]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/tty/tty_io.c
Merge branch 'vmwgfx-fixes-4.3' of git://people.freedesktop.org/~thomash/linux
[mirror_ubuntu-zesty-kernel.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...) do { } while (0)
113 #endif
114
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117
118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
119 .c_iflag = ICRNL | IXON,
120 .c_oflag = OPOST | ONLCR,
121 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 ECHOCTL | ECHOKE | IEXTEN,
124 .c_cc = INIT_C_CC,
125 .c_ispeed = 38400,
126 .c_ospeed = 38400
127 };
128
129 EXPORT_SYMBOL(tty_std_termios);
130
131 /* This list gets poked at by procfs and various bits of boot up code. This
132 could do with some rationalisation such as pulling the tty proc function
133 into this file */
134
135 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
136
137 /* Mutex to protect creating and releasing a tty. This is shared with
138 vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161
162 /**
163 * free_tty_struct - free a disused tty
164 * @tty: tty struct to free
165 *
166 * Free the write buffers, tty queue and tty memory itself.
167 *
168 * Locking: none. Must be called after tty is definitely unused
169 */
170
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 if (!tty)
174 return;
175 put_device(tty->dev);
176 kfree(tty->write_buf);
177 tty->magic = 0xDEADDEAD;
178 kfree(tty);
179 }
180
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 return ((struct tty_file_private *)file->private_data)->tty;
184 }
185
186 int tty_alloc_file(struct file *file)
187 {
188 struct tty_file_private *priv;
189
190 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 if (!priv)
192 return -ENOMEM;
193
194 file->private_data = priv;
195
196 return 0;
197 }
198
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 struct tty_file_private *priv = file->private_data;
203
204 priv->tty = tty;
205 priv->file = file;
206
207 spin_lock(&tty_files_lock);
208 list_add(&priv->list, &tty->tty_files);
209 spin_unlock(&tty_files_lock);
210 }
211
212 /**
213 * tty_free_file - free file->private_data
214 *
215 * This shall be used only for fail path handling when tty_add_file was not
216 * called yet.
217 */
218 void tty_free_file(struct file *file)
219 {
220 struct tty_file_private *priv = file->private_data;
221
222 file->private_data = NULL;
223 kfree(priv);
224 }
225
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 struct tty_file_private *priv = file->private_data;
230
231 spin_lock(&tty_files_lock);
232 list_del(&priv->list);
233 spin_unlock(&tty_files_lock);
234 tty_free_file(file);
235 }
236
237
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239
240 /**
241 * tty_name - return tty naming
242 * @tty: tty structure
243 *
244 * Convert a tty structure into a name. The name reflects the kernel
245 * naming policy and if udev is in use may not reflect user space
246 *
247 * Locking: none
248 */
249
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 if (!tty) /* Hmm. NULL pointer. That's fun. */
253 return "NULL tty";
254 return tty->name;
255 }
256
257 EXPORT_SYMBOL(tty_name);
258
259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 if (!tty) {
264 printk(KERN_WARNING
265 "null TTY for (%d:%d) in %s\n",
266 imajor(inode), iminor(inode), routine);
267 return 1;
268 }
269 if (tty->magic != TTY_MAGIC) {
270 printk(KERN_WARNING
271 "bad magic number for tty struct (%d:%d) in %s\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275 #endif
276 return 0;
277 }
278
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0;
285
286 spin_lock(&tty_files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty_files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty->count != count) {
296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 "!= #fd's(%d) in %s\n",
298 tty->name, tty->count, count, routine);
299 return count;
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383 * tty_check_change - check for POSIX terminal changes
384 * @tty: tty to check
385 *
386 * If we try to write to, or set the state of, a terminal and we're
387 * not in the foreground, send a SIGTTOU. If the signal is blocked or
388 * ignored, go ahead and perform the operation. (POSIX 7.2)
389 *
390 * Locking: ctrl_lock
391 */
392
393 int tty_check_change(struct tty_struct *tty)
394 {
395 unsigned long flags;
396 struct pid *pgrp;
397 int ret = 0;
398
399 if (current->signal->tty != tty)
400 return 0;
401
402 rcu_read_lock();
403 pgrp = task_pgrp(current);
404
405 spin_lock_irqsave(&tty->ctrl_lock, flags);
406
407 if (!tty->pgrp) {
408 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
409 goto out_unlock;
410 }
411 if (pgrp == tty->pgrp)
412 goto out_unlock;
413 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414
415 if (is_ignored(SIGTTOU))
416 goto out_rcuunlock;
417 if (is_current_pgrp_orphaned()) {
418 ret = -EIO;
419 goto out_rcuunlock;
420 }
421 kill_pgrp(pgrp, SIGTTOU, 1);
422 rcu_read_unlock();
423 set_thread_flag(TIF_SIGPENDING);
424 ret = -ERESTARTSYS;
425 return ret;
426 out_unlock:
427 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
428 out_rcuunlock:
429 rcu_read_unlock();
430 return ret;
431 }
432
433 EXPORT_SYMBOL(tty_check_change);
434
435 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
436 size_t count, loff_t *ppos)
437 {
438 return 0;
439 }
440
441 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
442 size_t count, loff_t *ppos)
443 {
444 return -EIO;
445 }
446
447 /* No kernel lock held - none needed ;) */
448 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
449 {
450 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
451 }
452
453 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
454 unsigned long arg)
455 {
456 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
457 }
458
459 static long hung_up_tty_compat_ioctl(struct file *file,
460 unsigned int cmd, unsigned long arg)
461 {
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static const struct file_operations tty_fops = {
466 .llseek = no_llseek,
467 .read = tty_read,
468 .write = tty_write,
469 .poll = tty_poll,
470 .unlocked_ioctl = tty_ioctl,
471 .compat_ioctl = tty_compat_ioctl,
472 .open = tty_open,
473 .release = tty_release,
474 .fasync = tty_fasync,
475 };
476
477 static const struct file_operations console_fops = {
478 .llseek = no_llseek,
479 .read = tty_read,
480 .write = redirected_tty_write,
481 .poll = tty_poll,
482 .unlocked_ioctl = tty_ioctl,
483 .compat_ioctl = tty_compat_ioctl,
484 .open = tty_open,
485 .release = tty_release,
486 .fasync = tty_fasync,
487 };
488
489 static const struct file_operations hung_up_tty_fops = {
490 .llseek = no_llseek,
491 .read = hung_up_tty_read,
492 .write = hung_up_tty_write,
493 .poll = hung_up_tty_poll,
494 .unlocked_ioctl = hung_up_tty_ioctl,
495 .compat_ioctl = hung_up_tty_compat_ioctl,
496 .release = tty_release,
497 };
498
499 static DEFINE_SPINLOCK(redirect_lock);
500 static struct file *redirect;
501
502
503 void proc_clear_tty(struct task_struct *p)
504 {
505 unsigned long flags;
506 struct tty_struct *tty;
507 spin_lock_irqsave(&p->sighand->siglock, flags);
508 tty = p->signal->tty;
509 p->signal->tty = NULL;
510 spin_unlock_irqrestore(&p->sighand->siglock, flags);
511 tty_kref_put(tty);
512 }
513
514 /**
515 * proc_set_tty - set the controlling terminal
516 *
517 * Only callable by the session leader and only if it does not already have
518 * a controlling terminal.
519 *
520 * Caller must hold: tty_lock()
521 * a readlock on tasklist_lock
522 * sighand lock
523 */
524 static void __proc_set_tty(struct tty_struct *tty)
525 {
526 unsigned long flags;
527
528 spin_lock_irqsave(&tty->ctrl_lock, flags);
529 /*
530 * The session and fg pgrp references will be non-NULL if
531 * tiocsctty() is stealing the controlling tty
532 */
533 put_pid(tty->session);
534 put_pid(tty->pgrp);
535 tty->pgrp = get_pid(task_pgrp(current));
536 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
537 tty->session = get_pid(task_session(current));
538 if (current->signal->tty) {
539 tty_debug(tty, "current tty %s not NULL!!\n",
540 current->signal->tty->name);
541 tty_kref_put(current->signal->tty);
542 }
543 put_pid(current->signal->tty_old_pgrp);
544 current->signal->tty = tty_kref_get(tty);
545 current->signal->tty_old_pgrp = NULL;
546 }
547
548 static void proc_set_tty(struct tty_struct *tty)
549 {
550 spin_lock_irq(&current->sighand->siglock);
551 __proc_set_tty(tty);
552 spin_unlock_irq(&current->sighand->siglock);
553 }
554
555 struct tty_struct *get_current_tty(void)
556 {
557 struct tty_struct *tty;
558 unsigned long flags;
559
560 spin_lock_irqsave(&current->sighand->siglock, flags);
561 tty = tty_kref_get(current->signal->tty);
562 spin_unlock_irqrestore(&current->sighand->siglock, flags);
563 return tty;
564 }
565 EXPORT_SYMBOL_GPL(get_current_tty);
566
567 static void session_clear_tty(struct pid *session)
568 {
569 struct task_struct *p;
570 do_each_pid_task(session, PIDTYPE_SID, p) {
571 proc_clear_tty(p);
572 } while_each_pid_task(session, PIDTYPE_SID, p);
573 }
574
575 /**
576 * tty_wakeup - request more data
577 * @tty: terminal
578 *
579 * Internal and external helper for wakeups of tty. This function
580 * informs the line discipline if present that the driver is ready
581 * to receive more output data.
582 */
583
584 void tty_wakeup(struct tty_struct *tty)
585 {
586 struct tty_ldisc *ld;
587
588 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
589 ld = tty_ldisc_ref(tty);
590 if (ld) {
591 if (ld->ops->write_wakeup)
592 ld->ops->write_wakeup(tty);
593 tty_ldisc_deref(ld);
594 }
595 }
596 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
597 }
598
599 EXPORT_SYMBOL_GPL(tty_wakeup);
600
601 /**
602 * tty_signal_session_leader - sends SIGHUP to session leader
603 * @tty controlling tty
604 * @exit_session if non-zero, signal all foreground group processes
605 *
606 * Send SIGHUP and SIGCONT to the session leader and its process group.
607 * Optionally, signal all processes in the foreground process group.
608 *
609 * Returns the number of processes in the session with this tty
610 * as their controlling terminal. This value is used to drop
611 * tty references for those processes.
612 */
613 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
614 {
615 struct task_struct *p;
616 int refs = 0;
617 struct pid *tty_pgrp = NULL;
618
619 read_lock(&tasklist_lock);
620 if (tty->session) {
621 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
622 spin_lock_irq(&p->sighand->siglock);
623 if (p->signal->tty == tty) {
624 p->signal->tty = NULL;
625 /* We defer the dereferences outside fo
626 the tasklist lock */
627 refs++;
628 }
629 if (!p->signal->leader) {
630 spin_unlock_irq(&p->sighand->siglock);
631 continue;
632 }
633 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
634 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
635 put_pid(p->signal->tty_old_pgrp); /* A noop */
636 spin_lock(&tty->ctrl_lock);
637 tty_pgrp = get_pid(tty->pgrp);
638 if (tty->pgrp)
639 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
640 spin_unlock(&tty->ctrl_lock);
641 spin_unlock_irq(&p->sighand->siglock);
642 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
643 }
644 read_unlock(&tasklist_lock);
645
646 if (tty_pgrp) {
647 if (exit_session)
648 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
649 put_pid(tty_pgrp);
650 }
651
652 return refs;
653 }
654
655 /**
656 * __tty_hangup - actual handler for hangup events
657 * @work: tty device
658 *
659 * This can be called by a "kworker" kernel thread. That is process
660 * synchronous but doesn't hold any locks, so we need to make sure we
661 * have the appropriate locks for what we're doing.
662 *
663 * The hangup event clears any pending redirections onto the hung up
664 * device. It ensures future writes will error and it does the needed
665 * line discipline hangup and signal delivery. The tty object itself
666 * remains intact.
