]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/tty_io.c
ibmvnic: Include header descriptor support for ARP packets
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / tty_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6 /*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100
101 #include <linux/uaccess.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...) do { } while (0)
115 #endif
116
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119
120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
121 .c_iflag = ICRNL | IXON,
122 .c_oflag = OPOST | ONLCR,
123 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 ECHOCTL | ECHOKE | IEXTEN,
126 .c_cc = INIT_C_CC,
127 .c_ispeed = 38400,
128 .c_ospeed = 38400,
129 /* .c_line = N_TTY, */
130 };
131
132 EXPORT_SYMBOL(tty_std_termios);
133
134 /* This list gets poked at by procfs and various bits of boot up code. This
135 could do with some rationalisation such as pulling the tty proc function
136 into this file */
137
138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
139
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 size_t, loff_t *);
147 static unsigned int tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159
160 /**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kfree(tty->write_buf);
174 tty->magic = 0xDEADDEAD;
175 kfree(tty);
176 }
177
178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 return ((struct tty_file_private *)file->private_data)->tty;
181 }
182
183 int tty_alloc_file(struct file *file)
184 {
185 struct tty_file_private *priv;
186
187 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 if (!priv)
189 return -ENOMEM;
190
191 file->private_data = priv;
192
193 return 0;
194 }
195
196 /* Associate a new file with the tty structure */
197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 struct tty_file_private *priv = file->private_data;
200
201 priv->tty = tty;
202 priv->file = file;
203
204 spin_lock(&tty->files_lock);
205 list_add(&priv->list, &tty->tty_files);
206 spin_unlock(&tty->files_lock);
207 }
208
209 /**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215 void tty_free_file(struct file *file)
216 {
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221 }
222
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233 }
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 if (!tty || !tty->driver)
257 return "";
258 return tty->driver->name;
259 }
260
261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 if (!tty) {
266 pr_warn("(%d:%d): %s: NULL tty\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 pr_warn("(%d:%d): %s: bad magic number\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275 #endif
276 return 0;
277 }
278
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0, kopen_count = 0;
285
286 spin_lock(&tty->files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty->files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty_port_kopened(tty->port))
296 kopen_count++;
297 if (tty->count != (count + kopen_count)) {
298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 routine, tty->count, count, kopen_count);
300 return (count + kopen_count);
301 }
302 #endif
303 return 0;
304 }
305
306 /**
307 * get_tty_driver - find device of a tty
308 * @dev_t: device identifier
309 * @index: returns the index of the tty
310 *
311 * This routine returns a tty driver structure, given a device number
312 * and also passes back the index number.
313 *
314 * Locking: caller must hold tty_mutex
315 */
316
317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 struct tty_driver *p;
320
321 list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 dev_t base = MKDEV(p->major, p->minor_start);
323 if (device < base || device >= base + p->num)
324 continue;
325 *index = device - base;
326 return tty_driver_kref_get(p);
327 }
328 return NULL;
329 }
330
331 /**
332 * tty_dev_name_to_number - return dev_t for device name
333 * @name: user space name of device under /dev
334 * @number: pointer to dev_t that this function will populate
335 *
336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 * like (4, 64) or (188, 1). If no corresponding driver is registered then
338 * the function returns -ENODEV.
339 *
340 * Locking: this acquires tty_mutex to protect the tty_drivers list from
341 * being modified while we are traversing it, and makes sure to
342 * release it before exiting.
343 */
344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 struct tty_driver *p;
347 int ret;
348 int index, prefix_length = 0;
349 const char *str;
350
351 for (str = name; *str && !isdigit(*str); str++)
352 ;
353
354 if (!*str)
355 return -EINVAL;
356
357 ret = kstrtoint(str, 10, &index);
358 if (ret)
359 return ret;
360
361 prefix_length = str - name;
362 mutex_lock(&tty_mutex);
363
364 list_for_each_entry(p, &tty_drivers, tty_drivers)
365 if (prefix_length == strlen(p->name) && strncmp(name,
366 p->name, prefix_length) == 0) {
367 if (index < p->num) {
368 *number = MKDEV(p->major, p->minor_start + index);
369 goto out;
370 }
371 }
372
373 /* if here then driver wasn't found */
374 ret = -ENODEV;
375 out:
376 mutex_unlock(&tty_mutex);
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381 #ifdef CONFIG_CONSOLE_POLL
382
383 /**
384 * tty_find_polling_driver - find device of a polled tty
385 * @name: name string to match
386 * @line: pointer to resulting tty line nr
387 *
388 * This routine returns a tty driver structure, given a name
389 * and the condition that the tty driver is capable of polled
390 * operation.
391 */
392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 struct tty_driver *p, *res = NULL;
395 int tty_line = 0;
396 int len;
397 char *str, *stp;
398
399 for (str = name; *str; str++)
400 if ((*str >= '0' && *str <= '9') || *str == ',')
401 break;
402 if (!*str)
403 return NULL;
404
405 len = str - name;
406 tty_line = simple_strtoul(str, &str, 10);
407
408 mutex_lock(&tty_mutex);
409 /* Search through the tty devices to look for a match */
410 list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 if (strncmp(name, p->name, len) != 0)
412 continue;
413 stp = str;
414 if (*stp == ',')
415 stp++;
416 if (*stp == '\0')
417 stp = NULL;
418
419 if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 res = tty_driver_kref_get(p);
422 *line = tty_line;
423 break;
424 }
425 }
426 mutex_unlock(&tty_mutex);
427
428 return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432
433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 size_t count, loff_t *ppos)
435 {
436 return 0;
437 }
438
439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 size_t count, loff_t *ppos)
441 {
442 return -EIO;
443 }
444
445 /* No kernel lock held - none needed ;) */
446 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
449 }
450
451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 unsigned long arg)
453 {
454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456
457 static long hung_up_tty_compat_ioctl(struct file *file,
458 unsigned int cmd, unsigned long arg)
459 {
460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462
463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 return -ENOTTY;
466 }
467
468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 struct tty_struct *tty = file_tty(file);
471
472 if (tty && tty->ops && tty->ops->show_fdinfo)
473 tty->ops->show_fdinfo(tty, m);
474 }
475
476 static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 .show_fdinfo = tty_show_fdinfo,
487 };
488
489 static const struct file_operations console_fops = {
490 .llseek = no_llseek,
491 .read = tty_read,
492 .write = redirected_tty_write,
493 .poll = tty_poll,
494 .unlocked_ioctl = tty_ioctl,
495 .compat_ioctl = tty_compat_ioctl,
496 .open = tty_open,
497 .release = tty_release,
498 .fasync = tty_fasync,
499 };
500
501 static const struct file_operations hung_up_tty_fops = {
502 .llseek = no_llseek,
503 .read = hung_up_tty_read,
504 .write = hung_up_tty_write,
505 .poll = hung_up_tty_poll,
506 .unlocked_ioctl = hung_up_tty_ioctl,
507 .compat_ioctl = hung_up_tty_compat_ioctl,
508 .release = tty_release,
509 .fasync = hung_up_tty_fasync,
510 };
511
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514
515 /**
516 * tty_wakeup - request more data
517 * @tty: terminal
518 *
519 * Internal and external helper for wakeups of tty. This function
520 * informs the line discipline if present that the driver is ready
521 * to receive more output data.
522 */
523
524 void tty_wakeup(struct tty_struct *tty)
525 {
526 struct tty_ldisc *ld;
527
528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 ld = tty_ldisc_ref(tty);
530 if (ld) {
531 if (ld->ops->write_wakeup)
532 ld->ops->write_wakeup(tty);
533 tty_ldisc_deref(ld);
534 }
535 }
536 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
537 }
538
539 EXPORT_SYMBOL_GPL(tty_wakeup);
540
541 /**
542 * __tty_hangup - actual handler for hangup events
543 * @work: tty device
544 *
545 * This can be called by a "kworker" kernel thread. That is process
546 * synchronous but doesn't hold any locks, so we need to make sure we
547 * have the appropriate locks for what we're doing.
548 *
549 * The hangup event clears any pending redirections onto the hung up
550 * device. It ensures future writes will error and it does the needed
551 * line discipline hangup and signal delivery. The tty object itself
552 * remains intact.
553 *
554 * Locking:
555 * BTM
556 * redirect lock for undoing redirection
557 * file list lock for manipulating list of ttys
558 * tty_ldiscs_lock from called functions
559 * termios_rwsem resetting termios data
560 * tasklist_lock to walk task list for hangup event
561 * ->siglock to protect ->signal/->sighand
562 */
563 static void __tty_hangup(struct tty_struct *tty, int exit_session)
564 {
565 struct file *cons_filp = NULL;
566 struct file *filp, *f = NULL;
567 struct tty_file_private *priv;
568 int closecount = 0, n;
569 int refs;
570
571 if (!tty)
572 return;
573
574
575 spin_lock(&redirect_lock);
576 if (redirect && file_tty(redirect) == tty) {
577 f = redirect;
578 redirect = NULL;
579 }
580 spin_unlock(&redirect_lock);
581
582 tty_lock(tty);
583
584 if (test_bit(TTY_HUPPED, &tty->flags)) {
585 tty_unlock(tty);
586 return;
587 }
588
589 /* inuse_filps is protected by the single tty lock,
590 this really needs to change if we want to flush the
591 workqueue with the lock held */
592 check_tty_count(tty, "tty_hangup");
593
594 spin_lock(&tty->files_lock);
595 /* This breaks for file handles being sent over AF_UNIX sockets ? */
596 list_for_each_entry(priv, &tty->tty_files, list) {
597 filp = priv->file;
598 if (filp->f_op->write == redirected_tty_write)
599 cons_filp = filp;
600 if (filp->f_op->write != tty_write)
601 continue;
602 closecount++;
603 __tty_fasync(-1, filp, 0); /* can't block */
604 filp->f_op = &hung_up_tty_fops;
605 }
606 spin_unlock(&tty->files_lock);
607
608 refs = tty_signal_session_leader(tty, exit_session);
609 /* Account for the p->signal references we killed */
610 while (refs--)
611 tty_kref_put(tty);
612
613 tty_ldisc_hangup(tty, cons_filp != NULL);
614
615 spin_lock_irq(&tty->ctrl_lock);
616 clear_bit(TTY_THROTTLED, &tty->flags);
617 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618 put_pid(tty->session);
619 put_pid(tty->pgrp);
620 tty->session = NULL;
621 tty->pgrp = NULL;
622 tty->ctrl_status = 0;
623 spin_unlock_irq(&tty->ctrl_lock);
624
625 /*
626 * If one of the devices matches a console pointer, we
627 * cannot just call hangup() because that will cause
628 * tty->count and state->count to go out of sync.
629 * So we just call close() the right number of times.
630 */
631 if (cons_filp) {
632 if (tty->ops->close)
633 for (n = 0; n < closecount; n++)
634 tty->ops->close(tty, cons_filp);
635 } else if (tty->ops->hangup)
636 tty->ops->hangup(tty);
637 /*
638 * We don't want to have driver/ldisc interactions beyond the ones
639 * we did here. The driver layer expects no calls after ->hangup()
640 * from the ldisc side, which is now guaranteed.
641 */
642 set_bit(TTY_HUPPED, &tty->flags);
643 tty_unlock(tty);
644
645 if (f)
646 fput(f);
647 }
648
649 static void do_tty_hangup(struct work_struct *work)
650 {
651 struct tty_struct *tty =
652 container_of(work, struct tty_struct, hangup_work);
653
654 __tty_hangup(tty, 0);
655 }
656
657 /**
658 * tty_hangup - trigger a hangup event
659 * @tty: tty to hangup
660 *
661 * A carrier loss (virtual or otherwise) has occurred on this like
662 * schedule a hangup sequence to run after this event.
