]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/tty_io.c
pstore/ram: Avoid allocation and leak of platform data
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / tty_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6 /*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100
101 #include <linux/uaccess.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...) do { } while (0)
115 #endif
116
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119
120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
121 .c_iflag = ICRNL | IXON,
122 .c_oflag = OPOST | ONLCR,
123 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 ECHOCTL | ECHOKE | IEXTEN,
126 .c_cc = INIT_C_CC,
127 .c_ispeed = 38400,
128 .c_ospeed = 38400,
129 /* .c_line = N_TTY, */
130 };
131
132 EXPORT_SYMBOL(tty_std_termios);
133
134 /* This list gets poked at by procfs and various bits of boot up code. This
135 could do with some rationalisation such as pulling the tty proc function
136 into this file */
137
138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
139
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 size_t, loff_t *);
147 static unsigned int tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159
160 /**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kfree(tty->write_buf);
174 tty->magic = 0xDEADDEAD;
175 kfree(tty);
176 }
177
178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 return ((struct tty_file_private *)file->private_data)->tty;
181 }
182
183 int tty_alloc_file(struct file *file)
184 {
185 struct tty_file_private *priv;
186
187 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 if (!priv)
189 return -ENOMEM;
190
191 file->private_data = priv;
192
193 return 0;
194 }
195
196 /* Associate a new file with the tty structure */
197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 struct tty_file_private *priv = file->private_data;
200
201 priv->tty = tty;
202 priv->file = file;
203
204 spin_lock(&tty->files_lock);
205 list_add(&priv->list, &tty->tty_files);
206 spin_unlock(&tty->files_lock);
207 }
208
209 /**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215 void tty_free_file(struct file *file)
216 {
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221 }
222
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233 }
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 if (!tty || !tty->driver)
257 return "";
258 return tty->driver->name;
259 }
260
261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 if (!tty) {
266 pr_warn("(%d:%d): %s: NULL tty\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 pr_warn("(%d:%d): %s: bad magic number\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275 #endif
276 return 0;
277 }
278
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0, kopen_count = 0;
285
286 spin_lock(&tty->files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty->files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty_port_kopened(tty->port))
296 kopen_count++;
297 if (tty->count != (count + kopen_count)) {
298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 routine, tty->count, count, kopen_count);
300 return (count + kopen_count);
301 }
302 #endif
303 return 0;
304 }
305
306 /**
307 * get_tty_driver - find device of a tty
308 * @dev_t: device identifier
309 * @index: returns the index of the tty
310 *
311 * This routine returns a tty driver structure, given a device number
312 * and also passes back the index number.
313 *
314 * Locking: caller must hold tty_mutex
315 */
316
317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 struct tty_driver *p;
320
321 list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 dev_t base = MKDEV(p->major, p->minor_start);
323 if (device < base || device >= base + p->num)
324 continue;
325 *index = device - base;
326 return tty_driver_kref_get(p);
327 }
328 return NULL;
329 }
330
331 /**
332 * tty_dev_name_to_number - return dev_t for device name
333 * @name: user space name of device under /dev
334 * @number: pointer to dev_t that this function will populate
335 *
336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 * like (4, 64) or (188, 1). If no corresponding driver is registered then
338 * the function returns -ENODEV.
339 *
340 * Locking: this acquires tty_mutex to protect the tty_drivers list from
341 * being modified while we are traversing it, and makes sure to
342 * release it before exiting.
343 */
344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 struct tty_driver *p;
347 int ret;
348 int index, prefix_length = 0;
349 const char *str;
350
351 for (str = name; *str && !isdigit(*str); str++)
352 ;
353
354 if (!*str)
355 return -EINVAL;
356
357 ret = kstrtoint(str, 10, &index);
358 if (ret)
359 return ret;
360
361 prefix_length = str - name;
362 mutex_lock(&tty_mutex);
363
364 list_for_each_entry(p, &tty_drivers, tty_drivers)
365 if (prefix_length == strlen(p->name) && strncmp(name,
366 p->name, prefix_length) == 0) {
367 if (index < p->num) {
368 *number = MKDEV(p->major, p->minor_start + index);
369 goto out;
370 }
371 }
372
373 /* if here then driver wasn't found */
374 ret = -ENODEV;
375 out:
376 mutex_unlock(&tty_mutex);
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381 #ifdef CONFIG_CONSOLE_POLL
382
383 /**
384 * tty_find_polling_driver - find device of a polled tty
385 * @name: name string to match
386 * @line: pointer to resulting tty line nr
387 *
388 * This routine returns a tty driver structure, given a name
389 * and the condition that the tty driver is capable of polled
390 * operation.
391 */
392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 struct tty_driver *p, *res = NULL;
395 int tty_line = 0;
396 int len;
397 char *str, *stp;
398
399 for (str = name; *str; str++)
400 if ((*str >= '0' && *str <= '9') || *str == ',')
401 break;
402 if (!*str)
403 return NULL;
404
405 len = str - name;
406 tty_line = simple_strtoul(str, &str, 10);
407
408 mutex_lock(&tty_mutex);
409 /* Search through the tty devices to look for a match */
410 list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 if (!len || strncmp(name, p->name, len) != 0)
412 continue;
413 stp = str;
414 if (*stp == ',')
415 stp++;
416 if (*stp == '\0')
417 stp = NULL;
418
419 if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 res = tty_driver_kref_get(p);
422 *line = tty_line;
423 break;
424 }
425 }
426 mutex_unlock(&tty_mutex);
427
428 return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432
433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 size_t count, loff_t *ppos)
435 {
436 return 0;
437 }
438
439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 size_t count, loff_t *ppos)
441 {
442 return -EIO;
443 }
444
445 /* No kernel lock held - none needed ;) */
446 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
449 }
450
451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 unsigned long arg)
453 {
454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456
457 static long hung_up_tty_compat_ioctl(struct file *file,
458 unsigned int cmd, unsigned long arg)
459 {
460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462
463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 return -ENOTTY;
466 }
467
468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 struct tty_struct *tty = file_tty(file);
471
472 if (tty && tty->ops && tty->ops->show_fdinfo)
473 tty->ops->show_fdinfo(tty, m);
474 }
475
476 static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 .show_fdinfo = tty_show_fdinfo,
487 };
488
489 static const struct file_operations console_fops = {
490 .llseek = no_llseek,
491 .read = tty_read,
492 .write = redirected_tty_write,
493 .poll = tty_poll,
494 .unlocked_ioctl = tty_ioctl,
495 .compat_ioctl = tty_compat_ioctl,
496 .open = tty_open,
497 .release = tty_release,
498 .fasync = tty_fasync,
499 };
500
501 static const struct file_operations hung_up_tty_fops = {
502 .llseek = no_llseek,
503 .read = hung_up_tty_read,
504 .write = hung_up_tty_write,
505 .poll = hung_up_tty_poll,
506 .unlocked_ioctl = hung_up_tty_ioctl,
507 .compat_ioctl = hung_up_tty_compat_ioctl,
508 .release = tty_release,
509 .fasync = hung_up_tty_fasync,
510 };
511
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514
515 /**
516 * tty_wakeup - request more data
517 * @tty: terminal
518 *
519 * Internal and external helper for wakeups of tty. This function
520 * informs the line discipline if present that the driver is ready
521 * to receive more output data.
522 */
523
524 void tty_wakeup(struct tty_struct *tty)
525 {
526 struct tty_ldisc *ld;
527
528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 ld = tty_ldisc_ref(tty);
530 if (ld) {
531 if (ld->ops->write_wakeup)
532 ld->ops->write_wakeup(tty);
533 tty_ldisc_deref(ld);
534 }
535 }
536 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
537 }
538
539 EXPORT_SYMBOL_GPL(tty_wakeup);
540
541 /**
542 * __tty_hangup - actual handler for hangup events
543 * @work: tty device
544 *
545 * This can be called by a "kworker" kernel thread. That is process
546 * synchronous but doesn't hold any locks, so we need to make sure we
547 * have the appropriate locks for what we're doing.
548 *
549 * The hangup event clears any pending redirections onto the hung up
550 * device. It ensures future writes will error and it does the needed
551 * line discipline hangup and signal delivery. The tty object itself
552 * remains intact.
553 *
554 * Locking:
555 * BTM
556 * redirect lock for undoing redirection
557 * file list lock for manipulating list of ttys
558 * tty_ldiscs_lock from called functions
559 * termios_rwsem resetting termios data
560 * tasklist_lock to walk task list for hangup event
561 * ->siglock to protect ->signal/->sighand
562 */
563 static void __tty_hangup(struct tty_struct *tty, int exit_session)
564 {
565 struct file *cons_filp = NULL;
566 struct file *filp, *f = NULL;
567 struct tty_file_private *priv;
568 int closecount = 0, n;
569 int refs;
570
571 if (!tty)
572 return;
573
574
575 spin_lock(&redirect_lock);
576 if (redirect && file_tty(redirect) == tty) {
577 f = redirect;
578 redirect = NULL;
579 }
580 spin_unlock(&redirect_lock);
581
582 tty_lock(tty);
583
584 if (test_bit(TTY_HUPPED, &tty->flags)) {
585 tty_unlock(tty);
586 return;
587 }
588
589 /*
590 * Some console devices aren't actually hung up for technical and
591 * historical reasons, which can lead to indefinite interruptible
592 * sleep in n_tty_read(). The following explicitly tells
593 * n_tty_read() to abort readers.
594 */
595 set_bit(TTY_HUPPING, &tty->flags);
596
597 /* inuse_filps is protected by the single tty lock,
598 this really needs to change if we want to flush the
599 workqueue with the lock held */
600 check_tty_count(tty, "tty_hangup");
601
602 spin_lock(&tty->files_lock);
603 /* This breaks for file handles being sent over AF_UNIX sockets ? */
604 list_for_each_entry(priv, &tty->tty_files, list) {
605 filp = priv->file;
606 if (filp->f_op->write == redirected_tty_write)
607 cons_filp = filp;
608 if (filp->f_op->write != tty_write)
609 continue;
610 closecount++;
611 __tty_fasync(-1, filp, 0); /* can't block */
612 filp->f_op = &hung_up_tty_fops;
613 }
614 spin_unlock(&tty->files_lock);
615
616 refs = tty_signal_session_leader(tty, exit_session);
617 /* Account for the p->signal references we killed */
618 while (refs--)
619 tty_kref_put(tty);
620
621 tty_ldisc_hangup(tty, cons_filp != NULL);
622
623 spin_lock_irq(&tty->ctrl_lock);
624 clear_bit(TTY_THROTTLED, &tty->flags);
625 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
626 put_pid(tty->session);
627 put_pid(tty->pgrp);
628 tty->session = NULL;
629 tty->pgrp = NULL;
630 tty->ctrl_status = 0;
631 spin_unlock_irq(&tty->ctrl_lock);
632
633 /*
634 * If one of the devices matches a console pointer, we
635 * cannot just call hangup() because that will cause
636 * tty->count and state->count to go out of sync.
637 * So we just call close() the right number of times.
638 */
639 if (cons_filp) {
640 if (tty->ops->close)
641 for (n = 0; n < closecount; n++)
642 tty->ops->close(tty, cons_filp);
643 } else if (tty->ops->hangup)
644 tty->ops->hangup(tty);
645 /*
646 * We don't want to have driver/ldisc interactions beyond the ones
647 * we did here. The driver layer expects no calls after ->hangup()
648 * from the ldisc side, which is now guaranteed.
