]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/tty/tty_io.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched/signal.h>
73 #include <linux/sched/task.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/fdtable.h>
81 #include <linux/console.h>
82 #include <linux/timer.h>
83 #include <linux/ctype.h>
84 #include <linux/kd.h>
85 #include <linux/mm.h>
86 #include <linux/string.h>
87 #include <linux/slab.h>
88 #include <linux/poll.h>
89 #include <linux/proc_fs.h>
90 #include <linux/init.h>
91 #include <linux/module.h>
92 #include <linux/device.h>
93 #include <linux/wait.h>
94 #include <linux/bitops.h>
95 #include <linux/delay.h>
96 #include <linux/seq_file.h>
97 #include <linux/serial.h>
98 #include <linux/ratelimit.h>
99
100 #include <linux/uaccess.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110 #ifdef TTY_DEBUG_HANGUP
111 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
112 #else
113 # define tty_debug_hangup(tty, f, args...) do { } while (0)
114 #endif
115
116 #define TTY_PARANOIA_CHECK 1
117 #define CHECK_TTY_COUNT 1
118
119 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
120 .c_iflag = ICRNL | IXON,
121 .c_oflag = OPOST | ONLCR,
122 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
123 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
124 ECHOCTL | ECHOKE | IEXTEN,
125 .c_cc = INIT_C_CC,
126 .c_ispeed = 38400,
127 .c_ospeed = 38400,
128 /* .c_line = N_TTY, */
129 };
130
131 EXPORT_SYMBOL(tty_std_termios);
132
133 /* This list gets poked at by procfs and various bits of boot up code. This
134 could do with some rationalisation such as pulling the tty proc function
135 into this file */
136
137 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
138
139 /* Mutex to protect creating and releasing a tty */
140 DEFINE_MUTEX(tty_mutex);
141
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158
159 /**
160 * free_tty_struct - free a disused tty
161 * @tty: tty struct to free
162 *
163 * Free the write buffers, tty queue and tty memory itself.
164 *
165 * Locking: none. Must be called after tty is definitely unused
166 */
167
168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 tty_ldisc_deinit(tty);
171 put_device(tty->dev);
172 kfree(tty->write_buf);
173 tty->magic = 0xDEADDEAD;
174 kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184 struct tty_file_private *priv;
185
186 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(&tty->files_lock);
204 list_add(&priv->list, &tty->tty_files);
205 spin_unlock(&tty->files_lock);
206 }
207
208 /**
209 * tty_free_file - free file->private_data
210 *
211 * This shall be used only for fail path handling when tty_add_file was not
212 * called yet.
213 */
214 void tty_free_file(struct file *file)
215 {
216 struct tty_file_private *priv = file->private_data;
217
218 file->private_data = NULL;
219 kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 struct tty_file_private *priv = file->private_data;
226 struct tty_struct *tty = priv->tty;
227
228 spin_lock(&tty->files_lock);
229 list_del(&priv->list);
230 spin_unlock(&tty->files_lock);
231 tty_free_file(file);
232 }
233
234 /**
235 * tty_name - return tty naming
236 * @tty: tty structure
237 *
238 * Convert a tty structure into a name. The name reflects the kernel
239 * naming policy and if udev is in use may not reflect user space
240 *
241 * Locking: none
242 */
243
244 const char *tty_name(const struct tty_struct *tty)
245 {
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 return "NULL tty";
248 return tty->name;
249 }
250
251 EXPORT_SYMBOL(tty_name);
252
253 const char *tty_driver_name(const struct tty_struct *tty)
254 {
255 if (!tty || !tty->driver)
256 return "";
257 return tty->driver->name;
258 }
259
260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 if (!tty) {
265 pr_warn("(%d:%d): %s: NULL tty\n",
266 imajor(inode), iminor(inode), routine);
267 return 1;
268 }
269 if (tty->magic != TTY_MAGIC) {
270 pr_warn("(%d:%d): %s: bad magic number\n",
271 imajor(inode), iminor(inode), routine);
272 return 1;
273 }
274 #endif
275 return 0;
276 }
277
278 /* Caller must hold tty_lock */
279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282 struct list_head *p;
283 int count = 0;
284
285 spin_lock(&tty->files_lock);
286 list_for_each(p, &tty->tty_files) {
287 count++;
288 }
289 spin_unlock(&tty->files_lock);
290 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291 tty->driver->subtype == PTY_TYPE_SLAVE &&
292 tty->link && tty->link->count)
293 count++;
294 if (tty->count != count) {
295 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
296 routine, tty->count, count);
297 return count;
298 }
299 #endif
300 return 0;
301 }
302
303 /**
304 * get_tty_driver - find device of a tty
305 * @dev_t: device identifier
306 * @index: returns the index of the tty
307 *
308 * This routine returns a tty driver structure, given a device number
309 * and also passes back the index number.
310 *
311 * Locking: caller must hold tty_mutex
312 */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 struct tty_driver *p;
317
318 list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 dev_t base = MKDEV(p->major, p->minor_start);
320 if (device < base || device >= base + p->num)
321 continue;
322 *index = device - base;
323 return tty_driver_kref_get(p);
324 }
325 return NULL;
326 }
327
328 /**
329 * tty_dev_name_to_number - return dev_t for device name
330 * @name: user space name of device under /dev
331 * @number: pointer to dev_t that this function will populate
332 *
333 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
334 * like (4, 64) or (188, 1). If no corresponding driver is registered then
335 * the function returns -ENODEV.
336 *
337 * Locking: this acquires tty_mutex to protect the tty_drivers list from
338 * being modified while we are traversing it, and makes sure to
339 * release it before exiting.
340 */
341 int tty_dev_name_to_number(const char *name, dev_t *number)
342 {
343 struct tty_driver *p;
344 int ret;
345 int index, prefix_length = 0;
346 const char *str;
347
348 for (str = name; *str && !isdigit(*str); str++)
349 ;
350
351 if (!*str)
352 return -EINVAL;
353
354 ret = kstrtoint(str, 10, &index);
355 if (ret)
356 return ret;
357
358 prefix_length = str - name;
359 mutex_lock(&tty_mutex);
360
361 list_for_each_entry(p, &tty_drivers, tty_drivers)
362 if (prefix_length == strlen(p->name) && strncmp(name,
363 p->name, prefix_length) == 0) {
364 if (index < p->num) {
365 *number = MKDEV(p->major, p->minor_start + index);
366 goto out;
367 }
368 }
369
370 /* if here then driver wasn't found */
371 ret = -ENODEV;
372 out:
373 mutex_unlock(&tty_mutex);
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
377
378 #ifdef CONFIG_CONSOLE_POLL
379
380 /**
381 * tty_find_polling_driver - find device of a polled tty
382 * @name: name string to match
383 * @line: pointer to resulting tty line nr
384 *
385 * This routine returns a tty driver structure, given a name
386 * and the condition that the tty driver is capable of polled
387 * operation.
