]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/tty/tty_io.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158 * free_tty_struct - free a disused tty
159 * @tty: tty struct to free
160 *
161 * Free the write buffers, tty queue and tty memory itself.
162 *
163 * Locking: none. Must be called after tty is definitely unused
164 */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 if (!tty)
169 return;
170 put_device(tty->dev);
171 kfree(tty->write_buf);
172 tty->magic = 0xDEADDEAD;
173 kfree(tty);
174 }
175
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 return ((struct tty_file_private *)file->private_data)->tty;
179 }
180
181 int tty_alloc_file(struct file *file)
182 {
183 struct tty_file_private *priv;
184
185 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 if (!priv)
187 return -ENOMEM;
188
189 file->private_data = priv;
190
191 return 0;
192 }
193
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 struct tty_file_private *priv = file->private_data;
198
199 priv->tty = tty;
200 priv->file = file;
201
202 spin_lock(&tty_files_lock);
203 list_add(&priv->list, &tty->tty_files);
204 spin_unlock(&tty_files_lock);
205 }
206
207 /**
208 * tty_free_file - free file->private_data
209 *
210 * This shall be used only for fail path handling when tty_add_file was not
211 * called yet.
212 */
213 void tty_free_file(struct file *file)
214 {
215 struct tty_file_private *priv = file->private_data;
216
217 file->private_data = NULL;
218 kfree(priv);
219 }
220
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 struct tty_file_private *priv = file->private_data;
225
226 spin_lock(&tty_files_lock);
227 list_del(&priv->list);
228 spin_unlock(&tty_files_lock);
229 tty_free_file(file);
230 }
231
232
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 * @buf: buffer for output
239 *
240 * Convert a tty structure into a name. The name reflects the kernel
241 * naming policy and if udev is in use may not reflect user space
242 *
243 * Locking: none
244 */
245
246 char *tty_name(struct tty_struct *tty, char *buf)
247 {
248 if (!tty) /* Hmm. NULL pointer. That's fun. */
249 strcpy(buf, "NULL tty");
250 else
251 strcpy(buf, tty->name);
252 return buf;
253 }
254
255 EXPORT_SYMBOL(tty_name);
256
257 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
258 const char *routine)
259 {
260 #ifdef TTY_PARANOIA_CHECK
261 if (!tty) {
262 printk(KERN_WARNING
263 "null TTY for (%d:%d) in %s\n",
264 imajor(inode), iminor(inode), routine);
265 return 1;
266 }
267 if (tty->magic != TTY_MAGIC) {
268 printk(KERN_WARNING
269 "bad magic number for tty struct (%d:%d) in %s\n",
270 imajor(inode), iminor(inode), routine);
271 return 1;
272 }
273 #endif
274 return 0;
275 }
276
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 struct list_head *p;
282 int count = 0;
283
284 spin_lock(&tty_files_lock);
285 list_for_each(p, &tty->tty_files) {
286 count++;
287 }
288 spin_unlock(&tty_files_lock);
289 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 tty->driver->subtype == PTY_TYPE_SLAVE &&
291 tty->link && tty->link->count)
292 count++;
293 if (tty->count != count) {
294 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295 "!= #fd's(%d) in %s\n",
296 tty->name, tty->count, count, routine);
297 return count;
298 }
299 #endif
300 return 0;
301 }
302
303 /**
304 * get_tty_driver - find device of a tty
305 * @dev_t: device identifier
306 * @index: returns the index of the tty
307 *
308 * This routine returns a tty driver structure, given a device number
309 * and also passes back the index number.
310 *
311 * Locking: caller must hold tty_mutex
312 */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 struct tty_driver *p;
317
318 list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 dev_t base = MKDEV(p->major, p->minor_start);
320 if (device < base || device >= base + p->num)
321 continue;
322 *index = device - base;
323 return tty_driver_kref_get(p);
324 }
325 return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331 * tty_find_polling_driver - find device of a polled tty
332 * @name: name string to match
333 * @line: pointer to resulting tty line nr
334 *
335 * This routine returns a tty driver structure, given a name
336 * and the condition that the tty driver is capable of polled
337 * operation.
338 */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 struct tty_driver *p, *res = NULL;
342 int tty_line = 0;
343 int len;
344 char *str, *stp;
345
346 for (str = name; *str; str++)
347 if ((*str >= '0' && *str <= '9') || *str == ',')
348 break;
349 if (!*str)
350 return NULL;
351
352 len = str - name;
353 tty_line = simple_strtoul(str, &str, 10);
354
355 mutex_lock(&tty_mutex);
356 /* Search through the tty devices to look for a match */
357 list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 if (strncmp(name, p->name, len) != 0)
359 continue;
360 stp = str;
361 if (*stp == ',')
362 stp++;
363 if (*stp == '\0')
364 stp = NULL;
365
366 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 res = tty_driver_kref_get(p);
369 *line = tty_line;
370 break;
371 }
372 }
373 mutex_unlock(&tty_mutex);
374
375 return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381 * tty_check_change - check for POSIX terminal changes
382 * @tty: tty to check
383 *
384 * If we try to write to, or set the state of, a terminal and we're
385 * not in the foreground, send a SIGTTOU. If the signal is blocked or
386 * ignored, go ahead and perform the operation. (POSIX 7.2)
387 *
388 * Locking: ctrl_lock
389 */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393 unsigned long flags;
394 int ret = 0;
395
396 if (current->signal->tty != tty)
397 return 0;
398
399 spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401 if (!tty->pgrp) {
402 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403 goto out_unlock;
404 }
405 if (task_pgrp(current) == tty->pgrp)
406 goto out_unlock;
407 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 if (is_ignored(SIGTTOU))
409 goto out;
410 if (is_current_pgrp_orphaned()) {
411 ret = -EIO;
412 goto out;
413 }
414 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415 set_thread_flag(TIF_SIGPENDING);
416 ret = -ERESTARTSYS;
417 out:
418 return ret;
419 out_unlock:
420 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421 return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427 size_t count, loff_t *ppos)
428 {
429 return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433 size_t count, loff_t *ppos)
434 {
435 return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445 unsigned long arg)
446 {
447 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451 unsigned int cmd, unsigned long arg)
452 {
453 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457 .llseek = no_llseek,
458 .read = tty_read,
459 .write = tty_write,
460 .poll = tty_poll,
461 .unlocked_ioctl = tty_ioctl,
462 .compat_ioctl = tty_compat_ioctl,
463 .open = tty_open,
464 .release = tty_release,
465 .fasync = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469 .llseek = no_llseek,
470 .read = tty_read,
471 .write = redirected_tty_write,
472 .poll = tty_poll,
473 .unlocked_ioctl = tty_ioctl,
474 .compat_ioctl = tty_compat_ioctl,
475 .open = tty_open,
476 .release = tty_release,
477 .fasync = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481 .llseek = no_llseek,
482 .read = hung_up_tty_read,
483 .write = hung_up_tty_write,
484 .poll = hung_up_tty_poll,
485 .unlocked_ioctl = hung_up_tty_ioctl,
486 .compat_ioctl = hung_up_tty_compat_ioctl,
487 .release = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496 unsigned long flags;
497 struct tty_struct *tty;
498 spin_lock_irqsave(&p->sighand->siglock, flags);
499 tty = p->signal->tty;
500 p->signal->tty = NULL;
501 spin_unlock_irqrestore(&p->sighand->siglock, flags);
502 tty_kref_put(tty);
503 }
504
505 /**
506 * proc_set_tty - set the controlling terminal
507 *
508 * Only callable by the session leader and only if it does not already have
509 * a controlling terminal.
510 *
511 * Caller must hold: tty_lock()
512 * a readlock on tasklist_lock
513 * sighand lock
514 */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517 unsigned long flags;
518
519 spin_lock_irqsave(&tty->ctrl_lock, flags);
520 /*
521 * The session and fg pgrp references will be non-NULL if
522 * tiocsctty() is stealing the controlling tty
523 */
524 put_pid(tty->session);
525 put_pid(tty->pgrp);
526 tty->pgrp = get_pid(task_pgrp(current));
527 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528 tty->session = get_pid(task_session(current));
529 if (current->signal->tty) {
530 printk(KERN_DEBUG "tty not NULL!!\n");
531 tty_kref_put(current->signal->tty);
532 }
533 put_pid(current->signal->tty_old_pgrp);
534 current->signal->tty = tty_kref_get(tty);
535 current->signal->tty_old_pgrp = NULL;
536 }
537
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540 spin_lock_irq(&current->sighand->siglock);
541 __proc_set_tty(tty);
542 spin_unlock_irq(&current->sighand->siglock);
543 }
544
545 struct tty_struct *get_current_tty(void)
546 {
547 struct tty_struct *tty;
548 unsigned long flags;
549
550 spin_lock_irqsave(&current->sighand->siglock, flags);
551 tty = tty_kref_get(current->signal->tty);
552 spin_unlock_irqrestore(&current->sighand->siglock, flags);
553 return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556
557 static void session_clear_tty(struct pid *session)
558 {
559 struct task_struct *p;
560 do_each_pid_task(session, PIDTYPE_SID, p) {
561 proc_clear_tty(p);
562 } while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564
565 /**
566 * tty_wakeup - request more data
567 * @tty: terminal
568 *
569 * Internal and external helper for wakeups of tty. This function
570 * informs the line discipline if present that the driver is ready
571 * to receive more output data.
572 */
573
574 void tty_wakeup(struct tty_struct *tty)
575 {
576 struct tty_ldisc *ld;
577
578 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579 ld = tty_ldisc_ref(tty);
580 if (ld) {
581 if (ld->ops->write_wakeup)
582 ld->ops->write_wakeup(tty);
583 tty_ldisc_deref(ld);
584 }
585 }
586 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590
591 /**
592 * tty_signal_session_leader - sends SIGHUP to session leader
593 * @tty controlling tty
594 * @exit_session if non-zero, signal all foreground group processes
595 *
596 * Send SIGHUP and SIGCONT to the session leader and its process group.
597 * Optionally, signal all processes in the foreground process group.
598 *
599 * Returns the number of processes in the session with this tty
600 * as their controlling terminal. This value is used to drop
601 * tty references for those processes.
602 */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605 struct task_struct *p;
606 int refs = 0;
607 struct pid *tty_pgrp = NULL;
608
609 read_lock(&tasklist_lock);
610 if (tty->session) {
611 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 spin_lock_irq(&p->sighand->siglock);
613 if (p->signal->tty == tty) {
614 p->signal->tty = NULL;
615 /* We defer the dereferences outside fo
616 the tasklist lock */
617 refs++;
618 }
619 if (!p->signal->leader) {
620 spin_unlock_irq(&p->sighand->siglock);
621 continue;
622 }
623 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 put_pid(p->signal->tty_old_pgrp); /* A noop */
626 spin_lock(&tty->ctrl_lock);
627 tty_pgrp = get_pid(tty->pgrp);
628 if (tty->pgrp)
629 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630 spin_unlock(&tty->ctrl_lock);
631 spin_unlock_irq(&p->sighand->siglock);
632 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
633 }
634 read_unlock(&tasklist_lock);
635
636 if (tty_pgrp) {
637 if (exit_session)
638 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639 put_pid(tty_pgrp);
640 }
641
642 return refs;
643 }
644
645 /**
646 * __tty_hangup - actual handler for hangup events
647 * @work: tty device
648 *
649 * This can be called by a "kworker" kernel thread. That is process
650 * synchronous but doesn't hold any locks, so we need to make sure we
651 * have the appropriate locks for what we're doing.
652 *
653 * The hangup event clears any pending redirections onto the hung up
654 * device. It ensures future writes will error and it does the needed
655 * line discipline hangup and signal delivery. The tty object itself
656 * remains intact.