663 */
664
665 void tty_hangup(struct tty_struct *tty)
666 {
667 tty_debug_hangup(tty, "hangup\n");
668 schedule_work(&tty->hangup_work);
669 }
670
671 EXPORT_SYMBOL(tty_hangup);
672
673 /**
674 * tty_vhangup - process vhangup
675 * @tty: tty to hangup
676 *
677 * The user has asked via system call for the terminal to be hung up.
678 * We do this synchronously so that when the syscall returns the process
679 * is complete. That guarantee is necessary for security reasons.
680 */
681
682 void tty_vhangup(struct tty_struct *tty)
683 {
684 tty_debug_hangup(tty, "vhangup\n");
685 __tty_hangup(tty, 0);
686 }
687
688 EXPORT_SYMBOL(tty_vhangup);
689
690
691 /**
692 * tty_vhangup_self - process vhangup for own ctty
693 *
694 * Perform a vhangup on the current controlling tty
695 */
696
697 void tty_vhangup_self(void)
698 {
699 struct tty_struct *tty;
700
701 tty = get_current_tty();
702 if (tty) {
703 tty_vhangup(tty);
704 tty_kref_put(tty);
705 }
706 }
707
708 /**
709 * tty_vhangup_session - hangup session leader exit
710 * @tty: tty to hangup
711 *
712 * The session leader is exiting and hanging up its controlling terminal.
713 * Every process in the foreground process group is signalled SIGHUP.
714 *
715 * We do this synchronously so that when the syscall returns the process
716 * is complete. That guarantee is necessary for security reasons.
717 */
718
719 void tty_vhangup_session(struct tty_struct *tty)
720 {
721 tty_debug_hangup(tty, "session hangup\n");
722 __tty_hangup(tty, 1);
723 }
724
725 /**
726 * tty_hung_up_p - was tty hung up
727 * @filp: file pointer of tty
728 *
729 * Return true if the tty has been subject to a vhangup or a carrier
730 * loss
731 */
732
733 int tty_hung_up_p(struct file *filp)
734 {
735 return (filp && filp->f_op == &hung_up_tty_fops);
736 }
737
738 EXPORT_SYMBOL(tty_hung_up_p);
739
740 /**
741 * stop_tty - propagate flow control
742 * @tty: tty to stop
743 *
744 * Perform flow control to the driver. May be called
745 * on an already stopped device and will not re-call the driver
746 * method.
747 *
748 * This functionality is used by both the line disciplines for
749 * halting incoming flow and by the driver. It may therefore be
750 * called from any context, may be under the tty atomic_write_lock
751 * but not always.
752 *
753 * Locking:
754 * flow_lock
755 */
756
757 void __stop_tty(struct tty_struct *tty)
758 {
759 if (tty->stopped)
760 return;
761 tty->stopped = 1;
762 if (tty->ops->stop)
763 tty->ops->stop(tty);
764 }
765
766 void stop_tty(struct tty_struct *tty)
767 {
768 unsigned long flags;
769
770 spin_lock_irqsave(&tty->flow_lock, flags);
771 __stop_tty(tty);
772 spin_unlock_irqrestore(&tty->flow_lock, flags);
773 }
774 EXPORT_SYMBOL(stop_tty);
775
776 /**
777 * start_tty - propagate flow control
778 * @tty: tty to start
779 *
780 * Start a tty that has been stopped if at all possible. If this
781 * tty was previous stopped and is now being started, the driver
782 * start method is invoked and the line discipline woken.
783 *
784 * Locking:
785 * flow_lock
786 */
787
788 void __start_tty(struct tty_struct *tty)
789 {
790 if (!tty->stopped || tty->flow_stopped)
791 return;
792 tty->stopped = 0;
793 if (tty->ops->start)
794 tty->ops->start(tty);
795 tty_wakeup(tty);
796 }
797
798 void start_tty(struct tty_struct *tty)
799 {
800 unsigned long flags;
801
802 spin_lock_irqsave(&tty->flow_lock, flags);
803 __start_tty(tty);
804 spin_unlock_irqrestore(&tty->flow_lock, flags);
805 }
806 EXPORT_SYMBOL(start_tty);
807
808 static void tty_update_time(struct timespec *time)
809 {
810 unsigned long sec = get_seconds();
811
812 /*
813 * We only care if the two values differ in anything other than the
814 * lower three bits (i.e every 8 seconds). If so, then we can update
815 * the time of the tty device, otherwise it could be construded as a
816 * security leak to let userspace know the exact timing of the tty.
817 */
818 if ((sec ^ time->tv_sec) & ~7)
819 time->tv_sec = sec;
820 }
821
822 /**
823 * tty_read - read method for tty device files
824 * @file: pointer to tty file
825 * @buf: user buffer
826 * @count: size of user buffer
827 * @ppos: unused
828 *
829 * Perform the read system call function on this terminal device. Checks
830 * for hung up devices before calling the line discipline method.
831 *
832 * Locking:
833 * Locks the line discipline internally while needed. Multiple
834 * read calls may be outstanding in parallel.
835 */
836
837 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
838 loff_t *ppos)
839 {
840 int i;
841 struct inode *inode = file_inode(file);
842 struct tty_struct *tty = file_tty(file);
843 struct tty_ldisc *ld;
844
845 if (tty_paranoia_check(tty, inode, "tty_read"))
846 return -EIO;
847 if (!tty || tty_io_error(tty))
848 return -EIO;
849
850 /* We want to wait for the line discipline to sort out in this
851 situation */
852 ld = tty_ldisc_ref_wait(tty);
853 if (!ld)
854 return hung_up_tty_read(file, buf, count, ppos);
855 if (ld->ops->read)
856 i = ld->ops->read(tty, file, buf, count);
857 else
858 i = -EIO;
859 tty_ldisc_deref(ld);
860
861 if (i > 0)
862 tty_update_time(&inode->i_atime);
863
864 return i;
865 }
866
867 static void tty_write_unlock(struct tty_struct *tty)
868 {
869 mutex_unlock(&tty->atomic_write_lock);
870 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
871 }
872
873 static int tty_write_lock(struct tty_struct *tty, int ndelay)
874 {
875 if (!mutex_trylock(&tty->atomic_write_lock)) {
876 if (ndelay)
877 return -EAGAIN;
878 if (mutex_lock_interruptible(&tty->atomic_write_lock))
879 return -ERESTARTSYS;
880 }
881 return 0;
882 }
883
884 /*
885 * Split writes up in sane blocksizes to avoid
886 * denial-of-service type attacks
887 */
888 static inline ssize_t do_tty_write(
889 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
890 struct tty_struct *tty,
891 struct file *file,
892 const char __user *buf,
893 size_t count)
894 {
895 ssize_t ret, written = 0;
896 unsigned int chunk;
897
898 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
899 if (ret < 0)
900 return ret;
901
902 /*
903 * We chunk up writes into a temporary buffer. This
904 * simplifies low-level drivers immensely, since they
905 * don't have locking issues and user mode accesses.
906 *
907 * But if TTY_NO_WRITE_SPLIT is set, we should use a
908 * big chunk-size..
909 *
910 * The default chunk-size is 2kB, because the NTTY
911 * layer has problems with bigger chunks. It will
912 * claim to be able to handle more characters than
913 * it actually does.
914 *
915 * FIXME: This can probably go away now except that 64K chunks
916 * are too likely to fail unless switched to vmalloc...
917 */
918 chunk = 2048;
919 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
920 chunk = 65536;
921 if (count < chunk)
922 chunk = count;
923
924 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
925 if (tty->write_cnt < chunk) {
926 unsigned char *buf_chunk;
927
928 if (chunk < 1024)
929 chunk = 1024;
930
931 buf_chunk = kmalloc(chunk, GFP_KERNEL);
932 if (!buf_chunk) {
933 ret = -ENOMEM;
934 goto out;
935 }
936 kfree(tty->write_buf);
937 tty->write_cnt = chunk;
938 tty->write_buf = buf_chunk;
939 }
940
941 /* Do the write .. */
942 for (;;) {
943 size_t size = count;
944 if (size > chunk)
945 size = chunk;
946 ret = -EFAULT;
947 if (copy_from_user(tty->write_buf, buf, size))
948 break;
949 ret = write(tty, file, tty->write_buf, size);
950 if (ret <= 0)
951 break;
952 written += ret;
953 buf += ret;
954 count -= ret;
955 if (!count)
956 break;
957 ret = -ERESTARTSYS;
958 if (signal_pending(current))
959 break;
960 cond_resched();
961 }
962 if (written) {
963 tty_update_time(&file_inode(file)->i_mtime);
964 ret = written;
965 }
966 out:
967 tty_write_unlock(tty);
968 return ret;
969 }
970
971 /**
972 * tty_write_message - write a message to a certain tty, not just the console.
973 * @tty: the destination tty_struct
974 * @msg: the message to write
975 *
976 * This is used for messages that need to be redirected to a specific tty.
977 * We don't put it into the syslog queue right now maybe in the future if
978 * really needed.
979 *
980 * We must still hold the BTM and test the CLOSING flag for the moment.
981 */
982
983 void tty_write_message(struct tty_struct *tty, char *msg)
984 {
985 if (tty) {
986 mutex_lock(&tty->atomic_write_lock);
987 tty_lock(tty);
988 if (tty->ops->write && tty->count > 0)
989 tty->ops->write(tty, msg, strlen(msg));
990 tty_unlock(tty);
991 tty_write_unlock(tty);
992 }
993 return;
994 }
995
996
997 /**
998 * tty_write - write method for tty device file
999 * @file: tty file pointer
1000 * @buf: user data to write
1001 * @count: bytes to write
1002 * @ppos: unused
1003 *
1004 * Write data to a tty device via the line discipline.
1005 *
1006 * Locking:
1007 * Locks the line discipline as required
1008 * Writes to the tty driver are serialized by the atomic_write_lock
1009 * and are then processed in chunks to the device. The line discipline
1010 * write method will not be invoked in parallel for each device.
1011 */
1012
1013 static ssize_t tty_write(struct file *file, const char __user *buf,
1014 size_t count, loff_t *ppos)
1015 {
1016 struct tty_struct *tty = file_tty(file);
1017 struct tty_ldisc *ld;
1018 ssize_t ret;
1019
1020 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1021 return -EIO;
1022 if (!tty || !tty->ops->write || tty_io_error(tty))
1023 return -EIO;
1024 /* Short term debug to catch buggy drivers */
1025 if (tty->ops->write_room == NULL)
1026 tty_err(tty, "missing write_room method\n");
1027 ld = tty_ldisc_ref_wait(tty);
1028 if (!ld)
1029 return hung_up_tty_write(file, buf, count, ppos);
1030 if (!ld->ops->write)
1031 ret = -EIO;
1032 else
1033 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1034 tty_ldisc_deref(ld);
1035 return ret;
1036 }
1037
1038 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1039 size_t count, loff_t *ppos)
1040 {
1041 struct file *p = NULL;
1042
1043 spin_lock(&redirect_lock);
1044 if (redirect)
1045 p = get_file(redirect);
1046 spin_unlock(&redirect_lock);
1047
1048 if (p) {
1049 ssize_t res;
1050 res = vfs_write(p, buf, count, &p->f_pos);
1051 fput(p);
1052 return res;
1053 }
1054 return tty_write(file, buf, count, ppos);
1055 }
1056
1057 /**
1058 * tty_send_xchar - send priority character
1059 *
1060 * Send a high priority character to the tty even if stopped
1061 *
1062 * Locking: none for xchar method, write ordering for write method.