388 */
389 struct tty_driver *tty_find_polling_driver(char *name, int *line)
390 {
391 struct tty_driver *p, *res = NULL;
392 int tty_line = 0;
393 int len;
394 char *str, *stp;
395
396 for (str = name; *str; str++)
397 if ((*str >= '0' && *str <= '9') || *str == ',')
398 break;
399 if (!*str)
400 return NULL;
401
402 len = str - name;
403 tty_line = simple_strtoul(str, &str, 10);
404
405 mutex_lock(&tty_mutex);
406 /* Search through the tty devices to look for a match */
407 list_for_each_entry(p, &tty_drivers, tty_drivers) {
408 if (strncmp(name, p->name, len) != 0)
409 continue;
410 stp = str;
411 if (*stp == ',')
412 stp++;
413 if (*stp == '\0')
414 stp = NULL;
415
416 if (tty_line >= 0 && tty_line < p->num && p->ops &&
417 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
418 res = tty_driver_kref_get(p);
419 *line = tty_line;
420 break;
421 }
422 }
423 mutex_unlock(&tty_mutex);
424
425 return res;
426 }
427 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
428 #endif
429
430 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
431 size_t count, loff_t *ppos)
432 {
433 return 0;
434 }
435
436 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
437 size_t count, loff_t *ppos)
438 {
439 return -EIO;
440 }
441
442 /* No kernel lock held - none needed ;) */
443 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
444 {
445 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
446 }
447
448 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
449 unsigned long arg)
450 {
451 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
452 }
453
454 static long hung_up_tty_compat_ioctl(struct file *file,
455 unsigned int cmd, unsigned long arg)
456 {
457 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
458 }
459
460 static int hung_up_tty_fasync(int fd, struct file *file, int on)
461 {
462 return -ENOTTY;
463 }
464
465 static const struct file_operations tty_fops = {
466 .llseek = no_llseek,
467 .read = tty_read,
468 .write = tty_write,
469 .poll = tty_poll,
470 .unlocked_ioctl = tty_ioctl,
471 .compat_ioctl = tty_compat_ioctl,
472 .open = tty_open,
473 .release = tty_release,
474 .fasync = tty_fasync,
475 };
476
477 static const struct file_operations console_fops = {
478 .llseek = no_llseek,
479 .read = tty_read,
480 .write = redirected_tty_write,
481 .poll = tty_poll,
482 .unlocked_ioctl = tty_ioctl,
483 .compat_ioctl = tty_compat_ioctl,
484 .open = tty_open,
485 .release = tty_release,
486 .fasync = tty_fasync,
487 };
488
489 static const struct file_operations hung_up_tty_fops = {
490 .llseek = no_llseek,
491 .read = hung_up_tty_read,
492 .write = hung_up_tty_write,
493 .poll = hung_up_tty_poll,
494 .unlocked_ioctl = hung_up_tty_ioctl,
495 .compat_ioctl = hung_up_tty_compat_ioctl,
496 .release = tty_release,
497 .fasync = hung_up_tty_fasync,
498 };
499
500 static DEFINE_SPINLOCK(redirect_lock);
501 static struct file *redirect;
502
503 /**
504 * tty_wakeup - request more data
505 * @tty: terminal
506 *
507 * Internal and external helper for wakeups of tty. This function
508 * informs the line discipline if present that the driver is ready
509 * to receive more output data.
510 */
511
512 void tty_wakeup(struct tty_struct *tty)
513 {
514 struct tty_ldisc *ld;
515
516 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
517 ld = tty_ldisc_ref(tty);
518 if (ld) {
519 if (ld->ops->write_wakeup)
520 ld->ops->write_wakeup(tty);
521 tty_ldisc_deref(ld);
522 }
523 }
524 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
525 }
526
527 EXPORT_SYMBOL_GPL(tty_wakeup);
528
529 /**
530 * __tty_hangup - actual handler for hangup events
531 * @work: tty device
532 *
533 * This can be called by a "kworker" kernel thread. That is process
534 * synchronous but doesn't hold any locks, so we need to make sure we
535 * have the appropriate locks for what we're doing.
536 *
537 * The hangup event clears any pending redirections onto the hung up
538 * device. It ensures future writes will error and it does the needed
539 * line discipline hangup and signal delivery. The tty object itself
540 * remains intact.
541 *
542 * Locking:
543 * BTM
544 * redirect lock for undoing redirection
545 * file list lock for manipulating list of ttys
546 * tty_ldiscs_lock from called functions
547 * termios_rwsem resetting termios data
548 * tasklist_lock to walk task list for hangup event
549 * ->siglock to protect ->signal/->sighand
550 */
551 static void __tty_hangup(struct tty_struct *tty, int exit_session)
552 {
553 struct file *cons_filp = NULL;
554 struct file *filp, *f = NULL;
555 struct tty_file_private *priv;
556 int closecount = 0, n;
557 int refs;
558
559 if (!tty)
560 return;
561
562
563 spin_lock(&redirect_lock);
564 if (redirect && file_tty(redirect) == tty) {
565 f = redirect;
566 redirect = NULL;
567 }
568 spin_unlock(&redirect_lock);
569
570 tty_lock(tty);
571
572 if (test_bit(TTY_HUPPED, &tty->flags)) {
573 tty_unlock(tty);
574 return;
575 }
576
577 /* inuse_filps is protected by the single tty lock,
578 this really needs to change if we want to flush the
579 workqueue with the lock held */
580 check_tty_count(tty, "tty_hangup");
581
582 spin_lock(&tty->files_lock);
583 /* This breaks for file handles being sent over AF_UNIX sockets ? */
584 list_for_each_entry(priv, &tty->tty_files, list) {
585 filp = priv->file;
586 if (filp->f_op->write == redirected_tty_write)
587 cons_filp = filp;
588 if (filp->f_op->write != tty_write)
589 continue;
590 closecount++;
591 __tty_fasync(-1, filp, 0); /* can't block */
592 filp->f_op = &hung_up_tty_fops;
593 }
594 spin_unlock(&tty->files_lock);
595
596 refs = tty_signal_session_leader(tty, exit_session);
597 /* Account for the p->signal references we killed */
598 while (refs--)
599 tty_kref_put(tty);
600
601 tty_ldisc_hangup(tty, cons_filp != NULL);
602
603 spin_lock_irq(&tty->ctrl_lock);
604 clear_bit(TTY_THROTTLED, &tty->flags);
605 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
606 put_pid(tty->session);
607 put_pid(tty->pgrp);
608 tty->session = NULL;
609 tty->pgrp = NULL;
610 tty->ctrl_status = 0;
611 spin_unlock_irq(&tty->ctrl_lock);
612
613 /*
614 * If one of the devices matches a console pointer, we
615 * cannot just call hangup() because that will cause
616 * tty->count and state->count to go out of sync.