657 *
658 * Locking:
659 * BTM
660 * redirect lock for undoing redirection
661 * file list lock for manipulating list of ttys
662 * tty_ldiscs_lock from called functions
663 * termios_rwsem resetting termios data
664 * tasklist_lock to walk task list for hangup event
665 * ->siglock to protect ->signal/->sighand
666 */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669 struct file *cons_filp = NULL;
670 struct file *filp, *f = NULL;
671 struct tty_file_private *priv;
672 int closecount = 0, n;
673 int refs;
674
675 if (!tty)
676 return;
677
678
679 spin_lock(&redirect_lock);
680 if (redirect && file_tty(redirect) == tty) {
681 f = redirect;
682 redirect = NULL;
683 }
684 spin_unlock(&redirect_lock);
685
686 tty_lock(tty);
687
688 if (test_bit(TTY_HUPPED, &tty->flags)) {
689 tty_unlock(tty);
690 return;
691 }
692
693 /* inuse_filps is protected by the single tty lock,
694 this really needs to change if we want to flush the
695 workqueue with the lock held */
696 check_tty_count(tty, "tty_hangup");
697
698 spin_lock(&tty_files_lock);
699 /* This breaks for file handles being sent over AF_UNIX sockets ? */
700 list_for_each_entry(priv, &tty->tty_files, list) {
701 filp = priv->file;
702 if (filp->f_op->write == redirected_tty_write)
703 cons_filp = filp;
704 if (filp->f_op->write != tty_write)
705 continue;
706 closecount++;
707 __tty_fasync(-1, filp, 0); /* can't block */
708 filp->f_op = &hung_up_tty_fops;
709 }
710 spin_unlock(&tty_files_lock);
711
712 refs = tty_signal_session_leader(tty, exit_session);
713 /* Account for the p->signal references we killed */
714 while (refs--)
715 tty_kref_put(tty);
716
717 tty_ldisc_hangup(tty);
718
719 spin_lock_irq(&tty->ctrl_lock);
720 clear_bit(TTY_THROTTLED, &tty->flags);
721 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722 put_pid(tty->session);
723 put_pid(tty->pgrp);
724 tty->session = NULL;
725 tty->pgrp = NULL;
726 tty->ctrl_status = 0;
727 spin_unlock_irq(&tty->ctrl_lock);
728
729 /*
730 * If one of the devices matches a console pointer, we
731 * cannot just call hangup() because that will cause
732 * tty->count and state->count to go out of sync.
733 * So we just call close() the right number of times.
734 */
735 if (cons_filp) {
736 if (tty->ops->close)
737 for (n = 0; n < closecount; n++)
738 tty->ops->close(tty, cons_filp);
739 } else if (tty->ops->hangup)
740 tty->ops->hangup(tty);
741 /*
742 * We don't want to have driver/ldisc interactions beyond
743 * the ones we did here. The driver layer expects no
744 * calls after ->hangup() from the ldisc side. However we
745 * can't yet guarantee all that.
746 */
747 set_bit(TTY_HUPPED, &tty->flags);
748 tty_unlock(tty);
749
750 if (f)
751 fput(f);
752 }
753
754 static void do_tty_hangup(struct work_struct *work)
755 {
756 struct tty_struct *tty =
757 container_of(work, struct tty_struct, hangup_work);
758
759 __tty_hangup(tty, 0);
760 }
761
762 /**
763 * tty_hangup - trigger a hangup event
764 * @tty: tty to hangup
765 *
766 * A carrier loss (virtual or otherwise) has occurred on this like
767 * schedule a hangup sequence to run after this event.
768 */
769
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 char buf[64];
774 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776 schedule_work(&tty->hangup_work);
777 }
778
779 EXPORT_SYMBOL(tty_hangup);
780
781 /**
782 * tty_vhangup - process vhangup
783 * @tty: tty to hangup
784 *
785 * The user has asked via system call for the terminal to be hung up.
786 * We do this synchronously so that when the syscall returns the process
787 * is complete. That guarantee is necessary for security reasons.
788 */
789
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793 char buf[64];
794
795 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797 __tty_hangup(tty, 0);
798 }
799
800 EXPORT_SYMBOL(tty_vhangup);
801
802
803 /**
804 * tty_vhangup_self - process vhangup for own ctty
805 *
806 * Perform a vhangup on the current controlling tty
807 */
808
809 void tty_vhangup_self(void)
810 {
811 struct tty_struct *tty;
812
813 tty = get_current_tty();
814 if (tty) {
815 tty_vhangup(tty);
816 tty_kref_put(tty);
817 }
818 }
819
820 /**
821 * tty_vhangup_session - hangup session leader exit
822 * @tty: tty to hangup
823 *
824 * The session leader is exiting and hanging up its controlling terminal.
825 * Every process in the foreground process group is signalled SIGHUP.
826 *
827 * We do this synchronously so that when the syscall returns the process
828 * is complete. That guarantee is necessary for security reasons.
829 */
830
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834 char buf[64];
835
836 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838 __tty_hangup(tty, 1);
839 }
840
841 /**
842 * tty_hung_up_p - was tty hung up
843 * @filp: file pointer of tty
844 *
845 * Return true if the tty has been subject to a vhangup or a carrier
846 * loss
847 */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851 return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857 * disassociate_ctty - disconnect controlling tty
858 * @on_exit: true if exiting so need to "hang up" the session
859 *
860 * This function is typically called only by the session leader, when
861 * it wants to disassociate itself from its controlling tty.
862 *
863 * It performs the following functions:
864 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
865 * (2) Clears the tty from being controlling the session
866 * (3) Clears the controlling tty for all processes in the
867 * session group.
868 *
869 * The argument on_exit is set to 1 if called when a process is
870 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
871 *
872 * Locking:
873 * BTM is taken for hysterical raisins, and held when
874 * called from no_tty().
875 * tty_mutex is taken to protect tty
876 * ->siglock is taken to protect ->signal/->sighand
877 * tasklist_lock is taken to walk process list for sessions
878 * ->siglock is taken to protect ->signal/->sighand
879 */
880
881 void disassociate_ctty(int on_exit)
882 {
883 struct tty_struct *tty;
884
885 if (!current->signal->leader)
886 return;
887
888 tty = get_current_tty();
889 if (tty) {
890 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891 tty_vhangup_session(tty);
892 } else {
893 struct pid *tty_pgrp = tty_get_pgrp(tty);
894 if (tty_pgrp) {
895 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896 if (!on_exit)
897 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898 put_pid(tty_pgrp);
899 }
900 }
901 tty_kref_put(tty);
902
903 } else if (on_exit) {
904 struct pid *old_pgrp;
905 spin_lock_irq(&current->sighand->siglock);
906 old_pgrp = current->signal->tty_old_pgrp;
907 current->signal->tty_old_pgrp = NULL;
908 spin_unlock_irq(&current->sighand->siglock);
909 if (old_pgrp) {
910 kill_pgrp(old_pgrp, SIGHUP, on_exit);
911 kill_pgrp(old_pgrp, SIGCONT, on_exit);
912 put_pid(old_pgrp);
913 }
914 return;
915 }
916
917 spin_lock_irq(&current->sighand->siglock);
918 put_pid(current->signal->tty_old_pgrp);
919 current->signal->tty_old_pgrp = NULL;
920
921 tty = tty_kref_get(current->signal->tty);
922 if (tty) {
923 unsigned long flags;
924 spin_lock_irqsave(&tty->ctrl_lock, flags);
925 put_pid(tty->session);
926 put_pid(tty->pgrp);
927 tty->session = NULL;
928 tty->pgrp = NULL;
929 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930 tty_kref_put(tty);
931 } else {
932 #ifdef TTY_DEBUG_HANGUP
933 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934 " = NULL", tty);
935 #endif
936 }
937
938 spin_unlock_irq(&current->sighand->siglock);
939 /* Now clear signal->tty under the lock */
940 read_lock(&tasklist_lock);
941 session_clear_tty(task_session(current));
942 read_unlock(&tasklist_lock);
943 }
944
945 /**
946 *
947 * no_tty - Ensure the current process does not have a controlling tty
948 */
949 void no_tty(void)
950 {
951 /* FIXME: Review locking here. The tty_lock never covered any race
952 between a new association and proc_clear_tty but possible we need
953 to protect against this anyway */
954 struct task_struct *tsk = current;
955 disassociate_ctty(0);
956 proc_clear_tty(tsk);
957 }
958
959
960 /**
961 * stop_tty - propagate flow control
962 * @tty: tty to stop
963 *
964 * Perform flow control to the driver. May be called
965 * on an already stopped device and will not re-call the driver
966 * method.
967 *
968 * This functionality is used by both the line disciplines for
969 * halting incoming flow and by the driver. It may therefore be
970 * called from any context, may be under the tty atomic_write_lock
971 * but not always.
972 *
973 * Locking:
974 * flow_lock
975 */
976
977 void __stop_tty(struct tty_struct *tty)
978 {
979 if (tty->stopped)
980 return;
981 tty->stopped = 1;
982 if (tty->ops->stop)
983 tty->ops->stop(tty);
984 }
985
986 void stop_tty(struct tty_struct *tty)
987 {
988 unsigned long flags;
989
990 spin_lock_irqsave(&tty->flow_lock, flags);
991 __stop_tty(tty);
992 spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995
996 /**
997 * start_tty - propagate flow control
998 * @tty: tty to start
999 *
1000 * Start a tty that has been stopped if at all possible. If this
1001 * tty was previous stopped and is now being started, the driver
1002 * start method is invoked and the line discipline woken.
1003 *
1004 * Locking:
1005 * flow_lock
1006 */
1007
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010 if (!tty->stopped || tty->flow_stopped)
1011 return;
1012 tty->stopped = 0;
1013 if (tty->ops->start)
1014 tty->ops->start(tty);
1015 tty_wakeup(tty);
1016 }
1017
1018 void start_tty(struct tty_struct *tty)
1019 {
1020 unsigned long flags;
1021
1022 spin_lock_irqsave(&tty->flow_lock, flags);
1023 __start_tty(tty);
1024 spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031 unsigned long sec = get_seconds();
1032 if (abs(sec - time->tv_sec) & ~7)
1033 time->tv_sec = sec;
1034 }
1035
1036 /**
1037 * tty_read - read method for tty device files
1038 * @file: pointer to tty file
1039 * @buf: user buffer
1040 * @count: size of user buffer
1041 * @ppos: unused
1042 *
1043 * Perform the read system call function on this terminal device. Checks
1044 * for hung up devices before calling the line discipline method.
1045 *
1046 * Locking:
1047 * Locks the line discipline internally while needed. Multiple
1048 * read calls may be outstanding in parallel.
1049 */
1050
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052 loff_t *ppos)
1053 {
1054 int i;
1055 struct inode *inode = file_inode(file);
1056 struct tty_struct *tty = file_tty(file);
1057 struct tty_ldisc *ld;
1058
1059 if (tty_paranoia_check(tty, inode, "tty_read"))
1060 return -EIO;
1061 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062 return -EIO;
1063
1064 /* We want to wait for the line discipline to sort out in this
1065 situation */
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (ld->ops->read)
1068 i = ld->ops->read(tty, file, buf, count);
1069 else
1070 i = -EIO;
1071 tty_ldisc_deref(ld);
1072
1073 if (i > 0)
1074 tty_update_time(&inode->i_atime);
1075
1076 return i;
1077 }
1078
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081 mutex_unlock(&tty->atomic_write_lock);
1082 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087 if (!mutex_trylock(&tty->atomic_write_lock)) {
1088 if (ndelay)
1089 return -EAGAIN;
1090 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091 return -ERESTARTSYS;
1092 }
1093 return 0;
1094 }
1095
1096 /*
1097 * Split writes up in sane blocksizes to avoid
1098 * denial-of-service type attacks
1099 */
1100 static inline ssize_t do_tty_write(
1101 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102 struct tty_struct *tty,
1103 struct file *file,
1104 const char __user *buf,
1105 size_t count)
1106 {
1107 ssize_t ret, written = 0;
1108 unsigned int chunk;
1109
1110 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111 if (ret < 0)
1112 return ret;
1113
1114 /*
1115 * We chunk up writes into a temporary buffer. This
1116 * simplifies low-level drivers immensely, since they
1117 * don't have locking issues and user mode accesses.
1118 *
1119 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120 * big chunk-size..
1121 *
1122 * The default chunk-size is 2kB, because the NTTY
1123 * layer has problems with bigger chunks. It will
1124 * claim to be able to handle more characters than
1125 * it actually does.
1126 *
1127 * FIXME: This can probably go away now except that 64K chunks
1128 * are too likely to fail unless switched to vmalloc...