1063 */
1064
1065 int tty_send_xchar(struct tty_struct *tty, char ch)
1066 {
1067 int was_stopped = tty->stopped;
1068
1069 if (tty->ops->send_xchar) {
1070 down_read(&tty->termios_rwsem);
1071 tty->ops->send_xchar(tty, ch);
1072 up_read(&tty->termios_rwsem);
1073 return 0;
1074 }
1075
1076 if (tty_write_lock(tty, 0) < 0)
1077 return -ERESTARTSYS;
1078
1079 down_read(&tty->termios_rwsem);
1080 if (was_stopped)
1081 start_tty(tty);
1082 tty->ops->write(tty, &ch, 1);
1083 if (was_stopped)
1084 stop_tty(tty);
1085 up_read(&tty->termios_rwsem);
1086 tty_write_unlock(tty);
1087 return 0;
1088 }
1089
1090 static char ptychar[] = "pqrstuvwxyzabcde";
1091
1092 /**
1093 * pty_line_name - generate name for a pty
1094 * @driver: the tty driver in use
1095 * @index: the minor number
1096 * @p: output buffer of at least 6 bytes
1097 *
1098 * Generate a name from a driver reference and write it to the output
1099 * buffer.
1100 *
1101 * Locking: None
1102 */
1103 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1104 {
1105 int i = index + driver->name_base;
1106 /* ->name is initialized to "ttyp", but "tty" is expected */
1107 sprintf(p, "%s%c%x",
1108 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1109 ptychar[i >> 4 & 0xf], i & 0xf);
1110 }
1111
1112 /**
1113 * tty_line_name - generate name for a tty
1114 * @driver: the tty driver in use
1115 * @index: the minor number
1116 * @p: output buffer of at least 7 bytes
1117 *
1118 * Generate a name from a driver reference and write it to the output
1119 * buffer.
1120 *
1121 * Locking: None
1122 */
1123 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1124 {
1125 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1126 return sprintf(p, "%s", driver->name);
1127 else
1128 return sprintf(p, "%s%d", driver->name,
1129 index + driver->name_base);
1130 }
1131
1132 /**
1133 * tty_driver_lookup_tty() - find an existing tty, if any
1134 * @driver: the driver for the tty
1135 * @idx: the minor number
1136 *
1137 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1138 * driver lookup() method returns an error.
1139 *
1140 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1141 */
1142 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1143 struct file *file, int idx)
1144 {
1145 struct tty_struct *tty;
1146
1147 if (driver->ops->lookup)
1148 if (!file)
1149 tty = ERR_PTR(-EIO);
1150 else
1151 tty = driver->ops->lookup(driver, file, idx);
1152 else
1153 tty = driver->ttys[idx];
1154
1155 if (!IS_ERR(tty))
1156 tty_kref_get(tty);
1157 return tty;
1158 }
1159
1160 /**
1161 * tty_init_termios - helper for termios setup
1162 * @tty: the tty to set up
1163 *
1164 * Initialise the termios structures for this tty. Thus runs under
1165 * the tty_mutex currently so we can be relaxed about ordering.
1166 */
1167
1168 void tty_init_termios(struct tty_struct *tty)
1169 {
1170 struct ktermios *tp;
1171 int idx = tty->index;
1172
1173 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1174 tty->termios = tty->driver->init_termios;
1175 else {
1176 /* Check for lazy saved data */
1177 tp = tty->driver->termios[idx];
1178 if (tp != NULL) {
1179 tty->termios = *tp;
1180 tty->termios.c_line = tty->driver->init_termios.c_line;
1181 } else
1182 tty->termios = tty->driver->init_termios;
1183 }
1184 /* Compatibility until drivers always set this */
1185 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1186 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1187 }
1188 EXPORT_SYMBOL_GPL(tty_init_termios);
1189
1190 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1191 {
1192 tty_init_termios(tty);
1193 tty_driver_kref_get(driver);
1194 tty->count++;
1195 driver->ttys[tty->index] = tty;
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(tty_standard_install);
1199
1200 /**
1201 * tty_driver_install_tty() - install a tty entry in the driver
1202 * @driver: the driver for the tty
1203 * @tty: the tty
1204 *
1205 * Install a tty object into the driver tables. The tty->index field
1206 * will be set by the time this is called. This method is responsible
1207 * for ensuring any need additional structures are allocated and
1208 * configured.
1209 *
1210 * Locking: tty_mutex for now
1211 */
1212 static int tty_driver_install_tty(struct tty_driver *driver,
1213 struct tty_struct *tty)
1214 {
1215 return driver->ops->install ? driver->ops->install(driver, tty) :
1216 tty_standard_install(driver, tty);
1217 }
1218
1219 /**
1220 * tty_driver_remove_tty() - remove a tty from the driver tables
1221 * @driver: the driver for the tty
1222 * @idx: the minor number
1223 *
1224 * Remvoe a tty object from the driver tables. The tty->index field
1225 * will be set by the time this is called.
1226 *
1227 * Locking: tty_mutex for now
1228 */
1229 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1230 {
1231 if (driver->ops->remove)
1232 driver->ops->remove(driver, tty);
1233 else
1234 driver->ttys[tty->index] = NULL;
1235 }
1236
1237 /*
1238 * tty_reopen() - fast re-open of an open tty
1239 * @tty - the tty to open
1240 *
1241 * Return 0 on success, -errno on error.
1242 * Re-opens on master ptys are not allowed and return -EIO.
1243 *
1244 * Locking: Caller must hold tty_lock
1245 */
1246 static int tty_reopen(struct tty_struct *tty)
1247 {
1248 struct tty_driver *driver = tty->driver;
1249
1250 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1251 driver->subtype == PTY_TYPE_MASTER)
1252 return -EIO;
1253
1254 if (!tty->count)
1255 return -EAGAIN;
1256
1257 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1258 return -EBUSY;
1259
1260 tty->count++;
1261
1262 if (!tty->ldisc)
1263 return tty_ldisc_reinit(tty, tty->termios.c_line);
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * tty_init_dev - initialise a tty device
1270 * @driver: tty driver we are opening a device on
1271 * @idx: device index
1272 * @ret_tty: returned tty structure
1273 *
1274 * Prepare a tty device. This may not be a "new" clean device but
1275 * could also be an active device. The pty drivers require special
1276 * handling because of this.
1277 *
1278 * Locking:
1279 * The function is called under the tty_mutex, which
1280 * protects us from the tty struct or driver itself going away.
1281 *
1282 * On exit the tty device has the line discipline attached and
1283 * a reference count of 1. If a pair was created for pty/tty use
1284 * and the other was a pty master then it too has a reference count of 1.
1285 *
1286 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1287 * failed open. The new code protects the open with a mutex, so it's
1288 * really quite straightforward. The mutex locking can probably be
1289 * relaxed for the (most common) case of reopening a tty.
1290 */
1291
1292 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1293 {
1294 struct tty_struct *tty;
1295 int retval;
1296
1297 /*
1298 * First time open is complex, especially for PTY devices.
1299 * This code guarantees that either everything succeeds and the
1300 * TTY is ready for operation, or else the table slots are vacated
1301 * and the allocated memory released. (Except that the termios
1302 * may be retained.)
1303 */
1304
1305 if (!try_module_get(driver->owner))
1306 return ERR_PTR(-ENODEV);
1307
1308 tty = alloc_tty_struct(driver, idx);
1309 if (!tty) {
1310 retval = -ENOMEM;
1311 goto err_module_put;
1312 }
1313
1314 tty_lock(tty);
1315 retval = tty_driver_install_tty(driver, tty);
1316 if (retval < 0)
1317 goto err_free_tty;
1318
1319 if (!tty->port)
1320 tty->port = driver->ports[idx];
1321
1322 WARN_RATELIMIT(!tty->port,
1323 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1324 __func__, tty->driver->name);
1325
1326 retval = tty_ldisc_lock(tty, 5 * HZ);
1327 if (retval)
1328 goto err_release_lock;
1329 tty->port->itty = tty;
1330
1331 /*
1332 * Structures all installed ... call the ldisc open routines.
1333 * If we fail here just call release_tty to clean up. No need
1334 * to decrement the use counts, as release_tty doesn't care.
1335 */
1336 retval = tty_ldisc_setup(tty, tty->link);
1337 if (retval)
1338 goto err_release_tty;
1339 tty_ldisc_unlock(tty);
1340 /* Return the tty locked so that it cannot vanish under the caller */
1341 return tty;
1342
1343 err_free_tty:
1344 tty_unlock(tty);
1345 free_tty_struct(tty);
1346 err_module_put:
1347 module_put(driver->owner);
1348 return ERR_PTR(retval);
1349
1350 /* call the tty release_tty routine to clean out this slot */
1351 err_release_tty:
1352 tty_ldisc_unlock(tty);
1353 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1354 retval, idx);
1355 err_release_lock:
1356 tty_unlock(tty);
1357 release_tty(tty, idx);
1358 return ERR_PTR(retval);
1359 }
1360
1361 static void tty_free_termios(struct tty_struct *tty)
1362 {
1363 struct ktermios *tp;
1364 int idx = tty->index;
1365
1366 /* If the port is going to reset then it has no termios to save */
1367 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1368 return;
1369
1370 /* Stash the termios data */
1371 tp = tty->driver->termios[idx];
1372 if (tp == NULL) {
1373 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1374 if (tp == NULL)
1375 return;
1376 tty->driver->termios[idx] = tp;
1377 }
1378 *tp = tty->termios;
1379 }
1380
1381 /**
1382 * tty_flush_works - flush all works of a tty/pty pair
1383 * @tty: tty device to flush works for (or either end of a pty pair)
1384 *
1385 * Sync flush all works belonging to @tty (and the 'other' tty).
1386 */
1387 static void tty_flush_works(struct tty_struct *tty)
1388 {
1389 flush_work(&tty->SAK_work);
1390 flush_work(&tty->hangup_work);
1391 if (tty->link) {
1392 flush_work(&tty->link->SAK_work);
1393 flush_work(&tty->link->hangup_work);
1394 }
1395 }
1396
1397 /**
1398 * release_one_tty - release tty structure memory
1399 * @kref: kref of tty we are obliterating
1400 *
1401 * Releases memory associated with a tty structure, and clears out the
1402 * driver table slots. This function is called when a device is no longer
1403 * in use. It also gets called when setup of a device fails.
1404 *
1405 * Locking:
1406 * takes the file list lock internally when working on the list
1407 * of ttys that the driver keeps.
1408 *
1409 * This method gets called from a work queue so that the driver private
1410 * cleanup ops can sleep (needed for USB at least)
1411 */
1412 static void release_one_tty(struct work_struct *work)
1413 {
1414 struct tty_struct *tty =
1415 container_of(work, struct tty_struct, hangup_work);
1416 struct tty_driver *driver = tty->driver;
1417 struct module *owner = driver->owner;
1418
1419 if (tty->ops->cleanup)
1420 tty->ops->cleanup(tty);
1421
1422 tty->magic = 0;
1423 tty_driver_kref_put(driver);
1424 module_put(owner);
1425
1426 spin_lock(&tty->files_lock);
1427 list_del_init(&tty->tty_files);
1428 spin_unlock(&tty->files_lock);
1429
1430 put_pid(tty->pgrp);
1431 put_pid(tty->session);
1432 free_tty_struct(tty);
1433 }
1434
1435 static void queue_release_one_tty(struct kref *kref)
1436 {
1437 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1438
1439 /* The hangup queue is now free so we can reuse it rather than
1440 waste a chunk of memory for each port */
1441 INIT_WORK(&tty->hangup_work, release_one_tty);
1442 schedule_work(&tty->hangup_work);
1443 }
1444
1445 /**
1446 * tty_kref_put - release a tty kref
1447 * @tty: tty device
1448 *
1449 * Release a reference to a tty device and if need be let the kref
1450 * layer destruct the object for us
1451 */
1452
1453 void tty_kref_put(struct tty_struct *tty)
1454 {
1455 if (tty)
1456 kref_put(&tty->kref, queue_release_one_tty);
1457 }
1458 EXPORT_SYMBOL(tty_kref_put);
1459
1460 /**
1461 * release_tty - release tty structure memory
1462 *
1463 * Release both @tty and a possible linked partner (think pty pair),
1464 * and decrement the refcount of the backing module.