667 *
668 * Locking:
669 * BTM
670 * redirect lock for undoing redirection
671 * file list lock for manipulating list of ttys
672 * tty_ldiscs_lock from called functions
673 * termios_rwsem resetting termios data
674 * tasklist_lock to walk task list for hangup event
675 * ->siglock to protect ->signal/->sighand
676 */
677 static void __tty_hangup(struct tty_struct *tty, int exit_session)
678 {
679 struct file *cons_filp = NULL;
680 struct file *filp, *f = NULL;
681 struct tty_file_private *priv;
682 int closecount = 0, n;
683 int refs;
684
685 if (!tty)
686 return;
687
688
689 spin_lock(&redirect_lock);
690 if (redirect && file_tty(redirect) == tty) {
691 f = redirect;
692 redirect = NULL;
693 }
694 spin_unlock(&redirect_lock);
695
696 tty_lock(tty);
697
698 if (test_bit(TTY_HUPPED, &tty->flags)) {
699 tty_unlock(tty);
700 return;
701 }
702
703 /* inuse_filps is protected by the single tty lock,
704 this really needs to change if we want to flush the
705 workqueue with the lock held */
706 check_tty_count(tty, "tty_hangup");
707
708 spin_lock(&tty_files_lock);
709 /* This breaks for file handles being sent over AF_UNIX sockets ? */
710 list_for_each_entry(priv, &tty->tty_files, list) {
711 filp = priv->file;
712 if (filp->f_op->write == redirected_tty_write)
713 cons_filp = filp;
714 if (filp->f_op->write != tty_write)
715 continue;
716 closecount++;
717 __tty_fasync(-1, filp, 0); /* can't block */
718 filp->f_op = &hung_up_tty_fops;
719 }
720 spin_unlock(&tty_files_lock);
721
722 refs = tty_signal_session_leader(tty, exit_session);
723 /* Account for the p->signal references we killed */
724 while (refs--)
725 tty_kref_put(tty);
726
727 tty_ldisc_hangup(tty);
728
729 spin_lock_irq(&tty->ctrl_lock);
730 clear_bit(TTY_THROTTLED, &tty->flags);
731 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
732 put_pid(tty->session);
733 put_pid(tty->pgrp);
734 tty->session = NULL;
735 tty->pgrp = NULL;
736 tty->ctrl_status = 0;
737 spin_unlock_irq(&tty->ctrl_lock);
738
739 /*
740 * If one of the devices matches a console pointer, we
741 * cannot just call hangup() because that will cause
742 * tty->count and state->count to go out of sync.
743 * So we just call close() the right number of times.
744 */
745 if (cons_filp) {
746 if (tty->ops->close)
747 for (n = 0; n < closecount; n++)
748 tty->ops->close(tty, cons_filp);
749 } else if (tty->ops->hangup)
750 tty->ops->hangup(tty);
751 /*
752 * We don't want to have driver/ldisc interactions beyond
753 * the ones we did here. The driver layer expects no
754 * calls after ->hangup() from the ldisc side. However we
755 * can't yet guarantee all that.
756 */
757 set_bit(TTY_HUPPED, &tty->flags);
758 tty_unlock(tty);
759
760 if (f)
761 fput(f);
762 }
763
764 static void do_tty_hangup(struct work_struct *work)
765 {
766 struct tty_struct *tty =
767 container_of(work, struct tty_struct, hangup_work);
768
769 __tty_hangup(tty, 0);
770 }
771
772 /**
773 * tty_hangup - trigger a hangup event
774 * @tty: tty to hangup
775 *
776 * A carrier loss (virtual or otherwise) has occurred on this like
777 * schedule a hangup sequence to run after this event.
778 */
779
780 void tty_hangup(struct tty_struct *tty)
781 {
782 tty_debug_hangup(tty, "\n");
783 schedule_work(&tty->hangup_work);
784 }
785
786 EXPORT_SYMBOL(tty_hangup);
787
788 /**
789 * tty_vhangup - process vhangup
790 * @tty: tty to hangup
791 *
792 * The user has asked via system call for the terminal to be hung up.
793 * We do this synchronously so that when the syscall returns the process
794 * is complete. That guarantee is necessary for security reasons.
795 */
796
797 void tty_vhangup(struct tty_struct *tty)
798 {
799 tty_debug_hangup(tty, "\n");
800 __tty_hangup(tty, 0);
801 }
802
803 EXPORT_SYMBOL(tty_vhangup);
804
805
806 /**
807 * tty_vhangup_self - process vhangup for own ctty
808 *
809 * Perform a vhangup on the current controlling tty
810 */
811
812 void tty_vhangup_self(void)
813 {
814 struct tty_struct *tty;
815
816 tty = get_current_tty();
817 if (tty) {
818 tty_vhangup(tty);
819 tty_kref_put(tty);
820 }
821 }
822
823 /**
824 * tty_vhangup_session - hangup session leader exit
825 * @tty: tty to hangup
826 *
827 * The session leader is exiting and hanging up its controlling terminal.
828 * Every process in the foreground process group is signalled SIGHUP.
829 *
830 * We do this synchronously so that when the syscall returns the process
831 * is complete. That guarantee is necessary for security reasons.
832 */
833
834 static void tty_vhangup_session(struct tty_struct *tty)
835 {
836 tty_debug_hangup(tty, "\n");
837 __tty_hangup(tty, 1);
838 }
839
840 /**
841 * tty_hung_up_p - was tty hung up
842 * @filp: file pointer of tty
843 *
844 * Return true if the tty has been subject to a vhangup or a carrier
845 * loss
846 */
847
848 int tty_hung_up_p(struct file *filp)
849 {
850 return (filp->f_op == &hung_up_tty_fops);
851 }
852
853 EXPORT_SYMBOL(tty_hung_up_p);
854
855 /**
856 * disassociate_ctty - disconnect controlling tty
857 * @on_exit: true if exiting so need to "hang up" the session
858 *
859 * This function is typically called only by the session leader, when
860 * it wants to disassociate itself from its controlling tty.
861 *
862 * It performs the following functions:
863 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
864 * (2) Clears the tty from being controlling the session
865 * (3) Clears the controlling tty for all processes in the
866 * session group.
867 *
868 * The argument on_exit is set to 1 if called when a process is
869 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
870 *
871 * Locking:
872 * BTM is taken for hysterical raisins, and held when
873 * called from no_tty().
874 * tty_mutex is taken to protect tty
875 * ->siglock is taken to protect ->signal/->sighand
876 * tasklist_lock is taken to walk process list for sessions
877 * ->siglock is taken to protect ->signal/->sighand
878 */
879
880 void disassociate_ctty(int on_exit)
881 {
882 struct tty_struct *tty;
883
884 if (!current->signal->leader)
885 return;
886
887 tty = get_current_tty();
888 if (tty) {
889 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
890 tty_vhangup_session(tty);
891 } else {
892 struct pid *tty_pgrp = tty_get_pgrp(tty);
893 if (tty_pgrp) {
894 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
895 if (!on_exit)
896 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
897 put_pid(tty_pgrp);
898 }
899 }
900 tty_kref_put(tty);
901
902 } else if (on_exit) {
903 struct pid *old_pgrp;
904 spin_lock_irq(&current->sighand->siglock);
905 old_pgrp = current->signal->tty_old_pgrp;
906 current->signal->tty_old_pgrp = NULL;
907 spin_unlock_irq(&current->sighand->siglock);
908 if (old_pgrp) {
909 kill_pgrp(old_pgrp, SIGHUP, on_exit);
910 kill_pgrp(old_pgrp, SIGCONT, on_exit);
911 put_pid(old_pgrp);
912 }
913 return;
914 }
915
916 spin_lock_irq(&current->sighand->siglock);
917 put_pid(current->signal->tty_old_pgrp);
918 current->signal->tty_old_pgrp = NULL;
919
920 tty = tty_kref_get(current->signal->tty);
921 if (tty) {
922 unsigned long flags;
923 spin_lock_irqsave(&tty->ctrl_lock, flags);
924 put_pid(tty->session);
925 put_pid(tty->pgrp);
926 tty->session = NULL;
927 tty->pgrp = NULL;
928 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
929 tty_kref_put(tty);
930 } else
931 tty_debug_hangup(tty, "no current tty\n");
932
933 spin_unlock_irq(&current->sighand->siglock);
934 /* Now clear signal->tty under the lock */
935 read_lock(&tasklist_lock);
936 session_clear_tty(task_session(current));
937 read_unlock(&tasklist_lock);
938 }
939
940 /**
941 *
942 * no_tty - Ensure the current process does not have a controlling tty
943 */
944 void no_tty(void)
945 {
946 /* FIXME: Review locking here. The tty_lock never covered any race
947 between a new association and proc_clear_tty but possible we need
948 to protect against this anyway */
949 struct task_struct *tsk = current;
950 disassociate_ctty(0);
951 proc_clear_tty(tsk);
952 }
953
954
955 /**
956 * stop_tty - propagate flow control
957 * @tty: tty to stop
958 *
959 * Perform flow control to the driver. May be called
960 * on an already stopped device and will not re-call the driver
961 * method.
962 *
963 * This functionality is used by both the line disciplines for
964 * halting incoming flow and by the driver. It may therefore be
965 * called from any context, may be under the tty atomic_write_lock
966 * but not always.
967 *
968 * Locking:
969 * flow_lock
970 */
971
972 void __stop_tty(struct tty_struct *tty)
973 {
974 if (tty->stopped)
975 return;
976 tty->stopped = 1;
977 if (tty->ops->stop)
978 tty->ops->stop(tty);
979 }
980
981 void stop_tty(struct tty_struct *tty)
982 {
983 unsigned long flags;
984
985 spin_lock_irqsave(&tty->flow_lock, flags);
986 __stop_tty(tty);
987 spin_unlock_irqrestore(&tty->flow_lock, flags);
988 }
989 EXPORT_SYMBOL(stop_tty);
990
991 /**
992 * start_tty - propagate flow control
993 * @tty: tty to start
994 *
995 * Start a tty that has been stopped if at all possible. If this
996 * tty was previous stopped and is now being started, the driver
997 * start method is invoked and the line discipline woken.
998 *
999 * Locking:
1000 * flow_lock
1001 */
1002
1003 void __start_tty(struct tty_struct *tty)
1004 {
1005 if (!tty->stopped || tty->flow_stopped)
1006 return;
1007 tty->stopped = 0;
1008 if (tty->ops->start)
1009 tty->ops->start(tty);
1010 tty_wakeup(tty);
1011 }
1012
1013 void start_tty(struct tty_struct *tty)
1014 {
1015 unsigned long flags;
1016
1017 spin_lock_irqsave(&tty->flow_lock, flags);
1018 __start_tty(tty);
1019 spin_unlock_irqrestore(&tty->flow_lock, flags);
1020 }
1021 EXPORT_SYMBOL(start_tty);
1022
1023 static void tty_update_time(struct timespec *time)
1024 {
1025 unsigned long sec = get_seconds();
1026
1027 /*
1028 * We only care if the two values differ in anything other than the
1029 * lower three bits (i.e every 8 seconds). If so, then we can update
1030 * the time of the tty device, otherwise it could be construded as a
1031 * security leak to let userspace know the exact timing of the tty.
1032 */
1033 if ((sec ^ time->tv_sec) & ~7)
1034 time->tv_sec = sec;
1035 }
1036
1037 /**
1038 * tty_read - read method for tty device files
1039 * @file: pointer to tty file
1040 * @buf: user buffer
1041 * @count: size of user buffer
1042 * @ppos: unused
1043 *
1044 * Perform the read system call function on this terminal device. Checks
1045 * for hung up devices before calling the line discipline method.
1046 *
1047 * Locking:
1048 * Locks the line discipline internally while needed. Multiple
1049 * read calls may be outstanding in parallel.
1050 */
1051
1052 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1053 loff_t *ppos)
1054 {
1055 int i;
1056 struct inode *inode = file_inode(file);
1057 struct tty_struct *tty = file_tty(file);
1058 struct tty_ldisc *ld;
1059
1060 if (tty_paranoia_check(tty, inode, "tty_read"))
1061 return -EIO;
1062 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1063 return -EIO;
1064
1065 /* We want to wait for the line discipline to sort out in this
1066 situation */
1067 ld = tty_ldisc_ref_wait(tty);
1068 if (ld->ops->read)
1069 i = ld->ops->read(tty, file, buf, count);
1070 else
1071 i = -EIO;
1072 tty_ldisc_deref(ld);
1073
1074 if (i > 0)
1075 tty_update_time(&inode->i_atime);
1076
1077 return i;
1078 }
1079
1080 static void tty_write_unlock(struct tty_struct *tty)
1081 {
1082 mutex_unlock(&tty->atomic_write_lock);
1083 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1084 }
1085
1086 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1087 {
1088 if (!mutex_trylock(&tty->atomic_write_lock)) {
1089 if (ndelay)
1090 return -EAGAIN;
1091 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1092 return -ERESTARTSYS;
1093 }
1094 return 0;
1095 }
1096
1097 /*
1098 * Split writes up in sane blocksizes to avoid
1099 * denial-of-service type attacks
1100 */
1101 static inline ssize_t do_tty_write(
1102 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1103 struct tty_struct *tty,
1104 struct file *file,
1105 const char __user *buf,
1106 size_t count)
1107 {
1108 ssize_t ret, written = 0;
1109 unsigned int chunk;
1110
1111 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1112 if (ret < 0)
1113 return ret;
1114
1115 /*
1116 * We chunk up writes into a temporary buffer. This
1117 * simplifies low-level drivers immensely, since they
1118 * don't have locking issues and user mode accesses.
1119 *
1120 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1121 * big chunk-size..