1129 */
1130 chunk = 2048;
1131 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132 chunk = 65536;
1133 if (count < chunk)
1134 chunk = count;
1135
1136 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137 if (tty->write_cnt < chunk) {
1138 unsigned char *buf_chunk;
1139
1140 if (chunk < 1024)
1141 chunk = 1024;
1142
1143 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144 if (!buf_chunk) {
1145 ret = -ENOMEM;
1146 goto out;
1147 }
1148 kfree(tty->write_buf);
1149 tty->write_cnt = chunk;
1150 tty->write_buf = buf_chunk;
1151 }
1152
1153 /* Do the write .. */
1154 for (;;) {
1155 size_t size = count;
1156 if (size > chunk)
1157 size = chunk;
1158 ret = -EFAULT;
1159 if (copy_from_user(tty->write_buf, buf, size))
1160 break;
1161 ret = write(tty, file, tty->write_buf, size);
1162 if (ret <= 0)
1163 break;
1164 written += ret;
1165 buf += ret;
1166 count -= ret;
1167 if (!count)
1168 break;
1169 ret = -ERESTARTSYS;
1170 if (signal_pending(current))
1171 break;
1172 cond_resched();
1173 }
1174 if (written) {
1175 tty_update_time(&file_inode(file)->i_mtime);
1176 ret = written;
1177 }
1178 out:
1179 tty_write_unlock(tty);
1180 return ret;
1181 }
1182
1183 /**
1184 * tty_write_message - write a message to a certain tty, not just the console.
1185 * @tty: the destination tty_struct
1186 * @msg: the message to write
1187 *
1188 * This is used for messages that need to be redirected to a specific tty.
1189 * We don't put it into the syslog queue right now maybe in the future if
1190 * really needed.
1191 *
1192 * We must still hold the BTM and test the CLOSING flag for the moment.
1193 */
1194
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197 if (tty) {
1198 mutex_lock(&tty->atomic_write_lock);
1199 tty_lock(tty);
1200 if (tty->ops->write && tty->count > 0) {
1201 tty_unlock(tty);
1202 tty->ops->write(tty, msg, strlen(msg));
1203 } else
1204 tty_unlock(tty);
1205 tty_write_unlock(tty);
1206 }
1207 return;
1208 }
1209
1210
1211 /**
1212 * tty_write - write method for tty device file
1213 * @file: tty file pointer
1214 * @buf: user data to write
1215 * @count: bytes to write
1216 * @ppos: unused
1217 *
1218 * Write data to a tty device via the line discipline.
1219 *
1220 * Locking:
1221 * Locks the line discipline as required
1222 * Writes to the tty driver are serialized by the atomic_write_lock
1223 * and are then processed in chunks to the device. The line discipline
1224 * write method will not be invoked in parallel for each device.
1225 */
1226
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228 size_t count, loff_t *ppos)
1229 {
1230 struct tty_struct *tty = file_tty(file);
1231 struct tty_ldisc *ld;
1232 ssize_t ret;
1233
1234 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235 return -EIO;
1236 if (!tty || !tty->ops->write ||
1237 (test_bit(TTY_IO_ERROR, &tty->flags)))
1238 return -EIO;
1239 /* Short term debug to catch buggy drivers */
1240 if (tty->ops->write_room == NULL)
1241 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242 tty->driver->name);
1243 ld = tty_ldisc_ref_wait(tty);
1244 if (!ld->ops->write)
1245 ret = -EIO;
1246 else
1247 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248 tty_ldisc_deref(ld);
1249 return ret;
1250 }
1251
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253 size_t count, loff_t *ppos)
1254 {
1255 struct file *p = NULL;
1256
1257 spin_lock(&redirect_lock);
1258 if (redirect)
1259 p = get_file(redirect);
1260 spin_unlock(&redirect_lock);
1261
1262 if (p) {
1263 ssize_t res;
1264 res = vfs_write(p, buf, count, &p->f_pos);
1265 fput(p);
1266 return res;
1267 }
1268 return tty_write(file, buf, count, ppos);
1269 }
1270
1271 /**
1272 * tty_send_xchar - send priority character
1273 *
1274 * Send a high priority character to the tty even if stopped
1275 *
1276 * Locking: none for xchar method, write ordering for write method.
1277 */
1278
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281 int was_stopped = tty->stopped;
1282
1283 if (tty->ops->send_xchar) {
1284 tty->ops->send_xchar(tty, ch);
1285 return 0;
1286 }
1287
1288 if (tty_write_lock(tty, 0) < 0)
1289 return -ERESTARTSYS;
1290
1291 if (was_stopped)
1292 start_tty(tty);
1293 tty->ops->write(tty, &ch, 1);
1294 if (was_stopped)
1295 stop_tty(tty);
1296 tty_write_unlock(tty);
1297 return 0;
1298 }
1299
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301
1302 /**
1303 * pty_line_name - generate name for a pty
1304 * @driver: the tty driver in use
1305 * @index: the minor number
1306 * @p: output buffer of at least 6 bytes
1307 *
1308 * Generate a name from a driver reference and write it to the output
1309 * buffer.
1310 *
1311 * Locking: None
1312 */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315 int i = index + driver->name_base;
1316 /* ->name is initialized to "ttyp", but "tty" is expected */
1317 sprintf(p, "%s%c%x",
1318 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319 ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321
1322 /**
1323 * tty_line_name - generate name for a tty
1324 * @driver: the tty driver in use
1325 * @index: the minor number
1326 * @p: output buffer of at least 7 bytes
1327 *
1328 * Generate a name from a driver reference and write it to the output
1329 * buffer.
1330 *
1331 * Locking: None
1332 */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336 return sprintf(p, "%s", driver->name);
1337 else
1338 return sprintf(p, "%s%d", driver->name,
1339 index + driver->name_base);
1340 }
1341
1342 /**
1343 * tty_driver_lookup_tty() - find an existing tty, if any
1344 * @driver: the driver for the tty
1345 * @idx: the minor number
1346 *
1347 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1348 * driver lookup() method returns an error.
1349 *
1350 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1351 */
1352 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1353 struct inode *inode, int idx)
1354 {
1355 struct tty_struct *tty;
1356
1357 if (driver->ops->lookup)
1358 tty = driver->ops->lookup(driver, inode, idx);
1359 else
1360 tty = driver->ttys[idx];
1361
1362 if (!IS_ERR(tty))
1363 tty_kref_get(tty);
1364 return tty;
1365 }
1366
1367 /**
1368 * tty_init_termios - helper for termios setup
1369 * @tty: the tty to set up
1370 *
1371 * Initialise the termios structures for this tty. Thus runs under
1372 * the tty_mutex currently so we can be relaxed about ordering.
1373 */
1374
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377 struct ktermios *tp;
1378 int idx = tty->index;
1379
1380 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381 tty->termios = tty->driver->init_termios;
1382 else {
1383 /* Check for lazy saved data */
1384 tp = tty->driver->termios[idx];
1385 if (tp != NULL)
1386 tty->termios = *tp;
1387 else
1388 tty->termios = tty->driver->init_termios;
1389 }
1390 /* Compatibility until drivers always set this */
1391 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393 return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399 int ret = tty_init_termios(tty);
1400 if (ret)
1401 return ret;
1402
1403 tty_driver_kref_get(driver);
1404 tty->count++;
1405 driver->ttys[tty->index] = tty;
1406 return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409
1410 /**
1411 * tty_driver_install_tty() - install a tty entry in the driver
1412 * @driver: the driver for the tty
1413 * @tty: the tty
1414 *
1415 * Install a tty object into the driver tables. The tty->index field
1416 * will be set by the time this is called. This method is responsible
1417 * for ensuring any need additional structures are allocated and
1418 * configured.
1419 *
1420 * Locking: tty_mutex for now
1421 */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423 struct tty_struct *tty)
1424 {
1425 return driver->ops->install ? driver->ops->install(driver, tty) :
1426 tty_standard_install(driver, tty);
1427 }
1428
1429 /**
1430 * tty_driver_remove_tty() - remove a tty from the driver tables
1431 * @driver: the driver for the tty
1432 * @idx: the minor number
1433 *
1434 * Remvoe a tty object from the driver tables. The tty->index field
1435 * will be set by the time this is called.
1436 *
1437 * Locking: tty_mutex for now
1438 */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441 if (driver->ops->remove)
1442 driver->ops->remove(driver, tty);
1443 else
1444 driver->ttys[tty->index] = NULL;
1445 }
1446
1447 /*
1448 * tty_reopen() - fast re-open of an open tty
1449 * @tty - the tty to open
1450 *
1451 * Return 0 on success, -errno on error.
1452 * Re-opens on master ptys are not allowed and return -EIO.
1453 *
1454 * Locking: Caller must hold tty_lock
1455 */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458 struct tty_driver *driver = tty->driver;
1459
1460 if (!tty->count)
1461 return -EIO;
1462
1463 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1464 driver->subtype == PTY_TYPE_MASTER)
1465 return -EIO;
1466
1467 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1468 return -EBUSY;
1469
1470 tty->count++;
1471
1472 WARN_ON(!tty->ldisc);
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * tty_init_dev - initialise a tty device
1479 * @driver: tty driver we are opening a device on
1480 * @idx: device index
1481 * @ret_tty: returned tty structure
1482 *
1483 * Prepare a tty device. This may not be a "new" clean device but
1484 * could also be an active device. The pty drivers require special
1485 * handling because of this.
1486 *
1487 * Locking:
1488 * The function is called under the tty_mutex, which
1489 * protects us from the tty struct or driver itself going away.
1490 *
1491 * On exit the tty device has the line discipline attached and
1492 * a reference count of 1. If a pair was created for pty/tty use
1493 * and the other was a pty master then it too has a reference count of 1.
1494 *
1495 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1496 * failed open. The new code protects the open with a mutex, so it's
1497 * really quite straightforward. The mutex locking can probably be
1498 * relaxed for the (most common) case of reopening a tty.
1499 */
1500
1501 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1502 {
1503 struct tty_struct *tty;
1504 int retval;
1505
1506 /*
1507 * First time open is complex, especially for PTY devices.
1508 * This code guarantees that either everything succeeds and the
1509 * TTY is ready for operation, or else the table slots are vacated
1510 * and the allocated memory released. (Except that the termios
1511 * and locked termios may be retained.)
1512 */
1513
1514 if (!try_module_get(driver->owner))
1515 return ERR_PTR(-ENODEV);
1516
1517 tty = alloc_tty_struct(driver, idx);
1518 if (!tty) {
1519 retval = -ENOMEM;
1520 goto err_module_put;
1521 }
1522
1523 tty_lock(tty);
1524 retval = tty_driver_install_tty(driver, tty);
1525 if (retval < 0)
1526 goto err_deinit_tty;
1527
1528 if (!tty->port)
1529 tty->port = driver->ports[idx];
1530
1531 WARN_RATELIMIT(!tty->port,
1532 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1533 __func__, tty->driver->name);
1534
1535 tty->port->itty = tty;
1536
1537 /*
1538 * Structures all installed ... call the ldisc open routines.
1539 * If we fail here just call release_tty to clean up. No need
1540 * to decrement the use counts, as release_tty doesn't care.
1541 */
1542 retval = tty_ldisc_setup(tty, tty->link);
1543 if (retval)
1544 goto err_release_tty;
1545 /* Return the tty locked so that it cannot vanish under the caller */
1546 return tty;
1547
1548 err_deinit_tty:
1549 tty_unlock(tty);
1550 deinitialize_tty_struct(tty);
1551 free_tty_struct(tty);
1552 err_module_put:
1553 module_put(driver->owner);
1554 return ERR_PTR(retval);
1555
1556 /* call the tty release_tty routine to clean out this slot */
1557 err_release_tty:
1558 tty_unlock(tty);
1559 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1560 "clearing slot %d\n", idx);
1561 release_tty(tty, idx);
1562 return ERR_PTR(retval);
1563 }
1564
1565 void tty_free_termios(struct tty_struct *tty)
1566 {
1567 struct ktermios *tp;
1568 int idx = tty->index;
1569
1570 /* If the port is going to reset then it has no termios to save */
1571 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1572 return;
1573
1574 /* Stash the termios data */
1575 tp = tty->driver->termios[idx];
1576 if (tp == NULL) {
1577 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1578 if (tp == NULL) {
1579 pr_warn("tty: no memory to save termios state.\n");
1580 return;
1581 }
1582 tty->driver->termios[idx] = tp;
1583 }
1584 *tp = tty->termios;
1585 }
1586 EXPORT_SYMBOL(tty_free_termios);
1587
1588 /**
1589 * tty_flush_works - flush all works of a tty/pty pair
1590 * @tty: tty device to flush works for (or either end of a pty pair)
1591 *
1592 * Sync flush all works belonging to @tty (and the 'other' tty).