617 * So we just call close() the right number of times.
618 */
619 if (cons_filp) {
620 if (tty->ops->close)
621 for (n = 0; n < closecount; n++)
622 tty->ops->close(tty, cons_filp);
623 } else if (tty->ops->hangup)
624 tty->ops->hangup(tty);
625 /*
626 * We don't want to have driver/ldisc interactions beyond the ones
627 * we did here. The driver layer expects no calls after ->hangup()
628 * from the ldisc side, which is now guaranteed.
629 */
630 set_bit(TTY_HUPPED, &tty->flags);
631 tty_unlock(tty);
632
633 if (f)
634 fput(f);
635 }
636
637 static void do_tty_hangup(struct work_struct *work)
638 {
639 struct tty_struct *tty =
640 container_of(work, struct tty_struct, hangup_work);
641
642 __tty_hangup(tty, 0);
643 }
644
645 /**
646 * tty_hangup - trigger a hangup event
647 * @tty: tty to hangup
648 *
649 * A carrier loss (virtual or otherwise) has occurred on this like
650 * schedule a hangup sequence to run after this event.
651 */
652
653 void tty_hangup(struct tty_struct *tty)
654 {
655 tty_debug_hangup(tty, "hangup\n");
656 schedule_work(&tty->hangup_work);
657 }
658
659 EXPORT_SYMBOL(tty_hangup);
660
661 /**
662 * tty_vhangup - process vhangup
663 * @tty: tty to hangup
664 *
665 * The user has asked via system call for the terminal to be hung up.
666 * We do this synchronously so that when the syscall returns the process
667 * is complete. That guarantee is necessary for security reasons.
668 */
669
670 void tty_vhangup(struct tty_struct *tty)
671 {
672 tty_debug_hangup(tty, "vhangup\n");
673 __tty_hangup(tty, 0);
674 }
675
676 EXPORT_SYMBOL(tty_vhangup);
677
678
679 /**
680 * tty_vhangup_self - process vhangup for own ctty
681 *
682 * Perform a vhangup on the current controlling tty
683 */
684
685 void tty_vhangup_self(void)
686 {
687 struct tty_struct *tty;
688
689 tty = get_current_tty();
690 if (tty) {
691 tty_vhangup(tty);
692 tty_kref_put(tty);
693 }
694 }
695
696 /**
697 * tty_vhangup_session - hangup session leader exit
698 * @tty: tty to hangup
699 *
700 * The session leader is exiting and hanging up its controlling terminal.
701 * Every process in the foreground process group is signalled SIGHUP.
702 *
703 * We do this synchronously so that when the syscall returns the process
704 * is complete. That guarantee is necessary for security reasons.
705 */
706
707 void tty_vhangup_session(struct tty_struct *tty)
708 {
709 tty_debug_hangup(tty, "session hangup\n");
710 __tty_hangup(tty, 1);
711 }
712
713 /**
714 * tty_hung_up_p - was tty hung up
715 * @filp: file pointer of tty
716 *
717 * Return true if the tty has been subject to a vhangup or a carrier
718 * loss
719 */
720
721 int tty_hung_up_p(struct file *filp)
722 {
723 return (filp && filp->f_op == &hung_up_tty_fops);
724 }
725
726 EXPORT_SYMBOL(tty_hung_up_p);
727
728 /**
729 * stop_tty - propagate flow control
730 * @tty: tty to stop
731 *
732 * Perform flow control to the driver. May be called
733 * on an already stopped device and will not re-call the driver
734 * method.
735 *
736 * This functionality is used by both the line disciplines for
737 * halting incoming flow and by the driver. It may therefore be
738 * called from any context, may be under the tty atomic_write_lock
739 * but not always.
740 *
741 * Locking:
742 * flow_lock
743 */
744
745 void __stop_tty(struct tty_struct *tty)
746 {
747 if (tty->stopped)
748 return;
749 tty->stopped = 1;
750 if (tty->ops->stop)
751 tty->ops->stop(tty);
752 }
753
754 void stop_tty(struct tty_struct *tty)
755 {
756 unsigned long flags;
757
758 spin_lock_irqsave(&tty->flow_lock, flags);
759 __stop_tty(tty);
760 spin_unlock_irqrestore(&tty->flow_lock, flags);
761 }
762 EXPORT_SYMBOL(stop_tty);
763
764 /**
765 * start_tty - propagate flow control
766 * @tty: tty to start
767 *
768 * Start a tty that has been stopped if at all possible. If this
769 * tty was previous stopped and is now being started, the driver
770 * start method is invoked and the line discipline woken.
771 *
772 * Locking:
773 * flow_lock
774 */
775
776 void __start_tty(struct tty_struct *tty)
777 {
778 if (!tty->stopped || tty->flow_stopped)
779 return;
780 tty->stopped = 0;
781 if (tty->ops->start)
782 tty->ops->start(tty);
783 tty_wakeup(tty);
784 }
785
786 void start_tty(struct tty_struct *tty)
787 {
788 unsigned long flags;
789
790 spin_lock_irqsave(&tty->flow_lock, flags);
791 __start_tty(tty);
792 spin_unlock_irqrestore(&tty->flow_lock, flags);
793 }
794 EXPORT_SYMBOL(start_tty);
795
796 static void tty_update_time(struct timespec *time)
797 {
798 unsigned long sec = get_seconds();
799
800 /*
801 * We only care if the two values differ in anything other than the
802 * lower three bits (i.e every 8 seconds). If so, then we can update
803 * the time of the tty device, otherwise it could be construded as a
804 * security leak to let userspace know the exact timing of the tty.
805 */
806 if ((sec ^ time->tv_sec) & ~7)
807 time->tv_sec = sec;
808 }
809
810 /**
811 * tty_read - read method for tty device files
812 * @file: pointer to tty file
813 * @buf: user buffer
814 * @count: size of user buffer
815 * @ppos: unused
816 *
817 * Perform the read system call function on this terminal device. Checks
818 * for hung up devices before calling the line discipline method.
819 *
820 * Locking:
821 * Locks the line discipline internally while needed. Multiple
822 * read calls may be outstanding in parallel.