1122 *
1123 * The default chunk-size is 2kB, because the NTTY
1124 * layer has problems with bigger chunks. It will
1125 * claim to be able to handle more characters than
1126 * it actually does.
1127 *
1128 * FIXME: This can probably go away now except that 64K chunks
1129 * are too likely to fail unless switched to vmalloc...
1130 */
1131 chunk = 2048;
1132 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1133 chunk = 65536;
1134 if (count < chunk)
1135 chunk = count;
1136
1137 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1138 if (tty->write_cnt < chunk) {
1139 unsigned char *buf_chunk;
1140
1141 if (chunk < 1024)
1142 chunk = 1024;
1143
1144 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1145 if (!buf_chunk) {
1146 ret = -ENOMEM;
1147 goto out;
1148 }
1149 kfree(tty->write_buf);
1150 tty->write_cnt = chunk;
1151 tty->write_buf = buf_chunk;
1152 }
1153
1154 /* Do the write .. */
1155 for (;;) {
1156 size_t size = count;
1157 if (size > chunk)
1158 size = chunk;
1159 ret = -EFAULT;
1160 if (copy_from_user(tty->write_buf, buf, size))
1161 break;
1162 ret = write(tty, file, tty->write_buf, size);
1163 if (ret <= 0)
1164 break;
1165 written += ret;
1166 buf += ret;
1167 count -= ret;
1168 if (!count)
1169 break;
1170 ret = -ERESTARTSYS;
1171 if (signal_pending(current))
1172 break;
1173 cond_resched();
1174 }
1175 if (written) {
1176 tty_update_time(&file_inode(file)->i_mtime);
1177 ret = written;
1178 }
1179 out:
1180 tty_write_unlock(tty);
1181 return ret;
1182 }
1183
1184 /**
1185 * tty_write_message - write a message to a certain tty, not just the console.
1186 * @tty: the destination tty_struct
1187 * @msg: the message to write
1188 *
1189 * This is used for messages that need to be redirected to a specific tty.
1190 * We don't put it into the syslog queue right now maybe in the future if
1191 * really needed.
1192 *
1193 * We must still hold the BTM and test the CLOSING flag for the moment.
1194 */
1195
1196 void tty_write_message(struct tty_struct *tty, char *msg)
1197 {
1198 if (tty) {
1199 mutex_lock(&tty->atomic_write_lock);
1200 tty_lock(tty);
1201 if (tty->ops->write && tty->count > 0) {
1202 tty_unlock(tty);
1203 tty->ops->write(tty, msg, strlen(msg));
1204 } else
1205 tty_unlock(tty);
1206 tty_write_unlock(tty);
1207 }
1208 return;
1209 }
1210
1211
1212 /**
1213 * tty_write - write method for tty device file
1214 * @file: tty file pointer
1215 * @buf: user data to write
1216 * @count: bytes to write
1217 * @ppos: unused
1218 *
1219 * Write data to a tty device via the line discipline.
1220 *
1221 * Locking:
1222 * Locks the line discipline as required
1223 * Writes to the tty driver are serialized by the atomic_write_lock
1224 * and are then processed in chunks to the device. The line discipline
1225 * write method will not be invoked in parallel for each device.
1226 */
1227
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229 size_t count, loff_t *ppos)
1230 {
1231 struct tty_struct *tty = file_tty(file);
1232 struct tty_ldisc *ld;
1233 ssize_t ret;
1234
1235 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236 return -EIO;
1237 if (!tty || !tty->ops->write ||
1238 (test_bit(TTY_IO_ERROR, &tty->flags)))
1239 return -EIO;
1240 /* Short term debug to catch buggy drivers */
1241 if (tty->ops->write_room == NULL)
1242 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243 tty->driver->name);
1244 ld = tty_ldisc_ref_wait(tty);
1245 if (!ld->ops->write)
1246 ret = -EIO;
1247 else
1248 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249 tty_ldisc_deref(ld);
1250 return ret;
1251 }
1252
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *ppos)
1255 {
1256 struct file *p = NULL;
1257
1258 spin_lock(&redirect_lock);
1259 if (redirect)
1260 p = get_file(redirect);
1261 spin_unlock(&redirect_lock);
1262
1263 if (p) {
1264 ssize_t res;
1265 res = vfs_write(p, buf, count, &p->f_pos);
1266 fput(p);
1267 return res;
1268 }
1269 return tty_write(file, buf, count, ppos);
1270 }
1271
1272 /**
1273 * tty_send_xchar - send priority character
1274 *
1275 * Send a high priority character to the tty even if stopped
1276 *
1277 * Locking: none for xchar method, write ordering for write method.
1278 */
1279
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282 int was_stopped = tty->stopped;
1283
1284 if (tty->ops->send_xchar) {
1285 tty->ops->send_xchar(tty, ch);
1286 return 0;
1287 }
1288
1289 if (tty_write_lock(tty, 0) < 0)
1290 return -ERESTARTSYS;
1291
1292 if (was_stopped)
1293 start_tty(tty);
1294 tty->ops->write(tty, &ch, 1);
1295 if (was_stopped)
1296 stop_tty(tty);
1297 tty_write_unlock(tty);
1298 return 0;
1299 }
1300
1301 static char ptychar[] = "pqrstuvwxyzabcde";
1302
1303 /**
1304 * pty_line_name - generate name for a pty
1305 * @driver: the tty driver in use
1306 * @index: the minor number
1307 * @p: output buffer of at least 6 bytes
1308 *
1309 * Generate a name from a driver reference and write it to the output
1310 * buffer.
1311 *
1312 * Locking: None
1313 */
1314 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1315 {
1316 int i = index + driver->name_base;
1317 /* ->name is initialized to "ttyp", but "tty" is expected */
1318 sprintf(p, "%s%c%x",
1319 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1320 ptychar[i >> 4 & 0xf], i & 0xf);
1321 }
1322
1323 /**
1324 * tty_line_name - generate name for a tty
1325 * @driver: the tty driver in use
1326 * @index: the minor number
1327 * @p: output buffer of at least 7 bytes
1328 *
1329 * Generate a name from a driver reference and write it to the output
1330 * buffer.
1331 *
1332 * Locking: None
1333 */
1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1335 {
1336 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1337 return sprintf(p, "%s", driver->name);
1338 else
1339 return sprintf(p, "%s%d", driver->name,
1340 index + driver->name_base);
1341 }
1342
1343 /**
1344 * tty_driver_lookup_tty() - find an existing tty, if any
1345 * @driver: the driver for the tty
1346 * @idx: the minor number
1347 *
1348 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1349 * driver lookup() method returns an error.
1350 *
1351 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1352 */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354 struct inode *inode, int idx)
1355 {
1356 struct tty_struct *tty;
1357
1358 if (driver->ops->lookup)
1359 tty = driver->ops->lookup(driver, inode, idx);
1360 else
1361 tty = driver->ttys[idx];
1362
1363 if (!IS_ERR(tty))
1364 tty_kref_get(tty);
1365 return tty;
1366 }
1367
1368 /**
1369 * tty_init_termios - helper for termios setup
1370 * @tty: the tty to set up
1371 *
1372 * Initialise the termios structures for this tty. Thus runs under
1373 * the tty_mutex currently so we can be relaxed about ordering.
1374 */
1375
1376 int tty_init_termios(struct tty_struct *tty)
1377 {
1378 struct ktermios *tp;
1379 int idx = tty->index;
1380
1381 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 tty->termios = tty->driver->init_termios;
1383 else {
1384 /* Check for lazy saved data */
1385 tp = tty->driver->termios[idx];
1386 if (tp != NULL)
1387 tty->termios = *tp;
1388 else
1389 tty->termios = tty->driver->init_termios;
1390 }
1391 /* Compatibility until drivers always set this */
1392 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1393 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1394 return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(tty_init_termios);
1397
1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1399 {
1400 int ret = tty_init_termios(tty);
1401 if (ret)
1402 return ret;
1403
1404 tty_driver_kref_get(driver);
1405 tty->count++;
1406 driver->ttys[tty->index] = tty;
1407 return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(tty_standard_install);
1410
1411 /**
1412 * tty_driver_install_tty() - install a tty entry in the driver
1413 * @driver: the driver for the tty
1414 * @tty: the tty
1415 *
1416 * Install a tty object into the driver tables. The tty->index field
1417 * will be set by the time this is called. This method is responsible
1418 * for ensuring any need additional structures are allocated and
1419 * configured.
1420 *
1421 * Locking: tty_mutex for now
1422 */
1423 static int tty_driver_install_tty(struct tty_driver *driver,
1424 struct tty_struct *tty)
1425 {
1426 return driver->ops->install ? driver->ops->install(driver, tty) :
1427 tty_standard_install(driver, tty);
1428 }
1429
1430 /**
1431 * tty_driver_remove_tty() - remove a tty from the driver tables
1432 * @driver: the driver for the tty
1433 * @idx: the minor number
1434 *
1435 * Remvoe a tty object from the driver tables. The tty->index field
1436 * will be set by the time this is called.
1437 *
1438 * Locking: tty_mutex for now
1439 */
1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1441 {
1442 if (driver->ops->remove)
1443 driver->ops->remove(driver, tty);
1444 else
1445 driver->ttys[tty->index] = NULL;
1446 }
1447
1448 /*
1449 * tty_reopen() - fast re-open of an open tty
1450 * @tty - the tty to open
1451 *
1452 * Return 0 on success, -errno on error.
1453 * Re-opens on master ptys are not allowed and return -EIO.
1454 *
1455 * Locking: Caller must hold tty_lock
1456 */
1457 static int tty_reopen(struct tty_struct *tty)
1458 {
1459 struct tty_driver *driver = tty->driver;
1460
1461 if (!tty->count)
1462 return -EIO;
1463
1464 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465 driver->subtype == PTY_TYPE_MASTER)
1466 return -EIO;
1467
1468 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1469 return -EBUSY;
1470
1471 tty->count++;
1472
1473 WARN_ON(!tty->ldisc);
1474
1475 return 0;
1476 }
1477
1478 /**
1479 * tty_init_dev - initialise a tty device
1480 * @driver: tty driver we are opening a device on
1481 * @idx: device index
1482 * @ret_tty: returned tty structure
1483 *
1484 * Prepare a tty device. This may not be a "new" clean device but
1485 * could also be an active device. The pty drivers require special
1486 * handling because of this.
1487 *
1488 * Locking:
1489 * The function is called under the tty_mutex, which
1490 * protects us from the tty struct or driver itself going away.
1491 *
1492 * On exit the tty device has the line discipline attached and
1493 * a reference count of 1. If a pair was created for pty/tty use
1494 * and the other was a pty master then it too has a reference count of 1.
1495 *
1496 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1497 * failed open. The new code protects the open with a mutex, so it's
1498 * really quite straightforward. The mutex locking can probably be
1499 * relaxed for the (most common) case of reopening a tty.
1500 */
1501
1502 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1503 {
1504 struct tty_struct *tty;
1505 int retval;
1506
1507 /*
1508 * First time open is complex, especially for PTY devices.
1509 * This code guarantees that either everything succeeds and the
1510 * TTY is ready for operation, or else the table slots are vacated
1511 * and the allocated memory released. (Except that the termios
1512 * and locked termios may be retained.)
1513 */
1514
1515 if (!try_module_get(driver->owner))
1516 return ERR_PTR(-ENODEV);
1517
1518 tty = alloc_tty_struct(driver, idx);
1519 if (!tty) {
1520 retval = -ENOMEM;
1521 goto err_module_put;
1522 }
1523
1524 tty_lock(tty);
1525 retval = tty_driver_install_tty(driver, tty);
1526 if (retval < 0)
1527 goto err_deinit_tty;
1528
1529 if (!tty->port)
1530 tty->port = driver->ports[idx];
1531
1532 WARN_RATELIMIT(!tty->port,
1533 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1534 __func__, tty->driver->name);
1535
1536 tty->port->itty = tty;
1537
1538 /*
1539 * Structures all installed ... call the ldisc open routines.
1540 * If we fail here just call release_tty to clean up. No need
1541 * to decrement the use counts, as release_tty doesn't care.