1593 */
1594 static void tty_flush_works(struct tty_struct *tty)
1595 {
1596 flush_work(&tty->SAK_work);
1597 flush_work(&tty->hangup_work);
1598 if (tty->link) {
1599 flush_work(&tty->link->SAK_work);
1600 flush_work(&tty->link->hangup_work);
1601 }
1602 }
1603
1604 /**
1605 * release_one_tty - release tty structure memory
1606 * @kref: kref of tty we are obliterating
1607 *
1608 * Releases memory associated with a tty structure, and clears out the
1609 * driver table slots. This function is called when a device is no longer
1610 * in use. It also gets called when setup of a device fails.
1611 *
1612 * Locking:
1613 * takes the file list lock internally when working on the list
1614 * of ttys that the driver keeps.
1615 *
1616 * This method gets called from a work queue so that the driver private
1617 * cleanup ops can sleep (needed for USB at least)
1618 */
1619 static void release_one_tty(struct work_struct *work)
1620 {
1621 struct tty_struct *tty =
1622 container_of(work, struct tty_struct, hangup_work);
1623 struct tty_driver *driver = tty->driver;
1624 struct module *owner = driver->owner;
1625
1626 if (tty->ops->cleanup)
1627 tty->ops->cleanup(tty);
1628
1629 tty->magic = 0;
1630 tty_driver_kref_put(driver);
1631 module_put(owner);
1632
1633 spin_lock(&tty_files_lock);
1634 list_del_init(&tty->tty_files);
1635 spin_unlock(&tty_files_lock);
1636
1637 put_pid(tty->pgrp);
1638 put_pid(tty->session);
1639 free_tty_struct(tty);
1640 }
1641
1642 static void queue_release_one_tty(struct kref *kref)
1643 {
1644 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1645
1646 /* The hangup queue is now free so we can reuse it rather than
1647 waste a chunk of memory for each port */
1648 INIT_WORK(&tty->hangup_work, release_one_tty);
1649 schedule_work(&tty->hangup_work);
1650 }
1651
1652 /**
1653 * tty_kref_put - release a tty kref
1654 * @tty: tty device
1655 *
1656 * Release a reference to a tty device and if need be let the kref
1657 * layer destruct the object for us
1658 */
1659
1660 void tty_kref_put(struct tty_struct *tty)
1661 {
1662 if (tty)
1663 kref_put(&tty->kref, queue_release_one_tty);
1664 }
1665 EXPORT_SYMBOL(tty_kref_put);
1666
1667 /**
1668 * release_tty - release tty structure memory
1669 *
1670 * Release both @tty and a possible linked partner (think pty pair),
1671 * and decrement the refcount of the backing module.
1672 *
1673 * Locking:
1674 * tty_mutex
1675 * takes the file list lock internally when working on the list
1676 * of ttys that the driver keeps.
1677 *
1678 */
1679 static void release_tty(struct tty_struct *tty, int idx)
1680 {
1681 /* This should always be true but check for the moment */
1682 WARN_ON(tty->index != idx);
1683 WARN_ON(!mutex_is_locked(&tty_mutex));
1684 if (tty->ops->shutdown)
1685 tty->ops->shutdown(tty);
1686 tty_free_termios(tty);
1687 tty_driver_remove_tty(tty->driver, tty);
1688 tty->port->itty = NULL;
1689 if (tty->link)
1690 tty->link->port->itty = NULL;
1691 cancel_work_sync(&tty->port->buf.work);
1692
1693 tty_kref_put(tty->link);
1694 tty_kref_put(tty);
1695 }
1696
1697 /**
1698 * tty_release_checks - check a tty before real release
1699 * @tty: tty to check
1700 * @o_tty: link of @tty (if any)
1701 * @idx: index of the tty
1702 *
1703 * Performs some paranoid checking before true release of the @tty.
1704 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1705 */
1706 static int tty_release_checks(struct tty_struct *tty, int idx)
1707 {
1708 #ifdef TTY_PARANOIA_CHECK
1709 if (idx < 0 || idx >= tty->driver->num) {
1710 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1711 __func__, tty->name);
1712 return -1;
1713 }
1714
1715 /* not much to check for devpts */
1716 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 return 0;
1718
1719 if (tty != tty->driver->ttys[idx]) {
1720 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1721 __func__, idx, tty->name);
1722 return -1;
1723 }
1724 if (tty->driver->other) {
1725 struct tty_struct *o_tty = tty->link;
1726
1727 if (o_tty != tty->driver->other->ttys[idx]) {
1728 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1729 __func__, idx, tty->name);
1730 return -1;
1731 }
1732 if (o_tty->link != tty) {
1733 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1734 return -1;
1735 }
1736 }
1737 #endif
1738 return 0;
1739 }
1740
1741 /**
1742 * tty_release - vfs callback for close
1743 * @inode: inode of tty
1744 * @filp: file pointer for handle to tty
1745 *
1746 * Called the last time each file handle is closed that references
1747 * this tty. There may however be several such references.
1748 *
1749 * Locking:
1750 * Takes bkl. See tty_release_dev
1751 *
1752 * Even releasing the tty structures is a tricky business.. We have
1753 * to be very careful that the structures are all released at the
1754 * same time, as interrupts might otherwise get the wrong pointers.
1755 *
1756 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757 * lead to double frees or releasing memory still in use.
1758 */
1759
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 struct tty_struct *tty = file_tty(filp);
1763 struct tty_struct *o_tty = NULL;
1764 int do_sleep, final;
1765 int idx;
1766 char buf[64];
1767 long timeout = 0;
1768 int once = 1;
1769
1770 if (tty_paranoia_check(tty, inode, __func__))
1771 return 0;
1772
1773 tty_lock(tty);
1774 check_tty_count(tty, __func__);
1775
1776 __tty_fasync(-1, filp, 0);
1777
1778 idx = tty->index;
1779 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1780 tty->driver->subtype == PTY_TYPE_MASTER)
1781 o_tty = tty->link;
1782
1783 if (tty_release_checks(tty, idx)) {
1784 tty_unlock(tty);
1785 return 0;
1786 }
1787
1788 #ifdef TTY_DEBUG_HANGUP
1789 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1790 tty_name(tty, buf), tty->count);
1791 #endif
1792
1793 if (tty->ops->close)
1794 tty->ops->close(tty, filp);
1795
1796 /* If tty is pty master, lock the slave pty (stable lock order) */
1797 tty_lock_slave(o_tty);
1798
1799 /*
1800 * Sanity check: if tty->count is going to zero, there shouldn't be
1801 * any waiters on tty->read_wait or tty->write_wait. We test the
1802 * wait queues and kick everyone out _before_ actually starting to
1803 * close. This ensures that we won't block while releasing the tty
1804 * structure.
1805 *
1806 * The test for the o_tty closing is necessary, since the master and
1807 * slave sides may close in any order. If the slave side closes out
1808 * first, its count will be one, since the master side holds an open.
1809 * Thus this test wouldn't be triggered at the time the slave closed,
1810 * so we do it now.
1811 */
1812 while (1) {
1813 do_sleep = 0;
1814
1815 if (tty->count <= 1) {
1816 if (waitqueue_active(&tty->read_wait)) {
1817 wake_up_poll(&tty->read_wait, POLLIN);
1818 do_sleep++;
1819 }
1820 if (waitqueue_active(&tty->write_wait)) {
1821 wake_up_poll(&tty->write_wait, POLLOUT);
1822 do_sleep++;
1823 }
1824 }
1825 if (o_tty && o_tty->count <= 1) {
1826 if (waitqueue_active(&o_tty->read_wait)) {
1827 wake_up_poll(&o_tty->read_wait, POLLIN);
1828 do_sleep++;
1829 }
1830 if (waitqueue_active(&o_tty->write_wait)) {
1831 wake_up_poll(&o_tty->write_wait, POLLOUT);
1832 do_sleep++;
1833 }
1834 }
1835 if (!do_sleep)
1836 break;
1837
1838 if (once) {
1839 once = 0;
1840 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1841 __func__, tty_name(tty, buf));
1842 }
1843 schedule_timeout_killable(timeout);
1844 if (timeout < 120 * HZ)
1845 timeout = 2 * timeout + 1;
1846 else
1847 timeout = MAX_SCHEDULE_TIMEOUT;
1848 }
1849
1850 if (o_tty) {
1851 if (--o_tty->count < 0) {
1852 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1853 __func__, o_tty->count, tty_name(o_tty, buf));
1854 o_tty->count = 0;
1855 }
1856 }
1857 if (--tty->count < 0) {
1858 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1859 __func__, tty->count, tty_name(tty, buf));
1860 tty->count = 0;
1861 }
1862
1863 /*
1864 * We've decremented tty->count, so we need to remove this file
1865 * descriptor off the tty->tty_files list; this serves two
1866 * purposes:
1867 * - check_tty_count sees the correct number of file descriptors
1868 * associated with this tty.
1869 * - do_tty_hangup no longer sees this file descriptor as
1870 * something that needs to be handled for hangups.
1871 */
1872 tty_del_file(filp);
1873
1874 /*
1875 * Perform some housekeeping before deciding whether to return.
1876 *
1877 * If _either_ side is closing, make sure there aren't any
1878 * processes that still think tty or o_tty is their controlling
1879 * tty.
1880 */
1881 if (!tty->count) {
1882 read_lock(&tasklist_lock);
1883 session_clear_tty(tty->session);
1884 if (o_tty)
1885 session_clear_tty(o_tty->session);
1886 read_unlock(&tasklist_lock);
1887 }
1888
1889 /* check whether both sides are closing ... */
1890 final = !tty->count && !(o_tty && o_tty->count);
1891
1892 tty_unlock_slave(o_tty);
1893 tty_unlock(tty);
1894
1895 /* At this point, the tty->count == 0 should ensure a dead tty
1896 cannot be re-opened by a racing opener */
1897
1898 if (!final)
1899 return 0;
1900
1901 #ifdef TTY_DEBUG_HANGUP
1902 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1903 #endif
1904 /*
1905 * Ask the line discipline code to release its structures
1906 */
1907 tty_ldisc_release(tty);
1908
1909 /* Wait for pending work before tty destruction commmences */
1910 tty_flush_works(tty);
1911
1912 #ifdef TTY_DEBUG_HANGUP
1913 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1914 #endif
1915 /*
1916 * The release_tty function takes care of the details of clearing
1917 * the slots and preserving the termios structure. The tty_unlock_pair
1918 * should be safe as we keep a kref while the tty is locked (so the
1919 * unlock never unlocks a freed tty).
1920 */
1921 mutex_lock(&tty_mutex);
1922 release_tty(tty, idx);
1923 mutex_unlock(&tty_mutex);
1924
1925 return 0;
1926 }
1927
1928 /**
1929 * tty_open_current_tty - get locked tty of current task
1930 * @device: device number
1931 * @filp: file pointer to tty
1932 * @return: locked tty of the current task iff @device is /dev/tty
1933 *
1934 * Performs a re-open of the current task's controlling tty.
1935 *
1936 * We cannot return driver and index like for the other nodes because
1937 * devpts will not work then. It expects inodes to be from devpts FS.
1938 */
1939 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1940 {
1941 struct tty_struct *tty;
1942 int retval;
1943
1944 if (device != MKDEV(TTYAUX_MAJOR, 0))
1945 return NULL;
1946
1947 tty = get_current_tty();
1948 if (!tty)
1949 return ERR_PTR(-ENXIO);
1950
1951 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1952 /* noctty = 1; */
1953 tty_lock(tty);
1954 tty_kref_put(tty); /* safe to drop the kref now */
1955
1956 retval = tty_reopen(tty);
1957 if (retval < 0) {
1958 tty_unlock(tty);
1959 tty = ERR_PTR(retval);
1960 }
1961 return tty;
1962 }
1963
1964 /**
1965 * tty_lookup_driver - lookup a tty driver for a given device file
1966 * @device: device number
1967 * @filp: file pointer to tty
1968 * @noctty: set if the device should not become a controlling tty
1969 * @index: index for the device in the @return driver
1970 * @return: driver for this inode (with increased refcount)
1971 *
1972 * If @return is not erroneous, the caller is responsible to decrement the
1973 * refcount by tty_driver_kref_put.