1465 *
1466 * Locking:
1467 * tty_mutex
1468 * takes the file list lock internally when working on the list
1469 * of ttys that the driver keeps.
1470 *
1471 */
1472 static void release_tty(struct tty_struct *tty, int idx)
1473 {
1474 /* This should always be true but check for the moment */
1475 WARN_ON(tty->index != idx);
1476 WARN_ON(!mutex_is_locked(&tty_mutex));
1477 if (tty->ops->shutdown)
1478 tty->ops->shutdown(tty);
1479 tty_free_termios(tty);
1480 tty_driver_remove_tty(tty->driver, tty);
1481 tty->port->itty = NULL;
1482 if (tty->link)
1483 tty->link->port->itty = NULL;
1484 tty_buffer_cancel_work(tty->port);
1485
1486 tty_kref_put(tty->link);
1487 tty_kref_put(tty);
1488 }
1489
1490 /**
1491 * tty_release_checks - check a tty before real release
1492 * @tty: tty to check
1493 * @o_tty: link of @tty (if any)
1494 * @idx: index of the tty
1495 *
1496 * Performs some paranoid checking before true release of the @tty.
1497 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1498 */
1499 static int tty_release_checks(struct tty_struct *tty, int idx)
1500 {
1501 #ifdef TTY_PARANOIA_CHECK
1502 if (idx < 0 || idx >= tty->driver->num) {
1503 tty_debug(tty, "bad idx %d\n", idx);
1504 return -1;
1505 }
1506
1507 /* not much to check for devpts */
1508 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1509 return 0;
1510
1511 if (tty != tty->driver->ttys[idx]) {
1512 tty_debug(tty, "bad driver table[%d] = %p\n",
1513 idx, tty->driver->ttys[idx]);
1514 return -1;
1515 }
1516 if (tty->driver->other) {
1517 struct tty_struct *o_tty = tty->link;
1518
1519 if (o_tty != tty->driver->other->ttys[idx]) {
1520 tty_debug(tty, "bad other table[%d] = %p\n",
1521 idx, tty->driver->other->ttys[idx]);
1522 return -1;
1523 }
1524 if (o_tty->link != tty) {
1525 tty_debug(tty, "bad link = %p\n", o_tty->link);
1526 return -1;
1527 }
1528 }
1529 #endif
1530 return 0;
1531 }
1532
1533 /**
1534 * tty_kclose - closes tty opened by tty_kopen
1535 * @tty: tty device
1536 *
1537 * Performs the final steps to release and free a tty device. It is the
1538 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1539 * flag on tty->port.
1540 */
1541 void tty_kclose(struct tty_struct *tty)
1542 {
1543 /*
1544 * Ask the line discipline code to release its structures
1545 */
1546 tty_ldisc_release(tty);
1547
1548 /* Wait for pending work before tty destruction commmences */
1549 tty_flush_works(tty);
1550
1551 tty_debug_hangup(tty, "freeing structure\n");
1552 /*
1553 * The release_tty function takes care of the details of clearing
1554 * the slots and preserving the termios structure. The tty_unlock_pair
1555 * should be safe as we keep a kref while the tty is locked (so the
1556 * unlock never unlocks a freed tty).
1557 */
1558 mutex_lock(&tty_mutex);
1559 tty_port_set_kopened(tty->port, 0);
1560 release_tty(tty, tty->index);
1561 mutex_unlock(&tty_mutex);
1562 }
1563 EXPORT_SYMBOL_GPL(tty_kclose);
1564
1565 /**
1566 * tty_release_struct - release a tty struct
1567 * @tty: tty device
1568 * @idx: index of the tty
1569 *
1570 * Performs the final steps to release and free a tty device. It is
1571 * roughly the reverse of tty_init_dev.
1572 */
1573 void tty_release_struct(struct tty_struct *tty, int idx)
1574 {
1575 /*
1576 * Ask the line discipline code to release its structures
1577 */
1578 tty_ldisc_release(tty);
1579
1580 /* Wait for pending work before tty destruction commmences */
1581 tty_flush_works(tty);
1582
1583 tty_debug_hangup(tty, "freeing structure\n");
1584 /*
1585 * The release_tty function takes care of the details of clearing
1586 * the slots and preserving the termios structure. The tty_unlock_pair
1587 * should be safe as we keep a kref while the tty is locked (so the
1588 * unlock never unlocks a freed tty).
1589 */
1590 mutex_lock(&tty_mutex);
1591 release_tty(tty, idx);
1592 mutex_unlock(&tty_mutex);
1593 }
1594 EXPORT_SYMBOL_GPL(tty_release_struct);
1595
1596 /**
1597 * tty_release - vfs callback for close
1598 * @inode: inode of tty
1599 * @filp: file pointer for handle to tty
1600 *
1601 * Called the last time each file handle is closed that references
1602 * this tty. There may however be several such references.
1603 *
1604 * Locking:
1605 * Takes bkl. See tty_release_dev
1606 *
1607 * Even releasing the tty structures is a tricky business.. We have
1608 * to be very careful that the structures are all released at the
1609 * same time, as interrupts might otherwise get the wrong pointers.
1610 *
1611 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1612 * lead to double frees or releasing memory still in use.
1613 */
1614
1615 int tty_release(struct inode *inode, struct file *filp)
1616 {
1617 struct tty_struct *tty = file_tty(filp);
1618 struct tty_struct *o_tty = NULL;
1619 int do_sleep, final;
1620 int idx;
1621 long timeout = 0;
1622 int once = 1;
1623
1624 if (tty_paranoia_check(tty, inode, __func__))
1625 return 0;
1626
1627 tty_lock(tty);
1628 check_tty_count(tty, __func__);
1629
1630 __tty_fasync(-1, filp, 0);
1631
1632 idx = tty->index;
1633 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1634 tty->driver->subtype == PTY_TYPE_MASTER)
1635 o_tty = tty->link;
1636
1637 if (tty_release_checks(tty, idx)) {
1638 tty_unlock(tty);
1639 return 0;
1640 }
1641
1642 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1643
1644 if (tty->ops->close)
1645 tty->ops->close(tty, filp);
1646
1647 /* If tty is pty master, lock the slave pty (stable lock order) */
1648 tty_lock_slave(o_tty);
1649
1650 /*
1651 * Sanity check: if tty->count is going to zero, there shouldn't be
1652 * any waiters on tty->read_wait or tty->write_wait. We test the
1653 * wait queues and kick everyone out _before_ actually starting to
1654 * close. This ensures that we won't block while releasing the tty
1655 * structure.
1656 *
1657 * The test for the o_tty closing is necessary, since the master and
1658 * slave sides may close in any order. If the slave side closes out
1659 * first, its count will be one, since the master side holds an open.
1660 * Thus this test wouldn't be triggered at the time the slave closed,
1661 * so we do it now.
1662 */
1663 while (1) {
1664 do_sleep = 0;
1665
1666 if (tty->count <= 1) {
1667 if (waitqueue_active(&tty->read_wait)) {
1668 wake_up_poll(&tty->read_wait, POLLIN);
1669 do_sleep++;
1670 }
1671 if (waitqueue_active(&tty->write_wait)) {
1672 wake_up_poll(&tty->write_wait, POLLOUT);
1673 do_sleep++;
1674 }
1675 }
1676 if (o_tty && o_tty->count <= 1) {
1677 if (waitqueue_active(&o_tty->read_wait)) {
1678 wake_up_poll(&o_tty->read_wait, POLLIN);
1679 do_sleep++;
1680 }
1681 if (waitqueue_active(&o_tty->write_wait)) {
1682 wake_up_poll(&o_tty->write_wait, POLLOUT);
1683 do_sleep++;
1684 }
1685 }
1686 if (!do_sleep)
1687 break;
1688
1689 if (once) {
1690 once = 0;
1691 tty_warn(tty, "read/write wait queue active!\n");
1692 }
1693 schedule_timeout_killable(timeout);
1694 if (timeout < 120 * HZ)
1695 timeout = 2 * timeout + 1;
1696 else
1697 timeout = MAX_SCHEDULE_TIMEOUT;
1698 }
1699
1700 if (o_tty) {
1701 if (--o_tty->count < 0) {
1702 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1703 o_tty->count = 0;
1704 }
1705 }
1706 if (--tty->count < 0) {
1707 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1708 tty->count = 0;
1709 }
1710
1711 /*
1712 * We've decremented tty->count, so we need to remove this file
1713 * descriptor off the tty->tty_files list; this serves two
1714 * purposes:
1715 * - check_tty_count sees the correct number of file descriptors
1716 * associated with this tty.
1717 * - do_tty_hangup no longer sees this file descriptor as
1718 * something that needs to be handled for hangups.
1719 */
1720 tty_del_file(filp);
1721
1722 /*
1723 * Perform some housekeeping before deciding whether to return.
1724 *
1725 * If _either_ side is closing, make sure there aren't any
1726 * processes that still think tty or o_tty is their controlling
1727 * tty.
1728 */
1729 if (!tty->count) {
1730 read_lock(&tasklist_lock);
1731 session_clear_tty(tty->session);
1732 if (o_tty)
1733 session_clear_tty(o_tty->session);
1734 read_unlock(&tasklist_lock);
1735 }
1736
1737 /* check whether both sides are closing ... */
1738 final = !tty->count && !(o_tty && o_tty->count);
1739
1740 tty_unlock_slave(o_tty);
1741 tty_unlock(tty);
1742
1743 /* At this point, the tty->count == 0 should ensure a dead tty
1744 cannot be re-opened by a racing opener */
1745
1746 if (!final)
1747 return 0;
1748
1749 tty_debug_hangup(tty, "final close\n");
1750
1751 tty_release_struct(tty, idx);
1752 return 0;
1753 }
1754
1755 /**
1756 * tty_open_current_tty - get locked tty of current task
1757 * @device: device number
1758 * @filp: file pointer to tty
1759 * @return: locked tty of the current task iff @device is /dev/tty
1760 *
1761 * Performs a re-open of the current task's controlling tty.
1762 *
1763 * We cannot return driver and index like for the other nodes because
1764 * devpts will not work then. It expects inodes to be from devpts FS.
1765 */
1766 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1767 {
1768 struct tty_struct *tty;
1769 int retval;
1770
1771 if (device != MKDEV(TTYAUX_MAJOR, 0))
1772 return NULL;
1773
1774 tty = get_current_tty();
1775 if (!tty)
1776 return ERR_PTR(-ENXIO);
1777
1778 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1779 /* noctty = 1; */
1780 tty_lock(tty);
1781 tty_kref_put(tty); /* safe to drop the kref now */
1782
1783 retval = tty_reopen(tty);
1784 if (retval < 0) {
1785 tty_unlock(tty);
1786 tty = ERR_PTR(retval);
1787 }
1788 return tty;
1789 }
1790
1791 /**
1792 * tty_lookup_driver - lookup a tty driver for a given device file
1793 * @device: device number
1794 * @filp: file pointer to tty
1795 * @index: index for the device in the @return driver
1796 * @return: driver for this inode (with increased refcount)
1797 *
1798 * If @return is not erroneous, the caller is responsible to decrement the
1799 * refcount by tty_driver_kref_put.
