]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/tty/tty_io.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-zesty-kernel.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * free_tty_struct - free a disused tty
161 * @tty: tty struct to free
162 *
163 * Free the write buffers, tty queue and tty memory itself.
164 *
165 * Locking: none. Must be called after tty is definitely unused
166 */
167
168 void free_tty_struct(struct tty_struct *tty)
169 {
170 if (!tty)
171 return;
172 if (tty->dev)
173 put_device(tty->dev);
174 kfree(tty->write_buf);
175 tty->magic = 0xDEADDEAD;
176 kfree(tty);
177 }
178
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181 return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
184 int tty_alloc_file(struct file *file)
185 {
186 struct tty_file_private *priv;
187
188 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189 if (!priv)
190 return -ENOMEM;
191
192 file->private_data = priv;
193
194 return 0;
195 }
196
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 struct tty_file_private *priv = file->private_data;
201
202 priv->tty = tty;
203 priv->file = file;
204
205 spin_lock(&tty_files_lock);
206 list_add(&priv->list, &tty->tty_files);
207 spin_unlock(&tty_files_lock);
208 }
209
210 /**
211 * tty_free_file - free file->private_data
212 *
213 * This shall be used only for fail path handling when tty_add_file was not
214 * called yet.
215 */
216 void tty_free_file(struct file *file)
217 {
218 struct tty_file_private *priv = file->private_data;
219
220 file->private_data = NULL;
221 kfree(priv);
222 }
223
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227 struct tty_file_private *priv = file->private_data;
228
229 spin_lock(&tty_files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty_files_lock);
232 tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239 * tty_name - return tty naming
240 * @tty: tty structure
241 * @buf: buffer for output
242 *
243 * Convert a tty structure into a name. The name reflects the kernel
244 * naming policy and if udev is in use may not reflect user space
245 *
246 * Locking: none
247 */
248
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251 if (!tty) /* Hmm. NULL pointer. That's fun. */
252 strcpy(buf, "NULL tty");
253 else
254 strcpy(buf, tty->name);
255 return buf;
256 }
257
258 EXPORT_SYMBOL(tty_name);
259
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 if (!tty) {
265 printk(KERN_WARNING
266 "null TTY for (%d:%d) in %s\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 printk(KERN_WARNING
272 "bad magic number for tty struct (%d:%d) in %s\n",
273 imajor(inode), iminor(inode), routine);
274 return 1;
275 }
276 #endif
277 return 0;
278 }
279
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0;
285
286 spin_lock(&tty_files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty_files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty->count != count) {
296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 "!= #fd's(%d) in %s\n",
298 tty->name, tty->count, count, routine);
299 return count;
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383 * tty_check_change - check for POSIX terminal changes
384 * @tty: tty to check
385 *
386 * If we try to write to, or set the state of, a terminal and we're
387 * not in the foreground, send a SIGTTOU. If the signal is blocked or
388 * ignored, go ahead and perform the operation. (POSIX 7.2)
389 *
390 * Locking: ctrl_lock
391 */
392
393 int tty_check_change(struct tty_struct *tty)
394 {
395 unsigned long flags;
396 int ret = 0;
397
398 if (current->signal->tty != tty)
399 return 0;
400
401 spin_lock_irqsave(&tty->ctrl_lock, flags);
402
403 if (!tty->pgrp) {
404 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405 goto out_unlock;
406 }
407 if (task_pgrp(current) == tty->pgrp)
408 goto out_unlock;
409 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410 if (is_ignored(SIGTTOU))
411 goto out;
412 if (is_current_pgrp_orphaned()) {
413 ret = -EIO;
414 goto out;
415 }
416 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417 set_thread_flag(TIF_SIGPENDING);
418 ret = -ERESTARTSYS;
419 out:
420 return ret;
421 out_unlock:
422 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 return ret;
424 }
425
426 EXPORT_SYMBOL(tty_check_change);
427
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429 size_t count, loff_t *ppos)
430 {
431 return 0;
432 }
433
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435 size_t count, loff_t *ppos)
436 {
437 return -EIO;
438 }
439
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447 unsigned long arg)
448 {
449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static long hung_up_tty_compat_ioctl(struct file *file,
453 unsigned int cmd, unsigned long arg)
454 {
455 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457
458 static const struct file_operations tty_fops = {
459 .llseek = no_llseek,
460 .read = tty_read,
461 .write = tty_write,
462 .poll = tty_poll,
463 .unlocked_ioctl = tty_ioctl,
464 .compat_ioctl = tty_compat_ioctl,
465 .open = tty_open,
466 .release = tty_release,
467 .fasync = tty_fasync,
468 };
469
470 static const struct file_operations console_fops = {
471 .llseek = no_llseek,
472 .read = tty_read,
473 .write = redirected_tty_write,
474 .poll = tty_poll,
475 .unlocked_ioctl = tty_ioctl,
476 .compat_ioctl = tty_compat_ioctl,
477 .open = tty_open,
478 .release = tty_release,
479 .fasync = tty_fasync,
480 };
481
482 static const struct file_operations hung_up_tty_fops = {
483 .llseek = no_llseek,
484 .read = hung_up_tty_read,
485 .write = hung_up_tty_write,
486 .poll = hung_up_tty_poll,
487 .unlocked_ioctl = hung_up_tty_ioctl,
488 .compat_ioctl = hung_up_tty_compat_ioctl,
489 .release = tty_release,
490 };
491
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494
495 /**
496 * tty_wakeup - request more data
497 * @tty: terminal
498 *
499 * Internal and external helper for wakeups of tty. This function
500 * informs the line discipline if present that the driver is ready
501 * to receive more output data.
502 */
503
504 void tty_wakeup(struct tty_struct *tty)
505 {
506 struct tty_ldisc *ld;
507
508 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509 ld = tty_ldisc_ref(tty);
510 if (ld) {
511 if (ld->ops->write_wakeup)
512 ld->ops->write_wakeup(tty);
513 tty_ldisc_deref(ld);
514 }
515 }
516 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520
521 /**
522 * tty_signal_session_leader - sends SIGHUP to session leader
523 * @tty controlling tty
524 * @exit_session if non-zero, signal all foreground group processes
525 *
526 * Send SIGHUP and SIGCONT to the session leader and its process group.
527 * Optionally, signal all processes in the foreground process group.
528 *
529 * Returns the number of processes in the session with this tty
530 * as their controlling terminal. This value is used to drop
531 * tty references for those processes.
532 */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535 struct task_struct *p;
536 int refs = 0;
537 struct pid *tty_pgrp = NULL;
538
539 read_lock(&tasklist_lock);
540 if (tty->session) {
541 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542 spin_lock_irq(&p->sighand->siglock);
543 if (p->signal->tty == tty) {
544 p->signal->tty = NULL;
545 /* We defer the dereferences outside fo
546 the tasklist lock */
547 refs++;
548 }
549 if (!p->signal->leader) {
550 spin_unlock_irq(&p->sighand->siglock);
551 continue;
552 }
553 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555 put_pid(p->signal->tty_old_pgrp); /* A noop */
556 spin_lock(&tty->ctrl_lock);
557 tty_pgrp = get_pid(tty->pgrp);
558 if (tty->pgrp)
559 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560 spin_unlock(&tty->ctrl_lock);
561 spin_unlock_irq(&p->sighand->siglock);
562 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563 }
564 read_unlock(&tasklist_lock);
565
566 if (tty_pgrp) {
567 if (exit_session)
568 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569 put_pid(tty_pgrp);
570 }
571
572 return refs;
573 }
574
575 /**
576 * __tty_hangup - actual handler for hangup events
577 * @work: tty device
578 *
579 * This can be called by a "kworker" kernel thread. That is process
580 * synchronous but doesn't hold any locks, so we need to make sure we
581 * have the appropriate locks for what we're doing.
582 *
583 * The hangup event clears any pending redirections onto the hung up
584 * device. It ensures future writes will error and it does the needed
585 * line discipline hangup and signal delivery. The tty object itself
586 * remains intact.
587 *
588 * Locking:
589 * BTM
590 * redirect lock for undoing redirection
591 * file list lock for manipulating list of ttys
592 * tty_ldiscs_lock from called functions
593 * termios_rwsem resetting termios data
594 * tasklist_lock to walk task list for hangup event
595 * ->siglock to protect ->signal/->sighand
596 */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599 struct file *cons_filp = NULL;
600 struct file *filp, *f = NULL;
601 struct tty_file_private *priv;
602 int closecount = 0, n;
603 int refs;
604
605 if (!tty)
606 return;
607
608
609 spin_lock(&redirect_lock);
610 if (redirect && file_tty(redirect) == tty) {
611 f = redirect;
612 redirect = NULL;
613 }
614 spin_unlock(&redirect_lock);
615
616 tty_lock(tty);
617
618 if (test_bit(TTY_HUPPED, &tty->flags)) {
619 tty_unlock(tty);
620 return;
621 }
622
623 /* some functions below drop BTM, so we need this bit */
624 set_bit(TTY_HUPPING, &tty->flags);
625
626 /* inuse_filps is protected by the single tty lock,
627 this really needs to change if we want to flush the
628 workqueue with the lock held */
629 check_tty_count(tty, "tty_hangup");
630
631 spin_lock(&tty_files_lock);
632 /* This breaks for file handles being sent over AF_UNIX sockets ? */
633 list_for_each_entry(priv, &tty->tty_files, list) {
634 filp = priv->file;
635 if (filp->f_op->write == redirected_tty_write)
636 cons_filp = filp;
637 if (filp->f_op->write != tty_write)
638 continue;
639 closecount++;
640 __tty_fasync(-1, filp, 0); /* can't block */
641 filp->f_op = &hung_up_tty_fops;
642 }
643 spin_unlock(&tty_files_lock);
644
645 refs = tty_signal_session_leader(tty, exit_session);
646 /* Account for the p->signal references we killed */
647 while (refs--)
648 tty_kref_put(tty);
649
650 /*
651 * it drops BTM and thus races with reopen
652 * we protect the race by TTY_HUPPING
653 */
654 tty_ldisc_hangup(tty);
655
656 spin_lock_irq(&tty->ctrl_lock);
657 clear_bit(TTY_THROTTLED, &tty->flags);
658 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659 put_pid(tty->session);
660 put_pid(tty->pgrp);
661 tty->session = NULL;
662 tty->pgrp = NULL;
663 tty->ctrl_status = 0;
664 spin_unlock_irq(&tty->ctrl_lock);
665
666 /*
667 * If one of the devices matches a console pointer, we
668 * cannot just call hangup() because that will cause
669 * tty->count and state->count to go out of sync.
670 * So we just call close() the right number of times.
671 */
672 if (cons_filp) {
673 if (tty->ops->close)
674 for (n = 0; n < closecount; n++)
675 tty->ops->close(tty, cons_filp);
676 } else if (tty->ops->hangup)
677 tty->ops->hangup(tty);
678 /*
679 * We don't want to have driver/ldisc interactions beyond
680 * the ones we did here. The driver layer expects no
681 * calls after ->hangup() from the ldisc side. However we
682 * can't yet guarantee all that.
683 */
684 set_bit(TTY_HUPPED, &tty->flags);
685 clear_bit(TTY_HUPPING, &tty->flags);
686
687 tty_unlock(tty);
688
689 if (f)
690 fput(f);
691 }
692
693 static void do_tty_hangup(struct work_struct *work)
694 {
695 struct tty_struct *tty =
696 container_of(work, struct tty_struct, hangup_work);
697
698 __tty_hangup(tty, 0);
699 }
700
701 /**
702 * tty_hangup - trigger a hangup event
703 * @tty: tty to hangup
704 *
705 * A carrier loss (virtual or otherwise) has occurred on this like
706 * schedule a hangup sequence to run after this event.
707 */
708
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712 char buf[64];
713 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715 schedule_work(&tty->hangup_work);
716 }
717
718 EXPORT_SYMBOL(tty_hangup);
719
720 /**
721 * tty_vhangup - process vhangup
722 * @tty: tty to hangup
723 *
724 * The user has asked via system call for the terminal to be hung up.
725 * We do this synchronously so that when the syscall returns the process
726 * is complete. That guarantee is necessary for security reasons.