649 */
650 set_bit(TTY_HUPPED, &tty->flags);
651 clear_bit(TTY_HUPPING, &tty->flags);
652 tty_unlock(tty);
653
654 if (f)
655 fput(f);
656 }
657
658 static void do_tty_hangup(struct work_struct *work)
659 {
660 struct tty_struct *tty =
661 container_of(work, struct tty_struct, hangup_work);
662
663 __tty_hangup(tty, 0);
664 }
665
666 /**
667 * tty_hangup - trigger a hangup event
668 * @tty: tty to hangup
669 *
670 * A carrier loss (virtual or otherwise) has occurred on this like
671 * schedule a hangup sequence to run after this event.
672 */
673
674 void tty_hangup(struct tty_struct *tty)
675 {
676 tty_debug_hangup(tty, "hangup\n");
677 schedule_work(&tty->hangup_work);
678 }
679
680 EXPORT_SYMBOL(tty_hangup);
681
682 /**
683 * tty_vhangup - process vhangup
684 * @tty: tty to hangup
685 *
686 * The user has asked via system call for the terminal to be hung up.
687 * We do this synchronously so that when the syscall returns the process
688 * is complete. That guarantee is necessary for security reasons.
689 */
690
691 void tty_vhangup(struct tty_struct *tty)
692 {
693 tty_debug_hangup(tty, "vhangup\n");
694 __tty_hangup(tty, 0);
695 }
696
697 EXPORT_SYMBOL(tty_vhangup);
698
699
700 /**
701 * tty_vhangup_self - process vhangup for own ctty
702 *
703 * Perform a vhangup on the current controlling tty
704 */
705
706 void tty_vhangup_self(void)
707 {
708 struct tty_struct *tty;
709
710 tty = get_current_tty();
711 if (tty) {
712 tty_vhangup(tty);
713 tty_kref_put(tty);
714 }
715 }
716
717 /**
718 * tty_vhangup_session - hangup session leader exit
719 * @tty: tty to hangup
720 *
721 * The session leader is exiting and hanging up its controlling terminal.
722 * Every process in the foreground process group is signalled SIGHUP.
723 *
724 * We do this synchronously so that when the syscall returns the process
725 * is complete. That guarantee is necessary for security reasons.
726 */
727
728 void tty_vhangup_session(struct tty_struct *tty)
729 {
730 tty_debug_hangup(tty, "session hangup\n");
731 __tty_hangup(tty, 1);
732 }
733
734 /**
735 * tty_hung_up_p - was tty hung up
736 * @filp: file pointer of tty
737 *
738 * Return true if the tty has been subject to a vhangup or a carrier
739 * loss
740 */
741
742 int tty_hung_up_p(struct file *filp)
743 {
744 return (filp && filp->f_op == &hung_up_tty_fops);
745 }
746
747 EXPORT_SYMBOL(tty_hung_up_p);
748
749 /**
750 * stop_tty - propagate flow control
751 * @tty: tty to stop
752 *
753 * Perform flow control to the driver. May be called
754 * on an already stopped device and will not re-call the driver
755 * method.
756 *
757 * This functionality is used by both the line disciplines for
758 * halting incoming flow and by the driver. It may therefore be
759 * called from any context, may be under the tty atomic_write_lock
760 * but not always.
761 *
762 * Locking:
763 * flow_lock
764 */
765
766 void __stop_tty(struct tty_struct *tty)
767 {
768 if (tty->stopped)
769 return;
770 tty->stopped = 1;
771 if (tty->ops->stop)
772 tty->ops->stop(tty);
773 }
774
775 void stop_tty(struct tty_struct *tty)
776 {
777 unsigned long flags;
778
779 spin_lock_irqsave(&tty->flow_lock, flags);
780 __stop_tty(tty);
781 spin_unlock_irqrestore(&tty->flow_lock, flags);
782 }
783 EXPORT_SYMBOL(stop_tty);
784
785 /**
786 * start_tty - propagate flow control
787 * @tty: tty to start
788 *
789 * Start a tty that has been stopped if at all possible. If this
790 * tty was previous stopped and is now being started, the driver
791 * start method is invoked and the line discipline woken.
792 *
793 * Locking:
794 * flow_lock
795 */
796
797 void __start_tty(struct tty_struct *tty)
798 {
799 if (!tty->stopped || tty->flow_stopped)
800 return;
801 tty->stopped = 0;
802 if (tty->ops->start)
803 tty->ops->start(tty);
804 tty_wakeup(tty);
805 }
806
807 void start_tty(struct tty_struct *tty)
808 {
809 unsigned long flags;
810
811 spin_lock_irqsave(&tty->flow_lock, flags);
812 __start_tty(tty);
813 spin_unlock_irqrestore(&tty->flow_lock, flags);
814 }
815 EXPORT_SYMBOL(start_tty);
816
817 static void tty_update_time(struct timespec *time)
818 {
819 unsigned long sec = get_seconds();
820
821 /*
822 * We only care if the two values differ in anything other than the
823 * lower three bits (i.e every 8 seconds). If so, then we can update
824 * the time of the tty device, otherwise it could be construded as a
825 * security leak to let userspace know the exact timing of the tty.
826 */
827 if ((sec ^ time->tv_sec) & ~7)
828 time->tv_sec = sec;
829 }
830
831 /**
832 * tty_read - read method for tty device files
833 * @file: pointer to tty file
834 * @buf: user buffer
835 * @count: size of user buffer
836 * @ppos: unused
837 *
838 * Perform the read system call function on this terminal device. Checks
839 * for hung up devices before calling the line discipline method.
840 *
841 * Locking:
842 * Locks the line discipline internally while needed. Multiple
843 * read calls may be outstanding in parallel.
844 */
845
846 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
847 loff_t *ppos)
848 {
849 int i;
850 struct inode *inode = file_inode(file);
851 struct tty_struct *tty = file_tty(file);
852 struct tty_ldisc *ld;
853
854 if (tty_paranoia_check(tty, inode, "tty_read"))
855 return -EIO;
856 if (!tty || tty_io_error(tty))
857 return -EIO;
858
859 /* We want to wait for the line discipline to sort out in this
860 situation */
861 ld = tty_ldisc_ref_wait(tty);
862 if (!ld)
863 return hung_up_tty_read(file, buf, count, ppos);
864 if (ld->ops->read)
865 i = ld->ops->read(tty, file, buf, count);
866 else
867 i = -EIO;
868 tty_ldisc_deref(ld);
869
870 if (i > 0)
871 tty_update_time(&inode->i_atime);
872
873 return i;
874 }
875
876 static void tty_write_unlock(struct tty_struct *tty)
877 {
878 mutex_unlock(&tty->atomic_write_lock);
879 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
880 }
881
882 static int tty_write_lock(struct tty_struct *tty, int ndelay)
883 {
884 if (!mutex_trylock(&tty->atomic_write_lock)) {
885 if (ndelay)
886 return -EAGAIN;
887 if (mutex_lock_interruptible(&tty->atomic_write_lock))
888 return -ERESTARTSYS;
889 }
890 return 0;
891 }
892
893 /*
894 * Split writes up in sane blocksizes to avoid
895 * denial-of-service type attacks
896 */
897 static inline ssize_t do_tty_write(
898 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
899 struct tty_struct *tty,
900 struct file *file,
901 const char __user *buf,
902 size_t count)
903 {
904 ssize_t ret, written = 0;
905 unsigned int chunk;
906
907 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
908 if (ret < 0)
909 return ret;
910
911 /*
912 * We chunk up writes into a temporary buffer. This
913 * simplifies low-level drivers immensely, since they
914 * don't have locking issues and user mode accesses.
915 *
916 * But if TTY_NO_WRITE_SPLIT is set, we should use a
917 * big chunk-size..
918 *
919 * The default chunk-size is 2kB, because the NTTY
920 * layer has problems with bigger chunks. It will
921 * claim to be able to handle more characters than
922 * it actually does.
923 *
924 * FIXME: This can probably go away now except that 64K chunks
925 * are too likely to fail unless switched to vmalloc...
926 */
927 chunk = 2048;
928 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
929 chunk = 65536;
930 if (count < chunk)
931 chunk = count;
932
933 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
934 if (tty->write_cnt < chunk) {
935 unsigned char *buf_chunk;
936
937 if (chunk < 1024)
938 chunk = 1024;
939
940 buf_chunk = kmalloc(chunk, GFP_KERNEL);
941 if (!buf_chunk) {
942 ret = -ENOMEM;
943 goto out;
944 }
945 kfree(tty->write_buf);
946 tty->write_cnt = chunk;
947 tty->write_buf = buf_chunk;
948 }
949
950 /* Do the write .. */
951 for (;;) {
952 size_t size = count;
953 if (size > chunk)
954 size = chunk;
955 ret = -EFAULT;
956 if (copy_from_user(tty->write_buf, buf, size))
957 break;
958 ret = write(tty, file, tty->write_buf, size);
959 if (ret <= 0)
960 break;
961 written += ret;
962 buf += ret;
963 count -= ret;
964 if (!count)
965 break;
966 ret = -ERESTARTSYS;
967 if (signal_pending(current))
968 break;
969 cond_resched();
970 }
971 if (written) {
972 tty_update_time(&file_inode(file)->i_mtime);
973 ret = written;
974 }
975 out:
976 tty_write_unlock(tty);
977 return ret;
978 }
979
980 /**
981 * tty_write_message - write a message to a certain tty, not just the console.
982 * @tty: the destination tty_struct
983 * @msg: the message to write
984 *
985 * This is used for messages that need to be redirected to a specific tty.
986 * We don't put it into the syslog queue right now maybe in the future if
987 * really needed.
988 *
989 * We must still hold the BTM and test the CLOSING flag for the moment.
990 */
991
992 void tty_write_message(struct tty_struct *tty, char *msg)
993 {
994 if (tty) {
995 mutex_lock(&tty->atomic_write_lock);
996 tty_lock(tty);
997 if (tty->ops->write && tty->count > 0)
998 tty->ops->write(tty, msg, strlen(msg));
999 tty_unlock(tty);
1000 tty_write_unlock(tty);
1001 }
1002 return;
1003 }
1004
1005
1006 /**
1007 * tty_write - write method for tty device file
1008 * @file: tty file pointer
1009 * @buf: user data to write
1010 * @count: bytes to write
1011 * @ppos: unused
1012 *
1013 * Write data to a tty device via the line discipline.
1014 *
1015 * Locking:
1016 * Locks the line discipline as required
1017 * Writes to the tty driver are serialized by the atomic_write_lock
1018 * and are then processed in chunks to the device. The line discipline
1019 * write method will not be invoked in parallel for each device.
1020 */
1021
1022 static ssize_t tty_write(struct file *file, const char __user *buf,
1023 size_t count, loff_t *ppos)
1024 {
1025 struct tty_struct *tty = file_tty(file);
1026 struct tty_ldisc *ld;
1027 ssize_t ret;
1028
1029 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030 return -EIO;
1031 if (!tty || !tty->ops->write || tty_io_error(tty))
1032 return -EIO;
1033 /* Short term debug to catch buggy drivers */
1034 if (tty->ops->write_room == NULL)
1035 tty_err(tty, "missing write_room method\n");
1036 ld = tty_ldisc_ref_wait(tty);
1037 if (!ld)
1038 return hung_up_tty_write(file, buf, count, ppos);
1039 if (!ld->ops->write)
1040 ret = -EIO;
1041 else
1042 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043 tty_ldisc_deref(ld);
1044 return ret;
1045 }
1046
1047 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048 size_t count, loff_t *ppos)
1049 {
1050 struct file *p = NULL;
1051
1052 spin_lock(&redirect_lock);
1053 if (redirect)
1054 p = get_file(redirect);
1055 spin_unlock(&redirect_lock);
1056
1057 if (p) {
1058 ssize_t res;
1059 res = vfs_write(p, buf, count, &p->f_pos);
1060 fput(p);
1061 return res;
1062 }
1063 return tty_write(file, buf, count, ppos);
1064 }
1065
1066 /**
1067 * tty_send_xchar - send priority character
1068 *
1069 * Send a high priority character to the tty even if stopped
1070 *
1071 * Locking: none for xchar method, write ordering for write method.
