 status = serial_port_in(port, SCLSR);
2233 status &= ~(SCLSR_TO | SCLSR_ORER);
2234 serial_port_out(port, SCLSR, status);
2235 }
2236
2237 if (s->rx_trigger > 1) {
2238 if (s->rx_fifo_timeout) {
2239 scif_set_rtrg(port, 1);
2240 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2241 } else {
2242 if (port->type == PORT_SCIFA ||
2243 port->type == PORT_SCIFB)
2244 scif_set_rtrg(port, 1);
2245 else
2246 scif_set_rtrg(port, s->rx_trigger);
2247 }
2248 }
2249 }
2250
2251 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2252 struct ktermios *old)
2253 {
2254 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2255 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2256 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2257 struct sci_port *s = to_sci_port(port);
2258 const struct plat_sci_reg *reg;
2259 int min_err = INT_MAX, err;
2260 unsigned long max_freq = 0;
2261 int best_clk = -1;
2262 unsigned long flags;
2263
2264 if ((termios->c_cflag & CSIZE) == CS7)
2265 smr_val |= SCSMR_CHR;
2266 if (termios->c_cflag & PARENB)
2267 smr_val |= SCSMR_PE;
2268 if (termios->c_cflag & PARODD)
2269 smr_val |= SCSMR_PE | SCSMR_ODD;
2270 if (termios->c_cflag & CSTOPB)
2271 smr_val |= SCSMR_STOP;
2272
2273 /*
2274 * earlyprintk comes here early on with port->uartclk set to zero.
2275 * the clock framework is not up and running at this point so here
2276 * we assume that 115200 is the maximum baud rate. please note that
2277 * the baud rate is not programmed during earlyprintk - it is assumed
2278 * that the previous boot loader has enabled required clocks and
2279 * setup the baud rate generator hardware for us already.
2280 */
2281 if (!port->uartclk) {
2282 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2283 goto done;
2284 }
2285
2286 for (i = 0; i < SCI_NUM_CLKS; i++)
2287 max_freq = max(max_freq, s->clk_rates[i]);
2288
2289 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2290 if (!baud)
2291 goto done;
2292
2293 /*
2294 * There can be multiple sources for the sampling clock. Find the one
2295 * that gives us the smallest deviation from the desired baud rate.
2296 */
2297
2298 /* Optional Undivided External Clock */
2299 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2300 port->type != PORT_SCIFB) {
2301 err = sci_sck_calc(s, baud, &srr1);
2302 if (abs(err) < abs(min_err)) {
2303 best_clk = SCI_SCK;
2304 scr_val = SCSCR_CKE1;
2305 sccks = SCCKS_CKS;
2306 min_err = err;
2307 srr = srr1;
2308 if (!err)
2309 goto done;
2310 }
2311 }
2312
2313 /* Optional BRG Frequency Divided External Clock */
2314 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2315 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2316 &srr1);
2317 if (abs(err) < abs(min_err)) {
2318 best_clk = SCI_SCIF_CLK;
2319 scr_val = SCSCR_CKE1;
2320 sccks = 0;
2321 min_err = err;
2322 dl = dl1;
2323 srr = srr1;
2324 if (!err)
2325 goto done;
2326 }
2327 }
2328
2329 /* Optional BRG Frequency Divided Internal Clock */
2330 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2331 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2332 &srr1);
2333 if (abs(err) < abs(min_err)) {
2334 best_clk = SCI_BRG_INT;
2335 scr_val = SCSCR_CKE1;
2336 sccks = SCCKS_XIN;
2337 min_err = err;
2338 dl = dl1;
2339 srr = srr1;
2340 if (!min_err)
2341 goto done;
2342 }
2343 }
2344
2345 /* Divided Functional Clock using standard Bit Rate Register */
2346 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2347 if (abs(err) < abs(min_err)) {
2348 best_clk = SCI_FCK;
2349 scr_val = 0;
2350 min_err = err;
2351 brr = brr1;
2352 srr = srr1;
2353 cks = cks1;
2354 }
2355
2356 done:
2357 if (best_clk >= 0)
2358 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2359 s->clks[best_clk], baud, min_err);
2360
2361 sci_port_enable(s);
2362
2363 /*
2364 * Program the optional External Baud Rate Generator (BRG) first.
2365 * It controls the mux to select (H)SCK or frequency divided clock.