727 */
728
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732 char buf[64];
733
734 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736 __tty_hangup(tty, 0);
737 }
738
739 EXPORT_SYMBOL(tty_vhangup);
740
741
742 /**
743 * tty_vhangup_self - process vhangup for own ctty
744 *
745 * Perform a vhangup on the current controlling tty
746 */
747
748 void tty_vhangup_self(void)
749 {
750 struct tty_struct *tty;
751
752 tty = get_current_tty();
753 if (tty) {
754 tty_vhangup(tty);
755 tty_kref_put(tty);
756 }
757 }
758
759 /**
760 * tty_vhangup_session - hangup session leader exit
761 * @tty: tty to hangup
762 *
763 * The session leader is exiting and hanging up its controlling terminal.
764 * Every process in the foreground process group is signalled SIGHUP.
765 *
766 * We do this synchronously so that when the syscall returns the process
767 * is complete. That guarantee is necessary for security reasons.
768 */
769
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 char buf[64];
774
775 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777 __tty_hangup(tty, 1);
778 }
779
780 /**
781 * tty_hung_up_p - was tty hung up
782 * @filp: file pointer of tty
783 *
784 * Return true if the tty has been subject to a vhangup or a carrier
785 * loss
786 */
787
788 int tty_hung_up_p(struct file *filp)
789 {
790 return (filp->f_op == &hung_up_tty_fops);
791 }
792
793 EXPORT_SYMBOL(tty_hung_up_p);
794
795 static void session_clear_tty(struct pid *session)
796 {
797 struct task_struct *p;
798 do_each_pid_task(session, PIDTYPE_SID, p) {
799 proc_clear_tty(p);
800 } while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802
803 /**
804 * disassociate_ctty - disconnect controlling tty
805 * @on_exit: true if exiting so need to "hang up" the session
806 *
807 * This function is typically called only by the session leader, when
808 * it wants to disassociate itself from its controlling tty.
809 *
810 * It performs the following functions:
811 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
812 * (2) Clears the tty from being controlling the session
813 * (3) Clears the controlling tty for all processes in the
814 * session group.
815 *
816 * The argument on_exit is set to 1 if called when a process is
817 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
818 *
819 * Locking:
820 * BTM is taken for hysterical raisins, and held when
821 * called from no_tty().
822 * tty_mutex is taken to protect tty
823 * ->siglock is taken to protect ->signal/->sighand
824 * tasklist_lock is taken to walk process list for sessions
825 * ->siglock is taken to protect ->signal/->sighand
826 */
827
828 void disassociate_ctty(int on_exit)
829 {
830 struct tty_struct *tty;
831
832 if (!current->signal->leader)
833 return;
834
835 tty = get_current_tty();
836 if (tty) {
837 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838 tty_vhangup_session(tty);
839 } else {
840 struct pid *tty_pgrp = tty_get_pgrp(tty);
841 if (tty_pgrp) {
842 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843 if (!on_exit)
844 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845 put_pid(tty_pgrp);
846 }
847 }
848 tty_kref_put(tty);
849
850 } else if (on_exit) {
851 struct pid *old_pgrp;
852 spin_lock_irq(&current->sighand->siglock);
853 old_pgrp = current->signal->tty_old_pgrp;
854 current->signal->tty_old_pgrp = NULL;
855 spin_unlock_irq(&current->sighand->siglock);
856 if (old_pgrp) {
857 kill_pgrp(old_pgrp, SIGHUP, on_exit);
858 kill_pgrp(old_pgrp, SIGCONT, on_exit);
859 put_pid(old_pgrp);
860 }
861 return;
862 }
863
864 spin_lock_irq(&current->sighand->siglock);
865 put_pid(current->signal->tty_old_pgrp);
866 current->signal->tty_old_pgrp = NULL;
867
868 tty = tty_kref_get(current->signal->tty);
869 if (tty) {
870 unsigned long flags;
871 spin_lock_irqsave(&tty->ctrl_lock, flags);
872 put_pid(tty->session);
873 put_pid(tty->pgrp);
874 tty->session = NULL;
875 tty->pgrp = NULL;
876 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 tty_kref_put(tty);
878 } else {
879 #ifdef TTY_DEBUG_HANGUP
880 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881 " = NULL", tty);
882 #endif
883 }
884
885 spin_unlock_irq(&current->sighand->siglock);
886 /* Now clear signal->tty under the lock */
887 read_lock(&tasklist_lock);
888 session_clear_tty(task_session(current));
889 read_unlock(&tasklist_lock);
890 }
891
892 /**
893 *
894 * no_tty - Ensure the current process does not have a controlling tty
895 */
896 void no_tty(void)
897 {
898 /* FIXME: Review locking here. The tty_lock never covered any race
899 between a new association and proc_clear_tty but possible we need
900 to protect against this anyway */
901 struct task_struct *tsk = current;
902 disassociate_ctty(0);
903 proc_clear_tty(tsk);
904 }
905
906
907 /**
908 * stop_tty - propagate flow control
909 * @tty: tty to stop
910 *
911 * Perform flow control to the driver. For PTY/TTY pairs we
912 * must also propagate the TIOCKPKT status. May be called
913 * on an already stopped device and will not re-call the driver
914 * method.
915 *
916 * This functionality is used by both the line disciplines for
917 * halting incoming flow and by the driver. It may therefore be
918 * called from any context, may be under the tty atomic_write_lock
919 * but not always.
920 *
921 * Locking:
922 * Uses the tty control lock internally
923 */
924
925 void stop_tty(struct tty_struct *tty)
926 {
927 unsigned long flags;
928 spin_lock_irqsave(&tty->ctrl_lock, flags);
929 if (tty->stopped) {
930 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931 return;
932 }
933 tty->stopped = 1;
934 if (tty->link && tty->link->packet) {
935 tty->ctrl_status &= ~TIOCPKT_START;
936 tty->ctrl_status |= TIOCPKT_STOP;
937 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
938 }
939 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 if (tty->ops->stop)
941 (tty->ops->stop)(tty);
942 }
943
944 EXPORT_SYMBOL(stop_tty);
945
946 /**
947 * start_tty - propagate flow control
948 * @tty: tty to start
949 *
950 * Start a tty that has been stopped if at all possible. Perform
951 * any necessary wakeups and propagate the TIOCPKT status. If this
952 * is the tty was previous stopped and is being started then the
953 * driver start method is invoked and the line discipline woken.
954 *
955 * Locking:
956 * ctrl_lock
957 */
958
959 void start_tty(struct tty_struct *tty)
960 {
961 unsigned long flags;
962 spin_lock_irqsave(&tty->ctrl_lock, flags);
963 if (!tty->stopped || tty->flow_stopped) {
964 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
965 return;
966 }
967 tty->stopped = 0;
968 if (tty->link && tty->link->packet) {
969 tty->ctrl_status &= ~TIOCPKT_STOP;
970 tty->ctrl_status |= TIOCPKT_START;
971 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
972 }
973 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974 if (tty->ops->start)
975 (tty->ops->start)(tty);
976 /* If we have a running line discipline it may need kicking */
977 tty_wakeup(tty);
978 }
979
980 EXPORT_SYMBOL(start_tty);
981
982 /* We limit tty time update visibility to every 8 seconds or so. */
983 static void tty_update_time(struct timespec *time)
984 {
985 unsigned long sec = get_seconds() & ~7;
986 if ((long)(sec - time->tv_sec) > 0)
987 time->tv_sec = sec;
988 }
989
990 /**
991 * tty_read - read method for tty device files
992 * @file: pointer to tty file
993 * @buf: user buffer
994 * @count: size of user buffer
995 * @ppos: unused
996 *
997 * Perform the read system call function on this terminal device. Checks
998 * for hung up devices before calling the line discipline method.
999 *
1000 * Locking:
1001 * Locks the line discipline internally while needed. Multiple
1002 * read calls may be outstanding in parallel.
1003 */
1004
1005 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1006 loff_t *ppos)
1007 {
1008 int i;
1009 struct inode *inode = file_inode(file);
1010 struct tty_struct *tty = file_tty(file);
1011 struct tty_ldisc *ld;
1012
1013 if (tty_paranoia_check(tty, inode, "tty_read"))
1014 return -EIO;
1015 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1016 return -EIO;
1017
1018 /* We want to wait for the line discipline to sort out in this
1019 situation */
1020 ld = tty_ldisc_ref_wait(tty);
1021 if (ld->ops->read)
1022 i = (ld->ops->read)(tty, file, buf, count);
1023 else
1024 i = -EIO;
1025 tty_ldisc_deref(ld);
1026
1027 if (i > 0)
1028 tty_update_time(&inode->i_atime);
1029
1030 return i;
1031 }
1032
1033 void tty_write_unlock(struct tty_struct *tty)
1034 __releases(&tty->atomic_write_lock)
1035 {
1036 mutex_unlock(&tty->atomic_write_lock);
1037 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1038 }
1039
1040 int tty_write_lock(struct tty_struct *tty, int ndelay)
1041 __acquires(&tty->atomic_write_lock)
1042 {
1043 if (!mutex_trylock(&tty->atomic_write_lock)) {
1044 if (ndelay)
1045 return -EAGAIN;
1046 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1047 return -ERESTARTSYS;
1048 }
1049 return 0;
1050 }
1051
1052 /*
1053 * Split writes up in sane blocksizes to avoid
1054 * denial-of-service type attacks
1055 */
1056 static inline ssize_t do_tty_write(
1057 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1058 struct tty_struct *tty,
1059 struct file *file,
1060 const char __user *buf,
1061 size_t count)
1062 {
1063 ssize_t ret, written = 0;
1064 unsigned int chunk;
1065
1066 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1067 if (ret < 0)
1068 return ret;
1069
1070 /*
1071 * We chunk up writes into a temporary buffer. This
1072 * simplifies low-level drivers immensely, since they
1073 * don't have locking issues and user mode accesses.
1074 *
1075 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1076 * big chunk-size..
1077 *
1078 * The default chunk-size is 2kB, because the NTTY
1079 * layer has problems with bigger chunks. It will
1080 * claim to be able to handle more characters than
1081 * it actually does.
1082 *
1083 * FIXME: This can probably go away now except that 64K chunks
1084 * are too likely to fail unless switched to vmalloc...
1085 */
1086 chunk = 2048;
1087 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1088 chunk = 65536;
1089 if (count < chunk)
1090 chunk = count;
1091
1092 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1093 if (tty->write_cnt < chunk) {
1094 unsigned char *buf_chunk;
1095
1096 if (chunk < 1024)
1097 chunk = 1024;
1098
1099 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1100 if (!buf_chunk) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104 kfree(tty->write_buf);
1105 tty->write_cnt = chunk;
1106 tty->write_buf = buf_chunk;
1107 }
1108
1109 /* Do the write .. */
1110 for (;;) {
1111 size_t size = count;
1112 if (size > chunk)
1113 size = chunk;
1114 ret = -EFAULT;
1115 if (copy_from_user(tty->write_buf, buf, size))
1116 break;
1117 ret = write(tty, file, tty->write_buf, size);
1118 if (ret <= 0)
1119 break;
1120 written += ret;
1121 buf += ret;
1122 count -= ret;
1123 if (!count)
1124 break;
1125 ret = -ERESTARTSYS;
1126 if (signal_pending(current))
1127 break;
1128 cond_resched();
1129 }
1130 if (written) {
1131 tty_update_time(&file_inode(file)->i_mtime);
1132 ret = written;
1133 }
1134 out:
1135 tty_write_unlock(tty);
1136 return ret;
1137 }
1138
1139 /**
1140 * tty_write_message - write a message to a certain tty, not just the console.
1141 * @tty: the destination tty_struct
1142 * @msg: the message to write
1143 *
1144 * This is used for messages that need to be redirected to a specific tty.
1145 * We don't put it into the syslog queue right now maybe in the future if
1146 * really needed.
1147 *
1148 * We must still hold the BTM and test the CLOSING flag for the moment.
1149 */
1150
1151 void tty_write_message(struct tty_struct *tty, char *msg)
1152 {
1153 if (tty) {
1154 mutex_lock(&tty->atomic_write_lock);
1155 tty_lock(tty);
1156 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1157 tty_unlock(tty);
1158 tty->ops->write(tty, msg, strlen(msg));
1159 } else
1160 tty_unlock(tty);
1161 tty_write_unlock(tty);
1162 }
1163 return;
1164 }
1165
1166
1167 /**
1168 * tty_write - write method for tty device file
1169 * @file: tty file pointer
1170 * @buf: user data to write
1171 * @count: bytes to write
1172 * @ppos: unused
1173 *
1174 * Write data to a tty device via the line discipline.