1800 *
1801 * Locking: tty_mutex protects get_tty_driver
1802 */
1803 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1804 int *index)
1805 {
1806 struct tty_driver *driver;
1807
1808 switch (device) {
1809 #ifdef CONFIG_VT
1810 case MKDEV(TTY_MAJOR, 0): {
1811 extern struct tty_driver *console_driver;
1812 driver = tty_driver_kref_get(console_driver);
1813 *index = fg_console;
1814 break;
1815 }
1816 #endif
1817 case MKDEV(TTYAUX_MAJOR, 1): {
1818 struct tty_driver *console_driver = console_device(index);
1819 if (console_driver) {
1820 driver = tty_driver_kref_get(console_driver);
1821 if (driver && filp) {
1822 /* Don't let /dev/console block */
1823 filp->f_flags |= O_NONBLOCK;
1824 break;
1825 }
1826 }
1827 return ERR_PTR(-ENODEV);
1828 }
1829 default:
1830 driver = get_tty_driver(device, index);
1831 if (!driver)
1832 return ERR_PTR(-ENODEV);
1833 break;
1834 }
1835 return driver;
1836 }
1837
1838 /**
1839 * tty_kopen - open a tty device for kernel
1840 * @device: dev_t of device to open
1841 *
1842 * Opens tty exclusively for kernel. Performs the driver lookup,
1843 * makes sure it's not already opened and performs the first-time
1844 * tty initialization.
1845 *
1846 * Returns the locked initialized &tty_struct
1847 *
1848 * Claims the global tty_mutex to serialize:
1849 * - concurrent first-time tty initialization
1850 * - concurrent tty driver removal w/ lookup
1851 * - concurrent tty removal from driver table
1852 */
1853 struct tty_struct *tty_kopen(dev_t device)
1854 {
1855 struct tty_struct *tty;
1856 struct tty_driver *driver = NULL;
1857 int index = -1;
1858
1859 mutex_lock(&tty_mutex);
1860 driver = tty_lookup_driver(device, NULL, &index);
1861 if (IS_ERR(driver)) {
1862 mutex_unlock(&tty_mutex);
1863 return ERR_CAST(driver);
1864 }
1865
1866 /* check whether we're reopening an existing tty */
1867 tty = tty_driver_lookup_tty(driver, NULL, index);
1868 if (IS_ERR(tty))
1869 goto out;
1870
1871 if (tty) {
1872 /* drop kref from tty_driver_lookup_tty() */
1873 tty_kref_put(tty);
1874 tty = ERR_PTR(-EBUSY);
1875 } else { /* tty_init_dev returns tty with the tty_lock held */
1876 tty = tty_init_dev(driver, index);
1877 if (IS_ERR(tty))
1878 goto out;
1879 tty_port_set_kopened(tty->port, 1);
1880 }
1881 out:
1882 mutex_unlock(&tty_mutex);
1883 tty_driver_kref_put(driver);
1884 return tty;
1885 }
1886 EXPORT_SYMBOL_GPL(tty_kopen);
1887
1888 /**
1889 * tty_open_by_driver - open a tty device
1890 * @device: dev_t of device to open
1891 * @inode: inode of device file
1892 * @filp: file pointer to tty
1893 *
1894 * Performs the driver lookup, checks for a reopen, or otherwise
1895 * performs the first-time tty initialization.
1896 *
1897 * Returns the locked initialized or re-opened &tty_struct
1898 *
1899 * Claims the global tty_mutex to serialize:
1900 * - concurrent first-time tty initialization
1901 * - concurrent tty driver removal w/ lookup
1902 * - concurrent tty removal from driver table
1903 */
1904 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1905 struct file *filp)
1906 {
1907 struct tty_struct *tty;
1908 struct tty_driver *driver = NULL;
1909 int index = -1;
1910 int retval;
1911
1912 mutex_lock(&tty_mutex);
1913 driver = tty_lookup_driver(device, filp, &index);
1914 if (IS_ERR(driver)) {
1915 mutex_unlock(&tty_mutex);
1916 return ERR_CAST(driver);
1917 }
1918
1919 /* check whether we're reopening an existing tty */
1920 tty = tty_driver_lookup_tty(driver, filp, index);
1921 if (IS_ERR(tty)) {
1922 mutex_unlock(&tty_mutex);
1923 goto out;
1924 }
1925
1926 if (tty) {
1927 if (tty_port_kopened(tty->port)) {
1928 tty_kref_put(tty);
1929 mutex_unlock(&tty_mutex);
1930 tty = ERR_PTR(-EBUSY);
1931 goto out;
1932 }
1933 mutex_unlock(&tty_mutex);
1934 retval = tty_lock_interruptible(tty);
1935 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1936 if (retval) {
1937 if (retval == -EINTR)
1938 retval = -ERESTARTSYS;
1939 tty = ERR_PTR(retval);
1940 goto out;
1941 }
1942 retval = tty_reopen(tty);
1943 if (retval < 0) {
1944 tty_unlock(tty);
1945 tty = ERR_PTR(retval);
1946 }
1947 } else { /* Returns with the tty_lock held for now */
1948 tty = tty_init_dev(driver, index);
1949 mutex_unlock(&tty_mutex);
1950 }
1951 out:
1952 tty_driver_kref_put(driver);
1953 return tty;
1954 }
1955
1956 /**
1957 * tty_open - open a tty device
1958 * @inode: inode of device file
1959 * @filp: file pointer to tty
1960 *
1961 * tty_open and tty_release keep up the tty count that contains the
1962 * number of opens done on a tty. We cannot use the inode-count, as
1963 * different inodes might point to the same tty.
1964 *
1965 * Open-counting is needed for pty masters, as well as for keeping
1966 * track of serial lines: DTR is dropped when the last close happens.
1967 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1968 *
1969 * The termios state of a pty is reset on first open so that
1970 * settings don't persist across reuse.
1971 *
1972 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1973 * tty->count should protect the rest.
1974 * ->siglock protects ->signal/->sighand
1975 *
1976 * Note: the tty_unlock/lock cases without a ref are only safe due to
1977 * tty_mutex
1978 */
1979
1980 static int tty_open(struct inode *inode, struct file *filp)
1981 {
1982 struct tty_struct *tty;
1983 int noctty, retval;
1984 dev_t device = inode->i_rdev;
1985 unsigned saved_flags = filp->f_flags;
1986
1987 nonseekable_open(inode, filp);
1988
1989 retry_open:
1990 retval = tty_alloc_file(filp);
1991 if (retval)
1992 return -ENOMEM;
1993
1994 tty = tty_open_current_tty(device, filp);
1995 if (!tty)
1996 tty = tty_open_by_driver(device, inode, filp);
1997
1998 if (IS_ERR(tty)) {
1999 tty_free_file(filp);
2000 retval = PTR_ERR(tty);
2001 if (retval != -EAGAIN || signal_pending(current))
2002 return retval;
2003 schedule();
2004 goto retry_open;
2005 }
2006
2007 tty_add_file(tty, filp);
2008
2009 check_tty_count(tty, __func__);
2010 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2011
2012 if (tty->ops->open)
2013 retval = tty->ops->open(tty, filp);
2014 else
2015 retval = -ENODEV;
2016 filp->f_flags = saved_flags;
2017
2018 if (retval) {
2019 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2020
2021 tty_unlock(tty); /* need to call tty_release without BTM */
2022 tty_release(inode, filp);
2023 if (retval != -ERESTARTSYS)
2024 return retval;
2025
2026 if (signal_pending(current))
2027 return retval;
2028
2029 schedule();
2030 /*
2031 * Need to reset f_op in case a hangup happened.
2032 */
2033 if (tty_hung_up_p(filp))
2034 filp->f_op = &tty_fops;
2035 goto retry_open;
2036 }
2037 clear_bit(TTY_HUPPED, &tty->flags);
2038
2039 noctty = (filp->f_flags & O_NOCTTY) ||
2040 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2041 device == MKDEV(TTYAUX_MAJOR, 1) ||
2042 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2043 tty->driver->subtype == PTY_TYPE_MASTER);
2044 if (!noctty)
2045 tty_open_proc_set_tty(filp, tty);
2046 tty_unlock(tty);
2047 return 0;
2048 }
2049
2050
2051
2052 /**
2053 * tty_poll - check tty status
2054 * @filp: file being polled
2055 * @wait: poll wait structures to update
2056 *
2057 * Call the line discipline polling method to obtain the poll
2058 * status of the device.
2059 *
2060 * Locking: locks called line discipline but ldisc poll method
2061 * may be re-entered freely by other callers.
2062 */
2063
2064 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2065 {
2066 struct tty_struct *tty = file_tty(filp);
2067 struct tty_ldisc *ld;
2068 int ret = 0;
2069
2070 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2071 return 0;
2072
2073 ld = tty_ldisc_ref_wait(tty);
2074 if (!ld)
2075 return hung_up_tty_poll(filp, wait);
2076 if (ld->ops->poll)
2077 ret = ld->ops->poll(tty, filp, wait);
2078 tty_ldisc_deref(ld);
2079 return ret;
2080 }
2081
2082 static int __tty_fasync(int fd, struct file *filp, int on)
2083 {
2084 struct tty_struct *tty = file_tty(filp);
2085 unsigned long flags;
2086 int retval = 0;
2087
2088 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2089 goto out;
2090
2091 retval = fasync_helper(fd, filp, on, &tty->fasync);
2092 if (retval <= 0)
2093 goto out;
2094
2095 if (on) {
2096 enum pid_type type;
2097 struct pid *pid;
2098
2099 spin_lock_irqsave(&tty->ctrl_lock, flags);
2100 if (tty->pgrp) {
2101 pid = tty->pgrp;
2102 type = PIDTYPE_PGID;
2103 } else {
2104 pid = task_pid(current);
2105 type = PIDTYPE_PID;
2106 }
2107 get_pid(pid);
2108 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2109 __f_setown(filp, pid, type, 0);
2110 put_pid(pid);
2111 retval = 0;
2112 }
2113 out:
2114 return retval;
2115 }
2116
2117 static int tty_fasync(int fd, struct file *filp, int on)
2118 {
2119 struct tty_struct *tty = file_tty(filp);
2120 int retval = -ENOTTY;
2121
2122 tty_lock(tty);
2123 if (!tty_hung_up_p(filp))
2124 retval = __tty_fasync(fd, filp, on);
2125 tty_unlock(tty);
2126
2127 return retval;
2128 }
2129
2130 /**
2131 * tiocsti - fake input character
2132 * @tty: tty to fake input into
2133 * @p: pointer to character
2134 *
2135 * Fake input to a tty device. Does the necessary locking and
2136 * input management.
2137 *
2138 * FIXME: does not honour flow control ??
2139 *
2140 * Locking:
2141 * Called functions take tty_ldiscs_lock
2142 * current->signal->tty check is safe without locks
2143 *
2144 * FIXME: may race normal receive processing
2145 */
2146
2147 static int tiocsti(struct tty_struct *tty, char __user *p)
2148 {
2149 char ch, mbz = 0;
2150 struct tty_ldisc *ld;
2151
2152 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154 if (get_user(ch, p))
2155 return -EFAULT;
2156 tty_audit_tiocsti(tty, ch);
2157 ld = tty_ldisc_ref_wait(tty);
2158 if (!ld)
2159 return -EIO;
2160 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2161 tty_ldisc_deref(ld);
2162 return 0;
2163 }
2164
2165 /**
2166 * tiocgwinsz - implement window query ioctl
2167 * @tty; tty
2168 * @arg: user buffer for result
2169 *
2170 * Copies the kernel idea of the window size into the user buffer.