2366 */
2367 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2368 serial_port_out(port, SCDL, dl);
2369 serial_port_out(port, SCCKS, sccks);
2370 }
2371
2372 spin_lock_irqsave(&port->lock, flags);
2373
2374 sci_reset(port);
2375
2376 uart_update_timeout(port, termios->c_cflag, baud);
2377
2378 if (best_clk >= 0) {
2379 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2380 switch (srr + 1) {
2381 case 5: smr_val |= SCSMR_SRC_5; break;
2382 case 7: smr_val |= SCSMR_SRC_7; break;
2383 case 11: smr_val |= SCSMR_SRC_11; break;
2384 case 13: smr_val |= SCSMR_SRC_13; break;
2385 case 16: smr_val |= SCSMR_SRC_16; break;
2386 case 17: smr_val |= SCSMR_SRC_17; break;
2387 case 19: smr_val |= SCSMR_SRC_19; break;
2388 case 27: smr_val |= SCSMR_SRC_27; break;
2389 }
2390 smr_val |= cks;
2391 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2392 serial_port_out(port, SCSMR, smr_val);
2393 serial_port_out(port, SCBRR, brr);
2394 if (sci_getreg(port, HSSRR)->size)
2395 serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2396
2397 /* Wait one bit interval */
2398 udelay((1000000 + (baud - 1)) / baud);
2399 } else {
2400 /* Don't touch the bit rate configuration */
2401 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2402 smr_val |= serial_port_in(port, SCSMR) &
2403 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2404 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2405 serial_port_out(port, SCSMR, smr_val);
2406 }
2407
2408 sci_init_pins(port, termios->c_cflag);
2409
2410 port->status &= ~UPSTAT_AUTOCTS;
2411 s->autorts = false;
2412 reg = sci_getreg(port, SCFCR);
2413 if (reg->size) {
2414 unsigned short ctrl = serial_port_in(port, SCFCR);
2415
2416 if ((port->flags & UPF_HARD_FLOW) &&
2417 (termios->c_cflag & CRTSCTS)) {
2418 /* There is no CTS interrupt to restart the hardware */
2419 port->status |= UPSTAT_AUTOCTS;
2420 /* MCE is enabled when RTS is raised */
2421 s->autorts = true;
2422 }
2423
2424 /*
2425 * As we've done a sci_reset() above, ensure we don't
2426 * interfere with the FIFOs while toggling MCE. As the
2427 * reset values could still be set, simply mask them out.
2428 */
2429 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2430
2431 serial_port_out(port, SCFCR, ctrl);
2432 }
2433 if (port->flags & UPF_HARD_FLOW) {
2434 /* Refresh (Auto) RTS */
2435 sci_set_mctrl(port, port->mctrl);
2436 }
2437
2438 scr_val |= SCSCR_RE | SCSCR_TE |
2439 (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2440 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2441 if ((srr + 1 == 5) &&
2442 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2443 /*
2444 * In asynchronous mode, when the sampling rate is 1/5, first
2445 * received data may become invalid on some SCIFA and SCIFB.
2446 * To avoid this problem wait more than 1 serial data time (1
2447 * bit time x serial data number) after setting SCSCR.RE = 1.
2448 */
2449 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2450 }
2451
2452 /*
2453 * Calculate delay for 2 DMA buffers (4 FIFO).
2454 * See serial_core.c::uart_update_timeout().