1175 *
1176 * Locking:
1177 * Locks the line discipline as required
1178 * Writes to the tty driver are serialized by the atomic_write_lock
1179 * and are then processed in chunks to the device. The line discipline
1180 * write method will not be invoked in parallel for each device.
1181 */
1182
1183 static ssize_t tty_write(struct file *file, const char __user *buf,
1184 size_t count, loff_t *ppos)
1185 {
1186 struct tty_struct *tty = file_tty(file);
1187 struct tty_ldisc *ld;
1188 ssize_t ret;
1189
1190 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1191 return -EIO;
1192 if (!tty || !tty->ops->write ||
1193 (test_bit(TTY_IO_ERROR, &tty->flags)))
1194 return -EIO;
1195 /* Short term debug to catch buggy drivers */
1196 if (tty->ops->write_room == NULL)
1197 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1198 tty->driver->name);
1199 ld = tty_ldisc_ref_wait(tty);
1200 if (!ld->ops->write)
1201 ret = -EIO;
1202 else
1203 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1204 tty_ldisc_deref(ld);
1205 return ret;
1206 }
1207
1208 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1209 size_t count, loff_t *ppos)
1210 {
1211 struct file *p = NULL;
1212
1213 spin_lock(&redirect_lock);
1214 if (redirect)
1215 p = get_file(redirect);
1216 spin_unlock(&redirect_lock);
1217
1218 if (p) {
1219 ssize_t res;
1220 res = vfs_write(p, buf, count, &p->f_pos);
1221 fput(p);
1222 return res;
1223 }
1224 return tty_write(file, buf, count, ppos);
1225 }
1226
1227 static char ptychar[] = "pqrstuvwxyzabcde";
1228
1229 /**
1230 * pty_line_name - generate name for a pty
1231 * @driver: the tty driver in use
1232 * @index: the minor number
1233 * @p: output buffer of at least 6 bytes
1234 *
1235 * Generate a name from a driver reference and write it to the output
1236 * buffer.
1237 *
1238 * Locking: None
1239 */
1240 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1241 {
1242 int i = index + driver->name_base;
1243 /* ->name is initialized to "ttyp", but "tty" is expected */
1244 sprintf(p, "%s%c%x",
1245 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1246 ptychar[i >> 4 & 0xf], i & 0xf);
1247 }
1248
1249 /**
1250 * tty_line_name - generate name for a tty
1251 * @driver: the tty driver in use
1252 * @index: the minor number
1253 * @p: output buffer of at least 7 bytes
1254 *
1255 * Generate a name from a driver reference and write it to the output
1256 * buffer.
1257 *
1258 * Locking: None
1259 */
1260 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1261 {
1262 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1263 return sprintf(p, "%s", driver->name);
1264 else
1265 return sprintf(p, "%s%d", driver->name,
1266 index + driver->name_base);
1267 }
1268
1269 /**
1270 * tty_driver_lookup_tty() - find an existing tty, if any
1271 * @driver: the driver for the tty
1272 * @idx: the minor number
1273 *
1274 * Return the tty, if found or ERR_PTR() otherwise.
1275 *
1276 * Locking: tty_mutex must be held. If tty is found, the mutex must
1277 * be held until the 'fast-open' is also done. Will change once we
1278 * have refcounting in the driver and per driver locking
1279 */
1280 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1281 struct inode *inode, int idx)
1282 {
1283 if (driver->ops->lookup)
1284 return driver->ops->lookup(driver, inode, idx);
1285
1286 return driver->ttys[idx];
1287 }
1288
1289 /**
1290 * tty_init_termios - helper for termios setup
1291 * @tty: the tty to set up
1292 *
1293 * Initialise the termios structures for this tty. Thus runs under
1294 * the tty_mutex currently so we can be relaxed about ordering.
1295 */
1296
1297 int tty_init_termios(struct tty_struct *tty)
1298 {
1299 struct ktermios *tp;
1300 int idx = tty->index;
1301
1302 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1303 tty->termios = tty->driver->init_termios;
1304 else {
1305 /* Check for lazy saved data */
1306 tp = tty->driver->termios[idx];
1307 if (tp != NULL)
1308 tty->termios = *tp;
1309 else
1310 tty->termios = tty->driver->init_termios;
1311 }
1312 /* Compatibility until drivers always set this */
1313 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1314 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1315 return 0;
1316 }
1317 EXPORT_SYMBOL_GPL(tty_init_termios);
1318
1319 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1320 {
1321 int ret = tty_init_termios(tty);
1322 if (ret)
1323 return ret;
1324
1325 tty_driver_kref_get(driver);
1326 tty->count++;
1327 driver->ttys[tty->index] = tty;
1328 return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(tty_standard_install);
1331
1332 /**
1333 * tty_driver_install_tty() - install a tty entry in the driver
1334 * @driver: the driver for the tty
1335 * @tty: the tty
1336 *
1337 * Install a tty object into the driver tables. The tty->index field
1338 * will be set by the time this is called. This method is responsible
1339 * for ensuring any need additional structures are allocated and
1340 * configured.
1341 *
1342 * Locking: tty_mutex for now
1343 */
1344 static int tty_driver_install_tty(struct tty_driver *driver,
1345 struct tty_struct *tty)
1346 {
1347 return driver->ops->install ? driver->ops->install(driver, tty) :
1348 tty_standard_install(driver, tty);
1349 }
1350
1351 /**
1352 * tty_driver_remove_tty() - remove a tty from the driver tables
1353 * @driver: the driver for the tty
1354 * @idx: the minor number
1355 *
1356 * Remvoe a tty object from the driver tables. The tty->index field
1357 * will be set by the time this is called.
1358 *
1359 * Locking: tty_mutex for now
1360 */
1361 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1362 {
1363 if (driver->ops->remove)
1364 driver->ops->remove(driver, tty);
1365 else
1366 driver->ttys[tty->index] = NULL;
1367 }
1368
1369 /*
1370 * tty_reopen() - fast re-open of an open tty
1371 * @tty - the tty to open
1372 *
1373 * Return 0 on success, -errno on error.
1374 *
1375 * Locking: tty_mutex must be held from the time the tty was found
1376 * till this open completes.
1377 */
1378 static int tty_reopen(struct tty_struct *tty)
1379 {
1380 struct tty_driver *driver = tty->driver;
1381
1382 if (test_bit(TTY_CLOSING, &tty->flags) ||
1383 test_bit(TTY_HUPPING, &tty->flags))
1384 return -EIO;
1385
1386 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1387 driver->subtype == PTY_TYPE_MASTER) {
1388 /*
1389 * special case for PTY masters: only one open permitted,
1390 * and the slave side open count is incremented as well.
1391 */
1392 if (tty->count)
1393 return -EIO;
1394
1395 tty->link->count++;
1396 }
1397 tty->count++;
1398
1399 WARN_ON(!tty->ldisc);
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * tty_init_dev - initialise a tty device
1406 * @driver: tty driver we are opening a device on
1407 * @idx: device index
1408 * @ret_tty: returned tty structure
1409 *
1410 * Prepare a tty device. This may not be a "new" clean device but
1411 * could also be an active device. The pty drivers require special
1412 * handling because of this.
1413 *
1414 * Locking:
1415 * The function is called under the tty_mutex, which
1416 * protects us from the tty struct or driver itself going away.
1417 *
1418 * On exit the tty device has the line discipline attached and
1419 * a reference count of 1. If a pair was created for pty/tty use
1420 * and the other was a pty master then it too has a reference count of 1.
1421 *
1422 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1423 * failed open. The new code protects the open with a mutex, so it's
1424 * really quite straightforward. The mutex locking can probably be
1425 * relaxed for the (most common) case of reopening a tty.
1426 */
1427
1428 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1429 {
1430 struct tty_struct *tty;
1431 int retval;
1432
1433 /*
1434 * First time open is complex, especially for PTY devices.
1435 * This code guarantees that either everything succeeds and the
1436 * TTY is ready for operation, or else the table slots are vacated
1437 * and the allocated memory released. (Except that the termios
1438 * and locked termios may be retained.)
1439 */
1440
1441 if (!try_module_get(driver->owner))
1442 return ERR_PTR(-ENODEV);
1443
1444 tty = alloc_tty_struct(driver, idx);
1445 if (!tty) {
1446 retval = -ENOMEM;
1447 goto err_module_put;
1448 }
1449
1450 tty_lock(tty);
1451 retval = tty_driver_install_tty(driver, tty);
1452 if (retval < 0)
1453 goto err_deinit_tty;
1454
1455 if (!tty->port)
1456 tty->port = driver->ports[idx];
1457
1458 WARN_RATELIMIT(!tty->port,
1459 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1460 __func__, tty->driver->name);
1461
1462 tty->port->itty = tty;
1463
1464 /*
1465 * Structures all installed ... call the ldisc open routines.
1466 * If we fail here just call release_tty to clean up. No need
1467 * to decrement the use counts, as release_tty doesn't care.
1468 */
1469 retval = tty_ldisc_setup(tty, tty->link);
1470 if (retval)
1471 goto err_release_tty;
1472 /* Return the tty locked so that it cannot vanish under the caller */
1473 return tty;
1474
1475 err_deinit_tty:
1476 tty_unlock(tty);
1477 deinitialize_tty_struct(tty);
1478 free_tty_struct(tty);
1479 err_module_put:
1480 module_put(driver->owner);
1481 return ERR_PTR(retval);
1482
1483 /* call the tty release_tty routine to clean out this slot */
1484 err_release_tty:
1485 tty_unlock(tty);
1486 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1487 "clearing slot %d\n", idx);
1488 release_tty(tty, idx);
1489 return ERR_PTR(retval);
1490 }
1491
1492 void tty_free_termios(struct tty_struct *tty)
1493 {
1494 struct ktermios *tp;
1495 int idx = tty->index;
1496
1497 /* If the port is going to reset then it has no termios to save */
1498 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1499 return;
1500
1501 /* Stash the termios data */
1502 tp = tty->driver->termios[idx];
1503 if (tp == NULL) {
1504 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1505 if (tp == NULL) {
1506 pr_warn("tty: no memory to save termios state.\n");
1507 return;
1508 }
1509 tty->driver->termios[idx] = tp;
1510 }
1511 *tp = tty->termios;
1512 }
1513 EXPORT_SYMBOL(tty_free_termios);
1514
1515 /**
1516 * tty_flush_works - flush all works of a tty
1517 * @tty: tty device to flush works for
1518 *
1519 * Sync flush all works belonging to @tty.
1520 */
1521 static void tty_flush_works(struct tty_struct *tty)
1522 {
1523 flush_work(&tty->SAK_work);
1524 flush_work(&tty->hangup_work);
1525 }
1526
1527 /**
1528 * release_one_tty - release tty structure memory
1529 * @kref: kref of tty we are obliterating
1530 *
1531 * Releases memory associated with a tty structure, and clears out the
1532 * driver table slots. This function is called when a device is no longer
1533 * in use. It also gets called when setup of a device fails.
1534 *
1535 * Locking:
1536 * takes the file list lock internally when working on the list
1537 * of ttys that the driver keeps.
1538 *
1539 * This method gets called from a work queue so that the driver private
1540 * cleanup ops can sleep (needed for USB at least)
1541 */
1542 static void release_one_tty(struct work_struct *work)
1543 {
1544 struct tty_struct *tty =
1545 container_of(work, struct tty_struct, hangup_work);
1546 struct tty_driver *driver = tty->driver;
1547
1548 if (tty->ops->cleanup)
1549 tty->ops->cleanup(tty);
1550
1551 tty->magic = 0;
1552 tty_driver_kref_put(driver);
1553 module_put(driver->owner);
1554
1555 spin_lock(&tty_files_lock);
1556 list_del_init(&tty->tty_files);
1557 spin_unlock(&tty_files_lock);
1558
1559 put_pid(tty->pgrp);
1560 put_pid(tty->session);
1561 free_tty_struct(tty);
1562 }
1563
1564 static void queue_release_one_tty(struct kref *kref)
1565 {
1566 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1567
1568 /* The hangup queue is now free so we can reuse it rather than
1569 waste a chunk of memory for each port */
1570 INIT_WORK(&tty->hangup_work, release_one_tty);
1571 schedule_work(&tty->hangup_work);
1572 }
1573
1574 /**
1575 * tty_kref_put - release a tty kref
1576 * @tty: tty device
1577 *
1578 * Release a reference to a tty device and if need be let the kref
1579 * layer destruct the object for us
1580 */
1581
1582 void tty_kref_put(struct tty_struct *tty)
1583 {
1584 if (tty)
1585 kref_put(&tty->kref, queue_release_one_tty);
1586 }
1587 EXPORT_SYMBOL(tty_kref_put);
1588
1589 /**
1590 * release_tty - release tty structure memory
1591 *
1592 * Release both @tty and a possible linked partner (think pty pair),
1593 * and decrement the refcount of the backing module.