823 */
824
825 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
826 loff_t *ppos)
827 {
828 int i;
829 struct inode *inode = file_inode(file);
830 struct tty_struct *tty = file_tty(file);
831 struct tty_ldisc *ld;
832
833 if (tty_paranoia_check(tty, inode, "tty_read"))
834 return -EIO;
835 if (!tty || tty_io_error(tty))
836 return -EIO;
837
838 /* We want to wait for the line discipline to sort out in this
839 situation */
840 ld = tty_ldisc_ref_wait(tty);
841 if (!ld)
842 return hung_up_tty_read(file, buf, count, ppos);
843 if (ld->ops->read)
844 i = ld->ops->read(tty, file, buf, count);
845 else
846 i = -EIO;
847 tty_ldisc_deref(ld);
848
849 if (i > 0)
850 tty_update_time(&inode->i_atime);
851
852 return i;
853 }
854
855 static void tty_write_unlock(struct tty_struct *tty)
856 {
857 mutex_unlock(&tty->atomic_write_lock);
858 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
859 }
860
861 static int tty_write_lock(struct tty_struct *tty, int ndelay)
862 {
863 if (!mutex_trylock(&tty->atomic_write_lock)) {
864 if (ndelay)
865 return -EAGAIN;
866 if (mutex_lock_interruptible(&tty->atomic_write_lock))
867 return -ERESTARTSYS;
868 }
869 return 0;
870 }
871
872 /*
873 * Split writes up in sane blocksizes to avoid
874 * denial-of-service type attacks
875 */
876 static inline ssize_t do_tty_write(
877 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
878 struct tty_struct *tty,
879 struct file *file,
880 const char __user *buf,
881 size_t count)
882 {
883 ssize_t ret, written = 0;
884 unsigned int chunk;
885
886 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
887 if (ret < 0)
888 return ret;
889
890 /*
891 * We chunk up writes into a temporary buffer. This
892 * simplifies low-level drivers immensely, since they
893 * don't have locking issues and user mode accesses.
894 *
895 * But if TTY_NO_WRITE_SPLIT is set, we should use a
896 * big chunk-size..
897 *
898 * The default chunk-size is 2kB, because the NTTY
899 * layer has problems with bigger chunks. It will
900 * claim to be able to handle more characters than
901 * it actually does.
902 *
903 * FIXME: This can probably go away now except that 64K chunks
904 * are too likely to fail unless switched to vmalloc...
905 */
906 chunk = 2048;
907 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
908 chunk = 65536;
909 if (count < chunk)
910 chunk = count;
911
912 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
913 if (tty->write_cnt < chunk) {
914 unsigned char *buf_chunk;
915
916 if (chunk < 1024)
917 chunk = 1024;
918
919 buf_chunk = kmalloc(chunk, GFP_KERNEL);
920 if (!buf_chunk) {
921 ret = -ENOMEM;
922 goto out;
923 }
924 kfree(tty->write_buf);
925 tty->write_cnt = chunk;
926 tty->write_buf = buf_chunk;
927 }
928
929 /* Do the write .. */
930 for (;;) {
931 size_t size = count;
932 if (size > chunk)
933 size = chunk;
934 ret = -EFAULT;
935 if (copy_from_user(tty->write_buf, buf, size))
936 break;
937 ret = write(tty, file, tty->write_buf, size);
938 if (ret <= 0)
939 break;
940 written += ret;
941 buf += ret;
942 count -= ret;
943 if (!count)
944 break;
945 ret = -ERESTARTSYS;
946 if (signal_pending(current))
947 break;
948 cond_resched();
949 }
950 if (written) {
951 tty_update_time(&file_inode(file)->i_mtime);
952 ret = written;
953 }
954 out:
955 tty_write_unlock(tty);
956 return ret;
957 }
958
959 /**
960 * tty_write_message - write a message to a certain tty, not just the console.
961 * @tty: the destination tty_struct
962 * @msg: the message to write
963 *
964 * This is used for messages that need to be redirected to a specific tty.
965 * We don't put it into the syslog queue right now maybe in the future if
966 * really needed.
967 *
968 * We must still hold the BTM and test the CLOSING flag for the moment.
969 */
970
971 void tty_write_message(struct tty_struct *tty, char *msg)
972 {
973 if (tty) {
974 mutex_lock(&tty->atomic_write_lock);
975 tty_lock(tty);
976 if (tty->ops->write && tty->count > 0)
977 tty->ops->write(tty, msg, strlen(msg));
978 tty_unlock(tty);
979 tty_write_unlock(tty);
980 }
981 return;
982 }
983
984
985 /**
986 * tty_write - write method for tty device file
987 * @file: tty file pointer
988 * @buf: user data to write
989 * @count: bytes to write
990 * @ppos: unused
991 *
992 * Write data to a tty device via the line discipline.
993 *
994 * Locking:
995 * Locks the line discipline as required
996 * Writes to the tty driver are serialized by the atomic_write_lock
997 * and are then processed in chunks to the device. The line discipline
998 * write method will not be invoked in parallel for each device.
999 */
1000
1001 static ssize_t tty_write(struct file *file, const char __user *buf,
1002 size_t count, loff_t *ppos)
1003 {
1004 struct tty_struct *tty = file_tty(file);
1005 struct tty_ldisc *ld;
1006 ssize_t ret;
1007
1008 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1009 return -EIO;
1010 if (!tty || !tty->ops->write || tty_io_error(tty))
1011 return -EIO;
1012 /* Short term debug to catch buggy drivers */
1013 if (tty->ops->write_room == NULL)
1014 tty_err(tty, "missing write_room method\n");
1015 ld = tty_ldisc_ref_wait(tty);
1016 if (!ld)
1017 return hung_up_tty_write(file, buf, count, ppos);
1018 if (!ld->ops->write)
1019 ret = -EIO;
1020 else
1021 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1022 tty_ldisc_deref(ld);
1023 return ret;
1024 }
1025
1026 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1027 size_t count, loff_t *ppos)
1028 {
1029 struct file *p = NULL;
1030
1031 spin_lock(&redirect_lock);
1032 if (redirect)
1033 p = get_file(redirect);
1034 spin_unlock(&redirect_lock);
1035
1036 if (p) {
1037 ssize_t res;
1038 res = vfs_write(p, buf, count, &p->f_pos);
1039 fput(p);
1040 return res;
1041 }
1042 return tty_write(file, buf, count, ppos);
1043 }
1044
1045 /**
1046 * tty_send_xchar - send priority character
1047 *
1048 * Send a high priority character to the tty even if stopped
1049 *
1050 * Locking: none for xchar method, write ordering for write method.