2455 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2456 * function calculates 1 jiffie for the data plus 5 jiffies for the
2457 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2458 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2459 * value obtained by this formula is too small. Therefore, if the value
2460 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2461 */
2462 /* byte size and parity */
2463 switch (termios->c_cflag & CSIZE) {
2464 case CS5:
2465 bits = 7;
2466 break;
2467 case CS6:
2468 bits = 8;
2469 break;
2470 case CS7:
2471 bits = 9;
2472 break;
2473 default:
2474 bits = 10;
2475 break;
2476 }
2477
2478 if (termios->c_cflag & CSTOPB)
2479 bits++;
2480 if (termios->c_cflag & PARENB)
2481 bits++;
2482
2483 s->rx_frame = (100 * bits * HZ) / (baud / 10);
2484 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2485 s->rx_timeout = DIV_ROUND_UP(s->buf_len_rx * 2 * s->rx_frame, 1000);
2486 if (s->rx_timeout < msecs_to_jiffies(20))
2487 s->rx_timeout = msecs_to_jiffies(20);
2488 #endif
2489
2490 if ((termios->c_cflag & CREAD) != 0)
2491 sci_start_rx(port);
2492
2493 spin_unlock_irqrestore(&port->lock, flags);
2494
2495 sci_port_disable(s);
2496
2497 if (UART_ENABLE_MS(port, termios->c_cflag))
2498 sci_enable_ms(port);
2499 }
2500
2501 static void sci_pm(struct uart_port *port, unsigned int state,
2502 unsigned int oldstate)
2503 {
2504 struct sci_port *sci_port = to_sci_port(port);
2505
2506 switch (state) {
2507 case UART_PM_STATE_OFF:
2508 sci_port_disable(sci_port);
2509 break;
2510 default:
2511 sci_port_enable(sci_port);
2512 break;
2513 }
2514 }
2515
2516 static const char *sci_type(struct uart_port *port)
2517 {
2518 switch (port->type) {
2519 case PORT_IRDA:
2520 return "irda";
2521 case PORT_SCI:
2522 return "sci";
2523 case PORT_SCIF:
2524 return "scif";
2525 case PORT_SCIFA:
2526 return "scifa";
2527 case PORT_SCIFB:
2528 return "scifb";
2529 case PORT_HSCIF:
2530 return "hscif";
2531 }
2532
2533 return NULL;
2534 }
2535
2536 static int sci_remap_port(struct uart_port *port)
2537 {
2538 struct sci_port *sport = to_sci_port(port);
2539
2540 /*
2541 * Nothing to do if there's already an established membase.
2542 */
2543 if (port->membase)
2544 return 0;
2545
2546 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2547 port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2548 if (unlikely(!port->membase)) {
2549 dev_err(port->dev, "can't remap port#%d\n", port->line);
2550 return -ENXIO;
2551 }
2552 } else {
2553 /*
2554 * For the simple (and majority of) cases where we don't
2555 * need to do any remapping, just cast the cookie
2556 * directly.
2557 */
2558 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2559 }
2560
2561 return 0;
2562 }
2563
2564 static void sci_release_port(struct uart_port *port)
2565 {
2566 struct sci_port *sport = to_sci_port(port);
2567
2568 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2569 iounmap(port->membase);
2570 port->membase = NULL;
2571 }
2572
2573 release_mem_region(port->mapbase, sport->reg_size);
2574 }
2575
2576 static int sci_request_port(struct uart_port *port)
2577 {
2578 struct resource *res;
2579 struct sci_port *sport = to_sci_port(port);
2580 int ret;
2581
2582 res = request_mem_region(port->mapbase, sport->reg_size,
2583 dev_name(port->dev));
2584 if (unlikely(res == NULL)) {
2585 dev_err(port->dev, "request_mem_region failed.");
2586 return -EBUSY;
2587 }
2588
2589 ret = sci_remap_port(port);
2590 if (unlikely(ret != 0)) {
2591 release_resource(res);
2592 return ret;
2593 }
2594
2595 return 0;
2596 }
2597
2598 static void sci_config_port(struct uart_port *port, int flags)
2599 {
2600 if (flags & UART_CONFIG_TYPE) {
2601 struct sci_port *sport = to_sci_port(port);
2602
2603 port->type = sport->cfg->type;
2604 sci_request_port(port);
2605 }
2606 }
2607
2608 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2609 {
2610 if (ser->baud_base < 2400)
2611 /* No paper tape reader for Mitch.. */
2612 return -EINVAL;
2613
2614 return 0;
2615 }
2616
2617 static const struct uart_ops sci_uart_ops = {
2618 .tx_empty = sci_tx_empty,
2619 .set_mctrl = sci_set_mctrl,
2620 .get_mctrl = sci_get_mctrl,
2621 .start_tx = sci_start_tx,
2622 .stop_tx = sci_stop_tx,
2623 .stop_rx = sci_stop_rx,
2624 .enable_ms = sci_enable_ms,
2625 .break_ctl = sci_break_ctl,
2626 .startup = sci_startup,
2627 .shutdown = sci_shutdown,
2628 .flush_buffer = sci_flush_buffer,
2629 .set_termios = sci_set_termios,
2630 .pm = sci_pm,
2631 .type = sci_type,
2632 .release_port = sci_release_port,
2633 .request_port = sci_request_port,
2634 .config_port = sci_config_port,
2635 .verify_port = sci_verify_port,
2636 #ifdef CONFIG_CONSOLE_POLL
2637 .poll_get_char = sci_poll_get_char,
2638 .poll_put_char = sci_poll_put_char,
2639 #endif
2640 };
2641
2642 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2643 {
2644 const char *clk_names[] = {
2645 [SCI_FCK] = "fck",
2646 [SCI_SCK] = "sck",
2647 [SCI_BRG_INT] = "brg_int",
2648 [SCI_SCIF_CLK] = "scif_clk",
2649 };
2650 struct clk *clk;
2651 unsigned int i;
2652
2653 if (sci_port->cfg->type == PORT_HSCIF)
2654 clk_names[SCI_SCK] = "hsck";
2655
2656 for (i = 0; i < SCI_NUM_CLKS; i++) {
2657 clk = devm_clk_get(dev, clk_names[i]);
2658 if (PTR_ERR(clk) == -EPROBE_DEFER)
2659 return -EPROBE_DEFER;
2660
2661 if (IS_ERR(clk) && i == SCI_FCK) {
2662 /*
2663 * "fck" used to be called "sci_ick", and we need to
2664 * maintain DT backward compatibility.