1594 *
1595 * Locking:
1596 * tty_mutex
1597 * takes the file list lock internally when working on the list
1598 * of ttys that the driver keeps.
1599 *
1600 */
1601 static void release_tty(struct tty_struct *tty, int idx)
1602 {
1603 /* This should always be true but check for the moment */
1604 WARN_ON(tty->index != idx);
1605 WARN_ON(!mutex_is_locked(&tty_mutex));
1606 if (tty->ops->shutdown)
1607 tty->ops->shutdown(tty);
1608 tty_free_termios(tty);
1609 tty_driver_remove_tty(tty->driver, tty);
1610 tty->port->itty = NULL;
1611 if (tty->link)
1612 tty->link->port->itty = NULL;
1613 cancel_work_sync(&tty->port->buf.work);
1614
1615 if (tty->link)
1616 tty_kref_put(tty->link);
1617 tty_kref_put(tty);
1618 }
1619
1620 /**
1621 * tty_release_checks - check a tty before real release
1622 * @tty: tty to check
1623 * @o_tty: link of @tty (if any)
1624 * @idx: index of the tty
1625 *
1626 * Performs some paranoid checking before true release of the @tty.
1627 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1628 */
1629 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1630 int idx)
1631 {
1632 #ifdef TTY_PARANOIA_CHECK
1633 if (idx < 0 || idx >= tty->driver->num) {
1634 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1635 __func__, tty->name);
1636 return -1;
1637 }
1638
1639 /* not much to check for devpts */
1640 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1641 return 0;
1642
1643 if (tty != tty->driver->ttys[idx]) {
1644 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1645 __func__, idx, tty->name);
1646 return -1;
1647 }
1648 if (tty->driver->other) {
1649 if (o_tty != tty->driver->other->ttys[idx]) {
1650 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1651 __func__, idx, tty->name);
1652 return -1;
1653 }
1654 if (o_tty->link != tty) {
1655 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1656 return -1;
1657 }
1658 }
1659 #endif
1660 return 0;
1661 }
1662
1663 /**
1664 * tty_release - vfs callback for close
1665 * @inode: inode of tty
1666 * @filp: file pointer for handle to tty
1667 *
1668 * Called the last time each file handle is closed that references
1669 * this tty. There may however be several such references.
1670 *
1671 * Locking:
1672 * Takes bkl. See tty_release_dev
1673 *
1674 * Even releasing the tty structures is a tricky business.. We have
1675 * to be very careful that the structures are all released at the
1676 * same time, as interrupts might otherwise get the wrong pointers.
1677 *
1678 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1679 * lead to double frees or releasing memory still in use.
1680 */
1681
1682 int tty_release(struct inode *inode, struct file *filp)
1683 {
1684 struct tty_struct *tty = file_tty(filp);
1685 struct tty_struct *o_tty;
1686 int pty_master, tty_closing, o_tty_closing, do_sleep;
1687 int idx;
1688 char buf[64];
1689
1690 if (tty_paranoia_check(tty, inode, __func__))
1691 return 0;
1692
1693 tty_lock(tty);
1694 check_tty_count(tty, __func__);
1695
1696 __tty_fasync(-1, filp, 0);
1697
1698 idx = tty->index;
1699 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1700 tty->driver->subtype == PTY_TYPE_MASTER);
1701 /* Review: parallel close */
1702 o_tty = tty->link;
1703
1704 if (tty_release_checks(tty, o_tty, idx)) {
1705 tty_unlock(tty);
1706 return 0;
1707 }
1708
1709 #ifdef TTY_DEBUG_HANGUP
1710 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1711 tty_name(tty, buf), tty->count);
1712 #endif
1713
1714 if (tty->ops->close)
1715 tty->ops->close(tty, filp);
1716
1717 tty_unlock(tty);
1718 /*
1719 * Sanity check: if tty->count is going to zero, there shouldn't be
1720 * any waiters on tty->read_wait or tty->write_wait. We test the
1721 * wait queues and kick everyone out _before_ actually starting to
1722 * close. This ensures that we won't block while releasing the tty
1723 * structure.
1724 *
1725 * The test for the o_tty closing is necessary, since the master and
1726 * slave sides may close in any order. If the slave side closes out
1727 * first, its count will be one, since the master side holds an open.
1728 * Thus this test wouldn't be triggered at the time the slave closes,
1729 * so we do it now.
1730 *
1731 * Note that it's possible for the tty to be opened again while we're
1732 * flushing out waiters. By recalculating the closing flags before
1733 * each iteration we avoid any problems.
1734 */
1735 while (1) {
1736 /* Guard against races with tty->count changes elsewhere and
1737 opens on /dev/tty */
1738
1739 mutex_lock(&tty_mutex);
1740 tty_lock_pair(tty, o_tty);
1741 tty_closing = tty->count <= 1;
1742 o_tty_closing = o_tty &&
1743 (o_tty->count <= (pty_master ? 1 : 0));
1744 do_sleep = 0;
1745
1746 if (tty_closing) {
1747 if (waitqueue_active(&tty->read_wait)) {
1748 wake_up_poll(&tty->read_wait, POLLIN);
1749 do_sleep++;
1750 }
1751 if (waitqueue_active(&tty->write_wait)) {
1752 wake_up_poll(&tty->write_wait, POLLOUT);
1753 do_sleep++;
1754 }
1755 }
1756 if (o_tty_closing) {
1757 if (waitqueue_active(&o_tty->read_wait)) {
1758 wake_up_poll(&o_tty->read_wait, POLLIN);
1759 do_sleep++;
1760 }
1761 if (waitqueue_active(&o_tty->write_wait)) {
1762 wake_up_poll(&o_tty->write_wait, POLLOUT);
1763 do_sleep++;
1764 }
1765 }
1766 if (!do_sleep)
1767 break;
1768
1769 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1770 __func__, tty_name(tty, buf));
1771 tty_unlock_pair(tty, o_tty);
1772 mutex_unlock(&tty_mutex);
1773 schedule();
1774 }
1775
1776 /*
1777 * The closing flags are now consistent with the open counts on
1778 * both sides, and we've completed the last operation that could
1779 * block, so it's safe to proceed with closing.
1780 *
1781 * We must *not* drop the tty_mutex until we ensure that a further
1782 * entry into tty_open can not pick up this tty.
1783 */
1784 if (pty_master) {
1785 if (--o_tty->count < 0) {
1786 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1787 __func__, o_tty->count, tty_name(o_tty, buf));
1788 o_tty->count = 0;
1789 }
1790 }
1791 if (--tty->count < 0) {
1792 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1793 __func__, tty->count, tty_name(tty, buf));
1794 tty->count = 0;
1795 }
1796
1797 /*
1798 * We've decremented tty->count, so we need to remove this file
1799 * descriptor off the tty->tty_files list; this serves two
1800 * purposes:
1801 * - check_tty_count sees the correct number of file descriptors
1802 * associated with this tty.
1803 * - do_tty_hangup no longer sees this file descriptor as
1804 * something that needs to be handled for hangups.
1805 */
1806 tty_del_file(filp);
1807
1808 /*
1809 * Perform some housekeeping before deciding whether to return.
1810 *
1811 * Set the TTY_CLOSING flag if this was the last open. In the
1812 * case of a pty we may have to wait around for the other side
1813 * to close, and TTY_CLOSING makes sure we can't be reopened.
1814 */
1815 if (tty_closing)
1816 set_bit(TTY_CLOSING, &tty->flags);
1817 if (o_tty_closing)
1818 set_bit(TTY_CLOSING, &o_tty->flags);
1819
1820 /*
1821 * If _either_ side is closing, make sure there aren't any
1822 * processes that still think tty or o_tty is their controlling
1823 * tty.
1824 */
1825 if (tty_closing || o_tty_closing) {
1826 read_lock(&tasklist_lock);
1827 session_clear_tty(tty->session);
1828 if (o_tty)
1829 session_clear_tty(o_tty->session);
1830 read_unlock(&tasklist_lock);
1831 }
1832
1833 mutex_unlock(&tty_mutex);
1834 tty_unlock_pair(tty, o_tty);
1835 /* At this point the TTY_CLOSING flag should ensure a dead tty
1836 cannot be re-opened by a racing opener */
1837
1838 /* check whether both sides are closing ... */
1839 if (!tty_closing || (o_tty && !o_tty_closing))
1840 return 0;
1841
1842 #ifdef TTY_DEBUG_HANGUP
1843 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1844 #endif
1845 /*
1846 * Ask the line discipline code to release its structures
1847 */
1848 tty_ldisc_release(tty, o_tty);
1849
1850 /* Wait for pending work before tty destruction commmences */
1851 tty_flush_works(tty);
1852 if (o_tty)
1853 tty_flush_works(o_tty);
1854
1855 #ifdef TTY_DEBUG_HANGUP
1856 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1857 #endif
1858 /*
1859 * The release_tty function takes care of the details of clearing
1860 * the slots and preserving the termios structure. The tty_unlock_pair
1861 * should be safe as we keep a kref while the tty is locked (so the
1862 * unlock never unlocks a freed tty).
1863 */
1864 mutex_lock(&tty_mutex);
1865 release_tty(tty, idx);
1866 mutex_unlock(&tty_mutex);
1867
1868 return 0;
1869 }
1870
1871 /**
1872 * tty_open_current_tty - get tty of current task for open
1873 * @device: device number
1874 * @filp: file pointer to tty
1875 * @return: tty of the current task iff @device is /dev/tty
1876 *
1877 * We cannot return driver and index like for the other nodes because
1878 * devpts will not work then. It expects inodes to be from devpts FS.
1879 *
1880 * We need to move to returning a refcounted object from all the lookup
1881 * paths including this one.
1882 */
1883 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1884 {
1885 struct tty_struct *tty;
1886
1887 if (device != MKDEV(TTYAUX_MAJOR, 0))
1888 return NULL;
1889
1890 tty = get_current_tty();
1891 if (!tty)
1892 return ERR_PTR(-ENXIO);
1893
1894 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895 /* noctty = 1; */
1896 tty_kref_put(tty);
1897 /* FIXME: we put a reference and return a TTY! */
1898 /* This is only safe because the caller holds tty_mutex */
1899 return tty;
1900 }
1901
1902 /**
1903 * tty_lookup_driver - lookup a tty driver for a given device file
1904 * @device: device number
1905 * @filp: file pointer to tty
1906 * @noctty: set if the device should not become a controlling tty
1907 * @index: index for the device in the @return driver
1908 * @return: driver for this inode (with increased refcount)
1909 *
1910 * If @return is not erroneous, the caller is responsible to decrement the
1911 * refcount by tty_driver_kref_put.
1912 *
1913 * Locking: tty_mutex protects get_tty_driver
1914 */
1915 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1916 int *noctty, int *index)
1917 {
1918 struct tty_driver *driver;
1919
1920 switch (device) {
1921 #ifdef CONFIG_VT
1922 case MKDEV(TTY_MAJOR, 0): {
1923 extern struct tty_driver *console_driver;
1924 driver = tty_driver_kref_get(console_driver);
1925 *index = fg_console;
1926 *noctty = 1;
1927 break;
1928 }
1929 #endif
1930 case MKDEV(TTYAUX_MAJOR, 1): {
1931 struct tty_driver *console_driver = console_device(index);
1932 if (console_driver) {
1933 driver = tty_driver_kref_get(console_driver);
1934 if (driver) {
1935 /* Don't let /dev/console block */
1936 filp->f_flags |= O_NONBLOCK;
1937 *noctty = 1;
1938 break;
1939 }
1940 }
1941 return ERR_PTR(-ENODEV);
1942 }
1943 default:
1944 driver = get_tty_driver(device, index);
1945 if (!driver)
1946 return ERR_PTR(-ENODEV);
1947 break;
1948 }
1949 return driver;
1950 }
1951
1952 /**
1953 * tty_open - open a tty device
1954 * @inode: inode of device file
1955 * @filp: file pointer to tty
1956 *
1957 * tty_open and tty_release keep up the tty count that contains the
1958 * number of opens done on a tty. We cannot use the inode-count, as
1959 * different inodes might point to the same tty.