1051 */
1052
1053 int tty_send_xchar(struct tty_struct *tty, char ch)
1054 {
1055 int was_stopped = tty->stopped;
1056
1057 if (tty->ops->send_xchar) {
1058 down_read(&tty->termios_rwsem);
1059 tty->ops->send_xchar(tty, ch);
1060 up_read(&tty->termios_rwsem);
1061 return 0;
1062 }
1063
1064 if (tty_write_lock(tty, 0) < 0)
1065 return -ERESTARTSYS;
1066
1067 down_read(&tty->termios_rwsem);
1068 if (was_stopped)
1069 start_tty(tty);
1070 tty->ops->write(tty, &ch, 1);
1071 if (was_stopped)
1072 stop_tty(tty);
1073 up_read(&tty->termios_rwsem);
1074 tty_write_unlock(tty);
1075 return 0;
1076 }
1077
1078 static char ptychar[] = "pqrstuvwxyzabcde";
1079
1080 /**
1081 * pty_line_name - generate name for a pty
1082 * @driver: the tty driver in use
1083 * @index: the minor number
1084 * @p: output buffer of at least 6 bytes
1085 *
1086 * Generate a name from a driver reference and write it to the output
1087 * buffer.
1088 *
1089 * Locking: None
1090 */
1091 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1092 {
1093 int i = index + driver->name_base;
1094 /* ->name is initialized to "ttyp", but "tty" is expected */
1095 sprintf(p, "%s%c%x",
1096 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1097 ptychar[i >> 4 & 0xf], i & 0xf);
1098 }
1099
1100 /**
1101 * tty_line_name - generate name for a tty
1102 * @driver: the tty driver in use
1103 * @index: the minor number
1104 * @p: output buffer of at least 7 bytes
1105 *
1106 * Generate a name from a driver reference and write it to the output
1107 * buffer.
1108 *
1109 * Locking: None
1110 */
1111 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1112 {
1113 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1114 return sprintf(p, "%s", driver->name);
1115 else
1116 return sprintf(p, "%s%d", driver->name,
1117 index + driver->name_base);
1118 }
1119
1120 /**
1121 * tty_driver_lookup_tty() - find an existing tty, if any
1122 * @driver: the driver for the tty
1123 * @idx: the minor number
1124 *
1125 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1126 * driver lookup() method returns an error.
1127 *
1128 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1129 */
1130 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1131 struct file *file, int idx)
1132 {
1133 struct tty_struct *tty;
1134
1135 if (driver->ops->lookup)
1136 if (!file)
1137 tty = ERR_PTR(-EIO);
1138 else
1139 tty = driver->ops->lookup(driver, file, idx);
1140 else
1141 tty = driver->ttys[idx];
1142
1143 if (!IS_ERR(tty))
1144 tty_kref_get(tty);
1145 return tty;
1146 }
1147
1148 /**
1149 * tty_init_termios - helper for termios setup
1150 * @tty: the tty to set up
1151 *
1152 * Initialise the termios structures for this tty. Thus runs under
1153 * the tty_mutex currently so we can be relaxed about ordering.
1154 */
1155
1156 void tty_init_termios(struct tty_struct *tty)
1157 {
1158 struct ktermios *tp;
1159 int idx = tty->index;
1160
1161 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1162 tty->termios = tty->driver->init_termios;
1163 else {
1164 /* Check for lazy saved data */
1165 tp = tty->driver->termios[idx];
1166 if (tp != NULL) {
1167 tty->termios = *tp;
1168 tty->termios.c_line = tty->driver->init_termios.c_line;
1169 } else
1170 tty->termios = tty->driver->init_termios;
1171 }
1172 /* Compatibility until drivers always set this */
1173 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1174 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1175 }
1176 EXPORT_SYMBOL_GPL(tty_init_termios);
1177
1178 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1179 {
1180 tty_init_termios(tty);
1181 tty_driver_kref_get(driver);
1182 tty->count++;
1183 driver->ttys[tty->index] = tty;
1184 return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(tty_standard_install);
1187
1188 /**
1189 * tty_driver_install_tty() - install a tty entry in the driver
1190 * @driver: the driver for the tty
1191 * @tty: the tty
1192 *
1193 * Install a tty object into the driver tables. The tty->index field
1194 * will be set by the time this is called. This method is responsible
1195 * for ensuring any need additional structures are allocated and
1196 * configured.
1197 *
1198 * Locking: tty_mutex for now
1199 */
1200 static int tty_driver_install_tty(struct tty_driver *driver,
1201 struct tty_struct *tty)
1202 {
1203 return driver->ops->install ? driver->ops->install(driver, tty) :
1204 tty_standard_install(driver, tty);
1205 }
1206
1207 /**
1208 * tty_driver_remove_tty() - remove a tty from the driver tables
1209 * @driver: the driver for the tty
1210 * @idx: the minor number
1211 *
1212 * Remvoe a tty object from the driver tables. The tty->index field
1213 * will be set by the time this is called.
1214 *
1215 * Locking: tty_mutex for now
1216 */
1217 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1218 {
1219 if (driver->ops->remove)
1220 driver->ops->remove(driver, tty);
1221 else
1222 driver->ttys[tty->index] = NULL;
1223 }
1224
1225 /*
1226 * tty_reopen() - fast re-open of an open tty
1227 * @tty - the tty to open
1228 *
1229 * Return 0 on success, -errno on error.
1230 * Re-opens on master ptys are not allowed and return -EIO.
1231 *
1232 * Locking: Caller must hold tty_lock
1233 */
1234 static int tty_reopen(struct tty_struct *tty)
1235 {
1236 struct tty_driver *driver = tty->driver;
1237
1238 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1239 driver->subtype == PTY_TYPE_MASTER)
1240 return -EIO;
1241
1242 if (!tty->count)
1243 return -EAGAIN;
1244
1245 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1246 return -EBUSY;
1247
1248 tty->count++;
1249
1250 if (!tty->ldisc)
1251 return tty_ldisc_reinit(tty, tty->termios.c_line);
1252
1253 return 0;
1254 }
1255
1256 /**
1257 * tty_init_dev - initialise a tty device
1258 * @driver: tty driver we are opening a device on
1259 * @idx: device index
1260 * @ret_tty: returned tty structure
1261 *
1262 * Prepare a tty device. This may not be a "new" clean device but
1263 * could also be an active device. The pty drivers require special
1264 * handling because of this.
1265 *
1266 * Locking:
1267 * The function is called under the tty_mutex, which
1268 * protects us from the tty struct or driver itself going away.