1974 *
1975 * Locking: tty_mutex protects get_tty_driver
1976 */
1977 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1978 int *noctty, int *index)
1979 {
1980 struct tty_driver *driver;
1981
1982 switch (device) {
1983 #ifdef CONFIG_VT
1984 case MKDEV(TTY_MAJOR, 0): {
1985 extern struct tty_driver *console_driver;
1986 driver = tty_driver_kref_get(console_driver);
1987 *index = fg_console;
1988 *noctty = 1;
1989 break;
1990 }
1991 #endif
1992 case MKDEV(TTYAUX_MAJOR, 1): {
1993 struct tty_driver *console_driver = console_device(index);
1994 if (console_driver) {
1995 driver = tty_driver_kref_get(console_driver);
1996 if (driver) {
1997 /* Don't let /dev/console block */
1998 filp->f_flags |= O_NONBLOCK;
1999 *noctty = 1;
2000 break;
2001 }
2002 }
2003 return ERR_PTR(-ENODEV);
2004 }
2005 default:
2006 driver = get_tty_driver(device, index);
2007 if (!driver)
2008 return ERR_PTR(-ENODEV);
2009 break;
2010 }
2011 return driver;
2012 }
2013
2014 /**
2015 * tty_open - open a tty device
2016 * @inode: inode of device file
2017 * @filp: file pointer to tty
2018 *
2019 * tty_open and tty_release keep up the tty count that contains the
2020 * number of opens done on a tty. We cannot use the inode-count, as
2021 * different inodes might point to the same tty.
2022 *
2023 * Open-counting is needed for pty masters, as well as for keeping
2024 * track of serial lines: DTR is dropped when the last close happens.
2025 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2026 *
2027 * The termios state of a pty is reset on first open so that
2028 * settings don't persist across reuse.
2029 *
2030 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2031 * tty->count should protect the rest.
2032 * ->siglock protects ->signal/->sighand
2033 *
2034 * Note: the tty_unlock/lock cases without a ref are only safe due to
2035 * tty_mutex
2036 */
2037
2038 static int tty_open(struct inode *inode, struct file *filp)
2039 {
2040 struct tty_struct *tty;
2041 int noctty, retval;
2042 struct tty_driver *driver = NULL;
2043 int index;
2044 dev_t device = inode->i_rdev;
2045 unsigned saved_flags = filp->f_flags;
2046
2047 nonseekable_open(inode, filp);
2048
2049 retry_open:
2050 retval = tty_alloc_file(filp);
2051 if (retval)
2052 return -ENOMEM;
2053
2054 noctty = filp->f_flags & O_NOCTTY;
2055 index = -1;
2056 retval = 0;
2057
2058 tty = tty_open_current_tty(device, filp);
2059 if (!tty) {
2060 mutex_lock(&tty_mutex);
2061 driver = tty_lookup_driver(device, filp, &noctty, &index);
2062 if (IS_ERR(driver)) {
2063 retval = PTR_ERR(driver);
2064 goto err_unlock;
2065 }
2066
2067 /* check whether we're reopening an existing tty */
2068 tty = tty_driver_lookup_tty(driver, inode, index);
2069 if (IS_ERR(tty)) {
2070 retval = PTR_ERR(tty);
2071 goto err_unlock;
2072 }
2073
2074 if (tty) {
2075 mutex_unlock(&tty_mutex);
2076 tty_lock(tty);
2077 /* safe to drop the kref from tty_driver_lookup_tty() */
2078 tty_kref_put(tty);
2079 retval = tty_reopen(tty);
2080 if (retval < 0) {
2081 tty_unlock(tty);
2082 tty = ERR_PTR(retval);
2083 }
2084 } else { /* Returns with the tty_lock held for now */
2085 tty = tty_init_dev(driver, index);
2086 mutex_unlock(&tty_mutex);
2087 }
2088
2089 tty_driver_kref_put(driver);
2090 }
2091
2092 if (IS_ERR(tty)) {
2093 retval = PTR_ERR(tty);
2094 goto err_file;
2095 }
2096
2097 tty_add_file(tty, filp);
2098
2099 check_tty_count(tty, __func__);
2100 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2101 tty->driver->subtype == PTY_TYPE_MASTER)
2102 noctty = 1;
2103 #ifdef TTY_DEBUG_HANGUP
2104 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2105 #endif
2106 if (tty->ops->open)
2107 retval = tty->ops->open(tty, filp);
2108 else
2109 retval = -ENODEV;
2110 filp->f_flags = saved_flags;
2111
2112 if (retval) {
2113 #ifdef TTY_DEBUG_HANGUP
2114 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2115 retval, tty->name);
2116 #endif
2117 tty_unlock(tty); /* need to call tty_release without BTM */
2118 tty_release(inode, filp);
2119 if (retval != -ERESTARTSYS)
2120 return retval;
2121
2122 if (signal_pending(current))
2123 return retval;
2124
2125 schedule();
2126 /*
2127 * Need to reset f_op in case a hangup happened.
2128 */
2129 if (tty_hung_up_p(filp))
2130 filp->f_op = &tty_fops;
2131 goto retry_open;
2132 }
2133 clear_bit(TTY_HUPPED, &tty->flags);
2134
2135
2136 read_lock(&tasklist_lock);
2137 spin_lock_irq(&current->sighand->siglock);
2138 if (!noctty &&
2139 current->signal->leader &&
2140 !current->signal->tty &&
2141 tty->session == NULL)
2142 __proc_set_tty(tty);
2143 spin_unlock_irq(&current->sighand->siglock);
2144 read_unlock(&tasklist_lock);
2145 tty_unlock(tty);
2146 return 0;
2147 err_unlock:
2148 mutex_unlock(&tty_mutex);
2149 /* after locks to avoid deadlock */
2150 if (!IS_ERR_OR_NULL(driver))
2151 tty_driver_kref_put(driver);
2152 err_file:
2153 tty_free_file(filp);
2154 return retval;
2155 }
2156
2157
2158
2159 /**
2160 * tty_poll - check tty status
2161 * @filp: file being polled
2162 * @wait: poll wait structures to update
2163 *
2164 * Call the line discipline polling method to obtain the poll
2165 * status of the device.
2166 *
2167 * Locking: locks called line discipline but ldisc poll method
2168 * may be re-entered freely by other callers.
2169 */
2170
2171 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2172 {
2173 struct tty_struct *tty = file_tty(filp);
2174 struct tty_ldisc *ld;
2175 int ret = 0;
2176
2177 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2178 return 0;
2179
2180 ld = tty_ldisc_ref_wait(tty);
2181 if (ld->ops->poll)
2182 ret = ld->ops->poll(tty, filp, wait);
2183 tty_ldisc_deref(ld);
2184 return ret;
2185 }
2186
2187 static int __tty_fasync(int fd, struct file *filp, int on)
2188 {
2189 struct tty_struct *tty = file_tty(filp);
2190 struct tty_ldisc *ldisc;
2191 unsigned long flags;
2192 int retval = 0;
2193
2194 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2195 goto out;
2196
2197 retval = fasync_helper(fd, filp, on, &tty->fasync);
2198 if (retval <= 0)
2199 goto out;
2200
2201 ldisc = tty_ldisc_ref(tty);
2202 if (ldisc) {
2203 if (ldisc->ops->fasync)
2204 ldisc->ops->fasync(tty, on);
2205 tty_ldisc_deref(ldisc);
2206 }
2207
2208 if (on) {
2209 enum pid_type type;
2210 struct pid *pid;
2211
2212 spin_lock_irqsave(&tty->ctrl_lock, flags);
2213 if (tty->pgrp) {
2214 pid = tty->pgrp;
2215 type = PIDTYPE_PGID;
2216 } else {
2217 pid = task_pid(current);
2218 type = PIDTYPE_PID;
2219 }
2220 get_pid(pid);
2221 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2222 __f_setown(filp, pid, type, 0);
2223 put_pid(pid);
2224 retval = 0;
2225 }
2226 out:
2227 return retval;
2228 }
2229
2230 static int tty_fasync(int fd, struct file *filp, int on)
2231 {
2232 struct tty_struct *tty = file_tty(filp);
2233 int retval;
2234
2235 tty_lock(tty);
2236 retval = __tty_fasync(fd, filp, on);
2237 tty_unlock(tty);
2238
2239 return retval;
2240 }
2241
2242 /**
2243 * tiocsti - fake input character
2244 * @tty: tty to fake input into
2245 * @p: pointer to character
2246 *
2247 * Fake input to a tty device. Does the necessary locking and
2248 * input management.
2249 *
2250 * FIXME: does not honour flow control ??
2251 *
2252 * Locking:
2253 * Called functions take tty_ldiscs_lock
2254 * current->signal->tty check is safe without locks
2255 *
2256 * FIXME: may race normal receive processing
2257 */
2258
2259 static int tiocsti(struct tty_struct *tty, char __user *p)
2260 {
2261 char ch, mbz = 0;
2262 struct tty_ldisc *ld;
2263
2264 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2265 return -EPERM;
2266 if (get_user(ch, p))
2267 return -EFAULT;
2268 tty_audit_tiocsti(tty, ch);
2269 ld = tty_ldisc_ref_wait(tty);
2270 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2271 tty_ldisc_deref(ld);
2272 return 0;
2273 }
2274
2275 /**
2276 * tiocgwinsz - implement window query ioctl
2277 * @tty; tty
2278 * @arg: user buffer for result
2279 *
2280 * Copies the kernel idea of the window size into the user buffer.
2281 *
2282 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2283 * is consistent.
2284 */
2285
2286 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2287 {
2288 int err;
2289
2290 mutex_lock(&tty->winsize_mutex);
2291 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2292 mutex_unlock(&tty->winsize_mutex);
2293
2294 return err ? -EFAULT: 0;
2295 }
2296
2297 /**
2298 * tty_do_resize - resize event
2299 * @tty: tty being resized
2300 * @rows: rows (character)
2301 * @cols: cols (character)
2302 *
2303 * Update the termios variables and send the necessary signals to
2304 * peform a terminal resize correctly
2305 */
2306
2307 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2308 {
2309 struct pid *pgrp;
2310
2311 /* Lock the tty */
2312 mutex_lock(&tty->winsize_mutex);
2313 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2314 goto done;
2315
2316 /* Signal the foreground process group */
2317 pgrp = tty_get_pgrp(tty);
2318 if (pgrp)
2319 kill_pgrp(pgrp, SIGWINCH, 1);
2320 put_pid(pgrp);
2321
2322 tty->winsize = *ws;
2323 done:
2324 mutex_unlock(&tty->winsize_mutex);
2325 return 0;
2326 }
2327 EXPORT_SYMBOL(tty_do_resize);
2328
2329 /**
2330 * tiocswinsz - implement window size set ioctl
2331 * @tty; tty side of tty
2332 * @arg: user buffer for result
2333 *
2334 * Copies the user idea of the window size to the kernel. Traditionally
2335 * this is just advisory information but for the Linux console it
2336 * actually has driver level meaning and triggers a VC resize.
2337 *
2338 * Locking:
2339 * Driver dependent. The default do_resize method takes the
2340 * tty termios mutex and ctrl_lock. The console takes its own lock
2341 * then calls into the default method.
2342 */
2343
2344 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2345 {
2346 struct winsize tmp_ws;
2347 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2348 return -EFAULT;
2349
2350 if (tty->ops->resize)
2351 return tty->ops->resize(tty, &tmp_ws);
2352 else
2353 return tty_do_resize(tty, &tmp_ws);
2354 }
2355
2356 /**
2357 * tioccons - allow admin to move logical console
2358 * @file: the file to become console
2359 *
2360 * Allow the administrator to move the redirected console device
2361 *
2362 * Locking: uses redirect_lock to guard the redirect information
2363 */
2364
2365 static int tioccons(struct file *file)
2366 {
2367 if (!capable(CAP_SYS_ADMIN))
2368 return -EPERM;
2369 if (file->f_op->write == redirected_tty_write) {
2370 struct file *f;
2371 spin_lock(&redirect_lock);
2372 f = redirect;
2373 redirect = NULL;
2374 spin_unlock(&redirect_lock);
2375 if (f)
2376 fput(f);
2377 return 0;
2378 }
2379 spin_lock(&redirect_lock);
2380 if (redirect) {
2381 spin_unlock(&redirect_lock);
2382 return -EBUSY;
2383 }
2384 redirect = get_file(file);
2385 spin_unlock(&redirect_lock);
2386 return 0;
2387 }
2388
2389 /**
2390 * fionbio - non blocking ioctl
2391 * @file: file to set blocking value
2392 * @p: user parameter
2393 *
2394 * Historical tty interfaces had a blocking control ioctl before
2395 * the generic functionality existed. This piece of history is preserved
2396 * in the expected tty API of posix OS's.