2171 *
2172 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2173 * is consistent.
2174 */
2175
2176 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2177 {
2178 int err;
2179
2180 mutex_lock(&tty->winsize_mutex);
2181 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2182 mutex_unlock(&tty->winsize_mutex);
2183
2184 return err ? -EFAULT: 0;
2185 }
2186
2187 /**
2188 * tty_do_resize - resize event
2189 * @tty: tty being resized
2190 * @rows: rows (character)
2191 * @cols: cols (character)
2192 *
2193 * Update the termios variables and send the necessary signals to
2194 * peform a terminal resize correctly
2195 */
2196
2197 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2198 {
2199 struct pid *pgrp;
2200
2201 /* Lock the tty */
2202 mutex_lock(&tty->winsize_mutex);
2203 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2204 goto done;
2205
2206 /* Signal the foreground process group */
2207 pgrp = tty_get_pgrp(tty);
2208 if (pgrp)
2209 kill_pgrp(pgrp, SIGWINCH, 1);
2210 put_pid(pgrp);
2211
2212 tty->winsize = *ws;
2213 done:
2214 mutex_unlock(&tty->winsize_mutex);
2215 return 0;
2216 }
2217 EXPORT_SYMBOL(tty_do_resize);
2218
2219 /**
2220 * tiocswinsz - implement window size set ioctl
2221 * @tty; tty side of tty
2222 * @arg: user buffer for result
2223 *
2224 * Copies the user idea of the window size to the kernel. Traditionally
2225 * this is just advisory information but for the Linux console it
2226 * actually has driver level meaning and triggers a VC resize.
2227 *
2228 * Locking:
2229 * Driver dependent. The default do_resize method takes the
2230 * tty termios mutex and ctrl_lock. The console takes its own lock
2231 * then calls into the default method.
2232 */
2233
2234 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2235 {
2236 struct winsize tmp_ws;
2237 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2238 return -EFAULT;
2239
2240 if (tty->ops->resize)
2241 return tty->ops->resize(tty, &tmp_ws);
2242 else
2243 return tty_do_resize(tty, &tmp_ws);
2244 }
2245
2246 /**
2247 * tioccons - allow admin to move logical console
2248 * @file: the file to become console
2249 *
2250 * Allow the administrator to move the redirected console device
2251 *
2252 * Locking: uses redirect_lock to guard the redirect information
2253 */
2254
2255 static int tioccons(struct file *file)
2256 {
2257 if (!capable(CAP_SYS_ADMIN))
2258 return -EPERM;
2259 if (file->f_op->write == redirected_tty_write) {
2260 struct file *f;
2261 spin_lock(&redirect_lock);
2262 f = redirect;
2263 redirect = NULL;
2264 spin_unlock(&redirect_lock);
2265 if (f)
2266 fput(f);
2267 return 0;
2268 }
2269 spin_lock(&redirect_lock);
2270 if (redirect) {
2271 spin_unlock(&redirect_lock);
2272 return -EBUSY;
2273 }
2274 redirect = get_file(file);
2275 spin_unlock(&redirect_lock);
2276 return 0;
2277 }
2278
2279 /**
2280 * fionbio - non blocking ioctl
2281 * @file: file to set blocking value
2282 * @p: user parameter
2283 *
2284 * Historical tty interfaces had a blocking control ioctl before
2285 * the generic functionality existed. This piece of history is preserved
2286 * in the expected tty API of posix OS's.
2287 *
2288 * Locking: none, the open file handle ensures it won't go away.
2289 */
2290
2291 static int fionbio(struct file *file, int __user *p)
2292 {
2293 int nonblock;
2294
2295 if (get_user(nonblock, p))
2296 return -EFAULT;
2297
2298 spin_lock(&file->f_lock);
2299 if (nonblock)
2300 file->f_flags |= O_NONBLOCK;
2301 else
2302 file->f_flags &= ~O_NONBLOCK;
2303 spin_unlock(&file->f_lock);
2304 return 0;
2305 }
2306
2307 /**
2308 * tiocsetd - set line discipline
2309 * @tty: tty device
2310 * @p: pointer to user data
2311 *
2312 * Set the line discipline according to user request.
2313 *
2314 * Locking: see tty_set_ldisc, this function is just a helper
2315 */
2316
2317 static int tiocsetd(struct tty_struct *tty, int __user *p)
2318 {
2319 int disc;
2320 int ret;
2321
2322 if (get_user(disc, p))
2323 return -EFAULT;
2324
2325 ret = tty_set_ldisc(tty, disc);
2326
2327 return ret;
2328 }
2329
2330 /**
2331 * tiocgetd - get line discipline
2332 * @tty: tty device
2333 * @p: pointer to user data
2334 *
2335 * Retrieves the line discipline id directly from the ldisc.
2336 *
2337 * Locking: waits for ldisc reference (in case the line discipline
2338 * is changing or the tty is being hungup)
2339 */
2340
2341 static int tiocgetd(struct tty_struct *tty, int __user *p)
2342 {
2343 struct tty_ldisc *ld;
2344 int ret;
2345
2346 ld = tty_ldisc_ref_wait(tty);
2347 if (!ld)
2348 return -EIO;
2349 ret = put_user(ld->ops->num, p);
2350 tty_ldisc_deref(ld);
2351 return ret;
2352 }
2353
2354 /**
2355 * send_break - performed time break
2356 * @tty: device to break on
2357 * @duration: timeout in mS
2358 *
2359 * Perform a timed break on hardware that lacks its own driver level
2360 * timed break functionality.
2361 *
2362 * Locking:
2363 * atomic_write_lock serializes
2364 *
2365 */
2366
2367 static int send_break(struct tty_struct *tty, unsigned int duration)
2368 {
2369 int retval;
2370
2371 if (tty->ops->break_ctl == NULL)
2372 return 0;
2373
2374 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2375 retval = tty->ops->break_ctl(tty, duration);
2376 else {
2377 /* Do the work ourselves */
2378 if (tty_write_lock(tty, 0) < 0)
2379 return -EINTR;
2380 retval = tty->ops->break_ctl(tty, -1);
2381 if (retval)
2382 goto out;
2383 if (!signal_pending(current))
2384 msleep_interruptible(duration);
2385 retval = tty->ops->break_ctl(tty, 0);
2386 out:
2387 tty_write_unlock(tty);
2388 if (signal_pending(current))
2389 retval = -EINTR;
2390 }
2391 return retval;
2392 }
2393
2394 /**
2395 * tty_tiocmget - get modem status
2396 * @tty: tty device
2397 * @file: user file pointer
2398 * @p: pointer to result
2399 *
2400 * Obtain the modem status bits from the tty driver if the feature
2401 * is supported. Return -EINVAL if it is not available.
2402 *
2403 * Locking: none (up to the driver)
2404 */
2405
2406 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2407 {
2408 int retval = -EINVAL;
2409
2410 if (tty->ops->tiocmget) {
2411 retval = tty->ops->tiocmget(tty);
2412
2413 if (retval >= 0)
2414 retval = put_user(retval, p);
2415 }
2416 return retval;
2417 }
2418
2419 /**
2420 * tty_tiocmset - set modem status
2421 * @tty: tty device
2422 * @cmd: command - clear bits, set bits or set all
2423 * @p: pointer to desired bits
2424 *
2425 * Set the modem status bits from the tty driver if the feature
2426 * is supported. Return -EINVAL if it is not available.
2427 *
2428 * Locking: none (up to the driver)
2429 */
2430
2431 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2432 unsigned __user *p)
2433 {
2434 int retval;
2435 unsigned int set, clear, val;
2436
2437 if (tty->ops->tiocmset == NULL)
2438 return -EINVAL;
2439
2440 retval = get_user(val, p);
2441 if (retval)
2442 return retval;
2443 set = clear = 0;
2444 switch (cmd) {
2445 case TIOCMBIS:
2446 set = val;
2447 break;
2448 case TIOCMBIC:
2449 clear = val;
2450 break;
2451 case TIOCMSET:
2452 set = val;
2453 clear = ~val;
2454 break;
2455 }
2456 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2457 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2458 return tty->ops->tiocmset(tty, set, clear);
2459 }
2460
2461 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2462 {
2463 int retval = -EINVAL;
2464 struct serial_icounter_struct icount;
2465 memset(&icount, 0, sizeof(icount));
2466 if (tty->ops->get_icount)
2467 retval = tty->ops->get_icount(tty, &icount);
2468 if (retval != 0)
2469 return retval;
2470 if (copy_to_user(arg, &icount, sizeof(icount)))
2471 return -EFAULT;
2472 return 0;
2473 }
2474
2475 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2476 {
2477 static DEFINE_RATELIMIT_STATE(depr_flags,
2478 DEFAULT_RATELIMIT_INTERVAL,
2479 DEFAULT_RATELIMIT_BURST);
2480 char comm[TASK_COMM_LEN];
2481 int flags;
2482
2483 if (get_user(flags, &ss->flags))
2484 return;
2485
2486 flags &= ASYNC_DEPRECATED;
2487
2488 if (flags && __ratelimit(&depr_flags))
2489 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2490 __func__, get_task_comm(comm, current), flags);
2491 }
2492
2493 /*
2494 * if pty, return the slave side (real_tty)
2495 * otherwise, return self
2496 */
2497 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2498 {
2499 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2500 tty->driver->subtype == PTY_TYPE_MASTER)
2501 tty = tty->link;
2502 return tty;
2503 }
2504
2505 /*
2506 * Split this up, as gcc can choke on it otherwise..
2507 */
2508 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2509 {
2510 struct tty_struct *tty = file_tty(file);
2511 struct tty_struct *real_tty;
2512 void __user *p = (void __user *)arg;
2513 int retval;
2514 struct tty_ldisc *ld;
2515
2516 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2517 return -EINVAL;
2518
2519 real_tty = tty_pair_get_tty(tty);
2520
2521 /*
2522 * Factor out some common prep work
2523 */
2524 switch (cmd) {
2525 case TIOCSETD:
2526 case TIOCSBRK:
2527 case TIOCCBRK:
2528 case TCSBRK:
2529 case TCSBRKP:
2530 retval = tty_check_change(tty);
2531 if (retval)
2532 return retval;
2533 if (cmd != TIOCCBRK) {
2534 tty_wait_until_sent(tty, 0);
2535 if (signal_pending(current))
2536 return -EINTR;
2537 }
2538 break;
2539 }
2540
2541 /*
2542 * Now do the stuff.
2543 */
2544 switch (cmd) {
2545 case TIOCSTI:
2546 return tiocsti(tty, p);
2547 case TIOCGWINSZ:
2548 return tiocgwinsz(real_tty, p);
2549 case TIOCSWINSZ:
2550 return tiocswinsz(real_tty, p);
2551 case TIOCCONS:
2552 return real_tty != tty ? -EINVAL : tioccons(file);
2553 case FIONBIO:
2554 return fionbio(file, p);
2555 case TIOCEXCL:
2556 set_bit(TTY_EXCLUSIVE, &tty->flags);
2557 return 0;
2558 case TIOCNXCL:
2559 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2560 return 0;
2561 case TIOCGEXCL:
2562 {
2563 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2564 return put_user(excl, (int __user *)p);
2565 }
2566 case TIOCGETD:
2567 return tiocgetd(tty, p);
2568 case TIOCSETD:
2569 return tiocsetd(tty, p);
2570 case TIOCVHANGUP:
2571 if (!capable(CAP_SYS_ADMIN))
2572 return -EPERM;
2573 tty_vhangup(tty);
2574 return 0;
2575 case TIOCGDEV:
2576 {
2577 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2578 return put_user(ret, (unsigned int __user *)p);
2579 }
2580 /*
2581 * Break handling
2582 */
2583 case TIOCSBRK: /* Turn break on, unconditionally */
2584 if (tty->ops->break_ctl)
2585 return tty->ops->break_ctl(tty, -1);
2586 return 0;
2587 case TIOCCBRK: /* Turn break off, unconditionally */
2588 if (tty->ops->break_ctl)
2589 return tty->ops->break_ctl(tty, 0);
2590 return 0;
2591 case TCSBRK: /* SVID version: non-zero arg --> no break */
2592 /* non-zero arg means wait for all output data
2593 * to be sent (performed above) but don't send break.