1072 */
1073
1074 int tty_send_xchar(struct tty_struct *tty, char ch)
1075 {
1076 int was_stopped = tty->stopped;
1077
1078 if (tty->ops->send_xchar) {
1079 down_read(&tty->termios_rwsem);
1080 tty->ops->send_xchar(tty, ch);
1081 up_read(&tty->termios_rwsem);
1082 return 0;
1083 }
1084
1085 if (tty_write_lock(tty, 0) < 0)
1086 return -ERESTARTSYS;
1087
1088 down_read(&tty->termios_rwsem);
1089 if (was_stopped)
1090 start_tty(tty);
1091 tty->ops->write(tty, &ch, 1);
1092 if (was_stopped)
1093 stop_tty(tty);
1094 up_read(&tty->termios_rwsem);
1095 tty_write_unlock(tty);
1096 return 0;
1097 }
1098
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101 /**
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1106 *
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1109 *
1110 * Locking: None
1111 */
1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113 {
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1119 }
1120
1121 /**
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1126 *
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1129 *
1130 * Locking: None
1131 */
1132 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133 {
1134 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135 return sprintf(p, "%s", driver->name);
1136 else
1137 return sprintf(p, "%s%d", driver->name,
1138 index + driver->name_base);
1139 }
1140
1141 /**
1142 * tty_driver_lookup_tty() - find an existing tty, if any
1143 * @driver: the driver for the tty
1144 * @idx: the minor number
1145 *
1146 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147 * driver lookup() method returns an error.
1148 *
1149 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1150 */
1151 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152 struct file *file, int idx)
1153 {
1154 struct tty_struct *tty;
1155
1156 if (driver->ops->lookup)
1157 if (!file)
1158 tty = ERR_PTR(-EIO);
1159 else
1160 tty = driver->ops->lookup(driver, file, idx);
1161 else
1162 tty = driver->ttys[idx];
1163
1164 if (!IS_ERR(tty))
1165 tty_kref_get(tty);
1166 return tty;
1167 }
1168
1169 /**
1170 * tty_init_termios - helper for termios setup
1171 * @tty: the tty to set up
1172 *
1173 * Initialise the termios structures for this tty. Thus runs under
1174 * the tty_mutex currently so we can be relaxed about ordering.
1175 */
1176
1177 void tty_init_termios(struct tty_struct *tty)
1178 {
1179 struct ktermios *tp;
1180 int idx = tty->index;
1181
1182 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183 tty->termios = tty->driver->init_termios;
1184 else {
1185 /* Check for lazy saved data */
1186 tp = tty->driver->termios[idx];
1187 if (tp != NULL) {
1188 tty->termios = *tp;
1189 tty->termios.c_line = tty->driver->init_termios.c_line;
1190 } else
1191 tty->termios = tty->driver->init_termios;
1192 }
1193 /* Compatibility until drivers always set this */
1194 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1196 }
1197 EXPORT_SYMBOL_GPL(tty_init_termios);
1198
1199 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200 {
1201 tty_init_termios(tty);
1202 tty_driver_kref_get(driver);
1203 tty->count++;
1204 driver->ttys[tty->index] = tty;
1205 return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(tty_standard_install);
1208
1209 /**
1210 * tty_driver_install_tty() - install a tty entry in the driver
1211 * @driver: the driver for the tty
1212 * @tty: the tty
1213 *
1214 * Install a tty object into the driver tables. The tty->index field
1215 * will be set by the time this is called. This method is responsible
1216 * for ensuring any need additional structures are allocated and
1217 * configured.
1218 *
1219 * Locking: tty_mutex for now
1220 */
1221 static int tty_driver_install_tty(struct tty_driver *driver,
1222 struct tty_struct *tty)
1223 {
1224 return driver->ops->install ? driver->ops->install(driver, tty) :
1225 tty_standard_install(driver, tty);
1226 }
1227
1228 /**
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1232 *
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1235 *
1236 * Locking: tty_mutex for now
1237 */
1238 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239 {
1240 if (driver->ops->remove)
1241 driver->ops->remove(driver, tty);
1242 else
1243 driver->ttys[tty->index] = NULL;
1244 }
1245
1246 /*
1247 * tty_reopen() - fast re-open of an open tty
1248 * @tty - the tty to open
1249 *
1250 * Return 0 on success, -errno on error.
1251 * Re-opens on master ptys are not allowed and return -EIO.
1252 *
1253 * Locking: Caller must hold tty_lock
1254 */
1255 static int tty_reopen(struct tty_struct *tty)
1256 {
1257 struct tty_driver *driver = tty->driver;
1258 struct tty_ldisc *ld;
1259 int retval = 0;
1260
1261 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1262 driver->subtype == PTY_TYPE_MASTER)
1263 return -EIO;
1264
1265 if (!tty->count)
1266 return -EAGAIN;
1267
1268 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1269 return -EBUSY;
1270
1271 ld = tty_ldisc_ref_wait(tty);
1272 if (ld) {
1273 tty_ldisc_deref(ld);
1274 } else {
1275 retval = tty_ldisc_lock(tty, 5 * HZ);
1276 if (retval)
1277 return retval;
1278
1279 if (!tty->ldisc)
1280 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1281 tty_ldisc_unlock(tty);
1282 }
1283
1284 if (retval == 0)
1285 tty->count++;
1286
1287 return retval;
1288 }
1289
1290 /**
1291 * tty_init_dev - initialise a tty device
1292 * @driver: tty driver we are opening a device on
1293 * @idx: device index
1294 * @ret_tty: returned tty structure
1295 *
1296 * Prepare a tty device. This may not be a "new" clean device but
1297 * could also be an active device. The pty drivers require special
1298 * handling because of this.
1299 *
1300 * Locking:
1301 * The function is called under the tty_mutex, which
1302 * protects us from the tty struct or driver itself going away.
1303 *
1304 * On exit the tty device has the line discipline attached and
1305 * a reference count of 1. If a pair was created for pty/tty use
1306 * and the other was a pty master then it too has a reference count of 1.
1307 *
1308 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1309 * failed open. The new code protects the open with a mutex, so it's
1310 * really quite straightforward. The mutex locking can probably be
1311 * relaxed for the (most common) case of reopening a tty.
1312 */
1313
1314 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1315 {
1316 struct tty_struct *tty;
1317 int retval;
1318
1319 /*
1320 * First time open is complex, especially for PTY devices.
1321 * This code guarantees that either everything succeeds and the
1322 * TTY is ready for operation, or else the table slots are vacated
1323 * and the allocated memory released. (Except that the termios
1324 * may be retained.)
1325 */
1326
1327 if (!try_module_get(driver->owner))
1328 return ERR_PTR(-ENODEV);
1329
1330 tty = alloc_tty_struct(driver, idx);
1331 if (!tty) {
1332 retval = -ENOMEM;
1333 goto err_module_put;
1334 }
1335
1336 tty_lock(tty);
1337 retval = tty_driver_install_tty(driver, tty);
1338 if (retval < 0)
1339 goto err_free_tty;
1340
1341 if (!tty->port)
1342 tty->port = driver->ports[idx];
1343
1344 WARN_RATELIMIT(!tty->port,
1345 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1346 __func__, tty->driver->name);
1347
1348 retval = tty_ldisc_lock(tty, 5 * HZ);
1349 if (retval)
1350 goto err_release_lock;
1351 tty->port->itty = tty;
1352
1353 /*
1354 * Structures all installed ... call the ldisc open routines.
1355 * If we fail here just call release_tty to clean up. No need
1356 * to decrement the use counts, as release_tty doesn't care.
1357 */
1358 retval = tty_ldisc_setup(tty, tty->link);
1359 if (retval)
1360 goto err_release_tty;
1361 tty_ldisc_unlock(tty);
1362 /* Return the tty locked so that it cannot vanish under the caller */
1363 return tty;
1364
1365 err_free_tty:
1366 tty_unlock(tty);
1367 free_tty_struct(tty);
1368 err_module_put:
1369 module_put(driver->owner);
1370 return ERR_PTR(retval);
1371
1372 /* call the tty release_tty routine to clean out this slot */
1373 err_release_tty:
1374 tty_ldisc_unlock(tty);
1375 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1376 retval, idx);
1377 err_release_lock:
1378 tty_unlock(tty);
1379 release_tty(tty, idx);
1380 return ERR_PTR(retval);
1381 }
1382
1383 /**
1384 * tty_save_termios() - save tty termios data in driver table
1385 * @tty: tty whose termios data to save
1386 *
1387 * Locking: Caller guarantees serialisation with tty_init_termios().
1388 */
1389 void tty_save_termios(struct tty_struct *tty)
1390 {
1391 struct ktermios *tp;
1392 int idx = tty->index;
1393
1394 /* If the port is going to reset then it has no termios to save */
1395 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1396 return;
1397
1398 /* Stash the termios data */
1399 tp = tty->driver->termios[idx];
1400 if (tp == NULL) {
1401 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1402 if (tp == NULL)
1403 return;
1404 tty->driver->termios[idx] = tp;
1405 }
1406 *tp = tty->termios;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_save_termios);
1409
1410 /**
1411 * tty_flush_works - flush all works of a tty/pty pair
1412 * @tty: tty device to flush works for (or either end of a pty pair)
1413 *
1414 * Sync flush all works belonging to @tty (and the 'other' tty).
1415 */
1416 static void tty_flush_works(struct tty_struct *tty)
1417 {
1418 flush_work(&tty->SAK_work);
1419 flush_work(&tty->hangup_work);
1420 if (tty->link) {
1421 flush_work(&tty->link->SAK_work);
1422 flush_work(&tty->link->hangup_work);
1423 }
1424 }
1425
1426 /**
1427 * release_one_tty - release tty structure memory
1428 * @kref: kref of tty we are obliterating
1429 *
1430 * Releases memory associated with a tty structure, and clears out the
1431 * driver table slots. This function is called when a device is no longer
1432 * in use. It also gets called when setup of a device fails.
1433 *
1434 * Locking:
1435 * takes the file list lock internally when working on the list
1436 * of ttys that the driver keeps.
1437 *
1438 * This method gets called from a work queue so that the driver private
1439 * cleanup ops can sleep (needed for USB at least)
1440 */
1441 static void release_one_tty(struct work_struct *work)
1442 {
1443 struct tty_struct *tty =
1444 container_of(work, struct tty_struct, hangup_work);
1445 struct tty_driver *driver = tty->driver;
1446 struct module *owner = driver->owner;
1447
1448 if (tty->ops->cleanup)
1449 tty->ops->cleanup(tty);
1450
1451 tty->magic = 0;
1452 tty_driver_kref_put(driver);
1453 module_put(owner);
1454
1455 spin_lock(&tty->files_lock);
1456 list_del_init(&tty->tty_files);
1457 spin_unlock(&tty->files_lock);
1458
1459 put_pid(tty->pgrp);
1460 put_pid(tty->session);
1461 free_tty_struct(tty);
1462 }
1463
1464 static void queue_release_one_tty(struct kref *kref)
1465 {
1466 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1467
1468 /* The hangup queue is now free so we can reuse it rather than
1469 waste a chunk of memory for each port */
1470 INIT_WORK(&tty->hangup_work, release_one_tty);
1471 schedule_work(&tty->hangup_work);
1472 }
1473
1474 /**
1475 * tty_kref_put - release a tty kref
1476 * @tty: tty device
1477 *
1478 * Release a reference to a tty device and if need be let the kref
1479 * layer destruct the object for us
1480 */
1481
1482 void tty_kref_put(struct tty_struct *tty)
1483 {
1484 if (tty)
1485 kref_put(&tty->kref, queue_release_one_tty);
1486 }
1487 EXPORT_SYMBOL(tty_kref_put);
1488
1489 /**
1490 * release_tty - release tty structure memory
1491 *
1492 * Release both @tty and a possible linked partner (think pty pair),
1493 * and decrement the refcount of the backing module.