2665 */
2666 clk = devm_clk_get(dev, "sci_ick");
2667 if (PTR_ERR(clk) == -EPROBE_DEFER)
2668 return -EPROBE_DEFER;
2669
2670 if (!IS_ERR(clk))
2671 goto found;
2672
2673 /*
2674 * Not all SH platforms declare a clock lookup entry
2675 * for SCI devices, in which case we need to get the
2676 * global "peripheral_clk" clock.
2677 */
2678 clk = devm_clk_get(dev, "peripheral_clk");
2679 if (!IS_ERR(clk))
2680 goto found;
2681
2682 dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2683 PTR_ERR(clk));
2684 return PTR_ERR(clk);
2685 }
2686
2687 found:
2688 if (IS_ERR(clk))
2689 dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2690 PTR_ERR(clk));
2691 else
2692 dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2693 clk, clk);
2694 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2695 }
2696 return 0;
2697 }
2698
2699 static const struct sci_port_params *
2700 sci_probe_regmap(const struct plat_sci_port *cfg)
2701 {
2702 unsigned int regtype;
2703
2704 if (cfg->regtype != SCIx_PROBE_REGTYPE)
2705 return &sci_port_params[cfg->regtype];
2706
2707 switch (cfg->type) {
2708 case PORT_SCI:
2709 regtype = SCIx_SCI_REGTYPE;
2710 break;
2711 case PORT_IRDA:
2712 regtype = SCIx_IRDA_REGTYPE;
2713 break;
2714 case PORT_SCIFA:
2715 regtype = SCIx_SCIFA_REGTYPE;
2716 break;
2717 case PORT_SCIFB:
2718 regtype = SCIx_SCIFB_REGTYPE;
2719 break;
2720 case PORT_SCIF:
2721 /*
2722 * The SH-4 is a bit of a misnomer here, although that's
2723 * where this particular port layout originated. This
2724 * configuration (or some slight variation thereof)
2725 * remains the dominant model for all SCIFs.
2726 */
2727 regtype = SCIx_SH4_SCIF_REGTYPE;
2728 break;
2729 case PORT_HSCIF:
2730 regtype = SCIx_HSCIF_REGTYPE;
2731 break;
2732 default:
2733 pr_err("Can't probe register map for given port\n");
2734 return NULL;
2735 }
2736
2737 return &sci_port_params[regtype];
2738 }
2739
2740 static int sci_init_single(struct platform_device *dev,
2741 struct sci_port *sci_port, unsigned int index,
2742 const struct plat_sci_port *p, bool early)
2743 {
2744 struct uart_port *port = &sci_port->port;
2745 const struct resource *res;
2746 unsigned int i;
2747 int ret;
2748
2749 sci_port->cfg = p;
2750
2751 port->ops = &sci_uart_ops;
2752 port->iotype = UPIO_MEM;
2753 port->line = index;
2754
2755 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2756 if (res == NULL)
2757 return -ENOMEM;
2758
2759 port->mapbase = res->start;
2760 sci_port->reg_size = resource_size(res);
2761
2762 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2763 sci_port->irqs[i] = platform_get_irq(dev, i);
2764
2765 /* The SCI generates several interrupts. They can be muxed together or
2766 * connected to different interrupt lines. In the muxed case only one
2767 * interrupt resource is specified. In the non-muxed case three or four
2768 * interrupt resources are specified, as the BRI interrupt is optional.