1960 *
1961 * Open-counting is needed for pty masters, as well as for keeping
1962 * track of serial lines: DTR is dropped when the last close happens.
1963 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1964 *
1965 * The termios state of a pty is reset on first open so that
1966 * settings don't persist across reuse.
1967 *
1968 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1969 * tty->count should protect the rest.
1970 * ->siglock protects ->signal/->sighand
1971 *
1972 * Note: the tty_unlock/lock cases without a ref are only safe due to
1973 * tty_mutex
1974 */
1975
1976 static int tty_open(struct inode *inode, struct file *filp)
1977 {
1978 struct tty_struct *tty;
1979 int noctty, retval;
1980 struct tty_driver *driver = NULL;
1981 int index;
1982 dev_t device = inode->i_rdev;
1983 unsigned saved_flags = filp->f_flags;
1984
1985 nonseekable_open(inode, filp);
1986
1987 retry_open:
1988 retval = tty_alloc_file(filp);
1989 if (retval)
1990 return -ENOMEM;
1991
1992 noctty = filp->f_flags & O_NOCTTY;
1993 index = -1;
1994 retval = 0;
1995
1996 mutex_lock(&tty_mutex);
1997 /* This is protected by the tty_mutex */
1998 tty = tty_open_current_tty(device, filp);
1999 if (IS_ERR(tty)) {
2000 retval = PTR_ERR(tty);
2001 goto err_unlock;
2002 } else if (!tty) {
2003 driver = tty_lookup_driver(device, filp, &noctty, &index);
2004 if (IS_ERR(driver)) {
2005 retval = PTR_ERR(driver);
2006 goto err_unlock;
2007 }
2008
2009 /* check whether we're reopening an existing tty */
2010 tty = tty_driver_lookup_tty(driver, inode, index);
2011 if (IS_ERR(tty)) {
2012 retval = PTR_ERR(tty);
2013 goto err_unlock;
2014 }
2015 }
2016
2017 if (tty) {
2018 tty_lock(tty);
2019 retval = tty_reopen(tty);
2020 if (retval < 0) {
2021 tty_unlock(tty);
2022 tty = ERR_PTR(retval);
2023 }
2024 } else /* Returns with the tty_lock held for now */
2025 tty = tty_init_dev(driver, index);
2026
2027 mutex_unlock(&tty_mutex);
2028 if (driver)
2029 tty_driver_kref_put(driver);
2030 if (IS_ERR(tty)) {
2031 retval = PTR_ERR(tty);
2032 goto err_file;
2033 }
2034
2035 tty_add_file(tty, filp);
2036
2037 check_tty_count(tty, __func__);
2038 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2039 tty->driver->subtype == PTY_TYPE_MASTER)
2040 noctty = 1;
2041 #ifdef TTY_DEBUG_HANGUP
2042 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2043 #endif
2044 if (tty->ops->open)
2045 retval = tty->ops->open(tty, filp);
2046 else
2047 retval = -ENODEV;
2048 filp->f_flags = saved_flags;
2049
2050 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2051 !capable(CAP_SYS_ADMIN))
2052 retval = -EBUSY;
2053
2054 if (retval) {
2055 #ifdef TTY_DEBUG_HANGUP
2056 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2057 retval, tty->name);
2058 #endif
2059 tty_unlock(tty); /* need to call tty_release without BTM */
2060 tty_release(inode, filp);
2061 if (retval != -ERESTARTSYS)
2062 return retval;
2063
2064 if (signal_pending(current))
2065 return retval;
2066
2067 schedule();
2068 /*
2069 * Need to reset f_op in case a hangup happened.
2070 */
2071 if (filp->f_op == &hung_up_tty_fops)
2072 filp->f_op = &tty_fops;
2073 goto retry_open;
2074 }
2075 clear_bit(TTY_HUPPED, &tty->flags);
2076 tty_unlock(tty);
2077
2078
2079 mutex_lock(&tty_mutex);
2080 tty_lock(tty);
2081 spin_lock_irq(&current->sighand->siglock);
2082 if (!noctty &&
2083 current->signal->leader &&
2084 !current->signal->tty &&
2085 tty->session == NULL)
2086 __proc_set_tty(current, tty);
2087 spin_unlock_irq(&current->sighand->siglock);
2088 tty_unlock(tty);
2089 mutex_unlock(&tty_mutex);
2090 return 0;
2091 err_unlock:
2092 mutex_unlock(&tty_mutex);
2093 /* after locks to avoid deadlock */
2094 if (!IS_ERR_OR_NULL(driver))
2095 tty_driver_kref_put(driver);
2096 err_file:
2097 tty_free_file(filp);
2098 return retval;
2099 }
2100
2101
2102
2103 /**
2104 * tty_poll - check tty status
2105 * @filp: file being polled
2106 * @wait: poll wait structures to update
2107 *
2108 * Call the line discipline polling method to obtain the poll
2109 * status of the device.
2110 *
2111 * Locking: locks called line discipline but ldisc poll method
2112 * may be re-entered freely by other callers.
2113 */
2114
2115 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2116 {
2117 struct tty_struct *tty = file_tty(filp);
2118 struct tty_ldisc *ld;
2119 int ret = 0;
2120
2121 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2122 return 0;
2123
2124 ld = tty_ldisc_ref_wait(tty);
2125 if (ld->ops->poll)
2126 ret = (ld->ops->poll)(tty, filp, wait);
2127 tty_ldisc_deref(ld);
2128 return ret;
2129 }
2130
2131 static int __tty_fasync(int fd, struct file *filp, int on)
2132 {
2133 struct tty_struct *tty = file_tty(filp);
2134 struct tty_ldisc *ldisc;
2135 unsigned long flags;
2136 int retval = 0;
2137
2138 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2139 goto out;
2140
2141 retval = fasync_helper(fd, filp, on, &tty->fasync);
2142 if (retval <= 0)
2143 goto out;
2144
2145 ldisc = tty_ldisc_ref(tty);
2146 if (ldisc) {
2147 if (ldisc->ops->fasync)
2148 ldisc->ops->fasync(tty, on);
2149 tty_ldisc_deref(ldisc);
2150 }
2151
2152 if (on) {
2153 enum pid_type type;
2154 struct pid *pid;
2155
2156 spin_lock_irqsave(&tty->ctrl_lock, flags);
2157 if (tty->pgrp) {
2158 pid = tty->pgrp;
2159 type = PIDTYPE_PGID;
2160 } else {
2161 pid = task_pid(current);
2162 type = PIDTYPE_PID;
2163 }
2164 get_pid(pid);
2165 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2166 retval = __f_setown(filp, pid, type, 0);
2167 put_pid(pid);
2168 }
2169 out:
2170 return retval;
2171 }
2172
2173 static int tty_fasync(int fd, struct file *filp, int on)
2174 {
2175 struct tty_struct *tty = file_tty(filp);
2176 int retval;
2177
2178 tty_lock(tty);
2179 retval = __tty_fasync(fd, filp, on);
2180 tty_unlock(tty);
2181
2182 return retval;
2183 }
2184
2185 /**
2186 * tiocsti - fake input character
2187 * @tty: tty to fake input into
2188 * @p: pointer to character
2189 *
2190 * Fake input to a tty device. Does the necessary locking and
2191 * input management.
2192 *
2193 * FIXME: does not honour flow control ??
2194 *
2195 * Locking:
2196 * Called functions take tty_ldiscs_lock
2197 * current->signal->tty check is safe without locks
2198 *
2199 * FIXME: may race normal receive processing
2200 */
2201
2202 static int tiocsti(struct tty_struct *tty, char __user *p)
2203 {
2204 char ch, mbz = 0;
2205 struct tty_ldisc *ld;
2206
2207 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2208 return -EPERM;
2209 if (get_user(ch, p))
2210 return -EFAULT;
2211 tty_audit_tiocsti(tty, ch);
2212 ld = tty_ldisc_ref_wait(tty);
2213 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2214 tty_ldisc_deref(ld);
2215 return 0;
2216 }
2217
2218 /**
2219 * tiocgwinsz - implement window query ioctl
2220 * @tty; tty
2221 * @arg: user buffer for result
2222 *
2223 * Copies the kernel idea of the window size into the user buffer.
2224 *
2225 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2226 * is consistent.
2227 */
2228
2229 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2230 {
2231 int err;
2232
2233 mutex_lock(&tty->winsize_mutex);
2234 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2235 mutex_unlock(&tty->winsize_mutex);
2236
2237 return err ? -EFAULT: 0;
2238 }
2239
2240 /**
2241 * tty_do_resize - resize event
2242 * @tty: tty being resized
2243 * @rows: rows (character)
2244 * @cols: cols (character)
2245 *
2246 * Update the termios variables and send the necessary signals to
2247 * peform a terminal resize correctly
2248 */
2249
2250 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2251 {
2252 struct pid *pgrp;
2253 unsigned long flags;
2254
2255 /* Lock the tty */
2256 mutex_lock(&tty->winsize_mutex);
2257 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2258 goto done;
2259 /* Get the PID values and reference them so we can
2260 avoid holding the tty ctrl lock while sending signals */
2261 spin_lock_irqsave(&tty->ctrl_lock, flags);
2262 pgrp = get_pid(tty->pgrp);
2263 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2264
2265 if (pgrp)
2266 kill_pgrp(pgrp, SIGWINCH, 1);
2267 put_pid(pgrp);
2268
2269 tty->winsize = *ws;
2270 done:
2271 mutex_unlock(&tty->winsize_mutex);
2272 return 0;
2273 }
2274 EXPORT_SYMBOL(tty_do_resize);
2275
2276 /**
2277 * tiocswinsz - implement window size set ioctl
2278 * @tty; tty side of tty
2279 * @arg: user buffer for result
2280 *
2281 * Copies the user idea of the window size to the kernel. Traditionally
2282 * this is just advisory information but for the Linux console it
2283 * actually has driver level meaning and triggers a VC resize.
2284 *
2285 * Locking:
2286 * Driver dependent. The default do_resize method takes the
2287 * tty termios mutex and ctrl_lock. The console takes its own lock
2288 * then calls into the default method.
2289 */
2290
2291 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2292 {
2293 struct winsize tmp_ws;
2294 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2295 return -EFAULT;
2296
2297 if (tty->ops->resize)
2298 return tty->ops->resize(tty, &tmp_ws);
2299 else
2300 return tty_do_resize(tty, &tmp_ws);
2301 }
2302
2303 /**
2304 * tioccons - allow admin to move logical console
2305 * @file: the file to become console
2306 *
2307 * Allow the administrator to move the redirected console device
2308 *
2309 * Locking: uses redirect_lock to guard the redirect information
2310 */
2311
2312 static int tioccons(struct file *file)
2313 {
2314 if (!capable(CAP_SYS_ADMIN))
2315 return -EPERM;
2316 if (file->f_op->write == redirected_tty_write) {
2317 struct file *f;
2318 spin_lock(&redirect_lock);
2319 f = redirect;
2320 redirect = NULL;
2321 spin_unlock(&redirect_lock);
2322 if (f)
2323 fput(f);
2324 return 0;
2325 }
2326 spin_lock(&redirect_lock);
2327 if (redirect) {
2328 spin_unlock(&redirect_lock);
2329 return -EBUSY;
2330 }
2331 redirect = get_file(file);
2332 spin_unlock(&redirect_lock);
2333 return 0;
2334 }
2335
2336 /**
2337 * fionbio - non blocking ioctl
2338 * @file: file to set blocking value
2339 * @p: user parameter
2340 *
2341 * Historical tty interfaces had a blocking control ioctl before
2342 * the generic functionality existed. This piece of history is preserved
2343 * in the expected tty API of posix OS's.
2344 *
2345 * Locking: none, the open file handle ensures it won't go away.
2346 */
2347
2348 static int fionbio(struct file *file, int __user *p)
2349 {
2350 int nonblock;
2351
2352 if (get_user(nonblock, p))
2353 return -EFAULT;
2354
2355 spin_lock(&file->f_lock);
2356 if (nonblock)
2357 file->f_flags |= O_NONBLOCK;
2358 else
2359 file->f_flags &= ~O_NONBLOCK;
2360 spin_unlock(&file->f_lock);
2361 return 0;
2362 }
2363
2364 /**
2365 * tiocsctty - set controlling tty
2366 * @tty: tty structure
2367 * @arg: user argument
2368 *
2369 * This ioctl is used to manage job control. It permits a session
2370 * leader to set this tty as the controlling tty for the session.