1494 *
1495 * Locking:
1496 * tty_mutex
1497 * takes the file list lock internally when working on the list
1498 * of ttys that the driver keeps.
1499 *
1500 */
1501 static void release_tty(struct tty_struct *tty, int idx)
1502 {
1503 /* This should always be true but check for the moment */
1504 WARN_ON(tty->index != idx);
1505 WARN_ON(!mutex_is_locked(&tty_mutex));
1506 if (tty->ops->shutdown)
1507 tty->ops->shutdown(tty);
1508 tty_save_termios(tty);
1509 tty_driver_remove_tty(tty->driver, tty);
1510 tty->port->itty = NULL;
1511 if (tty->link)
1512 tty->link->port->itty = NULL;
1513 tty_buffer_cancel_work(tty->port);
1514 if (tty->link)
1515 tty_buffer_cancel_work(tty->link->port);
1516
1517 tty_kref_put(tty->link);
1518 tty_kref_put(tty);
1519 }
1520
1521 /**
1522 * tty_release_checks - check a tty before real release
1523 * @tty: tty to check
1524 * @o_tty: link of @tty (if any)
1525 * @idx: index of the tty
1526 *
1527 * Performs some paranoid checking before true release of the @tty.
1528 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1529 */
1530 static int tty_release_checks(struct tty_struct *tty, int idx)
1531 {
1532 #ifdef TTY_PARANOIA_CHECK
1533 if (idx < 0 || idx >= tty->driver->num) {
1534 tty_debug(tty, "bad idx %d\n", idx);
1535 return -1;
1536 }
1537
1538 /* not much to check for devpts */
1539 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1540 return 0;
1541
1542 if (tty != tty->driver->ttys[idx]) {
1543 tty_debug(tty, "bad driver table[%d] = %p\n",
1544 idx, tty->driver->ttys[idx]);
1545 return -1;
1546 }
1547 if (tty->driver->other) {
1548 struct tty_struct *o_tty = tty->link;
1549
1550 if (o_tty != tty->driver->other->ttys[idx]) {
1551 tty_debug(tty, "bad other table[%d] = %p\n",
1552 idx, tty->driver->other->ttys[idx]);
1553 return -1;
1554 }
1555 if (o_tty->link != tty) {
1556 tty_debug(tty, "bad link = %p\n", o_tty->link);
1557 return -1;
1558 }
1559 }
1560 #endif
1561 return 0;
1562 }
1563
1564 /**
1565 * tty_kclose - closes tty opened by tty_kopen
1566 * @tty: tty device
1567 *
1568 * Performs the final steps to release and free a tty device. It is the
1569 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1570 * flag on tty->port.
1571 */
1572 void tty_kclose(struct tty_struct *tty)
1573 {
1574 /*
1575 * Ask the line discipline code to release its structures
1576 */
1577 tty_ldisc_release(tty);
1578
1579 /* Wait for pending work before tty destruction commmences */
1580 tty_flush_works(tty);
1581
1582 tty_debug_hangup(tty, "freeing structure\n");
1583 /*
1584 * The release_tty function takes care of the details of clearing
1585 * the slots and preserving the termios structure. The tty_unlock_pair
1586 * should be safe as we keep a kref while the tty is locked (so the
1587 * unlock never unlocks a freed tty).
1588 */
1589 mutex_lock(&tty_mutex);
1590 tty_port_set_kopened(tty->port, 0);
1591 release_tty(tty, tty->index);
1592 mutex_unlock(&tty_mutex);
1593 }
1594 EXPORT_SYMBOL_GPL(tty_kclose);
1595
1596 /**
1597 * tty_release_struct - release a tty struct
1598 * @tty: tty device
1599 * @idx: index of the tty
1600 *
1601 * Performs the final steps to release and free a tty device. It is
1602 * roughly the reverse of tty_init_dev.
1603 */
1604 void tty_release_struct(struct tty_struct *tty, int idx)
1605 {
1606 /*
1607 * Ask the line discipline code to release its structures
1608 */
1609 tty_ldisc_release(tty);
1610
1611 /* Wait for pending work before tty destruction commmences */
1612 tty_flush_works(tty);
1613
1614 tty_debug_hangup(tty, "freeing structure\n");
1615 /*
1616 * The release_tty function takes care of the details of clearing
1617 * the slots and preserving the termios structure. The tty_unlock_pair
1618 * should be safe as we keep a kref while the tty is locked (so the
1619 * unlock never unlocks a freed tty).
1620 */
1621 mutex_lock(&tty_mutex);
1622 release_tty(tty, idx);
1623 mutex_unlock(&tty_mutex);
1624 }
1625 EXPORT_SYMBOL_GPL(tty_release_struct);
1626
1627 /**
1628 * tty_release - vfs callback for close
1629 * @inode: inode of tty
1630 * @filp: file pointer for handle to tty
1631 *
1632 * Called the last time each file handle is closed that references
1633 * this tty. There may however be several such references.
1634 *
1635 * Locking:
1636 * Takes bkl. See tty_release_dev
1637 *
1638 * Even releasing the tty structures is a tricky business.. We have
1639 * to be very careful that the structures are all released at the
1640 * same time, as interrupts might otherwise get the wrong pointers.
1641 *
1642 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1643 * lead to double frees or releasing memory still in use.
1644 */
1645
1646 int tty_release(struct inode *inode, struct file *filp)
1647 {
1648 struct tty_struct *tty = file_tty(filp);
1649 struct tty_struct *o_tty = NULL;
1650 int do_sleep, final;
1651 int idx;
1652 long timeout = 0;
1653 int once = 1;
1654
1655 if (tty_paranoia_check(tty, inode, __func__))
1656 return 0;
1657
1658 tty_lock(tty);
1659 check_tty_count(tty, __func__);
1660
1661 __tty_fasync(-1, filp, 0);
1662
1663 idx = tty->index;
1664 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1665 tty->driver->subtype == PTY_TYPE_MASTER)
1666 o_tty = tty->link;
1667
1668 if (tty_release_checks(tty, idx)) {
1669 tty_unlock(tty);
1670 return 0;
1671 }
1672
1673 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1674
1675 if (tty->ops->close)
1676 tty->ops->close(tty, filp);
1677
1678 /* If tty is pty master, lock the slave pty (stable lock order) */
1679 tty_lock_slave(o_tty);
1680
1681 /*
1682 * Sanity check: if tty->count is going to zero, there shouldn't be
1683 * any waiters on tty->read_wait or tty->write_wait. We test the
1684 * wait queues and kick everyone out _before_ actually starting to
1685 * close. This ensures that we won't block while releasing the tty
1686 * structure.
1687 *
1688 * The test for the o_tty closing is necessary, since the master and
1689 * slave sides may close in any order. If the slave side closes out
1690 * first, its count will be one, since the master side holds an open.
1691 * Thus this test wouldn't be triggered at the time the slave closed,
1692 * so we do it now.
1693 */
1694 while (1) {
1695 do_sleep = 0;
1696
1697 if (tty->count <= 1) {
1698 if (waitqueue_active(&tty->read_wait)) {
1699 wake_up_poll(&tty->read_wait, POLLIN);
1700 do_sleep++;
1701 }
1702 if (waitqueue_active(&tty->write_wait)) {
1703 wake_up_poll(&tty->write_wait, POLLOUT);
1704 do_sleep++;
1705 }
1706 }
1707 if (o_tty && o_tty->count <= 1) {
1708 if (waitqueue_active(&o_tty->read_wait)) {
1709 wake_up_poll(&o_tty->read_wait, POLLIN);
1710 do_sleep++;
1711 }
1712 if (waitqueue_active(&o_tty->write_wait)) {
1713 wake_up_poll(&o_tty->write_wait, POLLOUT);
1714 do_sleep++;
1715 }
1716 }
1717 if (!do_sleep)
1718 break;
1719
1720 if (once) {
1721 once = 0;
1722 tty_warn(tty, "read/write wait queue active!\n");
1723 }
1724 schedule_timeout_killable(timeout);
1725 if (timeout < 120 * HZ)
1726 timeout = 2 * timeout + 1;
1727 else
1728 timeout = MAX_SCHEDULE_TIMEOUT;
1729 }
1730
1731 if (o_tty) {
1732 if (--o_tty->count < 0) {
1733 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1734 o_tty->count = 0;
1735 }
1736 }
1737 if (--tty->count < 0) {
1738 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1739 tty->count = 0;
1740 }
1741
1742 /*
1743 * We've decremented tty->count, so we need to remove this file
1744 * descriptor off the tty->tty_files list; this serves two
1745 * purposes:
1746 * - check_tty_count sees the correct number of file descriptors
1747 * associated with this tty.
1748 * - do_tty_hangup no longer sees this file descriptor as
1749 * something that needs to be handled for hangups.
1750 */
1751 tty_del_file(filp);
1752
1753 /*
1754 * Perform some housekeeping before deciding whether to return.
1755 *
1756 * If _either_ side is closing, make sure there aren't any
1757 * processes that still think tty or o_tty is their controlling
1758 * tty.
1759 */
1760 if (!tty->count) {
1761 read_lock(&tasklist_lock);
1762 session_clear_tty(tty->session);
1763 if (o_tty)
1764 session_clear_tty(o_tty->session);
1765 read_unlock(&tasklist_lock);
1766 }
1767
1768 /* check whether both sides are closing ... */
1769 final = !tty->count && !(o_tty && o_tty->count);
1770
1771 tty_unlock_slave(o_tty);
1772 tty_unlock(tty);
1773
1774 /* At this point, the tty->count == 0 should ensure a dead tty
1775 cannot be re-opened by a racing opener */
1776
1777 if (!final)
1778 return 0;
1779
1780 tty_debug_hangup(tty, "final close\n");
1781
1782 tty_release_struct(tty, idx);
1783 return 0;
1784 }
1785
1786 /**
1787 * tty_open_current_tty - get locked tty of current task
1788 * @device: device number
1789 * @filp: file pointer to tty
1790 * @return: locked tty of the current task iff @device is /dev/tty
1791 *
1792 * Performs a re-open of the current task's controlling tty.
1793 *
1794 * We cannot return driver and index like for the other nodes because
1795 * devpts will not work then. It expects inodes to be from devpts FS.
1796 */
1797 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1798 {
1799 struct tty_struct *tty;
1800 int retval;
1801
1802 if (device != MKDEV(TTYAUX_MAJOR, 0))
1803 return NULL;
1804
1805 tty = get_current_tty();
1806 if (!tty)
1807 return ERR_PTR(-ENXIO);
1808
1809 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1810 /* noctty = 1; */
1811 tty_lock(tty);
1812 tty_kref_put(tty); /* safe to drop the kref now */
1813
1814 retval = tty_reopen(tty);
1815 if (retval < 0) {
1816 tty_unlock(tty);
1817 tty = ERR_PTR(retval);
1818 }
1819 return tty;
1820 }
1821
1822 /**
1823 * tty_lookup_driver - lookup a tty driver for a given device file
1824 * @device: device number
1825 * @filp: file pointer to tty
1826 * @index: index for the device in the @return driver
1827 * @return: driver for this inode (with increased refcount)
1828 *
1829 * If @return is not erroneous, the caller is responsible to decrement the
1830 * refcount by tty_driver_kref_put.