2769 */
2770 if (sci_port->irqs[0] < 0)
2771 return -ENXIO;
2772
2773 if (sci_port->irqs[1] < 0) {
2774 sci_port->irqs[1] = sci_port->irqs[0];
2775 sci_port->irqs[2] = sci_port->irqs[0];
2776 sci_port->irqs[3] = sci_port->irqs[0];
2777 }
2778
2779 sci_port->params = sci_probe_regmap(p);
2780 if (unlikely(sci_port->params == NULL))
2781 return -EINVAL;
2782
2783 switch (p->type) {
2784 case PORT_SCIFB:
2785 sci_port->rx_trigger = 48;
2786 break;
2787 case PORT_HSCIF:
2788 sci_port->rx_trigger = 64;
2789 break;
2790 case PORT_SCIFA:
2791 sci_port->rx_trigger = 32;
2792 break;
2793 case PORT_SCIF:
2794 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2795 /* RX triggering not implemented for this IP */
2796 sci_port->rx_trigger = 1;
2797 else
2798 sci_port->rx_trigger = 8;
2799 break;
2800 default:
2801 sci_port->rx_trigger = 1;
2802 break;
2803 }
2804
2805 sci_port->rx_fifo_timeout = 0;
2806 sci_port->hscif_tot = 0;
2807
2808 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2809 * match the SoC datasheet, this should be investigated. Let platform
2810 * data override the sampling rate for now.
2811 */
2812 sci_port->sampling_rate_mask = p->sampling_rate
2813 ? SCI_SR(p->sampling_rate)
2814 : sci_port->params->sampling_rate_mask;
2815
2816 if (!early) {
2817 ret = sci_init_clocks(sci_port, &dev->dev);
2818 if (ret < 0)
2819 return ret;
2820
2821 port->dev = &dev->dev;
2822
2823 pm_runtime_enable(&dev->dev);
2824 }
2825
2826 port->type = p->type;
2827 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2828 port->fifosize = sci_port->params->fifosize;
2829
2830 if (port->type == PORT_SCI) {
2831 if (sci_port->reg_size >= 0x20)
2832 port->regshift = 2;
2833 else
2834 port->regshift = 1;
2835 }
2836
2837 /*
2838 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2839 * for the multi-IRQ ports, which is where we are primarily
2840 * concerned with the shutdown path synchronization.
2841 *
2842 * For the muxed case there's nothing more to do.
2843 */
2844 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
2845 port->irqflags = 0;
2846
2847 port->serial_in = sci_serial_in;
2848 port->serial_out = sci_serial_out;
2849
2850 return 0;
2851 }
2852
2853 static void sci_cleanup_single(struct sci_port *port)
2854 {
2855 pm_runtime_disable(port->port.dev);
2856 }
2857
2858 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2859 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2860 static void serial_console_putchar(struct uart_port *port, int ch)
2861 {
2862 sci_poll_put_char(port, ch);
2863 }
2864
2865 /*
2866 * Print a string to the serial port trying not to disturb
2867 * any possible real use of the port...
2868 */
2869 static void serial_console_write(struct console *co, const char *s,
2870 unsigned count)
2871 {
2872 struct sci_port *sci_port = &sci_ports[co->index];
2873 struct uart_port *port = &sci_port->port;
2874 unsigned short bits, ctrl, ctrl_temp;
2875 unsigned long flags;
2876 int locked = 1;
2877
2878 local_irq_save(flags);
2879 #if defined(SUPPORT_SYSRQ)
2880 if (port->sysrq)
2881 locked = 0;
2882 else
2883 #endif
2884 if (oops_in_progress)
2885 locked = spin_trylock(&port->lock);
2886 else
2887 spin_lock(&port->lock);
2888
2889 /* first save SCSCR then disable interrupts, keep clock source */
2890 ctrl = serial_port_in(port, SCSCR);
2891 ctrl_temp = SCSCR_RE | SCSCR_TE |
2892 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2893 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2894 serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2895
2896 uart_console_write(port, s, count, serial_console_putchar);
2897
2898 /* wait until fifo is empty and last bit has been transmitted */
2899 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2900 while ((serial_port_in(port, SCxSR) & bits) != bits)
2901 cpu_relax();
2902
2903 /* restore the SCSCR */
2904 serial_port_out(port, SCSCR, ctrl);
2905
2906 if (locked)
2907 spin_unlock(&port->lock);
2908 local_irq_restore(flags);
2909 }
2910
2911 static int serial_console_setup(struct console *co, char *options)
2912 {
2913 struct sci_port *sci_port;
2914 struct uart_port *port;
2915 int baud = 115200;
2916 int bits = 8;
2917 int parity = 'n';
2918 int flow = 'n';
2919 int ret;
2920
2921 /*
2922 * Refuse to handle any bogus ports.