2594 * This is used by the tcdrain() termios function.
2595 */
2596 if (!arg)
2597 return send_break(tty, 250);
2598 return 0;
2599 case TCSBRKP: /* support for POSIX tcsendbreak() */
2600 return send_break(tty, arg ? arg*100 : 250);
2601
2602 case TIOCMGET:
2603 return tty_tiocmget(tty, p);
2604 case TIOCMSET:
2605 case TIOCMBIC:
2606 case TIOCMBIS:
2607 return tty_tiocmset(tty, cmd, p);
2608 case TIOCGICOUNT:
2609 retval = tty_tiocgicount(tty, p);
2610 /* For the moment allow fall through to the old method */
2611 if (retval != -EINVAL)
2612 return retval;
2613 break;
2614 case TCFLSH:
2615 switch (arg) {
2616 case TCIFLUSH:
2617 case TCIOFLUSH:
2618 /* flush tty buffer and allow ldisc to process ioctl */
2619 tty_buffer_flush(tty, NULL);
2620 break;
2621 }
2622 break;
2623 case TIOCSSERIAL:
2624 tty_warn_deprecated_flags(p);
2625 break;
2626 case TIOCGPTPEER:
2627 /* Special because the struct file is needed */
2628 return ptm_open_peer(file, tty, (int)arg);
2629 default:
2630 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2631 if (retval != -ENOIOCTLCMD)
2632 return retval;
2633 }
2634 if (tty->ops->ioctl) {
2635 retval = tty->ops->ioctl(tty, cmd, arg);
2636 if (retval != -ENOIOCTLCMD)
2637 return retval;
2638 }
2639 ld = tty_ldisc_ref_wait(tty);
2640 if (!ld)
2641 return hung_up_tty_ioctl(file, cmd, arg);
2642 retval = -EINVAL;
2643 if (ld->ops->ioctl) {
2644 retval = ld->ops->ioctl(tty, file, cmd, arg);
2645 if (retval == -ENOIOCTLCMD)
2646 retval = -ENOTTY;
2647 }
2648 tty_ldisc_deref(ld);
2649 return retval;
2650 }
2651
2652 #ifdef CONFIG_COMPAT
2653 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2654 unsigned long arg)
2655 {
2656 struct tty_struct *tty = file_tty(file);
2657 struct tty_ldisc *ld;
2658 int retval = -ENOIOCTLCMD;
2659
2660 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2661 return -EINVAL;
2662
2663 if (tty->ops->compat_ioctl) {
2664 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2665 if (retval != -ENOIOCTLCMD)
2666 return retval;
2667 }
2668
2669 ld = tty_ldisc_ref_wait(tty);
2670 if (!ld)
2671 return hung_up_tty_compat_ioctl(file, cmd, arg);
2672 if (ld->ops->compat_ioctl)
2673 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2674 else
2675 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2676 tty_ldisc_deref(ld);
2677
2678 return retval;
2679 }
2680 #endif
2681
2682 static int this_tty(const void *t, struct file *file, unsigned fd)
2683 {
2684 if (likely(file->f_op->read != tty_read))
2685 return 0;
2686 return file_tty(file) != t ? 0 : fd + 1;
2687 }
2688
2689 /*
2690 * This implements the "Secure Attention Key" --- the idea is to
2691 * prevent trojan horses by killing all processes associated with this
2692 * tty when the user hits the "Secure Attention Key". Required for
2693 * super-paranoid applications --- see the Orange Book for more details.
2694 *
2695 * This code could be nicer; ideally it should send a HUP, wait a few
2696 * seconds, then send a INT, and then a KILL signal. But you then
2697 * have to coordinate with the init process, since all processes associated
2698 * with the current tty must be dead before the new getty is allowed
2699 * to spawn.
2700 *
2701 * Now, if it would be correct ;-/ The current code has a nasty hole -
2702 * it doesn't catch files in flight. We may send the descriptor to ourselves
2703 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2704 *
2705 * Nasty bug: do_SAK is being called in interrupt context. This can
2706 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2707 */
2708 void __do_SAK(struct tty_struct *tty)
2709 {
2710 #ifdef TTY_SOFT_SAK
2711 tty_hangup(tty);
2712 #else
2713 struct task_struct *g, *p;
2714 struct pid *session;
2715 int i;
2716
2717 if (!tty)
2718 return;
2719 session = tty->session;
2720
2721 tty_ldisc_flush(tty);
2722
2723 tty_driver_flush_buffer(tty);
2724
2725 read_lock(&tasklist_lock);
2726 /* Kill the entire session */
2727 do_each_pid_task(session, PIDTYPE_SID, p) {
2728 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2729 task_pid_nr(p), p->comm);
2730 send_sig(SIGKILL, p, 1);
2731 } while_each_pid_task(session, PIDTYPE_SID, p);
2732
2733 /* Now kill any processes that happen to have the tty open */
2734 do_each_thread(g, p) {
2735 if (p->signal->tty == tty) {
2736 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2737 task_pid_nr(p), p->comm);
2738 send_sig(SIGKILL, p, 1);
2739 continue;
2740 }
2741 task_lock(p);
2742 i = iterate_fd(p->files, 0, this_tty, tty);
2743 if (i != 0) {
2744 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2745 task_pid_nr(p), p->comm, i - 1);
2746 force_sig(SIGKILL, p);
2747 }
2748 task_unlock(p);
2749 } while_each_thread(g, p);
2750 read_unlock(&tasklist_lock);
2751 #endif
2752 }
2753
2754 static void do_SAK_work(struct work_struct *work)
2755 {
2756 struct tty_struct *tty =
2757 container_of(work, struct tty_struct, SAK_work);
2758 __do_SAK(tty);
2759 }
2760
2761 /*
2762 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2763 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2764 * the values which we write to it will be identical to the values which it
2765 * already has. --akpm
2766 */
2767 void do_SAK(struct tty_struct *tty)
2768 {
2769 if (!tty)
2770 return;
2771 schedule_work(&tty->SAK_work);
2772 }
2773
2774 EXPORT_SYMBOL(do_SAK);
2775
2776 static int dev_match_devt(struct device *dev, const void *data)
2777 {
2778 const dev_t *devt = data;
2779 return dev->devt == *devt;
2780 }
2781
2782 /* Must put_device() after it's unused! */
2783 static struct device *tty_get_device(struct tty_struct *tty)
2784 {
2785 dev_t devt = tty_devnum(tty);
2786 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2787 }
2788
2789
2790 /**
2791 * alloc_tty_struct
2792 *
2793 * This subroutine allocates and initializes a tty structure.
2794 *
2795 * Locking: none - tty in question is not exposed at this point
2796 */
2797
2798 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2799 {
2800 struct tty_struct *tty;
2801
2802 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2803 if (!tty)
2804 return NULL;
2805
2806 kref_init(&tty->kref);
2807 tty->magic = TTY_MAGIC;
2808 tty_ldisc_init(tty);
2809 tty->session = NULL;
2810 tty->pgrp = NULL;
2811 mutex_init(&tty->legacy_mutex);
2812 mutex_init(&tty->throttle_mutex);
2813 init_rwsem(&tty->termios_rwsem);
2814 mutex_init(&tty->winsize_mutex);
2815 init_ldsem(&tty->ldisc_sem);
2816 init_waitqueue_head(&tty->write_wait);
2817 init_waitqueue_head(&tty->read_wait);
2818 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2819 mutex_init(&tty->atomic_write_lock);
2820 spin_lock_init(&tty->ctrl_lock);
2821 spin_lock_init(&tty->flow_lock);
2822 spin_lock_init(&tty->files_lock);
2823 INIT_LIST_HEAD(&tty->tty_files);
2824 INIT_WORK(&tty->SAK_work, do_SAK_work);
2825
2826 tty->driver = driver;
2827 tty->ops = driver->ops;
2828 tty->index = idx;
2829 tty_line_name(driver, idx, tty->name);
2830 tty->dev = tty_get_device(tty);
2831
2832 return tty;
2833 }
2834
2835 /**
2836 * tty_put_char - write one character to a tty
2837 * @tty: tty
2838 * @ch: character
2839 *
2840 * Write one byte to the tty using the provided put_char method
2841 * if present. Returns the number of characters successfully output.
2842 *
2843 * Note: the specific put_char operation in the driver layer may go
2844 * away soon. Don't call it directly, use this method
2845 */
2846
2847 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2848 {
2849 if (tty->ops->put_char)
2850 return tty->ops->put_char(tty, ch);
2851 return tty->ops->write(tty, &ch, 1);
2852 }
2853 EXPORT_SYMBOL_GPL(tty_put_char);
2854
2855 struct class *tty_class;
2856
2857 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2858 unsigned int index, unsigned int count)
2859 {
2860 int err;
2861
2862 /* init here, since reused cdevs cause crashes */
2863 driver->cdevs[index] = cdev_alloc();
2864 if (!driver->cdevs[index])
2865 return -ENOMEM;
2866 driver->cdevs[index]->ops = &tty_fops;
2867 driver->cdevs[index]->owner = driver->owner;
2868 err = cdev_add(driver->cdevs[index], dev, count);
2869 if (err)
2870 kobject_put(&driver->cdevs[index]->kobj);
2871 return err;
2872 }
2873
2874 /**
2875 * tty_register_device - register a tty device
2876 * @driver: the tty driver that describes the tty device
2877 * @index: the index in the tty driver for this tty device
2878 * @device: a struct device that is associated with this tty device.
2879 * This field is optional, if there is no known struct device
2880 * for this tty device it can be set to NULL safely.
2881 *
2882 * Returns a pointer to the struct device for this tty device
2883 * (or ERR_PTR(-EFOO) on error).
2884 *
2885 * This call is required to be made to register an individual tty device
2886 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2887 * that bit is not set, this function should not be called by a tty
2888 * driver.
2889 *
2890 * Locking: ??
2891 */
2892
2893 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2894 struct device *device)
2895 {
2896 return tty_register_device_attr(driver, index, device, NULL, NULL);
2897 }
2898 EXPORT_SYMBOL(tty_register_device);
2899
2900 static void tty_device_create_release(struct device *dev)
2901 {
2902 dev_dbg(dev, "releasing...\n");
2903 kfree(dev);
2904 }
2905
2906 /**
2907 * tty_register_device_attr - register a tty device
2908 * @driver: the tty driver that describes the tty device
2909 * @index: the index in the tty driver for this tty device
2910 * @device: a struct device that is associated with this tty device.
2911 * This field is optional, if there is no known struct device
2912 * for this tty device it can be set to NULL safely.
2913 * @drvdata: Driver data to be set to device.
2914 * @attr_grp: Attribute group to be set on device.
2915 *
2916 * Returns a pointer to the struct device for this tty device
2917 * (or ERR_PTR(-EFOO) on error).
2918 *
2919 * This call is required to be made to register an individual tty device
2920 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2921 * that bit is not set, this function should not be called by a tty
2922 * driver.
2923 *
2924 * Locking: ??