1831 *
1832 * Locking: tty_mutex protects get_tty_driver
1833 */
1834 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1835 int *index)
1836 {
1837 struct tty_driver *driver;
1838
1839 switch (device) {
1840 #ifdef CONFIG_VT
1841 case MKDEV(TTY_MAJOR, 0): {
1842 extern struct tty_driver *console_driver;
1843 driver = tty_driver_kref_get(console_driver);
1844 *index = fg_console;
1845 break;
1846 }
1847 #endif
1848 case MKDEV(TTYAUX_MAJOR, 1): {
1849 struct tty_driver *console_driver = console_device(index);
1850 if (console_driver) {
1851 driver = tty_driver_kref_get(console_driver);
1852 if (driver && filp) {
1853 /* Don't let /dev/console block */
1854 filp->f_flags |= O_NONBLOCK;
1855 break;
1856 }
1857 }
1858 return ERR_PTR(-ENODEV);
1859 }
1860 default:
1861 driver = get_tty_driver(device, index);
1862 if (!driver)
1863 return ERR_PTR(-ENODEV);
1864 break;
1865 }
1866 return driver;
1867 }
1868
1869 /**
1870 * tty_kopen - open a tty device for kernel
1871 * @device: dev_t of device to open
1872 *
1873 * Opens tty exclusively for kernel. Performs the driver lookup,
1874 * makes sure it's not already opened and performs the first-time
1875 * tty initialization.
1876 *
1877 * Returns the locked initialized &tty_struct
1878 *
1879 * Claims the global tty_mutex to serialize:
1880 * - concurrent first-time tty initialization
1881 * - concurrent tty driver removal w/ lookup
1882 * - concurrent tty removal from driver table
1883 */
1884 struct tty_struct *tty_kopen(dev_t device)
1885 {
1886 struct tty_struct *tty;
1887 struct tty_driver *driver = NULL;
1888 int index = -1;
1889
1890 mutex_lock(&tty_mutex);
1891 driver = tty_lookup_driver(device, NULL, &index);
1892 if (IS_ERR(driver)) {
1893 mutex_unlock(&tty_mutex);
1894 return ERR_CAST(driver);
1895 }
1896
1897 /* check whether we're reopening an existing tty */
1898 tty = tty_driver_lookup_tty(driver, NULL, index);
1899 if (IS_ERR(tty))
1900 goto out;
1901
1902 if (tty) {
1903 /* drop kref from tty_driver_lookup_tty() */
1904 tty_kref_put(tty);
1905 tty = ERR_PTR(-EBUSY);
1906 } else { /* tty_init_dev returns tty with the tty_lock held */
1907 tty = tty_init_dev(driver, index);
1908 if (IS_ERR(tty))
1909 goto out;
1910 tty_port_set_kopened(tty->port, 1);
1911 }
1912 out:
1913 mutex_unlock(&tty_mutex);
1914 tty_driver_kref_put(driver);
1915 return tty;
1916 }
1917 EXPORT_SYMBOL_GPL(tty_kopen);
1918
1919 /**
1920 * tty_open_by_driver - open a tty device
1921 * @device: dev_t of device to open
1922 * @inode: inode of device file
1923 * @filp: file pointer to tty
1924 *
1925 * Performs the driver lookup, checks for a reopen, or otherwise
1926 * performs the first-time tty initialization.
1927 *
1928 * Returns the locked initialized or re-opened &tty_struct
1929 *
1930 * Claims the global tty_mutex to serialize:
1931 * - concurrent first-time tty initialization
1932 * - concurrent tty driver removal w/ lookup
1933 * - concurrent tty removal from driver table
1934 */
1935 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1936 struct file *filp)
1937 {
1938 struct tty_struct *tty;
1939 struct tty_driver *driver = NULL;
1940 int index = -1;
1941 int retval;
1942
1943 mutex_lock(&tty_mutex);
1944 driver = tty_lookup_driver(device, filp, &index);
1945 if (IS_ERR(driver)) {
1946 mutex_unlock(&tty_mutex);
1947 return ERR_CAST(driver);
1948 }
1949
1950 /* check whether we're reopening an existing tty */
1951 tty = tty_driver_lookup_tty(driver, filp, index);
1952 if (IS_ERR(tty)) {
1953 mutex_unlock(&tty_mutex);
1954 goto out;
1955 }
1956
1957 if (tty) {
1958 if (tty_port_kopened(tty->port)) {
1959 tty_kref_put(tty);
1960 mutex_unlock(&tty_mutex);
1961 tty = ERR_PTR(-EBUSY);
1962 goto out;
1963 }
1964 mutex_unlock(&tty_mutex);
1965 retval = tty_lock_interruptible(tty);
1966 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1967 if (retval) {
1968 if (retval == -EINTR)
1969 retval = -ERESTARTSYS;
1970 tty = ERR_PTR(retval);
1971 goto out;
1972 }
1973 retval = tty_reopen(tty);
1974 if (retval < 0) {
1975 tty_unlock(tty);
1976 tty = ERR_PTR(retval);
1977 }
1978 } else { /* Returns with the tty_lock held for now */
1979 tty = tty_init_dev(driver, index);
1980 mutex_unlock(&tty_mutex);
1981 }
1982 out:
1983 tty_driver_kref_put(driver);
1984 return tty;
1985 }
1986
1987 /**
1988 * tty_open - open a tty device
1989 * @inode: inode of device file
1990 * @filp: file pointer to tty
1991 *
1992 * tty_open and tty_release keep up the tty count that contains the
1993 * number of opens done on a tty. We cannot use the inode-count, as
1994 * different inodes might point to the same tty.
1995 *
1996 * Open-counting is needed for pty masters, as well as for keeping
1997 * track of serial lines: DTR is dropped when the last close happens.
1998 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1999 *
2000 * The termios state of a pty is reset on first open so that
2001 * settings don't persist across reuse.
2002 *
2003 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2004 * tty->count should protect the rest.
2005 * ->siglock protects ->signal/->sighand
2006 *
2007 * Note: the tty_unlock/lock cases without a ref are only safe due to
2008 * tty_mutex
2009 */
2010
2011 static int tty_open(struct inode *inode, struct file *filp)
2012 {
2013 struct tty_struct *tty;
2014 int noctty, retval;
2015 dev_t device = inode->i_rdev;
2016 unsigned saved_flags = filp->f_flags;
2017
2018 nonseekable_open(inode, filp);
2019
2020 retry_open:
2021 retval = tty_alloc_file(filp);
2022 if (retval)
2023 return -ENOMEM;
2024
2025 tty = tty_open_current_tty(device, filp);
2026 if (!tty)
2027 tty = tty_open_by_driver(device, inode, filp);
2028
2029 if (IS_ERR(tty)) {
2030 tty_free_file(filp);
2031 retval = PTR_ERR(tty);
2032 if (retval != -EAGAIN || signal_pending(current))
2033 return retval;
2034 schedule();
2035 goto retry_open;
2036 }
2037
2038 tty_add_file(tty, filp);
2039
2040 check_tty_count(tty, __func__);
2041 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2042
2043 if (tty->ops->open)
2044 retval = tty->ops->open(tty, filp);
2045 else
2046 retval = -ENODEV;
2047 filp->f_flags = saved_flags;
2048
2049 if (retval) {
2050 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2051
2052 tty_unlock(tty); /* need to call tty_release without BTM */
2053 tty_release(inode, filp);
2054 if (retval != -ERESTARTSYS)
2055 return retval;
2056
2057 if (signal_pending(current))
2058 return retval;
2059
2060 schedule();
2061 /*
2062 * Need to reset f_op in case a hangup happened.
2063 */
2064 if (tty_hung_up_p(filp))
2065 filp->f_op = &tty_fops;
2066 goto retry_open;
2067 }
2068 clear_bit(TTY_HUPPED, &tty->flags);
2069
2070 noctty = (filp->f_flags & O_NOCTTY) ||
2071 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2072 device == MKDEV(TTYAUX_MAJOR, 1) ||
2073 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2074 tty->driver->subtype == PTY_TYPE_MASTER);
2075 if (!noctty)
2076 tty_open_proc_set_tty(filp, tty);
2077 tty_unlock(tty);
2078 return 0;
2079 }
2080
2081
2082
2083 /**
2084 * tty_poll - check tty status
2085 * @filp: file being polled
2086 * @wait: poll wait structures to update
2087 *
2088 * Call the line discipline polling method to obtain the poll
2089 * status of the device.
2090 *
2091 * Locking: locks called line discipline but ldisc poll method
2092 * may be re-entered freely by other callers.
2093 */
2094
2095 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2096 {
2097 struct tty_struct *tty = file_tty(filp);
2098 struct tty_ldisc *ld;
2099 int ret = 0;
2100
2101 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2102 return 0;
2103
2104 ld = tty_ldisc_ref_wait(tty);
2105 if (!ld)
2106 return hung_up_tty_poll(filp, wait);
2107 if (ld->ops->poll)
2108 ret = ld->ops->poll(tty, filp, wait);
2109 tty_ldisc_deref(ld);
2110 return ret;
2111 }
2112
2113 static int __tty_fasync(int fd, struct file *filp, int on)
2114 {
2115 struct tty_struct *tty = file_tty(filp);
2116 unsigned long flags;
2117 int retval = 0;
2118
2119 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2120 goto out;
2121
2122 retval = fasync_helper(fd, filp, on, &tty->fasync);
2123 if (retval <= 0)
2124 goto out;
2125
2126 if (on) {
2127 enum pid_type type;
2128 struct pid *pid;
2129
2130 spin_lock_irqsave(&tty->ctrl_lock, flags);
2131 if (tty->pgrp) {
2132 pid = tty->pgrp;
2133 type = PIDTYPE_PGID;
2134 } else {
2135 pid = task_pid(current);
2136 type = PIDTYPE_PID;
2137 }
2138 get_pid(pid);
2139 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2140 __f_setown(filp, pid, type, 0);
2141 put_pid(pid);
2142 retval = 0;
2143 }
2144 out:
2145 return retval;
2146 }
2147
2148 static int tty_fasync(int fd, struct file *filp, int on)
2149 {
2150 struct tty_struct *tty = file_tty(filp);
2151 int retval = -ENOTTY;
2152
2153 tty_lock(tty);
2154 if (!tty_hung_up_p(filp))
2155 retval = __tty_fasync(fd, filp, on);
2156 tty_unlock(tty);
2157
2158 return retval;
2159 }
2160
2161 /**
2162 * tiocsti - fake input character
2163 * @tty: tty to fake input into
2164 * @p: pointer to character
2165 *
2166 * Fake input to a tty device. Does the necessary locking and
2167 * input management.
2168 *
2169 * FIXME: does not honour flow control ??
2170 *
2171 * Locking:
2172 * Called functions take tty_ldiscs_lock
2173 * current->signal->tty check is safe without locks
2174 *
2175 * FIXME: may race normal receive processing
2176 */
2177
2178 static int tiocsti(struct tty_struct *tty, char __user *p)
2179 {
2180 char ch, mbz = 0;
2181 struct tty_ldisc *ld;
2182
2183 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2184 return -EPERM;
2185 if (get_user(ch, p))
2186 return -EFAULT;
2187 tty_audit_tiocsti(tty, ch);
2188 ld = tty_ldisc_ref_wait(tty);
2189 if (!ld)
2190 return -EIO;
2191 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2192 tty_ldisc_deref(ld);
2193 return 0;
2194 }
2195
2196 /**
2197 * tiocgwinsz - implement window query ioctl
2198 * @tty; tty
2199 * @arg: user buffer for result
2200 *
2201 * Copies the kernel idea of the window size into the user buffer.