2923 */
2924 if (co->index < 0 || co->index >= SCI_NPORTS)
2925 return -ENODEV;
2926
2927 sci_port = &sci_ports[co->index];
2928 port = &sci_port->port;
2929
2930 /*
2931 * Refuse to handle uninitialized ports.
2932 */
2933 if (!port->ops)
2934 return -ENODEV;
2935
2936 ret = sci_remap_port(port);
2937 if (unlikely(ret != 0))
2938 return ret;
2939
2940 if (options)
2941 uart_parse_options(options, &baud, &parity, &bits, &flow);
2942
2943 return uart_set_options(port, co, baud, parity, bits, flow);
2944 }
2945
2946 static struct console serial_console = {
2947 .name = "ttySC",
2948 .device = uart_console_device,
2949 .write = serial_console_write,
2950 .setup = serial_console_setup,
2951 .flags = CON_PRINTBUFFER,
2952 .index = -1,
2953 .data = &sci_uart_driver,
2954 };
2955
2956 static struct console early_serial_console = {
2957 .name = "early_ttySC",
2958 .write = serial_console_write,
2959 .flags = CON_PRINTBUFFER,
2960 .index = -1,
2961 };
2962
2963 static char early_serial_buf[32];
2964
2965 static int sci_probe_earlyprintk(struct platform_device *pdev)
2966 {
2967 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2968
2969 if (early_serial_console.data)
2970 return -EEXIST;
2971
2972 early_serial_console.index = pdev->id;
2973
2974 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2975
2976 serial_console_setup(&early_serial_console, early_serial_buf);
2977
2978 if (!strstr(early_serial_buf, "keep"))
2979 early_serial_console.flags |= CON_BOOT;
2980
2981 register_console(&early_serial_console);
2982 return 0;
2983 }
2984
2985 #define SCI_CONSOLE (&serial_console)
2986
2987 #else
2988 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2989 {
2990 return -EINVAL;
2991 }
2992
2993 #define SCI_CONSOLE NULL
2994
2995 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2996
2997 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2998
2999 static DEFINE_MUTEX(sci_uart_registration_lock);
3000 static struct uart_driver sci_uart_driver = {
3001 .owner = THIS_MODULE,
3002 .driver_name = "sci",
3003 .dev_name = "ttySC",
3004 .major = SCI_MAJOR,
3005 .minor = SCI_MINOR_START,
3006 .nr = SCI_NPORTS,
3007 .cons = SCI_CONSOLE,
3008 };
3009
3010 static int sci_remove(struct platform_device *dev)
3011 {
3012 struct sci_port *port = platform_get_drvdata(dev);
3013
3014 uart_remove_one_port(&sci_uart_driver, &port->port);
3015
3016 sci_cleanup_single(port);
3017
3018 if (port->port.fifosize > 1) {
3019 sysfs_remove_file(&dev->dev.kobj,
3020 &dev_attr_rx_fifo_trigger.attr);
3021 }
3022 if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3023 port->port.type == PORT_HSCIF) {
3024 sysfs_remove_file(&dev->dev.kobj,
3025 &dev_attr_rx_fifo_timeout.attr);
3026 }
3027
3028 return 0;
3029 }
3030
3031
3032 #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
3033 #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
3034 #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
3035
3036 static const struct of_device_id of_sci_match[] = {
3037 /* SoC-specific types */
3038 {
3039 .compatible = "renesas,scif-r7s72100",
3040 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3041 },
3042 /* Family-specific types */
3043 {
3044 .compatible = "renesas,rcar-gen1-scif",
3045 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3046 }, {
3047 .compatible = "renesas,rcar-gen2-scif",
3048 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3049 }, {