1269 *
1270 * On exit the tty device has the line discipline attached and
1271 * a reference count of 1. If a pair was created for pty/tty use
1272 * and the other was a pty master then it too has a reference count of 1.
1273 *
1274 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1275 * failed open. The new code protects the open with a mutex, so it's
1276 * really quite straightforward. The mutex locking can probably be
1277 * relaxed for the (most common) case of reopening a tty.
1278 */
1279
1280 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1281 {
1282 struct tty_struct *tty;
1283 int retval;
1284
1285 /*
1286 * First time open is complex, especially for PTY devices.
1287 * This code guarantees that either everything succeeds and the
1288 * TTY is ready for operation, or else the table slots are vacated
1289 * and the allocated memory released. (Except that the termios
1290 * may be retained.)
1291 */
1292
1293 if (!try_module_get(driver->owner))
1294 return ERR_PTR(-ENODEV);
1295
1296 tty = alloc_tty_struct(driver, idx);
1297 if (!tty) {
1298 retval = -ENOMEM;
1299 goto err_module_put;
1300 }
1301
1302 tty_lock(tty);
1303 retval = tty_driver_install_tty(driver, tty);
1304 if (retval < 0)
1305 goto err_free_tty;
1306
1307 if (!tty->port)
1308 tty->port = driver->ports[idx];
1309
1310 WARN_RATELIMIT(!tty->port,
1311 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1312 __func__, tty->driver->name);
1313
1314 tty->port->itty = tty;
1315
1316 /*
1317 * Structures all installed ... call the ldisc open routines.
1318 * If we fail here just call release_tty to clean up. No need
1319 * to decrement the use counts, as release_tty doesn't care.
1320 */
1321 retval = tty_ldisc_setup(tty, tty->link);
1322 if (retval)
1323 goto err_release_tty;
1324 /* Return the tty locked so that it cannot vanish under the caller */
1325 return tty;
1326
1327 err_free_tty:
1328 tty_unlock(tty);
1329 free_tty_struct(tty);
1330 err_module_put:
1331 module_put(driver->owner);
1332 return ERR_PTR(retval);
1333
1334 /* call the tty release_tty routine to clean out this slot */
1335 err_release_tty:
1336 tty_unlock(tty);
1337 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1338 retval, idx);
1339 release_tty(tty, idx);
1340 return ERR_PTR(retval);
1341 }
1342
1343 static void tty_free_termios(struct tty_struct *tty)
1344 {
1345 struct ktermios *tp;
1346 int idx = tty->index;
1347
1348 /* If the port is going to reset then it has no termios to save */
1349 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1350 return;
1351
1352 /* Stash the termios data */
1353 tp = tty->driver->termios[idx];
1354 if (tp == NULL) {
1355 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1356 if (tp == NULL)
1357 return;
1358 tty->driver->termios[idx] = tp;
1359 }
1360 *tp = tty->termios;
1361 }
1362
1363 /**
1364 * tty_flush_works - flush all works of a tty/pty pair
1365 * @tty: tty device to flush works for (or either end of a pty pair)
1366 *
1367 * Sync flush all works belonging to @tty (and the 'other' tty).
1368 */
1369 static void tty_flush_works(struct tty_struct *tty)
1370 {
1371 flush_work(&tty->SAK_work);
1372 flush_work(&tty->hangup_work);
1373 if (tty->link) {
1374 flush_work(&tty->link->SAK_work);
1375 flush_work(&tty->link->hangup_work);
1376 }
1377 }
1378
1379 /**
1380 * release_one_tty - release tty structure memory
1381 * @kref: kref of tty we are obliterating
1382 *
1383 * Releases memory associated with a tty structure, and clears out the
1384 * driver table slots. This function is called when a device is no longer
1385 * in use. It also gets called when setup of a device fails.
1386 *
1387 * Locking:
1388 * takes the file list lock internally when working on the list
1389 * of ttys that the driver keeps.
1390 *
1391 * This method gets called from a work queue so that the driver private
1392 * cleanup ops can sleep (needed for USB at least)
1393 */
1394 static void release_one_tty(struct work_struct *work)
1395 {
1396 struct tty_struct *tty =
1397 container_of(work, struct tty_struct, hangup_work);
1398 struct tty_driver *driver = tty->driver;
1399 struct module *owner = driver->owner;
1400
1401 if (tty->ops->cleanup)
1402 tty->ops->cleanup(tty);
1403
1404 tty->magic = 0;
1405 tty_driver_kref_put(driver);
1406 module_put(owner);
1407
1408 spin_lock(&tty->files_lock);
1409 list_del_init(&tty->tty_files);
1410 spin_unlock(&tty->files_lock);
1411
1412 put_pid(tty->pgrp);
1413 put_pid(tty->session);
1414 free_tty_struct(tty);
1415 }
1416
1417 static void queue_release_one_tty(struct kref *kref)
1418 {
1419 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1420
1421 /* The hangup queue is now free so we can reuse it rather than
1422 waste a chunk of memory for each port */
1423 INIT_WORK(&tty->hangup_work, release_one_tty);
1424 schedule_work(&tty->hangup_work);
1425 }
1426
1427 /**
1428 * tty_kref_put - release a tty kref
1429 * @tty: tty device
1430 *
1431 * Release a reference to a tty device and if need be let the kref
1432 * layer destruct the object for us
1433 */
1434
1435 void tty_kref_put(struct tty_struct *tty)
1436 {
1437 if (tty)
1438 kref_put(&tty->kref, queue_release_one_tty);
1439 }
1440 EXPORT_SYMBOL(tty_kref_put);
1441
1442 /**
1443 * release_tty - release tty structure memory
1444 *
1445 * Release both @tty and a possible linked partner (think pty pair),
1446 * and decrement the refcount of the backing module.
1447 *
1448 * Locking:
1449 * tty_mutex
1450 * takes the file list lock internally when working on the list
1451 * of ttys that the driver keeps.
1452 *
1453 */
1454 static void release_tty(struct tty_struct *tty, int idx)
1455 {
1456 /* This should always be true but check for the moment */
1457 WARN_ON(tty->index != idx);
1458 WARN_ON(!mutex_is_locked(&tty_mutex));
1459 if (tty->ops->shutdown)
1460 tty->ops->shutdown(tty);
1461 tty_free_termios(tty);
1462 tty_driver_remove_tty(tty->driver, tty);
1463 tty->port->itty = NULL;
1464 if (tty->link)
1465 tty->link->port->itty = NULL;
1466 tty_buffer_cancel_work(tty->port);
1467
1468 tty_kref_put(tty->link);
1469 tty_kref_put(tty);
1470 }
1471
1472 /**
1473 * tty_release_checks - check a tty before real release
1474 * @tty: tty to check
1475 * @o_tty: link of @tty (if any)
1476 * @idx: index of the tty
1477 *
1478 * Performs some paranoid checking before true release of the @tty.