2371 *
2372 * Locking:
2373 * Takes tty_mutex() to protect tty instance
2374 * Takes tasklist_lock internally to walk sessions
2375 * Takes ->siglock() when updating signal->tty
2376 */
2377
2378 static int tiocsctty(struct tty_struct *tty, int arg)
2379 {
2380 int ret = 0;
2381 if (current->signal->leader && (task_session(current) == tty->session))
2382 return ret;
2383
2384 mutex_lock(&tty_mutex);
2385 /*
2386 * The process must be a session leader and
2387 * not have a controlling tty already.
2388 */
2389 if (!current->signal->leader || current->signal->tty) {
2390 ret = -EPERM;
2391 goto unlock;
2392 }
2393
2394 if (tty->session) {
2395 /*
2396 * This tty is already the controlling
2397 * tty for another session group!
2398 */
2399 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2400 /*
2401 * Steal it away
2402 */
2403 read_lock(&tasklist_lock);
2404 session_clear_tty(tty->session);
2405 read_unlock(&tasklist_lock);
2406 } else {
2407 ret = -EPERM;
2408 goto unlock;
2409 }
2410 }
2411 proc_set_tty(current, tty);
2412 unlock:
2413 mutex_unlock(&tty_mutex);
2414 return ret;
2415 }
2416
2417 /**
2418 * tty_get_pgrp - return a ref counted pgrp pid
2419 * @tty: tty to read
2420 *
2421 * Returns a refcounted instance of the pid struct for the process
2422 * group controlling the tty.
2423 */
2424
2425 struct pid *tty_get_pgrp(struct tty_struct *tty)
2426 {
2427 unsigned long flags;
2428 struct pid *pgrp;
2429
2430 spin_lock_irqsave(&tty->ctrl_lock, flags);
2431 pgrp = get_pid(tty->pgrp);
2432 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2433
2434 return pgrp;
2435 }
2436 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2437
2438 /**
2439 * tiocgpgrp - get process group
2440 * @tty: tty passed by user
2441 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2442 * @p: returned pid
2443 *
2444 * Obtain the process group of the tty. If there is no process group
2445 * return an error.
2446 *
2447 * Locking: none. Reference to current->signal->tty is safe.
2448 */
2449
2450 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2451 {
2452 struct pid *pid;
2453 int ret;
2454 /*
2455 * (tty == real_tty) is a cheap way of
2456 * testing if the tty is NOT a master pty.
2457 */
2458 if (tty == real_tty && current->signal->tty != real_tty)
2459 return -ENOTTY;
2460 pid = tty_get_pgrp(real_tty);
2461 ret = put_user(pid_vnr(pid), p);
2462 put_pid(pid);
2463 return ret;
2464 }
2465
2466 /**
2467 * tiocspgrp - attempt to set process group
2468 * @tty: tty passed by user
2469 * @real_tty: tty side device matching tty passed by user
2470 * @p: pid pointer
2471 *
2472 * Set the process group of the tty to the session passed. Only
2473 * permitted where the tty session is our session.
2474 *
2475 * Locking: RCU, ctrl lock
2476 */
2477
2478 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2479 {
2480 struct pid *pgrp;
2481 pid_t pgrp_nr;
2482 int retval = tty_check_change(real_tty);
2483 unsigned long flags;
2484
2485 if (retval == -EIO)
2486 return -ENOTTY;
2487 if (retval)
2488 return retval;
2489 if (!current->signal->tty ||
2490 (current->signal->tty != real_tty) ||
2491 (real_tty->session != task_session(current)))
2492 return -ENOTTY;
2493 if (get_user(pgrp_nr, p))
2494 return -EFAULT;
2495 if (pgrp_nr < 0)
2496 return -EINVAL;
2497 rcu_read_lock();
2498 pgrp = find_vpid(pgrp_nr);
2499 retval = -ESRCH;
2500 if (!pgrp)
2501 goto out_unlock;
2502 retval = -EPERM;
2503 if (session_of_pgrp(pgrp) != task_session(current))
2504 goto out_unlock;
2505 retval = 0;
2506 spin_lock_irqsave(&tty->ctrl_lock, flags);
2507 put_pid(real_tty->pgrp);
2508 real_tty->pgrp = get_pid(pgrp);
2509 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2510 out_unlock:
2511 rcu_read_unlock();
2512 return retval;
2513 }
2514
2515 /**
2516 * tiocgsid - get session id
2517 * @tty: tty passed by user
2518 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2519 * @p: pointer to returned session id
2520 *
2521 * Obtain the session id of the tty. If there is no session
2522 * return an error.
2523 *
2524 * Locking: none. Reference to current->signal->tty is safe.
2525 */
2526
2527 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2528 {
2529 /*
2530 * (tty == real_tty) is a cheap way of
2531 * testing if the tty is NOT a master pty.
2532 */
2533 if (tty == real_tty && current->signal->tty != real_tty)
2534 return -ENOTTY;
2535 if (!real_tty->session)
2536 return -ENOTTY;
2537 return put_user(pid_vnr(real_tty->session), p);
2538 }
2539
2540 /**
2541 * tiocsetd - set line discipline
2542 * @tty: tty device
2543 * @p: pointer to user data
2544 *
2545 * Set the line discipline according to user request.
2546 *
2547 * Locking: see tty_set_ldisc, this function is just a helper
2548 */
2549
2550 static int tiocsetd(struct tty_struct *tty, int __user *p)
2551 {
2552 int ldisc;
2553 int ret;
2554
2555 if (get_user(ldisc, p))
2556 return -EFAULT;
2557
2558 ret = tty_set_ldisc(tty, ldisc);
2559
2560 return ret;
2561 }
2562
2563 /**
2564 * send_break - performed time break
2565 * @tty: device to break on
2566 * @duration: timeout in mS
2567 *
2568 * Perform a timed break on hardware that lacks its own driver level
2569 * timed break functionality.
2570 *
2571 * Locking:
2572 * atomic_write_lock serializes
2573 *
2574 */
2575
2576 static int send_break(struct tty_struct *tty, unsigned int duration)
2577 {
2578 int retval;
2579
2580 if (tty->ops->break_ctl == NULL)
2581 return 0;
2582
2583 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2584 retval = tty->ops->break_ctl(tty, duration);
2585 else {
2586 /* Do the work ourselves */
2587 if (tty_write_lock(tty, 0) < 0)
2588 return -EINTR;
2589 retval = tty->ops->break_ctl(tty, -1);
2590 if (retval)
2591 goto out;
2592 if (!signal_pending(current))
2593 msleep_interruptible(duration);
2594 retval = tty->ops->break_ctl(tty, 0);
2595 out:
2596 tty_write_unlock(tty);
2597 if (signal_pending(current))
2598 retval = -EINTR;
2599 }
2600 return retval;
2601 }
2602
2603 /**
2604 * tty_tiocmget - get modem status
2605 * @tty: tty device
2606 * @file: user file pointer
2607 * @p: pointer to result
2608 *
2609 * Obtain the modem status bits from the tty driver if the feature
2610 * is supported. Return -EINVAL if it is not available.
2611 *
2612 * Locking: none (up to the driver)
2613 */
2614
2615 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2616 {
2617 int retval = -EINVAL;
2618
2619 if (tty->ops->tiocmget) {
2620 retval = tty->ops->tiocmget(tty);
2621
2622 if (retval >= 0)
2623 retval = put_user(retval, p);
2624 }
2625 return retval;
2626 }
2627
2628 /**
2629 * tty_tiocmset - set modem status
2630 * @tty: tty device
2631 * @cmd: command - clear bits, set bits or set all
2632 * @p: pointer to desired bits
2633 *
2634 * Set the modem status bits from the tty driver if the feature
2635 * is supported. Return -EINVAL if it is not available.
2636 *
2637 * Locking: none (up to the driver)
2638 */
2639
2640 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2641 unsigned __user *p)
2642 {
2643 int retval;
2644 unsigned int set, clear, val;
2645
2646 if (tty->ops->tiocmset == NULL)
2647 return -EINVAL;
2648
2649 retval = get_user(val, p);
2650 if (retval)
2651 return retval;
2652 set = clear = 0;
2653 switch (cmd) {
2654 case TIOCMBIS:
2655 set = val;
2656 break;
2657 case TIOCMBIC:
2658 clear = val;
2659 break;
2660 case TIOCMSET:
2661 set = val;
2662 clear = ~val;
2663 break;
2664 }
2665 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2666 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2667 return tty->ops->tiocmset(tty, set, clear);
2668 }
2669
2670 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2671 {
2672 int retval = -EINVAL;
2673 struct serial_icounter_struct icount;
2674 memset(&icount, 0, sizeof(icount));
2675 if (tty->ops->get_icount)
2676 retval = tty->ops->get_icount(tty, &icount);
2677 if (retval != 0)
2678 return retval;
2679 if (copy_to_user(arg, &icount, sizeof(icount)))
2680 return -EFAULT;
2681 return 0;
2682 }
2683
2684 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2685 {
2686 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2687 tty->driver->subtype == PTY_TYPE_MASTER)
2688 tty = tty->link;
2689 return tty;
2690 }
2691 EXPORT_SYMBOL(tty_pair_get_tty);
2692
2693 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2694 {
2695 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2696 tty->driver->subtype == PTY_TYPE_MASTER)
2697 return tty;
2698 return tty->link;
2699 }
2700 EXPORT_SYMBOL(tty_pair_get_pty);
2701
2702 /*
2703 * Split this up, as gcc can choke on it otherwise..
2704 */
2705 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2706 {
2707 struct tty_struct *tty = file_tty(file);
2708 struct tty_struct *real_tty;
2709 void __user *p = (void __user *)arg;
2710 int retval;
2711 struct tty_ldisc *ld;
2712
2713 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2714 return -EINVAL;
2715
2716 real_tty = tty_pair_get_tty(tty);
2717
2718 /*
2719 * Factor out some common prep work
2720 */
2721 switch (cmd) {
2722 case TIOCSETD:
2723 case TIOCSBRK:
2724 case TIOCCBRK:
2725 case TCSBRK:
2726 case TCSBRKP:
2727 retval = tty_check_change(tty);
2728 if (retval)
2729 return retval;
2730 if (cmd != TIOCCBRK) {
2731 tty_wait_until_sent(tty, 0);
2732 if (signal_pending(current))
2733 return -EINTR;
2734 }
2735 break;
2736 }
2737
2738 /*
2739 * Now do the stuff.
2740 */
2741 switch (cmd) {
2742 case TIOCSTI:
2743 return tiocsti(tty, p);
2744 case TIOCGWINSZ:
2745 return tiocgwinsz(real_tty, p);
2746 case TIOCSWINSZ:
2747 return tiocswinsz(real_tty, p);
2748 case TIOCCONS:
2749 return real_tty != tty ? -EINVAL : tioccons(file);
2750 case FIONBIO:
2751 return fionbio(file, p);
2752 case TIOCEXCL:
2753 set_bit(TTY_EXCLUSIVE, &tty->flags);
2754 return 0;
2755 case TIOCNXCL:
2756 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2757 return 0;
2758 case TIOCGEXCL:
2759 {
2760 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2761 return put_user(excl, (int __user *)p);
2762 }
2763 case TIOCNOTTY:
2764 if (current->signal->tty != tty)
2765 return -ENOTTY;
2766 no_tty();
2767 return 0;
2768 case TIOCSCTTY:
2769 return tiocsctty(tty, arg);
2770 case TIOCGPGRP:
2771 return tiocgpgrp(tty, real_tty, p);
2772 case TIOCSPGRP:
2773 return tiocspgrp(tty, real_tty, p);
2774 case TIOCGSID:
2775 return tiocgsid(tty, real_tty, p);
2776 case TIOCGETD:
2777 return put_user(tty->ldisc->ops->num, (int __user *)p);
2778 case TIOCSETD:
2779 return tiocsetd(tty, p);
2780 case TIOCVHANGUP:
2781 if (!capable(CAP_SYS_ADMIN))
2782 return -EPERM;
2783 tty_vhangup(tty);
2784 return 0;
2785 case TIOCGDEV:
2786 {
2787 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2788 return put_user(ret, (unsigned int __user *)p);
2789 }
2790 /*
2791 * Break handling
2792 */
2793 case TIOCSBRK: /* Turn break on, unconditionally */
2794 if (tty->ops->break_ctl)
2795 return tty->ops->break_ctl(tty, -1);
2796 return 0;
2797 case TIOCCBRK: /* Turn break off, unconditionally */
2798 if (tty->ops->break_ctl)
2799 return tty->ops->break_ctl(tty, 0);
2800 return 0;
2801 case TCSBRK: /* SVID version: non-zero arg --> no break */
2802 /* non-zero arg means wait for all output data
2803 * to be sent (performed above) but don't send break.