3050 .compatible = "renesas,rcar-gen3-scif",
3051 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3052 },
3053 /* Generic types */
3054 {
3055 .compatible = "renesas,scif",
3056 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3057 }, {
3058 .compatible = "renesas,scifa",
3059 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3060 }, {
3061 .compatible = "renesas,scifb",
3062 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3063 }, {
3064 .compatible = "renesas,hscif",
3065 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3066 }, {
3067 .compatible = "renesas,sci",
3068 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3069 }, {
3070 /* Terminator */
3071 },
3072 };
3073 MODULE_DEVICE_TABLE(of, of_sci_match);
3074
3075 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3076 unsigned int *dev_id)
3077 {
3078 struct device_node *np = pdev->dev.of_node;
3079 struct plat_sci_port *p;
3080 struct sci_port *sp;
3081 const void *data;
3082 int id;
3083
3084 if (!IS_ENABLED(CONFIG_OF) || !np)
3085 return NULL;
3086
3087 data = of_device_get_match_data(&pdev->dev);
3088
3089 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3090 if (!p)
3091 return NULL;
3092
3093 /* Get the line number from the aliases node. */
3094 id = of_alias_get_id(np, "serial");
3095 if (id < 0) {
3096 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3097 return NULL;
3098 }
3099
3100 sp = &sci_ports[id];
3101 *dev_id = id;
3102
3103 p->type = SCI_OF_TYPE(data);
3104 p->regtype = SCI_OF_REGTYPE(data);
3105
3106 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3107
3108 return p;
3109 }
3110
3111 static int sci_probe_single(struct platform_device *dev,
3112 unsigned int index,
3113 struct plat_sci_port *p,
3114 struct sci_port *sciport)
3115 {
3116 int ret;
3117
3118 /* Sanity check */
3119 if (unlikely(index >= SCI_NPORTS)) {
3120 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3121 index+1, SCI_NPORTS);
3122 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3123 return -EINVAL;
3124 }
3125
3126 mutex_lock(&sci_uart_registration_lock);
3127 if (!sci_uart_driver.state) {
3128 ret = uart_register_driver(&sci_uart_driver);
3129 if (ret) {
3130 mutex_unlock(&sci_uart_registration_lock);
3131 return ret;
3132 }
3133 }
3134 mutex_unlock(&sci_uart_registration_lock);
3135
3136 ret = sci_init_single(dev, sciport, index, p, false);
3137 if (ret)
3138 return ret;
3139
3140 sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3141 if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3142 return PTR_ERR(sciport->gpios);
3143
3144 if (sciport->has_rtscts) {
3145 if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3146 UART_GPIO_CTS)) ||
3147 !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3148 UART_GPIO_RTS))) {
3149 dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3150 return -EINVAL;
3151 }
3152 sciport->port.flags |= UPF_HARD_FLOW;
3153 }
3154
3155 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3156 if (ret) {
3157 sci_cleanup_single(sciport);
3158 return ret;
3159 }
3160
3161 return 0;
3162 }
3163
3164 static int sci_probe(struct platform_device *dev)
3165 {
3166 struct plat_sci_port *p;
3167 struct sci_port *sp;
3168 unsigned int dev_id;
3169 int ret;
3170
3171 /*
3172 * If we've come here via earlyprintk initialization, head off to
3173 * the special early probe. We don't have sufficient device state
3174 * to make it beyond this yet.