2202 *
2203 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2204 * is consistent.
2205 */
2206
2207 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2208 {
2209 int err;
2210
2211 mutex_lock(&tty->winsize_mutex);
2212 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2213 mutex_unlock(&tty->winsize_mutex);
2214
2215 return err ? -EFAULT: 0;
2216 }
2217
2218 /**
2219 * tty_do_resize - resize event
2220 * @tty: tty being resized
2221 * @rows: rows (character)
2222 * @cols: cols (character)
2223 *
2224 * Update the termios variables and send the necessary signals to
2225 * peform a terminal resize correctly
2226 */
2227
2228 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2229 {
2230 struct pid *pgrp;
2231
2232 /* Lock the tty */
2233 mutex_lock(&tty->winsize_mutex);
2234 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2235 goto done;
2236
2237 /* Signal the foreground process group */
2238 pgrp = tty_get_pgrp(tty);
2239 if (pgrp)
2240 kill_pgrp(pgrp, SIGWINCH, 1);
2241 put_pid(pgrp);
2242
2243 tty->winsize = *ws;
2244 done:
2245 mutex_unlock(&tty->winsize_mutex);
2246 return 0;
2247 }
2248 EXPORT_SYMBOL(tty_do_resize);
2249
2250 /**
2251 * tiocswinsz - implement window size set ioctl
2252 * @tty; tty side of tty
2253 * @arg: user buffer for result
2254 *
2255 * Copies the user idea of the window size to the kernel. Traditionally
2256 * this is just advisory information but for the Linux console it
2257 * actually has driver level meaning and triggers a VC resize.
2258 *
2259 * Locking:
2260 * Driver dependent. The default do_resize method takes the
2261 * tty termios mutex and ctrl_lock. The console takes its own lock
2262 * then calls into the default method.
2263 */
2264
2265 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2266 {
2267 struct winsize tmp_ws;
2268 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2269 return -EFAULT;
2270
2271 if (tty->ops->resize)
2272 return tty->ops->resize(tty, &tmp_ws);
2273 else
2274 return tty_do_resize(tty, &tmp_ws);
2275 }
2276
2277 /**
2278 * tioccons - allow admin to move logical console
2279 * @file: the file to become console
2280 *
2281 * Allow the administrator to move the redirected console device
2282 *
2283 * Locking: uses redirect_lock to guard the redirect information
2284 */
2285
2286 static int tioccons(struct file *file)
2287 {
2288 if (!capable(CAP_SYS_ADMIN))
2289 return -EPERM;
2290 if (file->f_op->write == redirected_tty_write) {
2291 struct file *f;
2292 spin_lock(&redirect_lock);
2293 f = redirect;
2294 redirect = NULL;
2295 spin_unlock(&redirect_lock);
2296 if (f)
2297 fput(f);
2298 return 0;
2299 }
2300 spin_lock(&redirect_lock);
2301 if (redirect) {
2302 spin_unlock(&redirect_lock);
2303 return -EBUSY;
2304 }
2305 redirect = get_file(file);
2306 spin_unlock(&redirect_lock);
2307 return 0;
2308 }
2309
2310 /**
2311 * fionbio - non blocking ioctl
2312 * @file: file to set blocking value
2313 * @p: user parameter
2314 *
2315 * Historical tty interfaces had a blocking control ioctl before
2316 * the generic functionality existed. This piece of history is preserved
2317 * in the expected tty API of posix OS's.
2318 *
2319 * Locking: none, the open file handle ensures it won't go away.
2320 */
2321
2322 static int fionbio(struct file *file, int __user *p)
2323 {
2324 int nonblock;
2325
2326 if (get_user(nonblock, p))
2327 return -EFAULT;
2328
2329 spin_lock(&file->f_lock);
2330 if (nonblock)
2331 file->f_flags |= O_NONBLOCK;
2332 else
2333 file->f_flags &= ~O_NONBLOCK;
2334 spin_unlock(&file->f_lock);
2335 return 0;
2336 }
2337
2338 /**
2339 * tiocsetd - set line discipline
2340 * @tty: tty device
2341 * @p: pointer to user data
2342 *
2343 * Set the line discipline according to user request.
2344 *
2345 * Locking: see tty_set_ldisc, this function is just a helper
2346 */
2347
2348 static int tiocsetd(struct tty_struct *tty, int __user *p)
2349 {
2350 int disc;
2351 int ret;
2352
2353 if (get_user(disc, p))
2354 return -EFAULT;
2355
2356 ret = tty_set_ldisc(tty, disc);
2357
2358 return ret;
2359 }
2360
2361 /**
2362 * tiocgetd - get line discipline
2363 * @tty: tty device
2364 * @p: pointer to user data
2365 *
2366 * Retrieves the line discipline id directly from the ldisc.
2367 *
2368 * Locking: waits for ldisc reference (in case the line discipline
2369 * is changing or the tty is being hungup)
2370 */
2371
2372 static int tiocgetd(struct tty_struct *tty, int __user *p)
2373 {
2374 struct tty_ldisc *ld;
2375 int ret;
2376
2377 ld = tty_ldisc_ref_wait(tty);
2378 if (!ld)
2379 return -EIO;
2380 ret = put_user(ld->ops->num, p);
2381 tty_ldisc_deref(ld);
2382 return ret;
2383 }
2384
2385 /**
2386 * send_break - performed time break
2387 * @tty: device to break on
2388 * @duration: timeout in mS
2389 *
2390 * Perform a timed break on hardware that lacks its own driver level
2391 * timed break functionality.
2392 *
2393 * Locking:
2394 * atomic_write_lock serializes
2395 *
2396 */
2397
2398 static int send_break(struct tty_struct *tty, unsigned int duration)
2399 {
2400 int retval;
2401
2402 if (tty->ops->break_ctl == NULL)
2403 return 0;
2404
2405 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2406 retval = tty->ops->break_ctl(tty, duration);
2407 else {
2408 /* Do the work ourselves */
2409 if (tty_write_lock(tty, 0) < 0)
2410 return -EINTR;
2411 retval = tty->ops->break_ctl(tty, -1);
2412 if (retval)
2413 goto out;
2414 if (!signal_pending(current))
2415 msleep_interruptible(duration);
2416 retval = tty->ops->break_ctl(tty, 0);
2417 out:
2418 tty_write_unlock(tty);
2419 if (signal_pending(current))
2420 retval = -EINTR;
2421 }
2422 return retval;
2423 }
2424
2425 /**
2426 * tty_tiocmget - get modem status
2427 * @tty: tty device
2428 * @file: user file pointer
2429 * @p: pointer to result
2430 *
2431 * Obtain the modem status bits from the tty driver if the feature
2432 * is supported. Return -EINVAL if it is not available.
2433 *
2434 * Locking: none (up to the driver)
2435 */
2436
2437 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2438 {
2439 int retval = -EINVAL;
2440
2441 if (tty->ops->tiocmget) {
2442 retval = tty->ops->tiocmget(tty);
2443
2444 if (retval >= 0)
2445 retval = put_user(retval, p);
2446 }
2447 return retval;
2448 }
2449
2450 /**
2451 * tty_tiocmset - set modem status
2452 * @tty: tty device
2453 * @cmd: command - clear bits, set bits or set all
2454 * @p: pointer to desired bits
2455 *
2456 * Set the modem status bits from the tty driver if the feature
2457 * is supported. Return -EINVAL if it is not available.
2458 *
2459 * Locking: none (up to the driver)
2460 */
2461
2462 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2463 unsigned __user *p)
2464 {
2465 int retval;
2466 unsigned int set, clear, val;
2467
2468 if (tty->ops->tiocmset == NULL)
2469 return -EINVAL;
2470
2471 retval = get_user(val, p);
2472 if (retval)
2473 return retval;
2474 set = clear = 0;
2475 switch (cmd) {
2476 case TIOCMBIS:
2477 set = val;
2478 break;
2479 case TIOCMBIC:
2480 clear = val;
2481 break;
2482 case TIOCMSET:
2483 set = val;
2484 clear = ~val;
2485 break;
2486 }
2487 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2488 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2489 return tty->ops->tiocmset(tty, set, clear);
2490 }
2491
2492 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2493 {
2494 int retval = -EINVAL;
2495 struct serial_icounter_struct icount;
2496 memset(&icount, 0, sizeof(icount));
2497 if (tty->ops->get_icount)
2498 retval = tty->ops->get_icount(tty, &icount);
2499 if (retval != 0)
2500 return retval;
2501 if (copy_to_user(arg, &icount, sizeof(icount)))
2502 return -EFAULT;
2503 return 0;
2504 }
2505
2506 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2507 {
2508 static DEFINE_RATELIMIT_STATE(depr_flags,
2509 DEFAULT_RATELIMIT_INTERVAL,
2510 DEFAULT_RATELIMIT_BURST);
2511 char comm[TASK_COMM_LEN];
2512 int flags;
2513
2514 if (get_user(flags, &ss->flags))
2515 return;
2516
2517 flags &= ASYNC_DEPRECATED;
2518
2519 if (flags && __ratelimit(&depr_flags))
2520 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2521 __func__, get_task_comm(comm, current), flags);
2522 }
2523
2524 /*
2525 * if pty, return the slave side (real_tty)
2526 * otherwise, return self
2527 */
2528 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2529 {
2530 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2531 tty->driver->subtype == PTY_TYPE_MASTER)
2532 tty = tty->link;
2533 return tty;
2534 }
2535
2536 /*
2537 * Split this up, as gcc can choke on it otherwise..
2538 */
2539 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2540 {
2541 struct tty_struct *tty = file_tty(file);
2542 struct tty_struct *real_tty;
2543 void __user *p = (void __user *)arg;
2544 int retval;
2545 struct tty_ldisc *ld;
2546
2547 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2548 return -EINVAL;
2549
2550 real_tty = tty_pair_get_tty(tty);
2551
2552 /*
2553 * Factor out some common prep work
2554 */
2555 switch (cmd) {
2556 case TIOCSETD:
2557 case TIOCSBRK:
2558 case TIOCCBRK:
2559 case TCSBRK:
2560 case TCSBRKP:
2561 retval = tty_check_change(tty);
2562 if (retval)
2563 return retval;
2564 if (cmd != TIOCCBRK) {
2565 tty_wait_until_sent(tty, 0);
2566 if (signal_pending(current))
2567 return -EINTR;
2568 }
2569 break;
2570 }
2571
2572 /*
2573 * Now do the stuff.
2574 */
2575 switch (cmd) {
2576 case TIOCSTI:
2577 return tiocsti(tty, p);
2578 case TIOCGWINSZ:
2579 return tiocgwinsz(real_tty, p);
2580 case TIOCSWINSZ:
2581 return tiocswinsz(real_tty, p);
2582 case TIOCCONS:
2583 return real_tty != tty ? -EINVAL : tioccons(file);
2584 case FIONBIO:
2585 return fionbio(file, p);
2586 case TIOCEXCL:
2587 set_bit(TTY_EXCLUSIVE, &tty->flags);
2588 return 0;
2589 case TIOCNXCL:
2590 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2591 return 0;
2592 case TIOCGEXCL:
2593 {
2594 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2595 return put_user(excl, (int __user *)p);
2596 }
2597 case TIOCGETD:
2598 return tiocgetd(tty, p);
2599 case TIOCSETD:
2600 return tiocsetd(tty, p);
2601 case TIOCVHANGUP:
2602 if (!capable(CAP_SYS_ADMIN))
2603 return -EPERM;
2604 tty_vhangup(tty);
2605 return 0;
2606 case TIOCGDEV:
2607 {
2608 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2609 return put_user(ret, (unsigned int __user *)p);
2610 }
2611 /*
2612 * Break handling
2613 */
2614 case TIOCSBRK: /* Turn break on, unconditionally */
2615 if (tty->ops->break_ctl)
2616 return tty->ops->break_ctl(tty, -1);
2617 return 0;
2618 case TIOCCBRK: /* Turn break off, unconditionally */
2619 if (tty->ops->break_ctl)
2620 return tty->ops->break_ctl(tty, 0);
2621 return 0;
2622 case TCSBRK: /* SVID version: non-zero arg --> no break */
2623 /* non-zero arg means wait for all output data
2624 * to be sent (performed above) but don't send break.