2804 * This is used by the tcdrain() termios function.
2805 */
2806 if (!arg)
2807 return send_break(tty, 250);
2808 return 0;
2809 case TCSBRKP: /* support for POSIX tcsendbreak() */
2810 return send_break(tty, arg ? arg*100 : 250);
2811
2812 case TIOCMGET:
2813 return tty_tiocmget(tty, p);
2814 case TIOCMSET:
2815 case TIOCMBIC:
2816 case TIOCMBIS:
2817 return tty_tiocmset(tty, cmd, p);
2818 case TIOCGICOUNT:
2819 retval = tty_tiocgicount(tty, p);
2820 /* For the moment allow fall through to the old method */
2821 if (retval != -EINVAL)
2822 return retval;
2823 break;
2824 case TCFLSH:
2825 switch (arg) {
2826 case TCIFLUSH:
2827 case TCIOFLUSH:
2828 /* flush tty buffer and allow ldisc to process ioctl */
2829 tty_buffer_flush(tty);
2830 break;
2831 }
2832 break;
2833 }
2834 if (tty->ops->ioctl) {
2835 retval = (tty->ops->ioctl)(tty, cmd, arg);
2836 if (retval != -ENOIOCTLCMD)
2837 return retval;
2838 }
2839 ld = tty_ldisc_ref_wait(tty);
2840 retval = -EINVAL;
2841 if (ld->ops->ioctl) {
2842 retval = ld->ops->ioctl(tty, file, cmd, arg);
2843 if (retval == -ENOIOCTLCMD)
2844 retval = -ENOTTY;
2845 }
2846 tty_ldisc_deref(ld);
2847 return retval;
2848 }
2849
2850 #ifdef CONFIG_COMPAT
2851 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2852 unsigned long arg)
2853 {
2854 struct tty_struct *tty = file_tty(file);
2855 struct tty_ldisc *ld;
2856 int retval = -ENOIOCTLCMD;
2857
2858 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859 return -EINVAL;
2860
2861 if (tty->ops->compat_ioctl) {
2862 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2863 if (retval != -ENOIOCTLCMD)
2864 return retval;
2865 }
2866
2867 ld = tty_ldisc_ref_wait(tty);
2868 if (ld->ops->compat_ioctl)
2869 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2870 else
2871 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2872 tty_ldisc_deref(ld);
2873
2874 return retval;
2875 }
2876 #endif
2877
2878 static int this_tty(const void *t, struct file *file, unsigned fd)
2879 {
2880 if (likely(file->f_op->read != tty_read))
2881 return 0;
2882 return file_tty(file) != t ? 0 : fd + 1;
2883 }
2884
2885 /*
2886 * This implements the "Secure Attention Key" --- the idea is to
2887 * prevent trojan horses by killing all processes associated with this
2888 * tty when the user hits the "Secure Attention Key". Required for
2889 * super-paranoid applications --- see the Orange Book for more details.
2890 *
2891 * This code could be nicer; ideally it should send a HUP, wait a few
2892 * seconds, then send a INT, and then a KILL signal. But you then
2893 * have to coordinate with the init process, since all processes associated
2894 * with the current tty must be dead before the new getty is allowed
2895 * to spawn.
2896 *
2897 * Now, if it would be correct ;-/ The current code has a nasty hole -
2898 * it doesn't catch files in flight. We may send the descriptor to ourselves
2899 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2900 *
2901 * Nasty bug: do_SAK is being called in interrupt context. This can
2902 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2903 */
2904 void __do_SAK(struct tty_struct *tty)
2905 {
2906 #ifdef TTY_SOFT_SAK
2907 tty_hangup(tty);
2908 #else
2909 struct task_struct *g, *p;
2910 struct pid *session;
2911 int i;
2912
2913 if (!tty)
2914 return;
2915 session = tty->session;
2916
2917 tty_ldisc_flush(tty);
2918
2919 tty_driver_flush_buffer(tty);
2920
2921 read_lock(&tasklist_lock);
2922 /* Kill the entire session */
2923 do_each_pid_task(session, PIDTYPE_SID, p) {
2924 printk(KERN_NOTICE "SAK: killed process %d"
2925 " (%s): task_session(p)==tty->session\n",
2926 task_pid_nr(p), p->comm);
2927 send_sig(SIGKILL, p, 1);
2928 } while_each_pid_task(session, PIDTYPE_SID, p);
2929 /* Now kill any processes that happen to have the
2930 * tty open.
2931 */
2932 do_each_thread(g, p) {
2933 if (p->signal->tty == tty) {
2934 printk(KERN_NOTICE "SAK: killed process %d"
2935 " (%s): task_session(p)==tty->session\n",
2936 task_pid_nr(p), p->comm);
2937 send_sig(SIGKILL, p, 1);
2938 continue;
2939 }
2940 task_lock(p);
2941 i = iterate_fd(p->files, 0, this_tty, tty);
2942 if (i != 0) {
2943 printk(KERN_NOTICE "SAK: killed process %d"
2944 " (%s): fd#%d opened to the tty\n",
2945 task_pid_nr(p), p->comm, i - 1);
2946 force_sig(SIGKILL, p);
2947 }
2948 task_unlock(p);
2949 } while_each_thread(g, p);
2950 read_unlock(&tasklist_lock);
2951 #endif
2952 }
2953
2954 static void do_SAK_work(struct work_struct *work)
2955 {
2956 struct tty_struct *tty =
2957 container_of(work, struct tty_struct, SAK_work);
2958 __do_SAK(tty);
2959 }
2960
2961 /*
2962 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2963 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2964 * the values which we write to it will be identical to the values which it
2965 * already has. --akpm
2966 */
2967 void do_SAK(struct tty_struct *tty)
2968 {
2969 if (!tty)
2970 return;
2971 schedule_work(&tty->SAK_work);
2972 }
2973
2974 EXPORT_SYMBOL(do_SAK);
2975
2976 static int dev_match_devt(struct device *dev, const void *data)
2977 {
2978 const dev_t *devt = data;
2979 return dev->devt == *devt;
2980 }
2981
2982 /* Must put_device() after it's unused! */
2983 static struct device *tty_get_device(struct tty_struct *tty)
2984 {
2985 dev_t devt = tty_devnum(tty);
2986 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2987 }
2988
2989
2990 /**
2991 * alloc_tty_struct
2992 *
2993 * This subroutine allocates and initializes a tty structure.
2994 *
2995 * Locking: none - tty in question is not exposed at this point
2996 */
2997
2998 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2999 {
3000 struct tty_struct *tty;
3001
3002 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3003 if (!tty)
3004 return NULL;
3005
3006 kref_init(&tty->kref);
3007 tty->magic = TTY_MAGIC;
3008 tty_ldisc_init(tty);
3009 tty->session = NULL;
3010 tty->pgrp = NULL;
3011 mutex_init(&tty->legacy_mutex);
3012 mutex_init(&tty->throttle_mutex);
3013 init_rwsem(&tty->termios_rwsem);
3014 mutex_init(&tty->winsize_mutex);
3015 init_ldsem(&tty->ldisc_sem);
3016 init_waitqueue_head(&tty->write_wait);
3017 init_waitqueue_head(&tty->read_wait);
3018 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3019 mutex_init(&tty->atomic_write_lock);
3020 spin_lock_init(&tty->ctrl_lock);
3021 INIT_LIST_HEAD(&tty->tty_files);
3022 INIT_WORK(&tty->SAK_work, do_SAK_work);
3023
3024 tty->driver = driver;
3025 tty->ops = driver->ops;
3026 tty->index = idx;
3027 tty_line_name(driver, idx, tty->name);
3028 tty->dev = tty_get_device(tty);
3029
3030 return tty;
3031 }
3032
3033 /**
3034 * deinitialize_tty_struct
3035 * @tty: tty to deinitialize
3036 *
3037 * This subroutine deinitializes a tty structure that has been newly
3038 * allocated but tty_release cannot be called on that yet.
3039 *
3040 * Locking: none - tty in question must not be exposed at this point
3041 */
3042 void deinitialize_tty_struct(struct tty_struct *tty)
3043 {
3044 tty_ldisc_deinit(tty);
3045 }
3046
3047 /**
3048 * tty_put_char - write one character to a tty
3049 * @tty: tty
3050 * @ch: character
3051 *
3052 * Write one byte to the tty using the provided put_char method
3053 * if present. Returns the number of characters successfully output.
3054 *
3055 * Note: the specific put_char operation in the driver layer may go
3056 * away soon. Don't call it directly, use this method
3057 */
3058
3059 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3060 {
3061 if (tty->ops->put_char)
3062 return tty->ops->put_char(tty, ch);
3063 return tty->ops->write(tty, &ch, 1);
3064 }
3065 EXPORT_SYMBOL_GPL(tty_put_char);
3066
3067 struct class *tty_class;
3068
3069 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3070 unsigned int index, unsigned int count)
3071 {
3072 /* init here, since reused cdevs cause crashes */
3073 cdev_init(&driver->cdevs[index], &tty_fops);
3074 driver->cdevs[index].owner = driver->owner;
3075 return cdev_add(&driver->cdevs[index], dev, count);
3076 }
3077
3078 /**
3079 * tty_register_device - register a tty device
3080 * @driver: the tty driver that describes the tty device
3081 * @index: the index in the tty driver for this tty device
3082 * @device: a struct device that is associated with this tty device.
3083 * This field is optional, if there is no known struct device
3084 * for this tty device it can be set to NULL safely.
3085 *
3086 * Returns a pointer to the struct device for this tty device
3087 * (or ERR_PTR(-EFOO) on error).
3088 *
3089 * This call is required to be made to register an individual tty device
3090 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3091 * that bit is not set, this function should not be called by a tty
3092 * driver.
3093 *
3094 * Locking: ??
3095 */
3096
3097 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3098 struct device *device)
3099 {
3100 return tty_register_device_attr(driver, index, device, NULL, NULL);
3101 }
3102 EXPORT_SYMBOL(tty_register_device);
3103
3104 static void tty_device_create_release(struct device *dev)
3105 {
3106 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3107 kfree(dev);
3108 }
3109
3110 /**
3111 * tty_register_device_attr - register a tty device
3112 * @driver: the tty driver that describes the tty device
3113 * @index: the index in the tty driver for this tty device
3114 * @device: a struct device that is associated with this tty device.
3115 * This field is optional, if there is no known struct device
3116 * for this tty device it can be set to NULL safely.
3117 * @drvdata: Driver data to be set to device.
3118 * @attr_grp: Attribute group to be set on device.
3119 *
3120 * Returns a pointer to the struct device for this tty device
3121 * (or ERR_PTR(-EFOO) on error).
3122 *
3123 * This call is required to be made to register an individual tty device
3124 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3125 * that bit is not set, this function should not be called by a tty
3126 * driver.
3127 *
3128 * Locking: ??
3129 */
3130 struct device *tty_register_device_attr(struct tty_driver *driver,
3131 unsigned index, struct device *device,
3132 void *drvdata,
3133 const struct attribute_group **attr_grp)
3134 {
3135 char name[64];
3136 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3137 struct device *dev = NULL;
3138 int retval = -ENODEV;
3139 bool cdev = false;
3140
3141 if (index >= driver->num) {
3142 printk(KERN_ERR "Attempt to register invalid tty line number "
3143 " (%d).\n", index);
3144 return ERR_PTR(-EINVAL);
3145 }
3146
3147 if (driver->type == TTY_DRIVER_TYPE_PTY)
3148 pty_line_name(driver, index, name);
3149 else
3150 tty_line_name(driver, index, name);
3151
3152 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3153 retval = tty_cdev_add(driver, devt, index, 1);
3154 if (retval)
3155 goto error;
3156 cdev = true;
3157 }
3158
3159 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3160 if (!dev) {
3161 retval = -ENOMEM;
3162 goto error;
3163 }
3164
3165 dev->devt = devt;
3166 dev->class = tty_class;
3167 dev->parent = device;
3168 dev->release = tty_device_create_release;
3169 dev_set_name(dev, "%s", name);
3170 dev->groups = attr_grp;
3171 dev_set_drvdata(dev, drvdata);
3172
3173 retval = device_register(dev);
3174 if (retval)
3175 goto error;
3176
3177 return dev;
3178
3179 error:
3180 put_device(dev);
3181 if (cdev)
3182 cdev_del(&driver->cdevs[index]);
3183 return ERR_PTR(retval);
3184 }
3185 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3186
3187 /**
3188 * tty_unregister_device - unregister a tty device
3189 * @driver: the tty driver that describes the tty device
3190 * @index: the index in the tty driver for this tty device
3191 *
3192 * If a tty device is registered with a call to tty_register_device() then
3193 * this function must be called when the tty device is gone.