1542 */
1543 retval = tty_ldisc_setup(tty, tty->link);
1544 if (retval)
1545 goto err_release_tty;
1546 /* Return the tty locked so that it cannot vanish under the caller */
1547 return tty;
1548
1549 err_deinit_tty:
1550 tty_unlock(tty);
1551 deinitialize_tty_struct(tty);
1552 free_tty_struct(tty);
1553 err_module_put:
1554 module_put(driver->owner);
1555 return ERR_PTR(retval);
1556
1557 /* call the tty release_tty routine to clean out this slot */
1558 err_release_tty:
1559 tty_unlock(tty);
1560 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1561 "clearing slot %d\n", idx);
1562 release_tty(tty, idx);
1563 return ERR_PTR(retval);
1564 }
1565
1566 void tty_free_termios(struct tty_struct *tty)
1567 {
1568 struct ktermios *tp;
1569 int idx = tty->index;
1570
1571 /* If the port is going to reset then it has no termios to save */
1572 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1573 return;
1574
1575 /* Stash the termios data */
1576 tp = tty->driver->termios[idx];
1577 if (tp == NULL) {
1578 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1579 if (tp == NULL) {
1580 pr_warn("tty: no memory to save termios state.\n");
1581 return;
1582 }
1583 tty->driver->termios[idx] = tp;
1584 }
1585 *tp = tty->termios;
1586 }
1587 EXPORT_SYMBOL(tty_free_termios);
1588
1589 /**
1590 * tty_flush_works - flush all works of a tty/pty pair
1591 * @tty: tty device to flush works for (or either end of a pty pair)
1592 *
1593 * Sync flush all works belonging to @tty (and the 'other' tty).
1594 */
1595 static void tty_flush_works(struct tty_struct *tty)
1596 {
1597 flush_work(&tty->SAK_work);
1598 flush_work(&tty->hangup_work);
1599 if (tty->link) {
1600 flush_work(&tty->link->SAK_work);
1601 flush_work(&tty->link->hangup_work);
1602 }
1603 }
1604
1605 /**
1606 * release_one_tty - release tty structure memory
1607 * @kref: kref of tty we are obliterating
1608 *
1609 * Releases memory associated with a tty structure, and clears out the
1610 * driver table slots. This function is called when a device is no longer
1611 * in use. It also gets called when setup of a device fails.
1612 *
1613 * Locking:
1614 * takes the file list lock internally when working on the list
1615 * of ttys that the driver keeps.
1616 *
1617 * This method gets called from a work queue so that the driver private
1618 * cleanup ops can sleep (needed for USB at least)
1619 */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622 struct tty_struct *tty =
1623 container_of(work, struct tty_struct, hangup_work);
1624 struct tty_driver *driver = tty->driver;
1625 struct module *owner = driver->owner;
1626
1627 if (tty->ops->cleanup)
1628 tty->ops->cleanup(tty);
1629
1630 tty->magic = 0;
1631 tty_driver_kref_put(driver);
1632 module_put(owner);
1633
1634 spin_lock(&tty_files_lock);
1635 list_del_init(&tty->tty_files);
1636 spin_unlock(&tty_files_lock);
1637
1638 put_pid(tty->pgrp);
1639 put_pid(tty->session);
1640 free_tty_struct(tty);
1641 }
1642
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646
1647 /* The hangup queue is now free so we can reuse it rather than
1648 waste a chunk of memory for each port */
1649 INIT_WORK(&tty->hangup_work, release_one_tty);
1650 schedule_work(&tty->hangup_work);
1651 }
1652
1653 /**
1654 * tty_kref_put - release a tty kref
1655 * @tty: tty device
1656 *
1657 * Release a reference to a tty device and if need be let the kref
1658 * layer destruct the object for us
1659 */
1660
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663 if (tty)
1664 kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667
1668 /**
1669 * release_tty - release tty structure memory
1670 *
1671 * Release both @tty and a possible linked partner (think pty pair),
1672 * and decrement the refcount of the backing module.
1673 *
1674 * Locking:
1675 * tty_mutex
1676 * takes the file list lock internally when working on the list
1677 * of ttys that the driver keeps.
1678 *
1679 */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682 /* This should always be true but check for the moment */
1683 WARN_ON(tty->index != idx);
1684 WARN_ON(!mutex_is_locked(&tty_mutex));
1685 if (tty->ops->shutdown)
1686 tty->ops->shutdown(tty);
1687 tty_free_termios(tty);
1688 tty_driver_remove_tty(tty->driver, tty);
1689 tty->port->itty = NULL;
1690 if (tty->link)
1691 tty->link->port->itty = NULL;
1692 cancel_work_sync(&tty->port->buf.work);
1693
1694 tty_kref_put(tty->link);
1695 tty_kref_put(tty);
1696 }
1697
1698 /**
1699 * tty_release_checks - check a tty before real release
1700 * @tty: tty to check
1701 * @o_tty: link of @tty (if any)
1702 * @idx: index of the tty
1703 *
1704 * Performs some paranoid checking before true release of the @tty.
1705 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1706 */
1707 static int tty_release_checks(struct tty_struct *tty, int idx)
1708 {
1709 #ifdef TTY_PARANOIA_CHECK
1710 if (idx < 0 || idx >= tty->driver->num) {
1711 tty_debug(tty, "bad idx %d\n", idx);
1712 return -1;
1713 }
1714
1715 /* not much to check for devpts */
1716 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 return 0;
1718
1719 if (tty != tty->driver->ttys[idx]) {
1720 tty_debug(tty, "bad driver table[%d] = %p\n",
1721 idx, tty->driver->ttys[idx]);
1722 return -1;
1723 }
1724 if (tty->driver->other) {
1725 struct tty_struct *o_tty = tty->link;
1726
1727 if (o_tty != tty->driver->other->ttys[idx]) {
1728 tty_debug(tty, "bad other table[%d] = %p\n",
1729 idx, tty->driver->other->ttys[idx]);
1730 return -1;
1731 }
1732 if (o_tty->link != tty) {
1733 tty_debug(tty, "bad link = %p\n", o_tty->link);
1734 return -1;
1735 }
1736 }
1737 #endif
1738 return 0;
1739 }
1740
1741 /**
1742 * tty_release - vfs callback for close
1743 * @inode: inode of tty
1744 * @filp: file pointer for handle to tty
1745 *
1746 * Called the last time each file handle is closed that references
1747 * this tty. There may however be several such references.
1748 *
1749 * Locking:
1750 * Takes bkl. See tty_release_dev
1751 *
1752 * Even releasing the tty structures is a tricky business.. We have
1753 * to be very careful that the structures are all released at the
1754 * same time, as interrupts might otherwise get the wrong pointers.
1755 *
1756 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757 * lead to double frees or releasing memory still in use.
1758 */
1759
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 struct tty_struct *tty = file_tty(filp);
1763 struct tty_struct *o_tty = NULL;
1764 int do_sleep, final;
1765 int idx;
1766 long timeout = 0;
1767 int once = 1;
1768
1769 if (tty_paranoia_check(tty, inode, __func__))
1770 return 0;
1771
1772 tty_lock(tty);
1773 check_tty_count(tty, __func__);
1774
1775 __tty_fasync(-1, filp, 0);
1776
1777 idx = tty->index;
1778 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779 tty->driver->subtype == PTY_TYPE_MASTER)
1780 o_tty = tty->link;
1781
1782 if (tty_release_checks(tty, idx)) {
1783 tty_unlock(tty);
1784 return 0;
1785 }
1786
1787 tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1788
1789 if (tty->ops->close)
1790 tty->ops->close(tty, filp);
1791
1792 /* If tty is pty master, lock the slave pty (stable lock order) */
1793 tty_lock_slave(o_tty);
1794
1795 /*
1796 * Sanity check: if tty->count is going to zero, there shouldn't be
1797 * any waiters on tty->read_wait or tty->write_wait. We test the
1798 * wait queues and kick everyone out _before_ actually starting to
1799 * close. This ensures that we won't block while releasing the tty
1800 * structure.
1801 *
1802 * The test for the o_tty closing is necessary, since the master and
1803 * slave sides may close in any order. If the slave side closes out
1804 * first, its count will be one, since the master side holds an open.
1805 * Thus this test wouldn't be triggered at the time the slave closed,
1806 * so we do it now.
1807 */
1808 while (1) {
1809 do_sleep = 0;
1810
1811 if (tty->count <= 1) {
1812 if (waitqueue_active(&tty->read_wait)) {
1813 wake_up_poll(&tty->read_wait, POLLIN);
1814 do_sleep++;
1815 }
1816 if (waitqueue_active(&tty->write_wait)) {
1817 wake_up_poll(&tty->write_wait, POLLOUT);
1818 do_sleep++;
1819 }
1820 }
1821 if (o_tty && o_tty->count <= 1) {
1822 if (waitqueue_active(&o_tty->read_wait)) {
1823 wake_up_poll(&o_tty->read_wait, POLLIN);
1824 do_sleep++;
1825 }
1826 if (waitqueue_active(&o_tty->write_wait)) {
1827 wake_up_poll(&o_tty->write_wait, POLLOUT);
1828 do_sleep++;
1829 }
1830 }
1831 if (!do_sleep)
1832 break;
1833
1834 if (once) {
1835 once = 0;
1836 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1837 __func__, tty_name(tty));
1838 }
1839 schedule_timeout_killable(timeout);
1840 if (timeout < 120 * HZ)
1841 timeout = 2 * timeout + 1;
1842 else
1843 timeout = MAX_SCHEDULE_TIMEOUT;
1844 }
1845
1846 if (o_tty) {
1847 if (--o_tty->count < 0) {
1848 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1849 __func__, o_tty->count, tty_name(o_tty));
1850 o_tty->count = 0;
1851 }
1852 }
1853 if (--tty->count < 0) {
1854 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1855 __func__, tty->count, tty_name(tty));
1856 tty->count = 0;
1857 }
1858
1859 /*
1860 * We've decremented tty->count, so we need to remove this file
1861 * descriptor off the tty->tty_files list; this serves two
1862 * purposes:
1863 * - check_tty_count sees the correct number of file descriptors
1864 * associated with this tty.
1865 * - do_tty_hangup no longer sees this file descriptor as
1866 * something that needs to be handled for hangups.
1867 */
1868 tty_del_file(filp);
1869
1870 /*
1871 * Perform some housekeeping before deciding whether to return.
1872 *
1873 * If _either_ side is closing, make sure there aren't any
1874 * processes that still think tty or o_tty is their controlling
1875 * tty.
1876 */
1877 if (!tty->count) {
1878 read_lock(&tasklist_lock);
1879 session_clear_tty(tty->session);
1880 if (o_tty)
1881 session_clear_tty(o_tty->session);
1882 read_unlock(&tasklist_lock);
1883 }
1884
1885 /* check whether both sides are closing ... */
1886 final = !tty->count && !(o_tty && o_tty->count);
1887
1888 tty_unlock_slave(o_tty);
1889 tty_unlock(tty);
1890
1891 /* At this point, the tty->count == 0 should ensure a dead tty
1892 cannot be re-opened by a racing opener */
1893
1894 if (!final)
1895 return 0;
1896
1897 tty_debug_hangup(tty, "final close\n");
1898 /*
1899 * Ask the line discipline code to release its structures
1900 */
1901 tty_ldisc_release(tty);
1902
1903 /* Wait for pending work before tty destruction commmences */
1904 tty_flush_works(tty);
1905
1906 tty_debug_hangup(tty, "freeing structure...\n");
1907 /*
1908 * The release_tty function takes care of the details of clearing
1909 * the slots and preserving the termios structure. The tty_unlock_pair
1910 * should be safe as we keep a kref while the tty is locked (so the
1911 * unlock never unlocks a freed tty).
1912 */
1913 mutex_lock(&tty_mutex);
1914 release_tty(tty, idx);
1915 mutex_unlock(&tty_mutex);
1916
1917 return 0;
1918 }
1919
1920 /**
1921 * tty_open_current_tty - get locked tty of current task
1922 * @device: device number
1923 * @filp: file pointer to tty
1924 * @return: locked tty of the current task iff @device is /dev/tty
1925 *
1926 * Performs a re-open of the current task's controlling tty.
1927 *
1928 * We cannot return driver and index like for the other nodes because
1929 * devpts will not work then. It expects inodes to be from devpts FS.
1930 */
1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1932 {
1933 struct tty_struct *tty;
1934 int retval;
1935
1936 if (device != MKDEV(TTYAUX_MAJOR, 0))
1937 return NULL;
1938
1939 tty = get_current_tty();
1940 if (!tty)
1941 return ERR_PTR(-ENXIO);
1942
1943 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1944 /* noctty = 1; */
1945 tty_lock(tty);
1946 tty_kref_put(tty); /* safe to drop the kref now */
1947
1948 retval = tty_reopen(tty);
1949 if (retval < 0) {
1950 tty_unlock(tty);
1951 tty = ERR_PTR(retval);
1952 }
1953 return tty;
1954 }
1955
1956 /**
1957 * tty_lookup_driver - lookup a tty driver for a given device file
1958 * @device: device number
1959 * @filp: file pointer to tty
1960 * @noctty: set if the device should not become a controlling tty
1961 * @index: index for the device in the @return driver
1962 * @return: driver for this inode (with increased refcount)
1963 *
1964 * If @return is not erroneous, the caller is responsible to decrement the
1965 * refcount by tty_driver_kref_put.