2397 *
2398 * Locking: none, the open file handle ensures it won't go away.
2399 */
2400
2401 static int fionbio(struct file *file, int __user *p)
2402 {
2403 int nonblock;
2404
2405 if (get_user(nonblock, p))
2406 return -EFAULT;
2407
2408 spin_lock(&file->f_lock);
2409 if (nonblock)
2410 file->f_flags |= O_NONBLOCK;
2411 else
2412 file->f_flags &= ~O_NONBLOCK;
2413 spin_unlock(&file->f_lock);
2414 return 0;
2415 }
2416
2417 /**
2418 * tiocsctty - set controlling tty
2419 * @tty: tty structure
2420 * @arg: user argument
2421 *
2422 * This ioctl is used to manage job control. It permits a session
2423 * leader to set this tty as the controlling tty for the session.
2424 *
2425 * Locking:
2426 * Takes tty_lock() to serialize proc_set_tty() for this tty
2427 * Takes tasklist_lock internally to walk sessions
2428 * Takes ->siglock() when updating signal->tty
2429 */
2430
2431 static int tiocsctty(struct tty_struct *tty, int arg)
2432 {
2433 int ret = 0;
2434
2435 tty_lock(tty);
2436 read_lock(&tasklist_lock);
2437
2438 if (current->signal->leader && (task_session(current) == tty->session))
2439 goto unlock;
2440
2441 /*
2442 * The process must be a session leader and
2443 * not have a controlling tty already.
2444 */
2445 if (!current->signal->leader || current->signal->tty) {
2446 ret = -EPERM;
2447 goto unlock;
2448 }
2449
2450 if (tty->session) {
2451 /*
2452 * This tty is already the controlling
2453 * tty for another session group!
2454 */
2455 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2456 /*
2457 * Steal it away
2458 */
2459 session_clear_tty(tty->session);
2460 } else {
2461 ret = -EPERM;
2462 goto unlock;
2463 }
2464 }
2465 proc_set_tty(tty);
2466 unlock:
2467 read_unlock(&tasklist_lock);
2468 tty_unlock(tty);
2469 return ret;
2470 }
2471
2472 /**
2473 * tty_get_pgrp - return a ref counted pgrp pid
2474 * @tty: tty to read
2475 *
2476 * Returns a refcounted instance of the pid struct for the process
2477 * group controlling the tty.
2478 */
2479
2480 struct pid *tty_get_pgrp(struct tty_struct *tty)
2481 {
2482 unsigned long flags;
2483 struct pid *pgrp;
2484
2485 spin_lock_irqsave(&tty->ctrl_lock, flags);
2486 pgrp = get_pid(tty->pgrp);
2487 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2488
2489 return pgrp;
2490 }
2491 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2492
2493 /*
2494 * This checks not only the pgrp, but falls back on the pid if no
2495 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2496 * without this...
2497 *
2498 * The caller must hold rcu lock or the tasklist lock.
2499 */
2500 static struct pid *session_of_pgrp(struct pid *pgrp)
2501 {
2502 struct task_struct *p;
2503 struct pid *sid = NULL;
2504
2505 p = pid_task(pgrp, PIDTYPE_PGID);
2506 if (p == NULL)
2507 p = pid_task(pgrp, PIDTYPE_PID);
2508 if (p != NULL)
2509 sid = task_session(p);
2510
2511 return sid;
2512 }
2513
2514 /**
2515 * tiocgpgrp - get process group
2516 * @tty: tty passed by user
2517 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2518 * @p: returned pid
2519 *
2520 * Obtain the process group of the tty. If there is no process group
2521 * return an error.
2522 *
2523 * Locking: none. Reference to current->signal->tty is safe.
2524 */
2525
2526 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2527 {
2528 struct pid *pid;
2529 int ret;
2530 /*
2531 * (tty == real_tty) is a cheap way of
2532 * testing if the tty is NOT a master pty.
2533 */
2534 if (tty == real_tty && current->signal->tty != real_tty)
2535 return -ENOTTY;
2536 pid = tty_get_pgrp(real_tty);
2537 ret = put_user(pid_vnr(pid), p);
2538 put_pid(pid);
2539 return ret;
2540 }
2541
2542 /**
2543 * tiocspgrp - attempt to set process group
2544 * @tty: tty passed by user
2545 * @real_tty: tty side device matching tty passed by user
2546 * @p: pid pointer
2547 *
2548 * Set the process group of the tty to the session passed. Only
2549 * permitted where the tty session is our session.
2550 *
2551 * Locking: RCU, ctrl lock
2552 */
2553
2554 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2555 {
2556 struct pid *pgrp;
2557 pid_t pgrp_nr;
2558 int retval = tty_check_change(real_tty);
2559 unsigned long flags;
2560
2561 if (retval == -EIO)
2562 return -ENOTTY;
2563 if (retval)
2564 return retval;
2565 if (!current->signal->tty ||
2566 (current->signal->tty != real_tty) ||
2567 (real_tty->session != task_session(current)))
2568 return -ENOTTY;
2569 if (get_user(pgrp_nr, p))
2570 return -EFAULT;
2571 if (pgrp_nr < 0)
2572 return -EINVAL;
2573 rcu_read_lock();
2574 pgrp = find_vpid(pgrp_nr);
2575 retval = -ESRCH;
2576 if (!pgrp)
2577 goto out_unlock;
2578 retval = -EPERM;
2579 if (session_of_pgrp(pgrp) != task_session(current))
2580 goto out_unlock;
2581 retval = 0;
2582 spin_lock_irqsave(&tty->ctrl_lock, flags);
2583 put_pid(real_tty->pgrp);
2584 real_tty->pgrp = get_pid(pgrp);
2585 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2586 out_unlock:
2587 rcu_read_unlock();
2588 return retval;
2589 }
2590
2591 /**
2592 * tiocgsid - get session id
2593 * @tty: tty passed by user
2594 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2595 * @p: pointer to returned session id
2596 *
2597 * Obtain the session id of the tty. If there is no session
2598 * return an error.
2599 *
2600 * Locking: none. Reference to current->signal->tty is safe.
2601 */
2602
2603 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2604 {
2605 /*
2606 * (tty == real_tty) is a cheap way of
2607 * testing if the tty is NOT a master pty.
2608 */
2609 if (tty == real_tty && current->signal->tty != real_tty)
2610 return -ENOTTY;
2611 if (!real_tty->session)
2612 return -ENOTTY;
2613 return put_user(pid_vnr(real_tty->session), p);
2614 }
2615
2616 /**
2617 * tiocsetd - set line discipline
2618 * @tty: tty device
2619 * @p: pointer to user data
2620 *
2621 * Set the line discipline according to user request.
2622 *
2623 * Locking: see tty_set_ldisc, this function is just a helper
2624 */
2625
2626 static int tiocsetd(struct tty_struct *tty, int __user *p)
2627 {
2628 int ldisc;
2629 int ret;
2630
2631 if (get_user(ldisc, p))
2632 return -EFAULT;
2633
2634 ret = tty_set_ldisc(tty, ldisc);
2635
2636 return ret;
2637 }
2638
2639 /**
2640 * send_break - performed time break
2641 * @tty: device to break on
2642 * @duration: timeout in mS
2643 *
2644 * Perform a timed break on hardware that lacks its own driver level
2645 * timed break functionality.
2646 *
2647 * Locking:
2648 * atomic_write_lock serializes
2649 *
2650 */
2651
2652 static int send_break(struct tty_struct *tty, unsigned int duration)
2653 {
2654 int retval;
2655
2656 if (tty->ops->break_ctl == NULL)
2657 return 0;
2658
2659 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2660 retval = tty->ops->break_ctl(tty, duration);
2661 else {
2662 /* Do the work ourselves */
2663 if (tty_write_lock(tty, 0) < 0)
2664 return -EINTR;
2665 retval = tty->ops->break_ctl(tty, -1);
2666 if (retval)
2667 goto out;
2668 if (!signal_pending(current))
2669 msleep_interruptible(duration);
2670 retval = tty->ops->break_ctl(tty, 0);
2671 out:
2672 tty_write_unlock(tty);
2673 if (signal_pending(current))
2674 retval = -EINTR;
2675 }
2676 return retval;
2677 }
2678
2679 /**
2680 * tty_tiocmget - get modem status
2681 * @tty: tty device
2682 * @file: user file pointer
2683 * @p: pointer to result
2684 *
2685 * Obtain the modem status bits from the tty driver if the feature
2686 * is supported. Return -EINVAL if it is not available.
2687 *
2688 * Locking: none (up to the driver)
2689 */
2690
2691 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2692 {
2693 int retval = -EINVAL;
2694
2695 if (tty->ops->tiocmget) {
2696 retval = tty->ops->tiocmget(tty);
2697
2698 if (retval >= 0)
2699 retval = put_user(retval, p);
2700 }
2701 return retval;
2702 }
2703
2704 /**
2705 * tty_tiocmset - set modem status
2706 * @tty: tty device
2707 * @cmd: command - clear bits, set bits or set all
2708 * @p: pointer to desired bits
2709 *
2710 * Set the modem status bits from the tty driver if the feature
2711 * is supported. Return -EINVAL if it is not available.
2712 *
2713 * Locking: none (up to the driver)
2714 */
2715
2716 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2717 unsigned __user *p)
2718 {
2719 int retval;
2720 unsigned int set, clear, val;
2721
2722 if (tty->ops->tiocmset == NULL)
2723 return -EINVAL;
2724
2725 retval = get_user(val, p);
2726 if (retval)
2727 return retval;
2728 set = clear = 0;
2729 switch (cmd) {
2730 case TIOCMBIS:
2731 set = val;
2732 break;
2733 case TIOCMBIC:
2734 clear = val;
2735 break;
2736 case TIOCMSET:
2737 set = val;
2738 clear = ~val;
2739 break;
2740 }
2741 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2742 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2743 return tty->ops->tiocmset(tty, set, clear);
2744 }
2745
2746 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2747 {
2748 int retval = -EINVAL;
2749 struct serial_icounter_struct icount;
2750 memset(&icount, 0, sizeof(icount));
2751 if (tty->ops->get_icount)
2752 retval = tty->ops->get_icount(tty, &icount);
2753 if (retval != 0)
2754 return retval;
2755 if (copy_to_user(arg, &icount, sizeof(icount)))
2756 return -EFAULT;
2757 return 0;
2758 }
2759
2760 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2761 {
2762 static DEFINE_RATELIMIT_STATE(depr_flags,
2763 DEFAULT_RATELIMIT_INTERVAL,
2764 DEFAULT_RATELIMIT_BURST);
2765 char comm[TASK_COMM_LEN];
2766 int flags;
2767
2768 if (get_user(flags, &ss->flags))
2769 return;
2770
2771 flags &= ASYNC_DEPRECATED;
2772
2773 if (flags && __ratelimit(&depr_flags))
2774 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2775 __func__, get_task_comm(comm, current), flags);
2776 }
2777
2778 /*
2779 * if pty, return the slave side (real_tty)
2780 * otherwise, return self
2781 */
2782 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2783 {
2784 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2785 tty->driver->subtype == PTY_TYPE_MASTER)
2786 tty = tty->link;
2787 return tty;
2788 }
2789
2790 /*
2791 * Split this up, as gcc can choke on it otherwise..
2792 */
2793 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2794 {
2795 struct tty_struct *tty = file_tty(file);
2796 struct tty_struct *real_tty;
2797 void __user *p = (void __user *)arg;
2798 int retval;
2799 struct tty_ldisc *ld;
2800
2801 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2802 return -EINVAL;
2803
2804 real_tty = tty_pair_get_tty(tty);
2805
2806 /*
2807 * Factor out some common prep work
2808 */
2809 switch (cmd) {
2810 case TIOCSETD:
2811 case TIOCSBRK:
2812 case TIOCCBRK:
2813 case TCSBRK:
2814 case TCSBRKP:
2815 retval = tty_check_change(tty);
2816 if (retval)
2817 return retval;
2818 if (cmd != TIOCCBRK) {
2819 tty_wait_until_sent(tty, 0);
2820 if (signal_pending(current))
2821 return -EINTR;
2822 }
2823 break;
2824 }
2825
2826 /*
2827 * Now do the stuff.