2625 * This is used by the tcdrain() termios function.
2626 */
2627 if (!arg)
2628 return send_break(tty, 250);
2629 return 0;
2630 case TCSBRKP: /* support for POSIX tcsendbreak() */
2631 return send_break(tty, arg ? arg*100 : 250);
2632
2633 case TIOCMGET:
2634 return tty_tiocmget(tty, p);
2635 case TIOCMSET:
2636 case TIOCMBIC:
2637 case TIOCMBIS:
2638 return tty_tiocmset(tty, cmd, p);
2639 case TIOCGICOUNT:
2640 retval = tty_tiocgicount(tty, p);
2641 /* For the moment allow fall through to the old method */
2642 if (retval != -EINVAL)
2643 return retval;
2644 break;
2645 case TCFLSH:
2646 switch (arg) {
2647 case TCIFLUSH:
2648 case TCIOFLUSH:
2649 /* flush tty buffer and allow ldisc to process ioctl */
2650 tty_buffer_flush(tty, NULL);
2651 break;
2652 }
2653 break;
2654 case TIOCSSERIAL:
2655 tty_warn_deprecated_flags(p);
2656 break;
2657 case TIOCGPTPEER:
2658 /* Special because the struct file is needed */
2659 return ptm_open_peer(file, tty, (int)arg);
2660 default:
2661 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2662 if (retval != -ENOIOCTLCMD)
2663 return retval;
2664 }
2665 if (tty->ops->ioctl) {
2666 retval = tty->ops->ioctl(tty, cmd, arg);
2667 if (retval != -ENOIOCTLCMD)
2668 return retval;
2669 }
2670 ld = tty_ldisc_ref_wait(tty);
2671 if (!ld)
2672 return hung_up_tty_ioctl(file, cmd, arg);
2673 retval = -EINVAL;
2674 if (ld->ops->ioctl) {
2675 retval = ld->ops->ioctl(tty, file, cmd, arg);
2676 if (retval == -ENOIOCTLCMD)
2677 retval = -ENOTTY;
2678 }
2679 tty_ldisc_deref(ld);
2680 return retval;
2681 }
2682
2683 #ifdef CONFIG_COMPAT
2684 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2685 unsigned long arg)
2686 {
2687 struct tty_struct *tty = file_tty(file);
2688 struct tty_ldisc *ld;
2689 int retval = -ENOIOCTLCMD;
2690
2691 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2692 return -EINVAL;
2693
2694 if (tty->ops->compat_ioctl) {
2695 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2696 if (retval != -ENOIOCTLCMD)
2697 return retval;
2698 }
2699
2700 ld = tty_ldisc_ref_wait(tty);
2701 if (!ld)
2702 return hung_up_tty_compat_ioctl(file, cmd, arg);
2703 if (ld->ops->compat_ioctl)
2704 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2705 else
2706 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2707 tty_ldisc_deref(ld);
2708
2709 return retval;
2710 }
2711 #endif
2712
2713 static int this_tty(const void *t, struct file *file, unsigned fd)
2714 {
2715 if (likely(file->f_op->read != tty_read))
2716 return 0;
2717 return file_tty(file) != t ? 0 : fd + 1;
2718 }
2719
2720 /*
2721 * This implements the "Secure Attention Key" --- the idea is to
2722 * prevent trojan horses by killing all processes associated with this
2723 * tty when the user hits the "Secure Attention Key". Required for
2724 * super-paranoid applications --- see the Orange Book for more details.
2725 *
2726 * This code could be nicer; ideally it should send a HUP, wait a few
2727 * seconds, then send a INT, and then a KILL signal. But you then
2728 * have to coordinate with the init process, since all processes associated
2729 * with the current tty must be dead before the new getty is allowed
2730 * to spawn.
2731 *
2732 * Now, if it would be correct ;-/ The current code has a nasty hole -
2733 * it doesn't catch files in flight. We may send the descriptor to ourselves
2734 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2735 *
2736 * Nasty bug: do_SAK is being called in interrupt context. This can
2737 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2738 */
2739 void __do_SAK(struct tty_struct *tty)
2740 {
2741 #ifdef TTY_SOFT_SAK
2742 tty_hangup(tty);
2743 #else
2744 struct task_struct *g, *p;
2745 struct pid *session;
2746 int i;
2747
2748 if (!tty)
2749 return;
2750 session = tty->session;
2751
2752 tty_ldisc_flush(tty);
2753
2754 tty_driver_flush_buffer(tty);
2755
2756 read_lock(&tasklist_lock);
2757 /* Kill the entire session */
2758 do_each_pid_task(session, PIDTYPE_SID, p) {
2759 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2760 task_pid_nr(p), p->comm);
2761 send_sig(SIGKILL, p, 1);
2762 } while_each_pid_task(session, PIDTYPE_SID, p);
2763
2764 /* Now kill any processes that happen to have the tty open */
2765 do_each_thread(g, p) {
2766 if (p->signal->tty == tty) {
2767 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2768 task_pid_nr(p), p->comm);
2769 send_sig(SIGKILL, p, 1);
2770 continue;
2771 }
2772 task_lock(p);
2773 i = iterate_fd(p->files, 0, this_tty, tty);
2774 if (i != 0) {
2775 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2776 task_pid_nr(p), p->comm, i - 1);
2777 force_sig(SIGKILL, p);
2778 }
2779 task_unlock(p);
2780 } while_each_thread(g, p);
2781 read_unlock(&tasklist_lock);
2782 #endif
2783 }
2784
2785 static void do_SAK_work(struct work_struct *work)
2786 {
2787 struct tty_struct *tty =
2788 container_of(work, struct tty_struct, SAK_work);
2789 __do_SAK(tty);
2790 }
2791
2792 /*
2793 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2794 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2795 * the values which we write to it will be identical to the values which it
2796 * already has. --akpm
2797 */
2798 void do_SAK(struct tty_struct *tty)
2799 {
2800 if (!tty)
2801 return;
2802 schedule_work(&tty->SAK_work);
2803 }
2804
2805 EXPORT_SYMBOL(do_SAK);
2806
2807 static int dev_match_devt(struct device *dev, const void *data)
2808 {
2809 const dev_t *devt = data;
2810 return dev->devt == *devt;
2811 }
2812
2813 /* Must put_device() after it's unused! */
2814 static struct device *tty_get_device(struct tty_struct *tty)
2815 {
2816 dev_t devt = tty_devnum(tty);
2817 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2818 }
2819
2820
2821 /**
2822 * alloc_tty_struct
2823 *
2824 * This subroutine allocates and initializes a tty structure.
2825 *
2826 * Locking: none - tty in question is not exposed at this point
2827 */
2828
2829 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2830 {
2831 struct tty_struct *tty;
2832
2833 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2834 if (!tty)
2835 return NULL;
2836
2837 kref_init(&tty->kref);
2838 tty->magic = TTY_MAGIC;
2839 if (tty_ldisc_init(tty)) {
2840 kfree(tty);
2841 return NULL;
2842 }
2843 tty->session = NULL;
2844 tty->pgrp = NULL;
2845 mutex_init(&tty->legacy_mutex);
2846 mutex_init(&tty->throttle_mutex);
2847 init_rwsem(&tty->termios_rwsem);
2848 mutex_init(&tty->winsize_mutex);
2849 init_ldsem(&tty->ldisc_sem);
2850 init_waitqueue_head(&tty->write_wait);
2851 init_waitqueue_head(&tty->read_wait);
2852 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2853 mutex_init(&tty->atomic_write_lock);
2854 spin_lock_init(&tty->ctrl_lock);
2855 spin_lock_init(&tty->flow_lock);
2856 spin_lock_init(&tty->files_lock);
2857 INIT_LIST_HEAD(&tty->tty_files);
2858 INIT_WORK(&tty->SAK_work, do_SAK_work);
2859
2860 tty->driver = driver;
2861 tty->ops = driver->ops;
2862 tty->index = idx;
2863 tty_line_name(driver, idx, tty->name);
2864 tty->dev = tty_get_device(tty);
2865
2866 return tty;
2867 }
2868
2869 /**
2870 * tty_put_char - write one character to a tty
2871 * @tty: tty
2872 * @ch: character
2873 *
2874 * Write one byte to the tty using the provided put_char method
2875 * if present. Returns the number of characters successfully output.
2876 *
2877 * Note: the specific put_char operation in the driver layer may go
2878 * away soon. Don't call it directly, use this method
2879 */
2880
2881 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2882 {
2883 if (tty->ops->put_char)
2884 return tty->ops->put_char(tty, ch);
2885 return tty->ops->write(tty, &ch, 1);
2886 }
2887 EXPORT_SYMBOL_GPL(tty_put_char);
2888
2889 struct class *tty_class;
2890
2891 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2892 unsigned int index, unsigned int count)
2893 {
2894 int err;
2895
2896 /* init here, since reused cdevs cause crashes */
2897 driver->cdevs[index] = cdev_alloc();
2898 if (!driver->cdevs[index])
2899 return -ENOMEM;
2900 driver->cdevs[index]->ops = &tty_fops;
2901 driver->cdevs[index]->owner = driver->owner;
2902 err = cdev_add(driver->cdevs[index], dev, count);
2903 if (err)
2904 kobject_put(&driver->cdevs[index]->kobj);
2905 return err;
2906 }
2907
2908 /**
2909 * tty_register_device - register a tty device
2910 * @driver: the tty driver that describes the tty device
2911 * @index: the index in the tty driver for this tty device
2912 * @device: a struct device that is associated with this tty device.
2913 * This field is optional, if there is no known struct device
2914 * for this tty device it can be set to NULL safely.
2915 *
2916 * Returns a pointer to the struct device for this tty device
2917 * (or ERR_PTR(-EFOO) on error).
2918 *
2919 * This call is required to be made to register an individual tty device
2920 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2921 * that bit is not set, this function should not be called by a tty
2922 * driver.
2923 *
2924 * Locking: ??
2925 */
2926
2927 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2928 struct device *device)
2929 {
2930 return tty_register_device_attr(driver, index, device, NULL, NULL);
2931 }
2932 EXPORT_SYMBOL(tty_register_device);
2933
2934 static void tty_device_create_release(struct device *dev)
2935 {
2936 dev_dbg(dev, "releasing...\n");
2937 kfree(dev);
2938 }
2939
2940 /**
2941 * tty_register_device_attr - register a tty device
2942 * @driver: the tty driver that describes the tty device
2943 * @index: the index in the tty driver for this tty device
2944 * @device: a struct device that is associated with this tty device.
2945 * This field is optional, if there is no known struct device
2946 * for this tty device it can be set to NULL safely.
2947 * @drvdata: Driver data to be set to device.
2948 * @attr_grp: Attribute group to be set on device.
2949 *
2950 * Returns a pointer to the struct device for this tty device
2951 * (or ERR_PTR(-EFOO) on error).
2952 *
2953 * This call is required to be made to register an individual tty device
2954 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2955 * that bit is not set, this function should not be called by a tty
2956 * driver.