1966 *
1967 * Locking: tty_mutex protects get_tty_driver
1968 */
1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1970 int *noctty, int *index)
1971 {
1972 struct tty_driver *driver;
1973
1974 switch (device) {
1975 #ifdef CONFIG_VT
1976 case MKDEV(TTY_MAJOR, 0): {
1977 extern struct tty_driver *console_driver;
1978 driver = tty_driver_kref_get(console_driver);
1979 *index = fg_console;
1980 *noctty = 1;
1981 break;
1982 }
1983 #endif
1984 case MKDEV(TTYAUX_MAJOR, 1): {
1985 struct tty_driver *console_driver = console_device(index);
1986 if (console_driver) {
1987 driver = tty_driver_kref_get(console_driver);
1988 if (driver) {
1989 /* Don't let /dev/console block */
1990 filp->f_flags |= O_NONBLOCK;
1991 *noctty = 1;
1992 break;
1993 }
1994 }
1995 return ERR_PTR(-ENODEV);
1996 }
1997 default:
1998 driver = get_tty_driver(device, index);
1999 if (!driver)
2000 return ERR_PTR(-ENODEV);
2001 break;
2002 }
2003 return driver;
2004 }
2005
2006 /**
2007 * tty_open - open a tty device
2008 * @inode: inode of device file
2009 * @filp: file pointer to tty
2010 *
2011 * tty_open and tty_release keep up the tty count that contains the
2012 * number of opens done on a tty. We cannot use the inode-count, as
2013 * different inodes might point to the same tty.
2014 *
2015 * Open-counting is needed for pty masters, as well as for keeping
2016 * track of serial lines: DTR is dropped when the last close happens.
2017 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2018 *
2019 * The termios state of a pty is reset on first open so that
2020 * settings don't persist across reuse.
2021 *
2022 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2023 * tty->count should protect the rest.
2024 * ->siglock protects ->signal/->sighand
2025 *
2026 * Note: the tty_unlock/lock cases without a ref are only safe due to
2027 * tty_mutex
2028 */
2029
2030 static int tty_open(struct inode *inode, struct file *filp)
2031 {
2032 struct tty_struct *tty;
2033 int noctty, retval;
2034 struct tty_driver *driver = NULL;
2035 int index;
2036 dev_t device = inode->i_rdev;
2037 unsigned saved_flags = filp->f_flags;
2038
2039 nonseekable_open(inode, filp);
2040
2041 retry_open:
2042 retval = tty_alloc_file(filp);
2043 if (retval)
2044 return -ENOMEM;
2045
2046 noctty = filp->f_flags & O_NOCTTY;
2047 index = -1;
2048 retval = 0;
2049
2050 tty = tty_open_current_tty(device, filp);
2051 if (!tty) {
2052 mutex_lock(&tty_mutex);
2053 driver = tty_lookup_driver(device, filp, &noctty, &index);
2054 if (IS_ERR(driver)) {
2055 retval = PTR_ERR(driver);
2056 goto err_unlock;
2057 }
2058
2059 /* check whether we're reopening an existing tty */
2060 tty = tty_driver_lookup_tty(driver, inode, index);
2061 if (IS_ERR(tty)) {
2062 retval = PTR_ERR(tty);
2063 goto err_unlock;
2064 }
2065
2066 if (tty) {
2067 mutex_unlock(&tty_mutex);
2068 tty_lock(tty);
2069 /* safe to drop the kref from tty_driver_lookup_tty() */
2070 tty_kref_put(tty);
2071 retval = tty_reopen(tty);
2072 if (retval < 0) {
2073 tty_unlock(tty);
2074 tty = ERR_PTR(retval);
2075 }
2076 } else { /* Returns with the tty_lock held for now */
2077 tty = tty_init_dev(driver, index);
2078 mutex_unlock(&tty_mutex);
2079 }
2080
2081 tty_driver_kref_put(driver);
2082 }
2083
2084 if (IS_ERR(tty)) {
2085 retval = PTR_ERR(tty);
2086 goto err_file;
2087 }
2088
2089 tty_add_file(tty, filp);
2090
2091 check_tty_count(tty, __func__);
2092 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2093 tty->driver->subtype == PTY_TYPE_MASTER)
2094 noctty = 1;
2095
2096 tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2097
2098 if (tty->ops->open)
2099 retval = tty->ops->open(tty, filp);
2100 else
2101 retval = -ENODEV;
2102 filp->f_flags = saved_flags;
2103
2104 if (retval) {
2105 tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2106
2107 tty_unlock(tty); /* need to call tty_release without BTM */
2108 tty_release(inode, filp);
2109 if (retval != -ERESTARTSYS)
2110 return retval;
2111
2112 if (signal_pending(current))
2113 return retval;
2114
2115 schedule();
2116 /*
2117 * Need to reset f_op in case a hangup happened.
2118 */
2119 if (tty_hung_up_p(filp))
2120 filp->f_op = &tty_fops;
2121 goto retry_open;
2122 }
2123 clear_bit(TTY_HUPPED, &tty->flags);
2124
2125
2126 read_lock(&tasklist_lock);
2127 spin_lock_irq(&current->sighand->siglock);
2128 if (!noctty &&
2129 current->signal->leader &&
2130 !current->signal->tty &&
2131 tty->session == NULL) {
2132 /*
2133 * Don't let a process that only has write access to the tty
2134 * obtain the privileges associated with having a tty as
2135 * controlling terminal (being able to reopen it with full
2136 * access through /dev/tty, being able to perform pushback).
2137 * Many distributions set the group of all ttys to "tty" and
2138 * grant write-only access to all terminals for setgid tty
2139 * binaries, which should not imply full privileges on all ttys.
2140 *
2141 * This could theoretically break old code that performs open()
2142 * on a write-only file descriptor. In that case, it might be
2143 * necessary to also permit this if
2144 * inode_permission(inode, MAY_READ) == 0.
2145 */
2146 if (filp->f_mode & FMODE_READ)
2147 __proc_set_tty(tty);
2148 }
2149 spin_unlock_irq(&current->sighand->siglock);
2150 read_unlock(&tasklist_lock);
2151 tty_unlock(tty);
2152 return 0;
2153 err_unlock:
2154 mutex_unlock(&tty_mutex);
2155 /* after locks to avoid deadlock */
2156 if (!IS_ERR_OR_NULL(driver))
2157 tty_driver_kref_put(driver);
2158 err_file:
2159 tty_free_file(filp);
2160 return retval;
2161 }
2162
2163
2164
2165 /**
2166 * tty_poll - check tty status
2167 * @filp: file being polled
2168 * @wait: poll wait structures to update
2169 *
2170 * Call the line discipline polling method to obtain the poll
2171 * status of the device.
2172 *
2173 * Locking: locks called line discipline but ldisc poll method
2174 * may be re-entered freely by other callers.
2175 */
2176
2177 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2178 {
2179 struct tty_struct *tty = file_tty(filp);
2180 struct tty_ldisc *ld;
2181 int ret = 0;
2182
2183 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2184 return 0;
2185
2186 ld = tty_ldisc_ref_wait(tty);
2187 if (ld->ops->poll)
2188 ret = ld->ops->poll(tty, filp, wait);
2189 tty_ldisc_deref(ld);
2190 return ret;
2191 }
2192
2193 static int __tty_fasync(int fd, struct file *filp, int on)
2194 {
2195 struct tty_struct *tty = file_tty(filp);
2196 struct tty_ldisc *ldisc;
2197 unsigned long flags;
2198 int retval = 0;
2199
2200 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2201 goto out;
2202
2203 retval = fasync_helper(fd, filp, on, &tty->fasync);
2204 if (retval <= 0)
2205 goto out;
2206
2207 ldisc = tty_ldisc_ref(tty);
2208 if (ldisc) {
2209 if (ldisc->ops->fasync)
2210 ldisc->ops->fasync(tty, on);
2211 tty_ldisc_deref(ldisc);
2212 }
2213
2214 if (on) {
2215 enum pid_type type;
2216 struct pid *pid;
2217
2218 spin_lock_irqsave(&tty->ctrl_lock, flags);
2219 if (tty->pgrp) {
2220 pid = tty->pgrp;
2221 type = PIDTYPE_PGID;
2222 } else {
2223 pid = task_pid(current);
2224 type = PIDTYPE_PID;
2225 }
2226 get_pid(pid);
2227 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2228 __f_setown(filp, pid, type, 0);
2229 put_pid(pid);
2230 retval = 0;
2231 }
2232 out:
2233 return retval;
2234 }
2235
2236 static int tty_fasync(int fd, struct file *filp, int on)
2237 {
2238 struct tty_struct *tty = file_tty(filp);
2239 int retval;
2240
2241 tty_lock(tty);
2242 retval = __tty_fasync(fd, filp, on);
2243 tty_unlock(tty);
2244
2245 return retval;
2246 }
2247
2248 /**
2249 * tiocsti - fake input character
2250 * @tty: tty to fake input into
2251 * @p: pointer to character
2252 *
2253 * Fake input to a tty device. Does the necessary locking and
2254 * input management.
2255 *
2256 * FIXME: does not honour flow control ??
2257 *
2258 * Locking:
2259 * Called functions take tty_ldiscs_lock
2260 * current->signal->tty check is safe without locks
2261 *
2262 * FIXME: may race normal receive processing
2263 */
2264
2265 static int tiocsti(struct tty_struct *tty, char __user *p)
2266 {
2267 char ch, mbz = 0;
2268 struct tty_ldisc *ld;
2269
2270 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271 return -EPERM;
2272 if (get_user(ch, p))
2273 return -EFAULT;
2274 tty_audit_tiocsti(tty, ch);
2275 ld = tty_ldisc_ref_wait(tty);
2276 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2277 tty_ldisc_deref(ld);
2278 return 0;
2279 }
2280
2281 /**
2282 * tiocgwinsz - implement window query ioctl
2283 * @tty; tty
2284 * @arg: user buffer for result
2285 *
2286 * Copies the kernel idea of the window size into the user buffer.
2287 *
2288 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2289 * is consistent.
2290 */
2291
2292 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2293 {
2294 int err;
2295
2296 mutex_lock(&tty->winsize_mutex);
2297 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2298 mutex_unlock(&tty->winsize_mutex);
2299
2300 return err ? -EFAULT: 0;
2301 }
2302
2303 /**
2304 * tty_do_resize - resize event
2305 * @tty: tty being resized
2306 * @rows: rows (character)
2307 * @cols: cols (character)
2308 *
2309 * Update the termios variables and send the necessary signals to
2310 * peform a terminal resize correctly
2311 */
2312
2313 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2314 {
2315 struct pid *pgrp;
2316
2317 /* Lock the tty */
2318 mutex_lock(&tty->winsize_mutex);
2319 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2320 goto done;
2321
2322 /* Signal the foreground process group */
2323 pgrp = tty_get_pgrp(tty);
2324 if (pgrp)
2325 kill_pgrp(pgrp, SIGWINCH, 1);
2326 put_pid(pgrp);
2327
2328 tty->winsize = *ws;
2329 done:
2330 mutex_unlock(&tty->winsize_mutex);
2331 return 0;
2332 }
2333 EXPORT_SYMBOL(tty_do_resize);
2334
2335 /**
2336 * tiocswinsz - implement window size set ioctl
2337 * @tty; tty side of tty
2338 * @arg: user buffer for result
2339 *
2340 * Copies the user idea of the window size to the kernel. Traditionally
2341 * this is just advisory information but for the Linux console it
2342 * actually has driver level meaning and triggers a VC resize.
2343 *
2344 * Locking:
2345 * Driver dependent. The default do_resize method takes the
2346 * tty termios mutex and ctrl_lock. The console takes its own lock
2347 * then calls into the default method.
2348 */
2349
2350 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2351 {
2352 struct winsize tmp_ws;
2353 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2354 return -EFAULT;
2355
2356 if (tty->ops->resize)
2357 return tty->ops->resize(tty, &tmp_ws);
2358 else
2359 return tty_do_resize(tty, &tmp_ws);
2360 }
2361
2362 /**
2363 * tioccons - allow admin to move logical console
2364 * @file: the file to become console
2365 *
2366 * Allow the administrator to move the redirected console device
2367 *
2368 * Locking: uses redirect_lock to guard the redirect information
2369 */
2370
2371 static int tioccons(struct file *file)
2372 {
2373 if (!capable(CAP_SYS_ADMIN))
2374 return -EPERM;
2375 if (file->f_op->write == redirected_tty_write) {
2376 struct file *f;
2377 spin_lock(&redirect_lock);
2378 f = redirect;
2379 redirect = NULL;
2380 spin_unlock(&redirect_lock);
2381 if (f)
2382 fput(f);
2383 return 0;
2384 }
2385 spin_lock(&redirect_lock);
2386 if (redirect) {
2387 spin_unlock(&redirect_lock);
2388 return -EBUSY;
2389 }
2390 redirect = get_file(file);
2391 spin_unlock(&redirect_lock);
2392 return 0;
2393 }
2394
2395 /**
2396 * fionbio - non blocking ioctl
2397 * @file: file to set blocking value
2398 * @p: user parameter
2399 *
2400 * Historical tty interfaces had a blocking control ioctl before
2401 * the generic functionality existed. This piece of history is preserved
2402 * in the expected tty API of posix OS's.