1479 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1480 */
1481 static int tty_release_checks(struct tty_struct *tty, int idx)
1482 {
1483 #ifdef TTY_PARANOIA_CHECK
1484 if (idx < 0 || idx >= tty->driver->num) {
1485 tty_debug(tty, "bad idx %d\n", idx);
1486 return -1;
1487 }
1488
1489 /* not much to check for devpts */
1490 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1491 return 0;
1492
1493 if (tty != tty->driver->ttys[idx]) {
1494 tty_debug(tty, "bad driver table[%d] = %p\n",
1495 idx, tty->driver->ttys[idx]);
1496 return -1;
1497 }
1498 if (tty->driver->other) {
1499 struct tty_struct *o_tty = tty->link;
1500
1501 if (o_tty != tty->driver->other->ttys[idx]) {
1502 tty_debug(tty, "bad other table[%d] = %p\n",
1503 idx, tty->driver->other->ttys[idx]);
1504 return -1;
1505 }
1506 if (o_tty->link != tty) {
1507 tty_debug(tty, "bad link = %p\n", o_tty->link);
1508 return -1;
1509 }
1510 }
1511 #endif
1512 return 0;
1513 }
1514
1515 /**
1516 * tty_release_struct - release a tty struct
1517 * @tty: tty device
1518 * @idx: index of the tty
1519 *
1520 * Performs the final steps to release and free a tty device. It is
1521 * roughly the reverse of tty_init_dev.
1522 */
1523 void tty_release_struct(struct tty_struct *tty, int idx)
1524 {
1525 /*
1526 * Ask the line discipline code to release its structures
1527 */
1528 tty_ldisc_release(tty);
1529
1530 /* Wait for pending work before tty destruction commmences */
1531 tty_flush_works(tty);
1532
1533 tty_debug_hangup(tty, "freeing structure\n");
1534 /*
1535 * The release_tty function takes care of the details of clearing
1536 * the slots and preserving the termios structure. The tty_unlock_pair
1537 * should be safe as we keep a kref while the tty is locked (so the
1538 * unlock never unlocks a freed tty).
1539 */
1540 mutex_lock(&tty_mutex);
1541 release_tty(tty, idx);
1542 mutex_unlock(&tty_mutex);
1543 }
1544 EXPORT_SYMBOL_GPL(tty_release_struct);
1545
1546 /**
1547 * tty_release - vfs callback for close
1548 * @inode: inode of tty
1549 * @filp: file pointer for handle to tty
1550 *
1551 * Called the last time each file handle is closed that references
1552 * this tty. There may however be several such references.
1553 *
1554 * Locking:
1555 * Takes bkl. See tty_release_dev
1556 *
1557 * Even releasing the tty structures is a tricky business.. We have
1558 * to be very careful that the structures are all released at the
1559 * same time, as interrupts might otherwise get the wrong pointers.
1560 *
1561 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1562 * lead to double frees or releasing memory still in use.
1563 */
1564
1565 int tty_release(struct inode *inode, struct file *filp)
1566 {
1567 struct tty_struct *tty = file_tty(filp);
1568 struct tty_struct *o_tty = NULL;
1569 int do_sleep, final;
1570 int idx;
1571 long timeout = 0;
1572 int once = 1;
1573
1574 if (tty_paranoia_check(tty, inode, __func__))
1575 return 0;
1576
1577 tty_lock(tty);
1578 check_tty_count(tty, __func__);
1579
1580 __tty_fasync(-1, filp, 0);
1581
1582 idx = tty->index;
1583 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1584 tty->driver->subtype == PTY_TYPE_MASTER)
1585 o_tty = tty->link;
1586
1587 if (tty_release_checks(tty, idx)) {
1588 tty_unlock(tty);
1589 return 0;
1590 }
1591
1592 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1593
1594 if (tty->ops->close)
1595 tty->ops->close(tty, filp);
1596
1597 /* If tty is pty master, lock the slave pty (stable lock order) */
1598 tty_lock_slave(o_tty);
1599
1600 /*
1601 * Sanity check: if tty->count is going to zero, there shouldn't be
1602 * any waiters on tty->read_wait or tty->write_wait. We test the
1603 * wait queues and kick everyone out _before_ actually starting to
1604 * close. This ensures that we won't block while releasing the tty
1605 * structure.
1606 *
1607 * The test for the o_tty closing is necessary, since the master and
1608 * slave sides may close in any order. If the slave side closes out
1609 * first, its count will be one, since the master side holds an open.
1610 * Thus this test wouldn't be triggered at the time the slave closed,
1611 * so we do it now.
1612 */
1613 while (1) {
1614 do_sleep = 0;
1615
1616 if (tty->count <= 1) {
1617 if (waitqueue_active(&tty->read_wait)) {
1618 wake_up_poll(&tty->read_wait, POLLIN);
1619 do_sleep++;
1620 }
1621 if (waitqueue_active(&tty->write_wait)) {
1622 wake_up_poll(&tty->write_wait, POLLOUT);
1623 do_sleep++;
1624 }
1625 }
1626 if (o_tty && o_tty->count <= 1) {
1627 if (waitqueue_active(&o_tty->read_wait)) {
1628 wake_up_poll(&o_tty->read_wait, POLLIN);
1629 do_sleep++;
1630 }
1631 if (waitqueue_active(&o_tty->write_wait)) {
1632 wake_up_poll(&o_tty->write_wait, POLLOUT);
1633 do_sleep++;
1634 }
1635 }
1636 if (!do_sleep)
1637 break;
1638
1639 if (once) {
1640 once = 0;
1641 tty_warn(tty, "read/write wait queue active!\n");
1642 }
1643 schedule_timeout_killable(timeout);
1644 if (timeout < 120 * HZ)
1645 timeout = 2 * timeout + 1;
1646 else
1647 timeout = MAX_SCHEDULE_TIMEOUT;
1648 }
1649
1650 if (o_tty) {
1651 if (--o_tty->count < 0) {
1652 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1653 o_tty->count = 0;
1654 }
1655 }
1656 if (--tty->count < 0) {
1657 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1658 tty->count = 0;
1659 }
1660
1661 /*
1662 * We've decremented tty->count, so we need to remove this file
1663 * descriptor off the tty->tty_files list; this serves two
1664 * purposes:
1665 * - check_tty_count sees the correct number of file descriptors
1666 * associated with this tty.