3175 */
3176 if (is_early_platform_device(dev))
3177 return sci_probe_earlyprintk(dev);
3178
3179 if (dev->dev.of_node) {
3180 p = sci_parse_dt(dev, &dev_id);
3181 if (p == NULL)
3182 return -EINVAL;
3183 } else {
3184 p = dev->dev.platform_data;
3185 if (p == NULL) {
3186 dev_err(&dev->dev, "no platform data supplied\n");
3187 return -EINVAL;
3188 }
3189
3190 dev_id = dev->id;
3191 }
3192
3193 sp = &sci_ports[dev_id];
3194 platform_set_drvdata(dev, sp);
3195
3196 ret = sci_probe_single(dev, dev_id, p, sp);
3197 if (ret)
3198 return ret;
3199
3200 if (sp->port.fifosize > 1) {
3201 ret = sysfs_create_file(&dev->dev.kobj,
3202 &dev_attr_rx_fifo_trigger.attr);
3203 if (ret)
3204 return ret;
3205 }
3206 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3207 sp->port.type == PORT_HSCIF) {
3208 ret = sysfs_create_file(&dev->dev.kobj,
3209 &dev_attr_rx_fifo_timeout.attr);
3210 if (ret) {
3211 if (sp->port.fifosize > 1) {
3212 sysfs_remove_file(&dev->dev.kobj,
3213 &dev_attr_rx_fifo_trigger.attr);
3214 }
3215 return ret;
3216 }
3217 }
3218
3219 #ifdef CONFIG_SH_STANDARD_BIOS
3220 sh_bios_gdb_detach();
3221 #endif
3222
3223 return 0;
3224 }
3225
3226 static __maybe_unused int sci_suspend(struct device *dev)
3227 {
3228 struct sci_port *sport = dev_get_drvdata(dev);
3229
3230 if (sport)
3231 uart_suspend_port(&sci_uart_driver, &sport->port);
3232
3233 return 0;
3234 }
3235
3236 static __maybe_unused int sci_resume(struct device *dev)
3237 {
3238 struct sci_port *sport = dev_get_drvdata(dev);
3239
3240 if (sport)
3241 uart_resume_port(&sci_uart_driver, &sport->port);
3242
3243 return 0;
3244 }
3245
3246 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3247
3248 static struct platform_driver sci_driver = {
3249 .probe = sci_probe,
3250 .remove = sci_remove,
3251 .driver = {
3252 .name = "sh-sci",
3253 .pm = &sci_dev_pm_ops,
3254 .of_match_table = of_match_ptr(of_sci_match),
3255 },
3256 };
3257
3258 static int __init sci_init(void)
3259 {
3260 pr_info("%s\n", banner);
3261
3262 return platform_driver_register(&sci_driver);
3263 }
3264
3265 static void __exit sci_exit(void)
3266 {
3267 platform_driver_unregister(&sci_driver);
3268
3269 if (sci_uart_driver.state)
3270 uart_unregister_driver(&sci_uart_driver);
3271 }
3272
3273 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3274 early_platform_init_buffer("earlyprintk", &sci_driver,
3275 early_serial_buf, ARRAY_SIZE(early_serial_buf));
3276 #endif
3277 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3278 static struct plat_sci_port port_cfg __initdata;
3279
3280 static int __init early_console_setup(struct earlycon_device *device,
3281 int type)
3282 {
3283 if (!device->port.membase)
3284 return -ENODEV;
3285
3286 device->port.serial_in = sci_serial_in;
3287 device->port.serial_out = sci_serial_out;
3288 device->port.type = type;
3289 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3290 port_cfg.type = type;
3291 sci_ports[0].cfg = &port_cfg;
3292 sci_ports[0].params = sci_probe_regmap(&port_cfg);
3293 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3294 sci_serial_out(&sci_ports[0].port, SCSCR,
3295 SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3296
3297 device->con->write = serial_console_write;
3298 return 0;
3299 }
3300 static int __init sci_early_console_setup(struct earlycon_device *device,
3301 const char *opt)
3302 {
3303 return early_console_setup(device, PORT_SCI);
3304 }
3305 static int __init scif_early_console_setup(struct earlycon_device *device,
3306 const char *opt)
3307 {
3308 return early_console_setup(device, PORT_SCIF);
3309 }
3310 static int __init scifa_early_console_setup(struct earlycon_device *device,
3311 const char *opt)
3312 {
3313 return early_console_setup(device, PORT_SCIFA);
3314 }
3315 static int __init scifb_early_console_setup(struct earlycon_device *device,
3316 const char *opt)
3317 {
3318 return early_console_setup(device, PORT_SCIFB);
3319 }
3320 static int __init hscif_early_console_setup(struct earlycon_device *device,
3321 const char *opt)
3322 {
3323 return early_console_setup(device, PORT_HSCIF);
3324 }
3325
3326 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3327 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3328 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3329 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3330 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3331 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3332
3333 module_init(sci_init);
3334 module_exit(sci_exit);
3335
3336 MODULE_LICENSE("GPL");
3337 MODULE_ALIAS("platform:sh-sci");
3338 MODULE_AUTHOR("Paul Mundt");
3339 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");