2403 *
2404 * Locking: none, the open file handle ensures it won't go away.
2405 */
2406
2407 static int fionbio(struct file *file, int __user *p)
2408 {
2409 int nonblock;
2410
2411 if (get_user(nonblock, p))
2412 return -EFAULT;
2413
2414 spin_lock(&file->f_lock);
2415 if (nonblock)
2416 file->f_flags |= O_NONBLOCK;
2417 else
2418 file->f_flags &= ~O_NONBLOCK;
2419 spin_unlock(&file->f_lock);
2420 return 0;
2421 }
2422
2423 /**
2424 * tiocsctty - set controlling tty
2425 * @tty: tty structure
2426 * @arg: user argument
2427 *
2428 * This ioctl is used to manage job control. It permits a session
2429 * leader to set this tty as the controlling tty for the session.
2430 *
2431 * Locking:
2432 * Takes tty_lock() to serialize proc_set_tty() for this tty
2433 * Takes tasklist_lock internally to walk sessions
2434 * Takes ->siglock() when updating signal->tty
2435 */
2436
2437 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2438 {
2439 int ret = 0;
2440
2441 tty_lock(tty);
2442 read_lock(&tasklist_lock);
2443
2444 if (current->signal->leader && (task_session(current) == tty->session))
2445 goto unlock;
2446
2447 /*
2448 * The process must be a session leader and
2449 * not have a controlling tty already.
2450 */
2451 if (!current->signal->leader || current->signal->tty) {
2452 ret = -EPERM;
2453 goto unlock;
2454 }
2455
2456 if (tty->session) {
2457 /*
2458 * This tty is already the controlling
2459 * tty for another session group!
2460 */
2461 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2462 /*
2463 * Steal it away
2464 */
2465 session_clear_tty(tty->session);
2466 } else {
2467 ret = -EPERM;
2468 goto unlock;
2469 }
2470 }
2471
2472 /* See the comment in tty_open(). */
2473 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2474 ret = -EPERM;
2475 goto unlock;
2476 }
2477
2478 proc_set_tty(tty);
2479 unlock:
2480 read_unlock(&tasklist_lock);
2481 tty_unlock(tty);
2482 return ret;
2483 }
2484
2485 /**
2486 * tty_get_pgrp - return a ref counted pgrp pid
2487 * @tty: tty to read
2488 *
2489 * Returns a refcounted instance of the pid struct for the process
2490 * group controlling the tty.
2491 */
2492
2493 struct pid *tty_get_pgrp(struct tty_struct *tty)
2494 {
2495 unsigned long flags;
2496 struct pid *pgrp;
2497
2498 spin_lock_irqsave(&tty->ctrl_lock, flags);
2499 pgrp = get_pid(tty->pgrp);
2500 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2501
2502 return pgrp;
2503 }
2504 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2505
2506 /*
2507 * This checks not only the pgrp, but falls back on the pid if no
2508 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2509 * without this...
2510 *
2511 * The caller must hold rcu lock or the tasklist lock.
2512 */
2513 static struct pid *session_of_pgrp(struct pid *pgrp)
2514 {
2515 struct task_struct *p;
2516 struct pid *sid = NULL;
2517
2518 p = pid_task(pgrp, PIDTYPE_PGID);
2519 if (p == NULL)
2520 p = pid_task(pgrp, PIDTYPE_PID);
2521 if (p != NULL)
2522 sid = task_session(p);
2523
2524 return sid;
2525 }
2526
2527 /**
2528 * tiocgpgrp - get process group
2529 * @tty: tty passed by user
2530 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2531 * @p: returned pid
2532 *
2533 * Obtain the process group of the tty. If there is no process group
2534 * return an error.
2535 *
2536 * Locking: none. Reference to current->signal->tty is safe.
2537 */
2538
2539 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2540 {
2541 struct pid *pid;
2542 int ret;
2543 /*
2544 * (tty == real_tty) is a cheap way of
2545 * testing if the tty is NOT a master pty.
2546 */
2547 if (tty == real_tty && current->signal->tty != real_tty)
2548 return -ENOTTY;
2549 pid = tty_get_pgrp(real_tty);
2550 ret = put_user(pid_vnr(pid), p);
2551 put_pid(pid);
2552 return ret;
2553 }
2554
2555 /**
2556 * tiocspgrp - attempt to set process group
2557 * @tty: tty passed by user
2558 * @real_tty: tty side device matching tty passed by user
2559 * @p: pid pointer
2560 *
2561 * Set the process group of the tty to the session passed. Only
2562 * permitted where the tty session is our session.
2563 *
2564 * Locking: RCU, ctrl lock
2565 */
2566
2567 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2568 {
2569 struct pid *pgrp;
2570 pid_t pgrp_nr;
2571 int retval = tty_check_change(real_tty);
2572 unsigned long flags;
2573
2574 if (retval == -EIO)
2575 return -ENOTTY;
2576 if (retval)
2577 return retval;
2578 if (!current->signal->tty ||
2579 (current->signal->tty != real_tty) ||
2580 (real_tty->session != task_session(current)))
2581 return -ENOTTY;
2582 if (get_user(pgrp_nr, p))
2583 return -EFAULT;
2584 if (pgrp_nr < 0)
2585 return -EINVAL;
2586 rcu_read_lock();
2587 pgrp = find_vpid(pgrp_nr);
2588 retval = -ESRCH;
2589 if (!pgrp)
2590 goto out_unlock;
2591 retval = -EPERM;
2592 if (session_of_pgrp(pgrp) != task_session(current))
2593 goto out_unlock;
2594 retval = 0;
2595 spin_lock_irqsave(&tty->ctrl_lock, flags);
2596 put_pid(real_tty->pgrp);
2597 real_tty->pgrp = get_pid(pgrp);
2598 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2599 out_unlock:
2600 rcu_read_unlock();
2601 return retval;
2602 }
2603
2604 /**
2605 * tiocgsid - get session id
2606 * @tty: tty passed by user
2607 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2608 * @p: pointer to returned session id
2609 *
2610 * Obtain the session id of the tty. If there is no session
2611 * return an error.
2612 *
2613 * Locking: none. Reference to current->signal->tty is safe.
2614 */
2615
2616 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2617 {
2618 /*
2619 * (tty == real_tty) is a cheap way of
2620 * testing if the tty is NOT a master pty.
2621 */
2622 if (tty == real_tty && current->signal->tty != real_tty)
2623 return -ENOTTY;
2624 if (!real_tty->session)
2625 return -ENOTTY;
2626 return put_user(pid_vnr(real_tty->session), p);
2627 }
2628
2629 /**
2630 * tiocsetd - set line discipline
2631 * @tty: tty device
2632 * @p: pointer to user data
2633 *
2634 * Set the line discipline according to user request.
2635 *
2636 * Locking: see tty_set_ldisc, this function is just a helper
2637 */
2638
2639 static int tiocsetd(struct tty_struct *tty, int __user *p)
2640 {
2641 int ldisc;
2642 int ret;
2643
2644 if (get_user(ldisc, p))
2645 return -EFAULT;
2646
2647 ret = tty_set_ldisc(tty, ldisc);
2648
2649 return ret;
2650 }
2651
2652 /**
2653 * send_break - performed time break
2654 * @tty: device to break on
2655 * @duration: timeout in mS
2656 *
2657 * Perform a timed break on hardware that lacks its own driver level
2658 * timed break functionality.
2659 *
2660 * Locking:
2661 * atomic_write_lock serializes
2662 *
2663 */
2664
2665 static int send_break(struct tty_struct *tty, unsigned int duration)
2666 {
2667 int retval;
2668
2669 if (tty->ops->break_ctl == NULL)
2670 return 0;
2671
2672 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2673 retval = tty->ops->break_ctl(tty, duration);
2674 else {
2675 /* Do the work ourselves */
2676 if (tty_write_lock(tty, 0) < 0)
2677 return -EINTR;
2678 retval = tty->ops->break_ctl(tty, -1);
2679 if (retval)
2680 goto out;
2681 if (!signal_pending(current))
2682 msleep_interruptible(duration);
2683 retval = tty->ops->break_ctl(tty, 0);
2684 out:
2685 tty_write_unlock(tty);
2686 if (signal_pending(current))
2687 retval = -EINTR;
2688 }
2689 return retval;
2690 }
2691
2692 /**
2693 * tty_tiocmget - get modem status
2694 * @tty: tty device
2695 * @file: user file pointer
2696 * @p: pointer to result
2697 *
2698 * Obtain the modem status bits from the tty driver if the feature
2699 * is supported. Return -EINVAL if it is not available.
2700 *
2701 * Locking: none (up to the driver)
2702 */
2703
2704 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2705 {
2706 int retval = -EINVAL;
2707
2708 if (tty->ops->tiocmget) {
2709 retval = tty->ops->tiocmget(tty);
2710
2711 if (retval >= 0)
2712 retval = put_user(retval, p);
2713 }
2714 return retval;
2715 }
2716
2717 /**
2718 * tty_tiocmset - set modem status
2719 * @tty: tty device
2720 * @cmd: command - clear bits, set bits or set all
2721 * @p: pointer to desired bits
2722 *
2723 * Set the modem status bits from the tty driver if the feature
2724 * is supported. Return -EINVAL if it is not available.
2725 *
2726 * Locking: none (up to the driver)
2727 */
2728
2729 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2730 unsigned __user *p)
2731 {
2732 int retval;
2733 unsigned int set, clear, val;
2734
2735 if (tty->ops->tiocmset == NULL)
2736 return -EINVAL;
2737
2738 retval = get_user(val, p);
2739 if (retval)
2740 return retval;
2741 set = clear = 0;
2742 switch (cmd) {
2743 case TIOCMBIS:
2744 set = val;
2745 break;
2746 case TIOCMBIC:
2747 clear = val;
2748 break;
2749 case TIOCMSET:
2750 set = val;
2751 clear = ~val;
2752 break;
2753 }
2754 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2755 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2756 return tty->ops->tiocmset(tty, set, clear);
2757 }
2758
2759 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2760 {
2761 int retval = -EINVAL;
2762 struct serial_icounter_struct icount;
2763 memset(&icount, 0, sizeof(icount));
2764 if (tty->ops->get_icount)
2765 retval = tty->ops->get_icount(tty, &icount);
2766 if (retval != 0)
2767 return retval;
2768 if (copy_to_user(arg, &icount, sizeof(icount)))
2769 return -EFAULT;
2770 return 0;
2771 }
2772
2773 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2774 {
2775 static DEFINE_RATELIMIT_STATE(depr_flags,
2776 DEFAULT_RATELIMIT_INTERVAL,
2777 DEFAULT_RATELIMIT_BURST);
2778 char comm[TASK_COMM_LEN];
2779 int flags;
2780
2781 if (get_user(flags, &ss->flags))
2782 return;
2783
2784 flags &= ASYNC_DEPRECATED;
2785
2786 if (flags && __ratelimit(&depr_flags))
2787 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2788 __func__, get_task_comm(comm, current), flags);
2789 }
2790
2791 /*
2792 * if pty, return the slave side (real_tty)
2793 * otherwise, return self
2794 */
2795 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2796 {
2797 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2798 tty->driver->subtype == PTY_TYPE_MASTER)
2799 tty = tty->link;
2800 return tty;
2801 }
2802
2803 /*
2804 * Split this up, as gcc can choke on it otherwise..
2805 */
2806 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2807 {
2808 struct tty_struct *tty = file_tty(file);
2809 struct tty_struct *real_tty;
2810 void __user *p = (void __user *)arg;
2811 int retval;
2812 struct tty_ldisc *ld;
2813
2814 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2815 return -EINVAL;
2816
2817 real_tty = tty_pair_get_tty(tty);
2818
2819 /*
2820 * Factor out some common prep work
2821 */
2822 switch (cmd) {
2823 case TIOCSETD:
2824 case TIOCSBRK:
2825 case TIOCCBRK:
2826 case TCSBRK:
2827 case TCSBRKP:
2828 retval = tty_check_change(tty);
2829 if (retval)
2830 return retval;
2831 if (cmd != TIOCCBRK) {
2832 tty_wait_until_sent(tty, 0);
2833 if (signal_pending(current))
2834 return -EINTR;
2835 }
2836 break;
2837 }
2838
2839 /*
2840 * Now do the stuff.