2925 */
2926 struct device *tty_register_device_attr(struct tty_driver *driver,
2927 unsigned index, struct device *device,
2928 void *drvdata,
2929 const struct attribute_group **attr_grp)
2930 {
2931 char name[64];
2932 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2933 struct ktermios *tp;
2934 struct device *dev;
2935 int retval;
2936
2937 if (index >= driver->num) {
2938 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2939 driver->name, index);
2940 return ERR_PTR(-EINVAL);
2941 }
2942
2943 if (driver->type == TTY_DRIVER_TYPE_PTY)
2944 pty_line_name(driver, index, name);
2945 else
2946 tty_line_name(driver, index, name);
2947
2948 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2949 if (!dev)
2950 return ERR_PTR(-ENOMEM);
2951
2952 dev->devt = devt;
2953 dev->class = tty_class;
2954 dev->parent = device;
2955 dev->release = tty_device_create_release;
2956 dev_set_name(dev, "%s", name);
2957 dev->groups = attr_grp;
2958 dev_set_drvdata(dev, drvdata);
2959
2960 dev_set_uevent_suppress(dev, 1);
2961
2962 retval = device_register(dev);
2963 if (retval)
2964 goto err_put;
2965
2966 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2967 /*
2968 * Free any saved termios data so that the termios state is
2969 * reset when reusing a minor number.
2970 */
2971 tp = driver->termios[index];
2972 if (tp) {
2973 driver->termios[index] = NULL;
2974 kfree(tp);
2975 }
2976
2977 retval = tty_cdev_add(driver, devt, index, 1);
2978 if (retval)
2979 goto err_del;
2980 }
2981
2982 dev_set_uevent_suppress(dev, 0);
2983 kobject_uevent(&dev->kobj, KOBJ_ADD);
2984
2985 return dev;
2986
2987 err_del:
2988 device_del(dev);
2989 err_put:
2990 put_device(dev);
2991
2992 return ERR_PTR(retval);
2993 }
2994 EXPORT_SYMBOL_GPL(tty_register_device_attr);
2995
2996 /**
2997 * tty_unregister_device - unregister a tty device
2998 * @driver: the tty driver that describes the tty device
2999 * @index: the index in the tty driver for this tty device
3000 *
3001 * If a tty device is registered with a call to tty_register_device() then
3002 * this function must be called when the tty device is gone.
3003 *
3004 * Locking: ??
3005 */
3006
3007 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3008 {
3009 device_destroy(tty_class,
3010 MKDEV(driver->major, driver->minor_start) + index);
3011 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3012 cdev_del(driver->cdevs[index]);
3013 driver->cdevs[index] = NULL;
3014 }
3015 }
3016 EXPORT_SYMBOL(tty_unregister_device);
3017
3018 /**
3019 * __tty_alloc_driver -- allocate tty driver
3020 * @lines: count of lines this driver can handle at most
3021 * @owner: module which is responsible for this driver
3022 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3023 *
3024 * This should not be called directly, some of the provided macros should be
3025 * used instead. Use IS_ERR and friends on @retval.
3026 */
3027 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3028 unsigned long flags)
3029 {
3030 struct tty_driver *driver;
3031 unsigned int cdevs = 1;
3032 int err;
3033
3034 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3035 return ERR_PTR(-EINVAL);
3036
3037 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3038 if (!driver)
3039 return ERR_PTR(-ENOMEM);
3040
3041 kref_init(&driver->kref);
3042 driver->magic = TTY_DRIVER_MAGIC;
3043 driver->num = lines;
3044 driver->owner = owner;
3045 driver->flags = flags;
3046
3047 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3048 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3049 GFP_KERNEL);
3050 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3051 GFP_KERNEL);
3052 if (!driver->ttys || !driver->termios) {
3053 err = -ENOMEM;
3054 goto err_free_all;
3055 }
3056 }
3057
3058 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3059 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3060 GFP_KERNEL);
3061 if (!driver->ports) {
3062 err = -ENOMEM;
3063 goto err_free_all;
3064 }
3065 cdevs = lines;
3066 }
3067
3068 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3069 if (!driver->cdevs) {
3070 err = -ENOMEM;
3071 goto err_free_all;
3072 }
3073
3074 return driver;
3075 err_free_all:
3076 kfree(driver->ports);
3077 kfree(driver->ttys);
3078 kfree(driver->termios);
3079 kfree(driver->cdevs);
3080 kfree(driver);
3081 return ERR_PTR(err);
3082 }
3083 EXPORT_SYMBOL(__tty_alloc_driver);
3084
3085 static void destruct_tty_driver(struct kref *kref)
3086 {
3087 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3088 int i;
3089 struct ktermios *tp;
3090
3091 if (driver->flags & TTY_DRIVER_INSTALLED) {
3092 for (i = 0; i < driver->num; i++) {
3093 tp = driver->termios[i];
3094 if (tp) {
3095 driver->termios[i] = NULL;
3096 kfree(tp);
3097 }
3098 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3099 tty_unregister_device(driver, i);
3100 }
3101 proc_tty_unregister_driver(driver);
3102 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3103 cdev_del(driver->cdevs[0]);
3104 }
3105 kfree(driver->cdevs);
3106 kfree(driver->ports);
3107 kfree(driver->termios);
3108 kfree(driver->ttys);
3109 kfree(driver);
3110 }
3111
3112 void tty_driver_kref_put(struct tty_driver *driver)
3113 {
3114 kref_put(&driver->kref, destruct_tty_driver);
3115 }
3116 EXPORT_SYMBOL(tty_driver_kref_put);
3117
3118 void tty_set_operations(struct tty_driver *driver,
3119 const struct tty_operations *op)
3120 {
3121 driver->ops = op;
3122 };
3123 EXPORT_SYMBOL(tty_set_operations);
3124
3125 void put_tty_driver(struct tty_driver *d)
3126 {
3127 tty_driver_kref_put(d);
3128 }
3129 EXPORT_SYMBOL(put_tty_driver);
3130
3131 /*
3132 * Called by a tty driver to register itself.
3133 */
3134 int tty_register_driver(struct tty_driver *driver)
3135 {
3136 int error;
3137 int i;
3138 dev_t dev;
3139 struct device *d;
3140
3141 if (!driver->major) {
3142 error = alloc_chrdev_region(&dev, driver->minor_start,
3143 driver->num, driver->name);
3144 if (!error) {
3145 driver->major = MAJOR(dev);
3146 driver->minor_start = MINOR(dev);
3147 }
3148 } else {
3149 dev = MKDEV(driver->major, driver->minor_start);
3150 error = register_chrdev_region(dev, driver->num, driver->name);
3151 }
3152 if (error < 0)
3153 goto err;
3154
3155 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3156 error = tty_cdev_add(driver, dev, 0, driver->num);
3157 if (error)
3158 goto err_unreg_char;
3159 }
3160
3161 mutex_lock(&tty_mutex);
3162 list_add(&driver->tty_drivers, &tty_drivers);
3163 mutex_unlock(&tty_mutex);
3164
3165 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3166 for (i = 0; i < driver->num; i++) {
3167 d = tty_register_device(driver, i, NULL);
3168 if (IS_ERR(d)) {
3169 error = PTR_ERR(d);
3170 goto err_unreg_devs;
3171 }
3172 }
3173 }
3174 proc_tty_register_driver(driver);
3175 driver->flags |= TTY_DRIVER_INSTALLED;
3176 return 0;
3177
3178 err_unreg_devs:
3179 for (i--; i >= 0; i--)
3180 tty_unregister_device(driver, i);
3181
3182 mutex_lock(&tty_mutex);
3183 list_del(&driver->tty_drivers);
3184 mutex_unlock(&tty_mutex);
3185
3186 err_unreg_char:
3187 unregister_chrdev_region(dev, driver->num);
3188 err:
3189 return error;
3190 }
3191 EXPORT_SYMBOL(tty_register_driver);
3192
3193 /*
3194 * Called by a tty driver to unregister itself.
3195 */
3196 int tty_unregister_driver(struct tty_driver *driver)
3197 {
3198 #if 0
3199 /* FIXME */
3200 if (driver->refcount)
3201 return -EBUSY;
3202 #endif
3203 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3204 driver->num);
3205 mutex_lock(&tty_mutex);
3206 list_del(&driver->tty_drivers);
3207 mutex_unlock(&tty_mutex);
3208 return 0;
3209 }
3210
3211 EXPORT_SYMBOL(tty_unregister_driver);
3212
3213 dev_t tty_devnum(struct tty_struct *tty)
3214 {
3215 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3216 }
3217 EXPORT_SYMBOL(tty_devnum);
3218
3219 void tty_default_fops(struct file_operations *fops)
3220 {
3221 *fops = tty_fops;
3222 }
3223
3224 static char *tty_devnode(struct device *dev, umode_t *mode)
3225 {
3226 if (!mode)
3227 return NULL;
3228 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3229 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3230 *mode = 0666;
3231 return NULL;
3232 }
3233
3234 static int __init tty_class_init(void)
3235 {
3236 tty_class = class_create(THIS_MODULE, "tty");
3237 if (IS_ERR(tty_class))
3238 return PTR_ERR(tty_class);
3239 tty_class->devnode = tty_devnode;
3240 return 0;
3241 }
3242
3243 postcore_initcall(tty_class_init);
3244
3245 /* 3/2004 jmc: why do these devices exist? */
3246 static struct cdev tty_cdev, console_cdev;
3247
3248 static ssize_t show_cons_active(struct device *dev,
3249 struct device_attribute *attr, char *buf)
3250 {
3251 struct console *cs[16];
3252 int i = 0;
3253 struct console *c;
3254 ssize_t count = 0;
3255
3256 console_lock();
3257 for_each_console(c) {
3258 if (!c->device)
3259 continue;
3260 if (!c->write)
3261 continue;
3262 if ((c->flags & CON_ENABLED) == 0)
3263 continue;
3264 cs[i++] = c;
3265 if (i >= ARRAY_SIZE(cs))
3266 break;
3267 }
3268 while (i--) {
3269 int index = cs[i]->index;
3270 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3271
3272 /* don't resolve tty0 as some programs depend on it */
3273 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3274 count += tty_line_name(drv, index, buf + count);
3275 else
3276 count += sprintf(buf + count, "%s%d",
3277 cs[i]->name, cs[i]->index);
3278
3279 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3280 }
3281 console_unlock();
3282
3283 return count;
3284 }
3285 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3286
3287 static struct attribute *cons_dev_attrs[] = {
3288 &dev_attr_active.attr,
3289 NULL
3290 };
3291
3292 ATTRIBUTE_GROUPS(cons_dev);
3293
3294 static struct device *consdev;
3295
3296 void console_sysfs_notify(void)
3297 {
3298 if (consdev)
3299 sysfs_notify(&consdev->kobj, NULL, "active");
3300 }
3301
3302 /*
3303 * Ok, now we can initialize the rest of the tty devices and can count
3304 * on memory allocations, interrupts etc..
3305 */
3306 int __init tty_init(void)
3307 {
3308 cdev_init(&tty_cdev, &tty_fops);
3309 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3310 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3311 panic("Couldn't register /dev/tty driver\n");
3312 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3313
3314 cdev_init(&console_cdev, &console_fops);
3315 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3316 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3317 panic("Couldn't register /dev/console driver\n");
3318 consdev = device_create_with_groups(tty_class, NULL,
3319 MKDEV(TTYAUX_MAJOR, 1), NULL,
3320 cons_dev_groups, "console");
3321 if (IS_ERR(consdev))
3322 consdev = NULL;
3323
3324 #ifdef CONFIG_VT
3325 vty_init(&console_fops);
3326 #endif
3327 return 0;
3328 }
3329