2957 *
2958 * Locking: ??
2959 */
2960 struct device *tty_register_device_attr(struct tty_driver *driver,
2961 unsigned index, struct device *device,
2962 void *drvdata,
2963 const struct attribute_group **attr_grp)
2964 {
2965 char name[64];
2966 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2967 struct ktermios *tp;
2968 struct device *dev;
2969 int retval;
2970
2971 if (index >= driver->num) {
2972 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2973 driver->name, index);
2974 return ERR_PTR(-EINVAL);
2975 }
2976
2977 if (driver->type == TTY_DRIVER_TYPE_PTY)
2978 pty_line_name(driver, index, name);
2979 else
2980 tty_line_name(driver, index, name);
2981
2982 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2983 if (!dev)
2984 return ERR_PTR(-ENOMEM);
2985
2986 dev->devt = devt;
2987 dev->class = tty_class;
2988 dev->parent = device;
2989 dev->release = tty_device_create_release;
2990 dev_set_name(dev, "%s", name);
2991 dev->groups = attr_grp;
2992 dev_set_drvdata(dev, drvdata);
2993
2994 dev_set_uevent_suppress(dev, 1);
2995
2996 retval = device_register(dev);
2997 if (retval)
2998 goto err_put;
2999
3000 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3001 /*
3002 * Free any saved termios data so that the termios state is
3003 * reset when reusing a minor number.
3004 */
3005 tp = driver->termios[index];
3006 if (tp) {
3007 driver->termios[index] = NULL;
3008 kfree(tp);
3009 }
3010
3011 retval = tty_cdev_add(driver, devt, index, 1);
3012 if (retval)
3013 goto err_del;
3014 }
3015
3016 dev_set_uevent_suppress(dev, 0);
3017 kobject_uevent(&dev->kobj, KOBJ_ADD);
3018
3019 return dev;
3020
3021 err_del:
3022 device_del(dev);
3023 err_put:
3024 put_device(dev);
3025
3026 return ERR_PTR(retval);
3027 }
3028 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3029
3030 /**
3031 * tty_unregister_device - unregister a tty device
3032 * @driver: the tty driver that describes the tty device
3033 * @index: the index in the tty driver for this tty device
3034 *
3035 * If a tty device is registered with a call to tty_register_device() then
3036 * this function must be called when the tty device is gone.
3037 *
3038 * Locking: ??
3039 */
3040
3041 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3042 {
3043 device_destroy(tty_class,
3044 MKDEV(driver->major, driver->minor_start) + index);
3045 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3046 cdev_del(driver->cdevs[index]);
3047 driver->cdevs[index] = NULL;
3048 }
3049 }
3050 EXPORT_SYMBOL(tty_unregister_device);
3051
3052 /**
3053 * __tty_alloc_driver -- allocate tty driver
3054 * @lines: count of lines this driver can handle at most
3055 * @owner: module which is responsible for this driver
3056 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3057 *
3058 * This should not be called directly, some of the provided macros should be
3059 * used instead. Use IS_ERR and friends on @retval.
3060 */
3061 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3062 unsigned long flags)
3063 {
3064 struct tty_driver *driver;
3065 unsigned int cdevs = 1;
3066 int err;
3067
3068 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3069 return ERR_PTR(-EINVAL);
3070
3071 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3072 if (!driver)
3073 return ERR_PTR(-ENOMEM);
3074
3075 kref_init(&driver->kref);
3076 driver->magic = TTY_DRIVER_MAGIC;
3077 driver->num = lines;
3078 driver->owner = owner;
3079 driver->flags = flags;
3080
3081 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3082 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3083 GFP_KERNEL);
3084 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3085 GFP_KERNEL);
3086 if (!driver->ttys || !driver->termios) {
3087 err = -ENOMEM;
3088 goto err_free_all;
3089 }
3090 }
3091
3092 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3093 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3094 GFP_KERNEL);
3095 if (!driver->ports) {
3096 err = -ENOMEM;
3097 goto err_free_all;
3098 }
3099 cdevs = lines;
3100 }
3101
3102 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3103 if (!driver->cdevs) {
3104 err = -ENOMEM;
3105 goto err_free_all;
3106 }
3107
3108 return driver;
3109 err_free_all:
3110 kfree(driver->ports);
3111 kfree(driver->ttys);
3112 kfree(driver->termios);
3113 kfree(driver->cdevs);
3114 kfree(driver);
3115 return ERR_PTR(err);
3116 }
3117 EXPORT_SYMBOL(__tty_alloc_driver);
3118
3119 static void destruct_tty_driver(struct kref *kref)
3120 {
3121 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3122 int i;
3123 struct ktermios *tp;
3124
3125 if (driver->flags & TTY_DRIVER_INSTALLED) {
3126 for (i = 0; i < driver->num; i++) {
3127 tp = driver->termios[i];
3128 if (tp) {
3129 driver->termios[i] = NULL;
3130 kfree(tp);
3131 }
3132 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3133 tty_unregister_device(driver, i);
3134 }
3135 proc_tty_unregister_driver(driver);
3136 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3137 cdev_del(driver->cdevs[0]);
3138 }
3139 kfree(driver->cdevs);
3140 kfree(driver->ports);
3141 kfree(driver->termios);
3142 kfree(driver->ttys);
3143 kfree(driver);
3144 }
3145
3146 void tty_driver_kref_put(struct tty_driver *driver)
3147 {
3148 kref_put(&driver->kref, destruct_tty_driver);
3149 }
3150 EXPORT_SYMBOL(tty_driver_kref_put);
3151
3152 void tty_set_operations(struct tty_driver *driver,
3153 const struct tty_operations *op)
3154 {
3155 driver->ops = op;
3156 };
3157 EXPORT_SYMBOL(tty_set_operations);
3158
3159 void put_tty_driver(struct tty_driver *d)
3160 {
3161 tty_driver_kref_put(d);
3162 }
3163 EXPORT_SYMBOL(put_tty_driver);
3164
3165 /*
3166 * Called by a tty driver to register itself.
3167 */
3168 int tty_register_driver(struct tty_driver *driver)
3169 {
3170 int error;
3171 int i;
3172 dev_t dev;
3173 struct device *d;
3174
3175 if (!driver->major) {
3176 error = alloc_chrdev_region(&dev, driver->minor_start,
3177 driver->num, driver->name);
3178 if (!error) {
3179 driver->major = MAJOR(dev);
3180 driver->minor_start = MINOR(dev);
3181 }
3182 } else {
3183 dev = MKDEV(driver->major, driver->minor_start);
3184 error = register_chrdev_region(dev, driver->num, driver->name);
3185 }
3186 if (error < 0)
3187 goto err;
3188
3189 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3190 error = tty_cdev_add(driver, dev, 0, driver->num);
3191 if (error)
3192 goto err_unreg_char;
3193 }
3194
3195 mutex_lock(&tty_mutex);
3196 list_add(&driver->tty_drivers, &tty_drivers);
3197 mutex_unlock(&tty_mutex);
3198
3199 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3200 for (i = 0; i < driver->num; i++) {
3201 d = tty_register_device(driver, i, NULL);
3202 if (IS_ERR(d)) {
3203 error = PTR_ERR(d);
3204 goto err_unreg_devs;
3205 }
3206 }
3207 }
3208 proc_tty_register_driver(driver);
3209 driver->flags |= TTY_DRIVER_INSTALLED;
3210 return 0;
3211
3212 err_unreg_devs:
3213 for (i--; i >= 0; i--)
3214 tty_unregister_device(driver, i);
3215
3216 mutex_lock(&tty_mutex);
3217 list_del(&driver->tty_drivers);
3218 mutex_unlock(&tty_mutex);
3219
3220 err_unreg_char:
3221 unregister_chrdev_region(dev, driver->num);
3222 err:
3223 return error;
3224 }
3225 EXPORT_SYMBOL(tty_register_driver);
3226
3227 /*
3228 * Called by a tty driver to unregister itself.
3229 */
3230 int tty_unregister_driver(struct tty_driver *driver)
3231 {
3232 #if 0
3233 /* FIXME */
3234 if (driver->refcount)
3235 return -EBUSY;
3236 #endif
3237 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3238 driver->num);
3239 mutex_lock(&tty_mutex);
3240 list_del(&driver->tty_drivers);
3241 mutex_unlock(&tty_mutex);
3242 return 0;
3243 }
3244
3245 EXPORT_SYMBOL(tty_unregister_driver);
3246
3247 dev_t tty_devnum(struct tty_struct *tty)
3248 {
3249 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3250 }
3251 EXPORT_SYMBOL(tty_devnum);
3252
3253 void tty_default_fops(struct file_operations *fops)
3254 {
3255 *fops = tty_fops;
3256 }
3257
3258 static char *tty_devnode(struct device *dev, umode_t *mode)
3259 {
3260 if (!mode)
3261 return NULL;
3262 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3263 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3264 *mode = 0666;
3265 return NULL;
3266 }
3267
3268 static int __init tty_class_init(void)
3269 {
3270 tty_class = class_create(THIS_MODULE, "tty");
3271 if (IS_ERR(tty_class))
3272 return PTR_ERR(tty_class);
3273 tty_class->devnode = tty_devnode;
3274 return 0;
3275 }
3276
3277 postcore_initcall(tty_class_init);
3278
3279 /* 3/2004 jmc: why do these devices exist? */
3280 static struct cdev tty_cdev, console_cdev;
3281
3282 static ssize_t show_cons_active(struct device *dev,
3283 struct device_attribute *attr, char *buf)
3284 {
3285 struct console *cs[16];
3286 int i = 0;
3287 struct console *c;
3288 ssize_t count = 0;
3289
3290 console_lock();
3291 for_each_console(c) {
3292 if (!c->device)
3293 continue;
3294 if (!c->write)
3295 continue;
3296 if ((c->flags & CON_ENABLED) == 0)
3297 continue;
3298 cs[i++] = c;
3299 if (i >= ARRAY_SIZE(cs))
3300 break;
3301 }
3302 while (i--) {
3303 int index = cs[i]->index;
3304 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3305
3306 /* don't resolve tty0 as some programs depend on it */
3307 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3308 count += tty_line_name(drv, index, buf + count);
3309 else
3310 count += sprintf(buf + count, "%s%d",
3311 cs[i]->name, cs[i]->index);
3312
3313 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3314 }
3315 console_unlock();
3316
3317 return count;
3318 }
3319 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3320
3321 static struct attribute *cons_dev_attrs[] = {
3322 &dev_attr_active.attr,
3323 NULL
3324 };
3325
3326 ATTRIBUTE_GROUPS(cons_dev);
3327
3328 static struct device *consdev;
3329
3330 void console_sysfs_notify(void)
3331 {
3332 if (consdev)
3333 sysfs_notify(&consdev->kobj, NULL, "active");
3334 }
3335
3336 /*
3337 * Ok, now we can initialize the rest of the tty devices and can count
3338 * on memory allocations, interrupts etc..
3339 */
3340 int __init tty_init(void)
3341 {
3342 cdev_init(&tty_cdev, &tty_fops);
3343 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3344 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3345 panic("Couldn't register /dev/tty driver\n");
3346 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3347
3348 cdev_init(&console_cdev, &console_fops);
3349 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3350 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3351 panic("Couldn't register /dev/console driver\n");
3352 consdev = device_create_with_groups(tty_class, NULL,
3353 MKDEV(TTYAUX_MAJOR, 1), NULL,
3354 cons_dev_groups, "console");
3355 if (IS_ERR(consdev))
3356 consdev = NULL;
3357
3358 #ifdef CONFIG_VT
3359 vty_init(&console_fops);
3360 #endif
3361 return 0;
3362 }
3363