2841 */
2842 switch (cmd) {
2843 case TIOCSTI:
2844 return tiocsti(tty, p);
2845 case TIOCGWINSZ:
2846 return tiocgwinsz(real_tty, p);
2847 case TIOCSWINSZ:
2848 return tiocswinsz(real_tty, p);
2849 case TIOCCONS:
2850 return real_tty != tty ? -EINVAL : tioccons(file);
2851 case FIONBIO:
2852 return fionbio(file, p);
2853 case TIOCEXCL:
2854 set_bit(TTY_EXCLUSIVE, &tty->flags);
2855 return 0;
2856 case TIOCNXCL:
2857 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2858 return 0;
2859 case TIOCGEXCL:
2860 {
2861 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2862 return put_user(excl, (int __user *)p);
2863 }
2864 case TIOCNOTTY:
2865 if (current->signal->tty != tty)
2866 return -ENOTTY;
2867 no_tty();
2868 return 0;
2869 case TIOCSCTTY:
2870 return tiocsctty(tty, file, arg);
2871 case TIOCGPGRP:
2872 return tiocgpgrp(tty, real_tty, p);
2873 case TIOCSPGRP:
2874 return tiocspgrp(tty, real_tty, p);
2875 case TIOCGSID:
2876 return tiocgsid(tty, real_tty, p);
2877 case TIOCGETD:
2878 return put_user(tty->ldisc->ops->num, (int __user *)p);
2879 case TIOCSETD:
2880 return tiocsetd(tty, p);
2881 case TIOCVHANGUP:
2882 if (!capable(CAP_SYS_ADMIN))
2883 return -EPERM;
2884 tty_vhangup(tty);
2885 return 0;
2886 case TIOCGDEV:
2887 {
2888 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2889 return put_user(ret, (unsigned int __user *)p);
2890 }
2891 /*
2892 * Break handling
2893 */
2894 case TIOCSBRK: /* Turn break on, unconditionally */
2895 if (tty->ops->break_ctl)
2896 return tty->ops->break_ctl(tty, -1);
2897 return 0;
2898 case TIOCCBRK: /* Turn break off, unconditionally */
2899 if (tty->ops->break_ctl)
2900 return tty->ops->break_ctl(tty, 0);
2901 return 0;
2902 case TCSBRK: /* SVID version: non-zero arg --> no break */
2903 /* non-zero arg means wait for all output data
2904 * to be sent (performed above) but don't send break.
2905 * This is used by the tcdrain() termios function.
2906 */
2907 if (!arg)
2908 return send_break(tty, 250);
2909 return 0;
2910 case TCSBRKP: /* support for POSIX tcsendbreak() */
2911 return send_break(tty, arg ? arg*100 : 250);
2912
2913 case TIOCMGET:
2914 return tty_tiocmget(tty, p);
2915 case TIOCMSET:
2916 case TIOCMBIC:
2917 case TIOCMBIS:
2918 return tty_tiocmset(tty, cmd, p);
2919 case TIOCGICOUNT:
2920 retval = tty_tiocgicount(tty, p);
2921 /* For the moment allow fall through to the old method */
2922 if (retval != -EINVAL)
2923 return retval;
2924 break;
2925 case TCFLSH:
2926 switch (arg) {
2927 case TCIFLUSH:
2928 case TCIOFLUSH:
2929 /* flush tty buffer and allow ldisc to process ioctl */
2930 tty_buffer_flush(tty, NULL);
2931 break;
2932 }
2933 break;
2934 case TIOCSSERIAL:
2935 tty_warn_deprecated_flags(p);
2936 break;
2937 }
2938 if (tty->ops->ioctl) {
2939 retval = tty->ops->ioctl(tty, cmd, arg);
2940 if (retval != -ENOIOCTLCMD)
2941 return retval;
2942 }
2943 ld = tty_ldisc_ref_wait(tty);
2944 retval = -EINVAL;
2945 if (ld->ops->ioctl) {
2946 retval = ld->ops->ioctl(tty, file, cmd, arg);
2947 if (retval == -ENOIOCTLCMD)
2948 retval = -ENOTTY;
2949 }
2950 tty_ldisc_deref(ld);
2951 return retval;
2952 }
2953
2954 #ifdef CONFIG_COMPAT
2955 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2956 unsigned long arg)
2957 {
2958 struct tty_struct *tty = file_tty(file);
2959 struct tty_ldisc *ld;
2960 int retval = -ENOIOCTLCMD;
2961
2962 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2963 return -EINVAL;
2964
2965 if (tty->ops->compat_ioctl) {
2966 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2967 if (retval != -ENOIOCTLCMD)
2968 return retval;
2969 }
2970
2971 ld = tty_ldisc_ref_wait(tty);
2972 if (ld->ops->compat_ioctl)
2973 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2974 else
2975 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2976 tty_ldisc_deref(ld);
2977
2978 return retval;
2979 }
2980 #endif
2981
2982 static int this_tty(const void *t, struct file *file, unsigned fd)
2983 {
2984 if (likely(file->f_op->read != tty_read))
2985 return 0;
2986 return file_tty(file) != t ? 0 : fd + 1;
2987 }
2988
2989 /*
2990 * This implements the "Secure Attention Key" --- the idea is to
2991 * prevent trojan horses by killing all processes associated with this
2992 * tty when the user hits the "Secure Attention Key". Required for
2993 * super-paranoid applications --- see the Orange Book for more details.
2994 *
2995 * This code could be nicer; ideally it should send a HUP, wait a few
2996 * seconds, then send a INT, and then a KILL signal. But you then
2997 * have to coordinate with the init process, since all processes associated
2998 * with the current tty must be dead before the new getty is allowed
2999 * to spawn.
3000 *
3001 * Now, if it would be correct ;-/ The current code has a nasty hole -
3002 * it doesn't catch files in flight. We may send the descriptor to ourselves
3003 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3004 *
3005 * Nasty bug: do_SAK is being called in interrupt context. This can
3006 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3007 */
3008 void __do_SAK(struct tty_struct *tty)
3009 {
3010 #ifdef TTY_SOFT_SAK
3011 tty_hangup(tty);
3012 #else
3013 struct task_struct *g, *p;
3014 struct pid *session;
3015 int i;
3016
3017 if (!tty)
3018 return;
3019 session = tty->session;
3020
3021 tty_ldisc_flush(tty);
3022
3023 tty_driver_flush_buffer(tty);
3024
3025 read_lock(&tasklist_lock);
3026 /* Kill the entire session */
3027 do_each_pid_task(session, PIDTYPE_SID, p) {
3028 printk(KERN_NOTICE "SAK: killed process %d"
3029 " (%s): task_session(p)==tty->session\n",
3030 task_pid_nr(p), p->comm);
3031 send_sig(SIGKILL, p, 1);
3032 } while_each_pid_task(session, PIDTYPE_SID, p);
3033 /* Now kill any processes that happen to have the
3034 * tty open.
3035 */
3036 do_each_thread(g, p) {
3037 if (p->signal->tty == tty) {
3038 printk(KERN_NOTICE "SAK: killed process %d"
3039 " (%s): task_session(p)==tty->session\n",
3040 task_pid_nr(p), p->comm);
3041 send_sig(SIGKILL, p, 1);
3042 continue;
3043 }
3044 task_lock(p);
3045 i = iterate_fd(p->files, 0, this_tty, tty);
3046 if (i != 0) {
3047 printk(KERN_NOTICE "SAK: killed process %d"
3048 " (%s): fd#%d opened to the tty\n",
3049 task_pid_nr(p), p->comm, i - 1);
3050 force_sig(SIGKILL, p);
3051 }
3052 task_unlock(p);
3053 } while_each_thread(g, p);
3054 read_unlock(&tasklist_lock);
3055 #endif
3056 }
3057
3058 static void do_SAK_work(struct work_struct *work)
3059 {
3060 struct tty_struct *tty =
3061 container_of(work, struct tty_struct, SAK_work);
3062 __do_SAK(tty);
3063 }
3064
3065 /*
3066 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3067 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3068 * the values which we write to it will be identical to the values which it
3069 * already has. --akpm
3070 */
3071 void do_SAK(struct tty_struct *tty)
3072 {
3073 if (!tty)
3074 return;
3075 schedule_work(&tty->SAK_work);
3076 }
3077
3078 EXPORT_SYMBOL(do_SAK);
3079
3080 static int dev_match_devt(struct device *dev, const void *data)
3081 {
3082 const dev_t *devt = data;
3083 return dev->devt == *devt;
3084 }
3085
3086 /* Must put_device() after it's unused! */
3087 static struct device *tty_get_device(struct tty_struct *tty)
3088 {
3089 dev_t devt = tty_devnum(tty);
3090 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3091 }
3092
3093
3094 /**
3095 * alloc_tty_struct
3096 *
3097 * This subroutine allocates and initializes a tty structure.
3098 *
3099 * Locking: none - tty in question is not exposed at this point
3100 */
3101
3102 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3103 {
3104 struct tty_struct *tty;
3105
3106 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3107 if (!tty)
3108 return NULL;
3109
3110 kref_init(&tty->kref);
3111 tty->magic = TTY_MAGIC;
3112 tty_ldisc_init(tty);
3113 tty->session = NULL;
3114 tty->pgrp = NULL;
3115 mutex_init(&tty->legacy_mutex);
3116 mutex_init(&tty->throttle_mutex);
3117 init_rwsem(&tty->termios_rwsem);
3118 mutex_init(&tty->winsize_mutex);
3119 init_ldsem(&tty->ldisc_sem);
3120 init_waitqueue_head(&tty->write_wait);
3121 init_waitqueue_head(&tty->read_wait);
3122 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3123 mutex_init(&tty->atomic_write_lock);
3124 spin_lock_init(&tty->ctrl_lock);
3125 spin_lock_init(&tty->flow_lock);
3126 INIT_LIST_HEAD(&tty->tty_files);
3127 INIT_WORK(&tty->SAK_work, do_SAK_work);
3128
3129 tty->driver = driver;
3130 tty->ops = driver->ops;
3131 tty->index = idx;
3132 tty_line_name(driver, idx, tty->name);
3133 tty->dev = tty_get_device(tty);
3134
3135 return tty;
3136 }
3137
3138 /**
3139 * deinitialize_tty_struct
3140 * @tty: tty to deinitialize
3141 *
3142 * This subroutine deinitializes a tty structure that has been newly
3143 * allocated but tty_release cannot be called on that yet.
3144 *
3145 * Locking: none - tty in question must not be exposed at this point
3146 */
3147 void deinitialize_tty_struct(struct tty_struct *tty)
3148 {
3149 tty_ldisc_deinit(tty);
3150 }
3151
3152 /**
3153 * tty_put_char - write one character to a tty
3154 * @tty: tty
3155 * @ch: character
3156 *
3157 * Write one byte to the tty using the provided put_char method
3158 * if present. Returns the number of characters successfully output.
3159 *
3160 * Note: the specific put_char operation in the driver layer may go
3161 * away soon. Don't call it directly, use this method
3162 */
3163
3164 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3165 {
3166 if (tty->ops->put_char)
3167 return tty->ops->put_char(tty, ch);
3168 return tty->ops->write(tty, &ch, 1);
3169 }
3170 EXPORT_SYMBOL_GPL(tty_put_char);
3171
3172 struct class *tty_class;
3173
3174 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3175 unsigned int index, unsigned int count)
3176 {
3177 int err;
3178
3179 /* init here, since reused cdevs cause crashes */
3180 driver->cdevs[index] = cdev_alloc();
3181 if (!driver->cdevs[index])
3182 return -ENOMEM;
3183 driver->cdevs[index]->ops = &tty_fops;
3184 driver->cdevs[index]->owner = driver->owner;
3185 err = cdev_add(driver->cdevs[index], dev, count);
3186 if (err)
3187 kobject_put(&driver->cdevs[index]->kobj);
3188 return err;
3189 }
3190
3191 /**
3192 * tty_register_device - register a tty device
3193 * @driver: the tty driver that describes the tty device
3194 * @index: the index in the tty driver for this tty device
3195 * @device: a struct device that is associated with this tty device.
3196 * This field is optional, if there is no known struct device
3197 * for this tty device it can be set to NULL safely.
3198 *
3199 * Returns a pointer to the struct device for this tty device
3200 * (or ERR_PTR(-EFOO) on error).
3201 *
3202 * This call is required to be made to register an individual tty device
3203 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3204 * that bit is not set, this function should not be called by a tty
3205 * driver.
3206 *
3207 * Locking: ??
3208 */
3209
3210 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3211 struct device *device)
3212 {
3213 return tty_register_device_attr(driver, index, device, NULL, NULL);
3214 }
3215 EXPORT_SYMBOL(tty_register_device);
3216
3217 static void tty_device_create_release(struct device *dev)
3218 {
3219 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3220 kfree(dev);
3221 }
3222
3223 /**
3224 * tty_register_device_attr - register a tty device
3225 * @driver: the tty driver that describes the tty device
3226 * @index: the index in the tty driver for this tty device
3227 * @device: a struct device that is associated with this tty device.