2828 */
2829 switch (cmd) {
2830 case TIOCSTI:
2831 return tiocsti(tty, p);
2832 case TIOCGWINSZ:
2833 return tiocgwinsz(real_tty, p);
2834 case TIOCSWINSZ:
2835 return tiocswinsz(real_tty, p);
2836 case TIOCCONS:
2837 return real_tty != tty ? -EINVAL : tioccons(file);
2838 case FIONBIO:
2839 return fionbio(file, p);
2840 case TIOCEXCL:
2841 set_bit(TTY_EXCLUSIVE, &tty->flags);
2842 return 0;
2843 case TIOCNXCL:
2844 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2845 return 0;
2846 case TIOCGEXCL:
2847 {
2848 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2849 return put_user(excl, (int __user *)p);
2850 }
2851 case TIOCNOTTY:
2852 if (current->signal->tty != tty)
2853 return -ENOTTY;
2854 no_tty();
2855 return 0;
2856 case TIOCSCTTY:
2857 return tiocsctty(tty, arg);
2858 case TIOCGPGRP:
2859 return tiocgpgrp(tty, real_tty, p);
2860 case TIOCSPGRP:
2861 return tiocspgrp(tty, real_tty, p);
2862 case TIOCGSID:
2863 return tiocgsid(tty, real_tty, p);
2864 case TIOCGETD:
2865 return put_user(tty->ldisc->ops->num, (int __user *)p);
2866 case TIOCSETD:
2867 return tiocsetd(tty, p);
2868 case TIOCVHANGUP:
2869 if (!capable(CAP_SYS_ADMIN))
2870 return -EPERM;
2871 tty_vhangup(tty);
2872 return 0;
2873 case TIOCGDEV:
2874 {
2875 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2876 return put_user(ret, (unsigned int __user *)p);
2877 }
2878 /*
2879 * Break handling
2880 */
2881 case TIOCSBRK: /* Turn break on, unconditionally */
2882 if (tty->ops->break_ctl)
2883 return tty->ops->break_ctl(tty, -1);
2884 return 0;
2885 case TIOCCBRK: /* Turn break off, unconditionally */
2886 if (tty->ops->break_ctl)
2887 return tty->ops->break_ctl(tty, 0);
2888 return 0;
2889 case TCSBRK: /* SVID version: non-zero arg --> no break */
2890 /* non-zero arg means wait for all output data
2891 * to be sent (performed above) but don't send break.
2892 * This is used by the tcdrain() termios function.
2893 */
2894 if (!arg)
2895 return send_break(tty, 250);
2896 return 0;
2897 case TCSBRKP: /* support for POSIX tcsendbreak() */
2898 return send_break(tty, arg ? arg*100 : 250);
2899
2900 case TIOCMGET:
2901 return tty_tiocmget(tty, p);
2902 case TIOCMSET:
2903 case TIOCMBIC:
2904 case TIOCMBIS:
2905 return tty_tiocmset(tty, cmd, p);
2906 case TIOCGICOUNT:
2907 retval = tty_tiocgicount(tty, p);
2908 /* For the moment allow fall through to the old method */
2909 if (retval != -EINVAL)
2910 return retval;
2911 break;
2912 case TCFLSH:
2913 switch (arg) {
2914 case TCIFLUSH:
2915 case TCIOFLUSH:
2916 /* flush tty buffer and allow ldisc to process ioctl */
2917 tty_buffer_flush(tty, NULL);
2918 break;
2919 }
2920 break;
2921 case TIOCSSERIAL:
2922 tty_warn_deprecated_flags(p);
2923 break;
2924 }
2925 if (tty->ops->ioctl) {
2926 retval = tty->ops->ioctl(tty, cmd, arg);
2927 if (retval != -ENOIOCTLCMD)
2928 return retval;
2929 }
2930 ld = tty_ldisc_ref_wait(tty);
2931 retval = -EINVAL;
2932 if (ld->ops->ioctl) {
2933 retval = ld->ops->ioctl(tty, file, cmd, arg);
2934 if (retval == -ENOIOCTLCMD)
2935 retval = -ENOTTY;
2936 }
2937 tty_ldisc_deref(ld);
2938 return retval;
2939 }
2940
2941 #ifdef CONFIG_COMPAT
2942 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2943 unsigned long arg)
2944 {
2945 struct tty_struct *tty = file_tty(file);
2946 struct tty_ldisc *ld;
2947 int retval = -ENOIOCTLCMD;
2948
2949 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2950 return -EINVAL;
2951
2952 if (tty->ops->compat_ioctl) {
2953 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2954 if (retval != -ENOIOCTLCMD)
2955 return retval;
2956 }
2957
2958 ld = tty_ldisc_ref_wait(tty);
2959 if (ld->ops->compat_ioctl)
2960 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2961 else
2962 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2963 tty_ldisc_deref(ld);
2964
2965 return retval;
2966 }
2967 #endif
2968
2969 static int this_tty(const void *t, struct file *file, unsigned fd)
2970 {
2971 if (likely(file->f_op->read != tty_read))
2972 return 0;
2973 return file_tty(file) != t ? 0 : fd + 1;
2974 }
2975
2976 /*
2977 * This implements the "Secure Attention Key" --- the idea is to
2978 * prevent trojan horses by killing all processes associated with this
2979 * tty when the user hits the "Secure Attention Key". Required for
2980 * super-paranoid applications --- see the Orange Book for more details.
2981 *
2982 * This code could be nicer; ideally it should send a HUP, wait a few
2983 * seconds, then send a INT, and then a KILL signal. But you then
2984 * have to coordinate with the init process, since all processes associated
2985 * with the current tty must be dead before the new getty is allowed
2986 * to spawn.
2987 *
2988 * Now, if it would be correct ;-/ The current code has a nasty hole -
2989 * it doesn't catch files in flight. We may send the descriptor to ourselves
2990 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2991 *
2992 * Nasty bug: do_SAK is being called in interrupt context. This can
2993 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2994 */
2995 void __do_SAK(struct tty_struct *tty)
2996 {
2997 #ifdef TTY_SOFT_SAK
2998 tty_hangup(tty);
2999 #else
3000 struct task_struct *g, *p;
3001 struct pid *session;
3002 int i;
3003
3004 if (!tty)
3005 return;
3006 session = tty->session;
3007
3008 tty_ldisc_flush(tty);
3009
3010 tty_driver_flush_buffer(tty);
3011
3012 read_lock(&tasklist_lock);
3013 /* Kill the entire session */
3014 do_each_pid_task(session, PIDTYPE_SID, p) {
3015 printk(KERN_NOTICE "SAK: killed process %d"
3016 " (%s): task_session(p)==tty->session\n",
3017 task_pid_nr(p), p->comm);
3018 send_sig(SIGKILL, p, 1);
3019 } while_each_pid_task(session, PIDTYPE_SID, p);
3020 /* Now kill any processes that happen to have the
3021 * tty open.
3022 */
3023 do_each_thread(g, p) {
3024 if (p->signal->tty == tty) {
3025 printk(KERN_NOTICE "SAK: killed process %d"
3026 " (%s): task_session(p)==tty->session\n",
3027 task_pid_nr(p), p->comm);
3028 send_sig(SIGKILL, p, 1);
3029 continue;
3030 }
3031 task_lock(p);
3032 i = iterate_fd(p->files, 0, this_tty, tty);
3033 if (i != 0) {
3034 printk(KERN_NOTICE "SAK: killed process %d"
3035 " (%s): fd#%d opened to the tty\n",
3036 task_pid_nr(p), p->comm, i - 1);
3037 force_sig(SIGKILL, p);
3038 }
3039 task_unlock(p);
3040 } while_each_thread(g, p);
3041 read_unlock(&tasklist_lock);
3042 #endif
3043 }
3044
3045 static void do_SAK_work(struct work_struct *work)
3046 {
3047 struct tty_struct *tty =
3048 container_of(work, struct tty_struct, SAK_work);
3049 __do_SAK(tty);
3050 }
3051
3052 /*
3053 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3054 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3055 * the values which we write to it will be identical to the values which it
3056 * already has. --akpm
3057 */
3058 void do_SAK(struct tty_struct *tty)
3059 {
3060 if (!tty)
3061 return;
3062 schedule_work(&tty->SAK_work);
3063 }
3064
3065 EXPORT_SYMBOL(do_SAK);
3066
3067 static int dev_match_devt(struct device *dev, const void *data)
3068 {
3069 const dev_t *devt = data;
3070 return dev->devt == *devt;
3071 }
3072
3073 /* Must put_device() after it's unused! */
3074 static struct device *tty_get_device(struct tty_struct *tty)
3075 {
3076 dev_t devt = tty_devnum(tty);
3077 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3078 }
3079
3080
3081 /**
3082 * alloc_tty_struct
3083 *
3084 * This subroutine allocates and initializes a tty structure.
3085 *
3086 * Locking: none - tty in question is not exposed at this point
3087 */
3088
3089 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3090 {
3091 struct tty_struct *tty;
3092
3093 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3094 if (!tty)
3095 return NULL;
3096
3097 kref_init(&tty->kref);
3098 tty->magic = TTY_MAGIC;
3099 tty_ldisc_init(tty);
3100 tty->session = NULL;
3101 tty->pgrp = NULL;
3102 mutex_init(&tty->legacy_mutex);
3103 mutex_init(&tty->throttle_mutex);
3104 init_rwsem(&tty->termios_rwsem);
3105 mutex_init(&tty->winsize_mutex);
3106 init_ldsem(&tty->ldisc_sem);
3107 init_waitqueue_head(&tty->write_wait);
3108 init_waitqueue_head(&tty->read_wait);
3109 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3110 mutex_init(&tty->atomic_write_lock);
3111 spin_lock_init(&tty->ctrl_lock);
3112 spin_lock_init(&tty->flow_lock);
3113 INIT_LIST_HEAD(&tty->tty_files);
3114 INIT_WORK(&tty->SAK_work, do_SAK_work);
3115
3116 tty->driver = driver;
3117 tty->ops = driver->ops;
3118 tty->index = idx;
3119 tty_line_name(driver, idx, tty->name);
3120 tty->dev = tty_get_device(tty);
3121
3122 return tty;
3123 }
3124
3125 /**
3126 * deinitialize_tty_struct
3127 * @tty: tty to deinitialize
3128 *
3129 * This subroutine deinitializes a tty structure that has been newly
3130 * allocated but tty_release cannot be called on that yet.
3131 *
3132 * Locking: none - tty in question must not be exposed at this point
3133 */
3134 void deinitialize_tty_struct(struct tty_struct *tty)
3135 {
3136 tty_ldisc_deinit(tty);
3137 }
3138
3139 /**
3140 * tty_put_char - write one character to a tty
3141 * @tty: tty
3142 * @ch: character
3143 *
3144 * Write one byte to the tty using the provided put_char method
3145 * if present. Returns the number of characters successfully output.
3146 *
3147 * Note: the specific put_char operation in the driver layer may go
3148 * away soon. Don't call it directly, use this method
3149 */
3150
3151 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3152 {
3153 if (tty->ops->put_char)
3154 return tty->ops->put_char(tty, ch);
3155 return tty->ops->write(tty, &ch, 1);
3156 }
3157 EXPORT_SYMBOL_GPL(tty_put_char);
3158
3159 struct class *tty_class;
3160
3161 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3162 unsigned int index, unsigned int count)
3163 {
3164 /* init here, since reused cdevs cause crashes */
3165 cdev_init(&driver->cdevs[index], &tty_fops);
3166 driver->cdevs[index].owner = driver->owner;
3167 return cdev_add(&driver->cdevs[index], dev, count);
3168 }
3169
3170 /**
3171 * tty_register_device - register a tty device
3172 * @driver: the tty driver that describes the tty device
3173 * @index: the index in the tty driver for this tty device
3174 * @device: a struct device that is associated with this tty device.
3175 * This field is optional, if there is no known struct device
3176 * for this tty device it can be set to NULL safely.
3177 *
3178 * Returns a pointer to the struct device for this tty device
3179 * (or ERR_PTR(-EFOO) on error).
3180 *
3181 * This call is required to be made to register an individual tty device
3182 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3183 * that bit is not set, this function should not be called by a tty
3184 * driver.
3185 *
3186 * Locking: ??
3187 */
3188
3189 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3190 struct device *device)
3191 {
3192 return tty_register_device_attr(driver, index, device, NULL, NULL);
3193 }
3194 EXPORT_SYMBOL(tty_register_device);
3195
3196 static void tty_device_create_release(struct device *dev)
3197 {
3198 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3199 kfree(dev);
3200 }
3201
3202 /**
3203 * tty_register_device_attr - register a tty device
3204 * @driver: the tty driver that describes the tty device
3205 * @index: the index in the tty driver for this tty device
3206 * @device: a struct device that is associated with this tty device.