3194 *
3195 * Locking: ??
3196 */
3197
3198 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3199 {
3200 device_destroy(tty_class,
3201 MKDEV(driver->major, driver->minor_start) + index);
3202 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3203 cdev_del(&driver->cdevs[index]);
3204 }
3205 EXPORT_SYMBOL(tty_unregister_device);
3206
3207 /**
3208 * __tty_alloc_driver -- allocate tty driver
3209 * @lines: count of lines this driver can handle at most
3210 * @owner: module which is repsonsible for this driver
3211 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3212 *
3213 * This should not be called directly, some of the provided macros should be
3214 * used instead. Use IS_ERR and friends on @retval.
3215 */
3216 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3217 unsigned long flags)
3218 {
3219 struct tty_driver *driver;
3220 unsigned int cdevs = 1;
3221 int err;
3222
3223 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3224 return ERR_PTR(-EINVAL);
3225
3226 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3227 if (!driver)
3228 return ERR_PTR(-ENOMEM);
3229
3230 kref_init(&driver->kref);
3231 driver->magic = TTY_DRIVER_MAGIC;
3232 driver->num = lines;
3233 driver->owner = owner;
3234 driver->flags = flags;
3235
3236 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3237 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3238 GFP_KERNEL);
3239 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3240 GFP_KERNEL);
3241 if (!driver->ttys || !driver->termios) {
3242 err = -ENOMEM;
3243 goto err_free_all;
3244 }
3245 }
3246
3247 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3248 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3249 GFP_KERNEL);
3250 if (!driver->ports) {
3251 err = -ENOMEM;
3252 goto err_free_all;
3253 }
3254 cdevs = lines;
3255 }
3256
3257 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3258 if (!driver->cdevs) {
3259 err = -ENOMEM;
3260 goto err_free_all;
3261 }
3262
3263 return driver;
3264 err_free_all:
3265 kfree(driver->ports);
3266 kfree(driver->ttys);
3267 kfree(driver->termios);
3268 kfree(driver);
3269 return ERR_PTR(err);
3270 }
3271 EXPORT_SYMBOL(__tty_alloc_driver);
3272
3273 static void destruct_tty_driver(struct kref *kref)
3274 {
3275 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3276 int i;
3277 struct ktermios *tp;
3278
3279 if (driver->flags & TTY_DRIVER_INSTALLED) {
3280 /*
3281 * Free the termios and termios_locked structures because
3282 * we don't want to get memory leaks when modular tty
3283 * drivers are removed from the kernel.
3284 */
3285 for (i = 0; i < driver->num; i++) {
3286 tp = driver->termios[i];
3287 if (tp) {
3288 driver->termios[i] = NULL;
3289 kfree(tp);
3290 }
3291 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3292 tty_unregister_device(driver, i);
3293 }
3294 proc_tty_unregister_driver(driver);
3295 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3296 cdev_del(&driver->cdevs[0]);
3297 }
3298 kfree(driver->cdevs);
3299 kfree(driver->ports);
3300 kfree(driver->termios);
3301 kfree(driver->ttys);
3302 kfree(driver);
3303 }
3304
3305 void tty_driver_kref_put(struct tty_driver *driver)
3306 {
3307 kref_put(&driver->kref, destruct_tty_driver);
3308 }
3309 EXPORT_SYMBOL(tty_driver_kref_put);
3310
3311 void tty_set_operations(struct tty_driver *driver,
3312 const struct tty_operations *op)
3313 {
3314 driver->ops = op;
3315 };
3316 EXPORT_SYMBOL(tty_set_operations);
3317
3318 void put_tty_driver(struct tty_driver *d)
3319 {
3320 tty_driver_kref_put(d);
3321 }
3322 EXPORT_SYMBOL(put_tty_driver);
3323
3324 /*
3325 * Called by a tty driver to register itself.
3326 */
3327 int tty_register_driver(struct tty_driver *driver)
3328 {
3329 int error;
3330 int i;
3331 dev_t dev;
3332 struct device *d;
3333
3334 if (!driver->major) {
3335 error = alloc_chrdev_region(&dev, driver->minor_start,
3336 driver->num, driver->name);
3337 if (!error) {
3338 driver->major = MAJOR(dev);
3339 driver->minor_start = MINOR(dev);
3340 }
3341 } else {
3342 dev = MKDEV(driver->major, driver->minor_start);
3343 error = register_chrdev_region(dev, driver->num, driver->name);
3344 }
3345 if (error < 0)
3346 goto err;
3347
3348 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3349 error = tty_cdev_add(driver, dev, 0, driver->num);
3350 if (error)
3351 goto err_unreg_char;
3352 }
3353
3354 mutex_lock(&tty_mutex);
3355 list_add(&driver->tty_drivers, &tty_drivers);
3356 mutex_unlock(&tty_mutex);
3357
3358 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3359 for (i = 0; i < driver->num; i++) {
3360 d = tty_register_device(driver, i, NULL);
3361 if (IS_ERR(d)) {
3362 error = PTR_ERR(d);
3363 goto err_unreg_devs;
3364 }
3365 }
3366 }
3367 proc_tty_register_driver(driver);
3368 driver->flags |= TTY_DRIVER_INSTALLED;
3369 return 0;
3370
3371 err_unreg_devs:
3372 for (i--; i >= 0; i--)
3373 tty_unregister_device(driver, i);
3374
3375 mutex_lock(&tty_mutex);
3376 list_del(&driver->tty_drivers);
3377 mutex_unlock(&tty_mutex);
3378
3379 err_unreg_char:
3380 unregister_chrdev_region(dev, driver->num);
3381 err:
3382 return error;
3383 }
3384 EXPORT_SYMBOL(tty_register_driver);
3385
3386 /*
3387 * Called by a tty driver to unregister itself.
3388 */
3389 int tty_unregister_driver(struct tty_driver *driver)
3390 {
3391 #if 0
3392 /* FIXME */
3393 if (driver->refcount)
3394 return -EBUSY;
3395 #endif
3396 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3397 driver->num);
3398 mutex_lock(&tty_mutex);
3399 list_del(&driver->tty_drivers);
3400 mutex_unlock(&tty_mutex);
3401 return 0;
3402 }
3403
3404 EXPORT_SYMBOL(tty_unregister_driver);
3405
3406 dev_t tty_devnum(struct tty_struct *tty)
3407 {
3408 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3409 }
3410 EXPORT_SYMBOL(tty_devnum);
3411
3412 void proc_clear_tty(struct task_struct *p)
3413 {
3414 unsigned long flags;
3415 struct tty_struct *tty;
3416 spin_lock_irqsave(&p->sighand->siglock, flags);
3417 tty = p->signal->tty;
3418 p->signal->tty = NULL;
3419 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3420 tty_kref_put(tty);
3421 }
3422
3423 /* Called under the sighand lock */
3424
3425 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3426 {
3427 if (tty) {
3428 unsigned long flags;
3429 /* We should not have a session or pgrp to put here but.... */
3430 spin_lock_irqsave(&tty->ctrl_lock, flags);
3431 put_pid(tty->session);
3432 put_pid(tty->pgrp);
3433 tty->pgrp = get_pid(task_pgrp(tsk));
3434 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3435 tty->session = get_pid(task_session(tsk));
3436 if (tsk->signal->tty) {
3437 printk(KERN_DEBUG "tty not NULL!!\n");
3438 tty_kref_put(tsk->signal->tty);
3439 }
3440 }
3441 put_pid(tsk->signal->tty_old_pgrp);
3442 tsk->signal->tty = tty_kref_get(tty);
3443 tsk->signal->tty_old_pgrp = NULL;
3444 }
3445
3446 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3447 {
3448 spin_lock_irq(&tsk->sighand->siglock);
3449 __proc_set_tty(tsk, tty);
3450 spin_unlock_irq(&tsk->sighand->siglock);
3451 }
3452
3453 struct tty_struct *get_current_tty(void)
3454 {
3455 struct tty_struct *tty;
3456 unsigned long flags;
3457
3458 spin_lock_irqsave(&current->sighand->siglock, flags);
3459 tty = tty_kref_get(current->signal->tty);
3460 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3461 return tty;
3462 }
3463 EXPORT_SYMBOL_GPL(get_current_tty);
3464
3465 void tty_default_fops(struct file_operations *fops)
3466 {
3467 *fops = tty_fops;
3468 }
3469
3470 /*
3471 * Initialize the console device. This is called *early*, so
3472 * we can't necessarily depend on lots of kernel help here.
3473 * Just do some early initializations, and do the complex setup
3474 * later.
3475 */
3476 void __init console_init(void)
3477 {
3478 initcall_t *call;
3479
3480 /* Setup the default TTY line discipline. */
3481 tty_ldisc_begin();
3482
3483 /*
3484 * set up the console device so that later boot sequences can
3485 * inform about problems etc..
3486 */
3487 call = __con_initcall_start;
3488 while (call < __con_initcall_end) {
3489 (*call)();
3490 call++;
3491 }
3492 }
3493
3494 static char *tty_devnode(struct device *dev, umode_t *mode)
3495 {
3496 if (!mode)
3497 return NULL;
3498 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3499 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3500 *mode = 0666;
3501 return NULL;
3502 }
3503
3504 static int __init tty_class_init(void)
3505 {
3506 tty_class = class_create(THIS_MODULE, "tty");
3507 if (IS_ERR(tty_class))
3508 return PTR_ERR(tty_class);
3509 tty_class->devnode = tty_devnode;
3510 return 0;
3511 }
3512
3513 postcore_initcall(tty_class_init);
3514
3515 /* 3/2004 jmc: why do these devices exist? */
3516 static struct cdev tty_cdev, console_cdev;
3517
3518 static ssize_t show_cons_active(struct device *dev,
3519 struct device_attribute *attr, char *buf)
3520 {
3521 struct console *cs[16];
3522 int i = 0;
3523 struct console *c;
3524 ssize_t count = 0;
3525
3526 console_lock();
3527 for_each_console(c) {
3528 if (!c->device)
3529 continue;
3530 if (!c->write)
3531 continue;
3532 if ((c->flags & CON_ENABLED) == 0)
3533 continue;
3534 cs[i++] = c;
3535 if (i >= ARRAY_SIZE(cs))
3536 break;
3537 }
3538 while (i--) {
3539 int index = cs[i]->index;
3540 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3541
3542 /* don't resolve tty0 as some programs depend on it */
3543 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3544 count += tty_line_name(drv, index, buf + count);
3545 else
3546 count += sprintf(buf + count, "%s%d",
3547 cs[i]->name, cs[i]->index);
3548
3549 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3550 }
3551 console_unlock();
3552
3553 return count;
3554 }
3555 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3556
3557 static struct device *consdev;
3558
3559 void console_sysfs_notify(void)
3560 {
3561 if (consdev)
3562 sysfs_notify(&consdev->kobj, NULL, "active");
3563 }
3564
3565 /*
3566 * Ok, now we can initialize the rest of the tty devices and can count
3567 * on memory allocations, interrupts etc..
3568 */
3569 int __init tty_init(void)
3570 {
3571 cdev_init(&tty_cdev, &tty_fops);
3572 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3573 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3574 panic("Couldn't register /dev/tty driver\n");
3575 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3576
3577 cdev_init(&console_cdev, &console_fops);
3578 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3579 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3580 panic("Couldn't register /dev/console driver\n");
3581 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3582 "console");
3583 if (IS_ERR(consdev))
3584 consdev = NULL;
3585 else
3586 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3587
3588 #ifdef CONFIG_VT
3589 vty_init(&console_fops);
3590 #endif
3591 return 0;
3592 }
3593