3228 * This field is optional, if there is no known struct device
3229 * for this tty device it can be set to NULL safely.
3230 * @drvdata: Driver data to be set to device.
3231 * @attr_grp: Attribute group to be set on device.
3232 *
3233 * Returns a pointer to the struct device for this tty device
3234 * (or ERR_PTR(-EFOO) on error).
3235 *
3236 * This call is required to be made to register an individual tty device
3237 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3238 * that bit is not set, this function should not be called by a tty
3239 * driver.
3240 *
3241 * Locking: ??
3242 */
3243 struct device *tty_register_device_attr(struct tty_driver *driver,
3244 unsigned index, struct device *device,
3245 void *drvdata,
3246 const struct attribute_group **attr_grp)
3247 {
3248 char name[64];
3249 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3250 struct device *dev = NULL;
3251 int retval = -ENODEV;
3252 bool cdev = false;
3253
3254 if (index >= driver->num) {
3255 printk(KERN_ERR "Attempt to register invalid tty line number "
3256 " (%d).\n", index);
3257 return ERR_PTR(-EINVAL);
3258 }
3259
3260 if (driver->type == TTY_DRIVER_TYPE_PTY)
3261 pty_line_name(driver, index, name);
3262 else
3263 tty_line_name(driver, index, name);
3264
3265 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3266 retval = tty_cdev_add(driver, devt, index, 1);
3267 if (retval)
3268 goto error;
3269 cdev = true;
3270 }
3271
3272 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3273 if (!dev) {
3274 retval = -ENOMEM;
3275 goto error;
3276 }
3277
3278 dev->devt = devt;
3279 dev->class = tty_class;
3280 dev->parent = device;
3281 dev->release = tty_device_create_release;
3282 dev_set_name(dev, "%s", name);
3283 dev->groups = attr_grp;
3284 dev_set_drvdata(dev, drvdata);
3285
3286 retval = device_register(dev);
3287 if (retval)
3288 goto error;
3289
3290 return dev;
3291
3292 error:
3293 put_device(dev);
3294 if (cdev) {
3295 cdev_del(driver->cdevs[index]);
3296 driver->cdevs[index] = NULL;
3297 }
3298 return ERR_PTR(retval);
3299 }
3300 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3301
3302 /**
3303 * tty_unregister_device - unregister a tty device
3304 * @driver: the tty driver that describes the tty device
3305 * @index: the index in the tty driver for this tty device
3306 *
3307 * If a tty device is registered with a call to tty_register_device() then
3308 * this function must be called when the tty device is gone.
3309 *
3310 * Locking: ??
3311 */
3312
3313 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3314 {
3315 device_destroy(tty_class,
3316 MKDEV(driver->major, driver->minor_start) + index);
3317 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3318 cdev_del(driver->cdevs[index]);
3319 driver->cdevs[index] = NULL;
3320 }
3321 }
3322 EXPORT_SYMBOL(tty_unregister_device);
3323
3324 /**
3325 * __tty_alloc_driver -- allocate tty driver
3326 * @lines: count of lines this driver can handle at most
3327 * @owner: module which is repsonsible for this driver
3328 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3329 *
3330 * This should not be called directly, some of the provided macros should be
3331 * used instead. Use IS_ERR and friends on @retval.
3332 */
3333 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3334 unsigned long flags)
3335 {
3336 struct tty_driver *driver;
3337 unsigned int cdevs = 1;
3338 int err;
3339
3340 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3341 return ERR_PTR(-EINVAL);
3342
3343 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3344 if (!driver)
3345 return ERR_PTR(-ENOMEM);
3346
3347 kref_init(&driver->kref);
3348 driver->magic = TTY_DRIVER_MAGIC;
3349 driver->num = lines;
3350 driver->owner = owner;
3351 driver->flags = flags;
3352
3353 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3354 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3355 GFP_KERNEL);
3356 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3357 GFP_KERNEL);
3358 if (!driver->ttys || !driver->termios) {
3359 err = -ENOMEM;
3360 goto err_free_all;
3361 }
3362 }
3363
3364 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3365 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3366 GFP_KERNEL);
3367 if (!driver->ports) {
3368 err = -ENOMEM;
3369 goto err_free_all;
3370 }
3371 cdevs = lines;
3372 }
3373
3374 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3375 if (!driver->cdevs) {
3376 err = -ENOMEM;
3377 goto err_free_all;
3378 }
3379
3380 return driver;
3381 err_free_all:
3382 kfree(driver->ports);
3383 kfree(driver->ttys);
3384 kfree(driver->termios);
3385 kfree(driver->cdevs);
3386 kfree(driver);
3387 return ERR_PTR(err);
3388 }
3389 EXPORT_SYMBOL(__tty_alloc_driver);
3390
3391 static void destruct_tty_driver(struct kref *kref)
3392 {
3393 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3394 int i;
3395 struct ktermios *tp;
3396
3397 if (driver->flags & TTY_DRIVER_INSTALLED) {
3398 /*
3399 * Free the termios and termios_locked structures because
3400 * we don't want to get memory leaks when modular tty
3401 * drivers are removed from the kernel.
3402 */
3403 for (i = 0; i < driver->num; i++) {
3404 tp = driver->termios[i];
3405 if (tp) {
3406 driver->termios[i] = NULL;
3407 kfree(tp);
3408 }
3409 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3410 tty_unregister_device(driver, i);
3411 }
3412 proc_tty_unregister_driver(driver);
3413 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3414 cdev_del(driver->cdevs[0]);
3415 }
3416 kfree(driver->cdevs);
3417 kfree(driver->ports);
3418 kfree(driver->termios);
3419 kfree(driver->ttys);
3420 kfree(driver);
3421 }
3422
3423 void tty_driver_kref_put(struct tty_driver *driver)
3424 {
3425 kref_put(&driver->kref, destruct_tty_driver);
3426 }
3427 EXPORT_SYMBOL(tty_driver_kref_put);
3428
3429 void tty_set_operations(struct tty_driver *driver,
3430 const struct tty_operations *op)
3431 {
3432 driver->ops = op;
3433 };
3434 EXPORT_SYMBOL(tty_set_operations);
3435
3436 void put_tty_driver(struct tty_driver *d)
3437 {
3438 tty_driver_kref_put(d);
3439 }
3440 EXPORT_SYMBOL(put_tty_driver);
3441
3442 /*
3443 * Called by a tty driver to register itself.
3444 */
3445 int tty_register_driver(struct tty_driver *driver)
3446 {
3447 int error;
3448 int i;
3449 dev_t dev;
3450 struct device *d;
3451
3452 if (!driver->major) {
3453 error = alloc_chrdev_region(&dev, driver->minor_start,
3454 driver->num, driver->name);
3455 if (!error) {
3456 driver->major = MAJOR(dev);
3457 driver->minor_start = MINOR(dev);
3458 }
3459 } else {
3460 dev = MKDEV(driver->major, driver->minor_start);
3461 error = register_chrdev_region(dev, driver->num, driver->name);
3462 }
3463 if (error < 0)
3464 goto err;
3465
3466 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3467 error = tty_cdev_add(driver, dev, 0, driver->num);
3468 if (error)
3469 goto err_unreg_char;
3470 }
3471
3472 mutex_lock(&tty_mutex);
3473 list_add(&driver->tty_drivers, &tty_drivers);
3474 mutex_unlock(&tty_mutex);
3475
3476 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3477 for (i = 0; i < driver->num; i++) {
3478 d = tty_register_device(driver, i, NULL);
3479 if (IS_ERR(d)) {
3480 error = PTR_ERR(d);
3481 goto err_unreg_devs;
3482 }
3483 }
3484 }
3485 proc_tty_register_driver(driver);
3486 driver->flags |= TTY_DRIVER_INSTALLED;
3487 return 0;
3488
3489 err_unreg_devs:
3490 for (i--; i >= 0; i--)
3491 tty_unregister_device(driver, i);
3492
3493 mutex_lock(&tty_mutex);
3494 list_del(&driver->tty_drivers);
3495 mutex_unlock(&tty_mutex);
3496
3497 err_unreg_char:
3498 unregister_chrdev_region(dev, driver->num);
3499 err:
3500 return error;
3501 }
3502 EXPORT_SYMBOL(tty_register_driver);
3503
3504 /*
3505 * Called by a tty driver to unregister itself.
3506 */
3507 int tty_unregister_driver(struct tty_driver *driver)
3508 {
3509 #if 0
3510 /* FIXME */
3511 if (driver->refcount)
3512 return -EBUSY;
3513 #endif
3514 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3515 driver->num);
3516 mutex_lock(&tty_mutex);
3517 list_del(&driver->tty_drivers);
3518 mutex_unlock(&tty_mutex);
3519 return 0;
3520 }
3521
3522 EXPORT_SYMBOL(tty_unregister_driver);
3523
3524 dev_t tty_devnum(struct tty_struct *tty)
3525 {
3526 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3527 }
3528 EXPORT_SYMBOL(tty_devnum);
3529
3530 void tty_default_fops(struct file_operations *fops)
3531 {
3532 *fops = tty_fops;
3533 }
3534
3535 /*
3536 * Initialize the console device. This is called *early*, so
3537 * we can't necessarily depend on lots of kernel help here.
3538 * Just do some early initializations, and do the complex setup
3539 * later.
3540 */
3541 void __init console_init(void)
3542 {
3543 initcall_t *call;
3544
3545 /* Setup the default TTY line discipline. */
3546 tty_ldisc_begin();
3547
3548 /*
3549 * set up the console device so that later boot sequences can
3550 * inform about problems etc..
3551 */
3552 call = __con_initcall_start;
3553 while (call < __con_initcall_end) {
3554 (*call)();
3555 call++;
3556 }
3557 }
3558
3559 static char *tty_devnode(struct device *dev, umode_t *mode)
3560 {
3561 if (!mode)
3562 return NULL;
3563 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3564 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3565 *mode = 0666;
3566 return NULL;
3567 }
3568
3569 static int __init tty_class_init(void)
3570 {
3571 tty_class = class_create(THIS_MODULE, "tty");
3572 if (IS_ERR(tty_class))
3573 return PTR_ERR(tty_class);
3574 tty_class->devnode = tty_devnode;
3575 return 0;
3576 }
3577
3578 postcore_initcall(tty_class_init);
3579
3580 /* 3/2004 jmc: why do these devices exist? */
3581 static struct cdev tty_cdev, console_cdev;
3582
3583 static ssize_t show_cons_active(struct device *dev,
3584 struct device_attribute *attr, char *buf)
3585 {
3586 struct console *cs[16];
3587 int i = 0;
3588 struct console *c;
3589 ssize_t count = 0;
3590
3591 console_lock();
3592 for_each_console(c) {
3593 if (!c->device)
3594 continue;
3595 if (!c->write)
3596 continue;
3597 if ((c->flags & CON_ENABLED) == 0)
3598 continue;
3599 cs[i++] = c;
3600 if (i >= ARRAY_SIZE(cs))
3601 break;
3602 }
3603 while (i--) {
3604 int index = cs[i]->index;
3605 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3606
3607 /* don't resolve tty0 as some programs depend on it */
3608 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3609 count += tty_line_name(drv, index, buf + count);
3610 else
3611 count += sprintf(buf + count, "%s%d",
3612 cs[i]->name, cs[i]->index);
3613
3614 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3615 }
3616 console_unlock();
3617
3618 return count;
3619 }
3620 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3621
3622 static struct attribute *cons_dev_attrs[] = {
3623 &dev_attr_active.attr,
3624 NULL
3625 };
3626
3627 ATTRIBUTE_GROUPS(cons_dev);
3628
3629 static struct device *consdev;
3630
3631 void console_sysfs_notify(void)
3632 {
3633 if (consdev)
3634 sysfs_notify(&consdev->kobj, NULL, "active");
3635 }
3636
3637 /*
3638 * Ok, now we can initialize the rest of the tty devices and can count
3639 * on memory allocations, interrupts etc..
3640 */
3641 int __init tty_init(void)
3642 {
3643 cdev_init(&tty_cdev, &tty_fops);
3644 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3645 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3646 panic("Couldn't register /dev/tty driver\n");
3647 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3648
3649 cdev_init(&console_cdev, &console_fops);
3650 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3651 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3652 panic("Couldn't register /dev/console driver\n");
3653 consdev = device_create_with_groups(tty_class, NULL,
3654 MKDEV(TTYAUX_MAJOR, 1), NULL,
3655 cons_dev_groups, "console");
3656 if (IS_ERR(consdev))
3657 consdev = NULL;
3658
3659 #ifdef CONFIG_VT
3660 vty_init(&console_fops);
3661 #endif
3662 return 0;
3663 }
3664