3207 * This field is optional, if there is no known struct device
3208 * for this tty device it can be set to NULL safely.
3209 * @drvdata: Driver data to be set to device.
3210 * @attr_grp: Attribute group to be set on device.
3211 *
3212 * Returns a pointer to the struct device for this tty device
3213 * (or ERR_PTR(-EFOO) on error).
3214 *
3215 * This call is required to be made to register an individual tty device
3216 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3217 * that bit is not set, this function should not be called by a tty
3218 * driver.
3219 *
3220 * Locking: ??
3221 */
3222 struct device *tty_register_device_attr(struct tty_driver *driver,
3223 unsigned index, struct device *device,
3224 void *drvdata,
3225 const struct attribute_group **attr_grp)
3226 {
3227 char name[64];
3228 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3229 struct device *dev = NULL;
3230 int retval = -ENODEV;
3231 bool cdev = false;
3232
3233 if (index >= driver->num) {
3234 printk(KERN_ERR "Attempt to register invalid tty line number "
3235 " (%d).\n", index);
3236 return ERR_PTR(-EINVAL);
3237 }
3238
3239 if (driver->type == TTY_DRIVER_TYPE_PTY)
3240 pty_line_name(driver, index, name);
3241 else
3242 tty_line_name(driver, index, name);
3243
3244 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3245 retval = tty_cdev_add(driver, devt, index, 1);
3246 if (retval)
3247 goto error;
3248 cdev = true;
3249 }
3250
3251 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3252 if (!dev) {
3253 retval = -ENOMEM;
3254 goto error;
3255 }
3256
3257 dev->devt = devt;
3258 dev->class = tty_class;
3259 dev->parent = device;
3260 dev->release = tty_device_create_release;
3261 dev_set_name(dev, "%s", name);
3262 dev->groups = attr_grp;
3263 dev_set_drvdata(dev, drvdata);
3264
3265 retval = device_register(dev);
3266 if (retval)
3267 goto error;
3268
3269 return dev;
3270
3271 error:
3272 put_device(dev);
3273 if (cdev)
3274 cdev_del(&driver->cdevs[index]);
3275 return ERR_PTR(retval);
3276 }
3277 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3278
3279 /**
3280 * tty_unregister_device - unregister a tty device
3281 * @driver: the tty driver that describes the tty device
3282 * @index: the index in the tty driver for this tty device
3283 *
3284 * If a tty device is registered with a call to tty_register_device() then
3285 * this function must be called when the tty device is gone.
3286 *
3287 * Locking: ??
3288 */
3289
3290 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3291 {
3292 device_destroy(tty_class,
3293 MKDEV(driver->major, driver->minor_start) + index);
3294 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3295 cdev_del(&driver->cdevs[index]);
3296 }
3297 EXPORT_SYMBOL(tty_unregister_device);
3298
3299 /**
3300 * __tty_alloc_driver -- allocate tty driver
3301 * @lines: count of lines this driver can handle at most
3302 * @owner: module which is repsonsible for this driver
3303 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3304 *
3305 * This should not be called directly, some of the provided macros should be
3306 * used instead. Use IS_ERR and friends on @retval.
3307 */
3308 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3309 unsigned long flags)
3310 {
3311 struct tty_driver *driver;
3312 unsigned int cdevs = 1;
3313 int err;
3314
3315 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3316 return ERR_PTR(-EINVAL);
3317
3318 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3319 if (!driver)
3320 return ERR_PTR(-ENOMEM);
3321
3322 kref_init(&driver->kref);
3323 driver->magic = TTY_DRIVER_MAGIC;
3324 driver->num = lines;
3325 driver->owner = owner;
3326 driver->flags = flags;
3327
3328 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3329 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3330 GFP_KERNEL);
3331 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3332 GFP_KERNEL);
3333 if (!driver->ttys || !driver->termios) {
3334 err = -ENOMEM;
3335 goto err_free_all;
3336 }
3337 }
3338
3339 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3340 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3341 GFP_KERNEL);
3342 if (!driver->ports) {
3343 err = -ENOMEM;
3344 goto err_free_all;
3345 }
3346 cdevs = lines;
3347 }
3348
3349 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3350 if (!driver->cdevs) {
3351 err = -ENOMEM;
3352 goto err_free_all;
3353 }
3354
3355 return driver;
3356 err_free_all:
3357 kfree(driver->ports);
3358 kfree(driver->ttys);
3359 kfree(driver->termios);
3360 kfree(driver);
3361 return ERR_PTR(err);
3362 }
3363 EXPORT_SYMBOL(__tty_alloc_driver);
3364
3365 static void destruct_tty_driver(struct kref *kref)
3366 {
3367 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3368 int i;
3369 struct ktermios *tp;
3370
3371 if (driver->flags & TTY_DRIVER_INSTALLED) {
3372 /*
3373 * Free the termios and termios_locked structures because
3374 * we don't want to get memory leaks when modular tty
3375 * drivers are removed from the kernel.
3376 */
3377 for (i = 0; i < driver->num; i++) {
3378 tp = driver->termios[i];
3379 if (tp) {
3380 driver->termios[i] = NULL;
3381 kfree(tp);
3382 }
3383 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3384 tty_unregister_device(driver, i);
3385 }
3386 proc_tty_unregister_driver(driver);
3387 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3388 cdev_del(&driver->cdevs[0]);
3389 }
3390 kfree(driver->cdevs);
3391 kfree(driver->ports);
3392 kfree(driver->termios);
3393 kfree(driver->ttys);
3394 kfree(driver);
3395 }
3396
3397 void tty_driver_kref_put(struct tty_driver *driver)
3398 {
3399 kref_put(&driver->kref, destruct_tty_driver);
3400 }
3401 EXPORT_SYMBOL(tty_driver_kref_put);
3402
3403 void tty_set_operations(struct tty_driver *driver,
3404 const struct tty_operations *op)
3405 {
3406 driver->ops = op;
3407 };
3408 EXPORT_SYMBOL(tty_set_operations);
3409
3410 void put_tty_driver(struct tty_driver *d)
3411 {
3412 tty_driver_kref_put(d);
3413 }
3414 EXPORT_SYMBOL(put_tty_driver);
3415
3416 /*
3417 * Called by a tty driver to register itself.
3418 */
3419 int tty_register_driver(struct tty_driver *driver)
3420 {
3421 int error;
3422 int i;
3423 dev_t dev;
3424 struct device *d;
3425
3426 if (!driver->major) {
3427 error = alloc_chrdev_region(&dev, driver->minor_start,
3428 driver->num, driver->name);
3429 if (!error) {
3430 driver->major = MAJOR(dev);
3431 driver->minor_start = MINOR(dev);
3432 }
3433 } else {
3434 dev = MKDEV(driver->major, driver->minor_start);
3435 error = register_chrdev_region(dev, driver->num, driver->name);
3436 }
3437 if (error < 0)
3438 goto err;
3439
3440 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3441 error = tty_cdev_add(driver, dev, 0, driver->num);
3442 if (error)
3443 goto err_unreg_char;
3444 }
3445
3446 mutex_lock(&tty_mutex);
3447 list_add(&driver->tty_drivers, &tty_drivers);
3448 mutex_unlock(&tty_mutex);
3449
3450 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3451 for (i = 0; i < driver->num; i++) {
3452 d = tty_register_device(driver, i, NULL);
3453 if (IS_ERR(d)) {
3454 error = PTR_ERR(d);
3455 goto err_unreg_devs;
3456 }
3457 }
3458 }
3459 proc_tty_register_driver(driver);
3460 driver->flags |= TTY_DRIVER_INSTALLED;
3461 return 0;
3462
3463 err_unreg_devs:
3464 for (i--; i >= 0; i--)
3465 tty_unregister_device(driver, i);
3466
3467 mutex_lock(&tty_mutex);
3468 list_del(&driver->tty_drivers);
3469 mutex_unlock(&tty_mutex);
3470
3471 err_unreg_char:
3472 unregister_chrdev_region(dev, driver->num);
3473 err:
3474 return error;
3475 }
3476 EXPORT_SYMBOL(tty_register_driver);
3477
3478 /*
3479 * Called by a tty driver to unregister itself.
3480 */
3481 int tty_unregister_driver(struct tty_driver *driver)
3482 {
3483 #if 0
3484 /* FIXME */
3485 if (driver->refcount)
3486 return -EBUSY;
3487 #endif
3488 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3489 driver->num);
3490 mutex_lock(&tty_mutex);
3491 list_del(&driver->tty_drivers);
3492 mutex_unlock(&tty_mutex);
3493 return 0;
3494 }
3495
3496 EXPORT_SYMBOL(tty_unregister_driver);
3497
3498 dev_t tty_devnum(struct tty_struct *tty)
3499 {
3500 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3501 }
3502 EXPORT_SYMBOL(tty_devnum);
3503
3504 void tty_default_fops(struct file_operations *fops)
3505 {
3506 *fops = tty_fops;
3507 }
3508
3509 /*
3510 * Initialize the console device. This is called *early*, so
3511 * we can't necessarily depend on lots of kernel help here.
3512 * Just do some early initializations, and do the complex setup
3513 * later.
3514 */
3515 void __init console_init(void)
3516 {
3517 initcall_t *call;
3518
3519 /* Setup the default TTY line discipline. */
3520 tty_ldisc_begin();
3521
3522 /*
3523 * set up the console device so that later boot sequences can
3524 * inform about problems etc..
3525 */
3526 call = __con_initcall_start;
3527 while (call < __con_initcall_end) {
3528 (*call)();
3529 call++;
3530 }
3531 }
3532
3533 static char *tty_devnode(struct device *dev, umode_t *mode)
3534 {
3535 if (!mode)
3536 return NULL;
3537 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3538 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3539 *mode = 0666;
3540 return NULL;
3541 }
3542
3543 static int __init tty_class_init(void)
3544 {
3545 tty_class = class_create(THIS_MODULE, "tty");
3546 if (IS_ERR(tty_class))
3547 return PTR_ERR(tty_class);
3548 tty_class->devnode = tty_devnode;
3549 return 0;
3550 }
3551
3552 postcore_initcall(tty_class_init);
3553
3554 /* 3/2004 jmc: why do these devices exist? */
3555 static struct cdev tty_cdev, console_cdev;
3556
3557 static ssize_t show_cons_active(struct device *dev,
3558 struct device_attribute *attr, char *buf)
3559 {
3560 struct console *cs[16];
3561 int i = 0;
3562 struct console *c;
3563 ssize_t count = 0;
3564
3565 console_lock();
3566 for_each_console(c) {
3567 if (!c->device)
3568 continue;
3569 if (!c->write)
3570 continue;
3571 if ((c->flags & CON_ENABLED) == 0)
3572 continue;
3573 cs[i++] = c;
3574 if (i >= ARRAY_SIZE(cs))
3575 break;
3576 }
3577 while (i--) {
3578 int index = cs[i]->index;
3579 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3580
3581 /* don't resolve tty0 as some programs depend on it */
3582 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3583 count += tty_line_name(drv, index, buf + count);
3584 else
3585 count += sprintf(buf + count, "%s%d",
3586 cs[i]->name, cs[i]->index);
3587
3588 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3589 }
3590 console_unlock();
3591
3592 return count;
3593 }
3594 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3595
3596 static struct device *consdev;
3597
3598 void console_sysfs_notify(void)
3599 {
3600 if (consdev)
3601 sysfs_notify(&consdev->kobj, NULL, "active");
3602 }
3603
3604 /*
3605 * Ok, now we can initialize the rest of the tty devices and can count
3606 * on memory allocations, interrupts etc..
3607 */
3608 int __init tty_init(void)
3609 {
3610 cdev_init(&tty_cdev, &tty_fops);
3611 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3612 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3613 panic("Couldn't register /dev/tty driver\n");
3614 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3615
3616 cdev_init(&console_cdev, &console_fops);
3617 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3618 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3619 panic("Couldn't register /dev/console driver\n");
3620 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3621 "console");
3622 if (IS_ERR(consdev))
3623 consdev = NULL;
3624 else
3625 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3626
3627 #ifdef CONFIG_VT
3628 vty_init(&console_fops);
3629 #endif
3630 return 0;
3631 }
3632