1667 * - do_tty_hangup no longer sees this file descriptor as
1668 * something that needs to be handled for hangups.
1669 */
1670 tty_del_file(filp);
1671
1672 /*
1673 * Perform some housekeeping before deciding whether to return.
1674 *
1675 * If _either_ side is closing, make sure there aren't any
1676 * processes that still think tty or o_tty is their controlling
1677 * tty.
1678 */
1679 if (!tty->count) {
1680 read_lock(&tasklist_lock);
1681 session_clear_tty(tty->session);
1682 if (o_tty)
1683 session_clear_tty(o_tty->session);
1684 read_unlock(&tasklist_lock);
1685 }
1686
1687 /* check whether both sides are closing ... */
1688 final = !tty->count && !(o_tty && o_tty->count);
1689
1690 tty_unlock_slave(o_tty);
1691 tty_unlock(tty);
1692
1693 /* At this point, the tty->count == 0 should ensure a dead tty
1694 cannot be re-opened by a racing opener */
1695
1696 if (!final)
1697 return 0;
1698
1699 tty_debug_hangup(tty, "final close\n");
1700
1701 tty_release_struct(tty, idx);
1702 return 0;
1703 }
1704
1705 /**
1706 * tty_open_current_tty - get locked tty of current task
1707 * @device: device number
1708 * @filp: file pointer to tty
1709 * @return: locked tty of the current task iff @device is /dev/tty
1710 *
1711 * Performs a re-open of the current task's controlling tty.
1712 *
1713 * We cannot return driver and index like for the other nodes because
1714 * devpts will not work then. It expects inodes to be from devpts FS.
1715 */
1716 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1717 {
1718 struct tty_struct *tty;
1719 int retval;
1720
1721 if (device != MKDEV(TTYAUX_MAJOR, 0))
1722 return NULL;
1723
1724 tty = get_current_tty();
1725 if (!tty)
1726 return ERR_PTR(-ENXIO);
1727
1728 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1729 /* noctty = 1; */
1730 tty_lock(tty);
1731 tty_kref_put(tty); /* safe to drop the kref now */
1732
1733 retval = tty_reopen(tty);
1734 if (retval < 0) {
1735 tty_unlock(tty);
1736 tty = ERR_PTR(retval);
1737 }
1738 return tty;
1739 }
1740
1741 /**
1742 * tty_lookup_driver - lookup a tty driver for a given device file
1743 * @device: device number
1744 * @filp: file pointer to tty
1745 * @index: index for the device in the @return driver
1746 * @return: driver for this inode (with increased refcount)
1747 *
1748 * If @return is not erroneous, the caller is responsible to decrement the
1749 * refcount by tty_driver_kref_put.
1750 *
1751 * Locking: tty_mutex protects get_tty_driver
1752 */
1753 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1754 int *index)
1755 {
1756 struct tty_driver *driver;
1757
1758 switch (device) {
1759 #ifdef CONFIG_VT
1760 case MKDEV(TTY_MAJOR, 0): {
1761 extern struct tty_driver *console_driver;
1762 driver = tty_driver_kref_get(console_driver);
1763 *index = fg_console;
1764 break;
1765 }
1766 #endif
1767 case MKDEV(TTYAUX_MAJOR, 1): {
1768 struct tty_driver *console_driver = console_device(index);
1769 if (console_driver) {
1770 driver = tty_driver_kref_get(console_driver);
1771 if (driver && filp) {
1772 /* Don't let /dev/console block */
1773 filp->f_flags |= O_NONBLOCK;
1774 break;
1775 }
1776 }
1777 return ERR_PTR(-ENODEV);
1778 }
1779 default:
1780 driver = get_tty_driver(device, index);
1781 if (!driver)
1782 return ERR_PTR(-ENODEV);
1783 break;
1784 }
1785 return driver;
1786 }
1787
1788 /**
1789 * tty_open_by_driver - open a tty device
1790 * @device: dev_t of device to open
1791 * @inode: inode of device file
1792 * @filp: file pointer to tty
1793 *
1794 * Performs the driver lookup, checks for a reopen, or otherwise
1795 * performs the first-time tty initialization.
1796 *
1797 * Returns the locked initialized or re-opened &tty_struct
1798 *
1799 * Claims the global tty_mutex to serialize:
1800 * - concurrent first-time tty initialization
1801 * - concurrent tty driver removal w/ lookup
1802 * - concurrent tty removal from driver table
1803 */
1804 struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1805 struct file *filp)
1806 {
1807 struct tty_struct *tty;
1808 struct tty_driver *driver = NULL;
1809 int index = -1;
1810 int retval;
1811
1812 mutex_lock(&tty_mutex);
1813 driver = tty_lookup_driver(device, filp, &index);
1814 if (IS_ERR(driver)) {
1815 mutex_unlock(&tty_mutex);
1816 return ERR_CAST(driver);
1817 }
1818
1819 /* check whether we're reopening an existing tty */
1820 tty = tty_driver_lookup_tty(driver, filp, index);
1821 if (IS_ERR(tty)) {
1822 mutex_unlock(&tty_mutex);
1823 goto out;
1824 }
1825
1826 if (tty) {
1827 mutex_unlock(&tty_mutex);
1828 retval = tty_lock_interruptible(tty);
1829 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1830 if (retval) {
1831 if (retval == -EINTR)
1832 retval = -ERESTARTSYS;
1833 tty = ERR_PTR(retval);
1834 goto out;
1835 }
1836 retval = tty_reopen(tty);
1837 if (retval < 0) {
1838 tty_unlock(tty);
1839 tty = ERR_PTR(retval);
1840 }
1841 } else { /* Returns with the tty_lock held for now */
1842 tty = tty_init_dev(driver, index);
1843 mutex_unlock(&tty_mutex);
1844 }
1845 out:
1846 tty_driver_kref_put(driver);
1847 return tty;
1848 }
1849 EXPORT_SYMBOL_GPL(tty_open_by_driver);
1850
1851 /**
1852 * tty_open - open a tty device
1853 * @inode: inode of device file
1854 * @filp: file pointer to tty
1855 *
1856 * tty_open and tty_release keep up the tty count that contains the
1857 * number of opens done on a tty. We cannot use the inode-count, as
1858 * different inodes might point to the same tty.
1859 *
1860 * Open-counting is needed for pty masters, as well as for keeping
1861 * track of serial lines: DTR is dropped when the last close happens.
1862 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1863 *
1864 * The termios state of a pty is reset on first open so that
1865 * settings don't persist across reuse.
1866 *
1867 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1868 * tty->count should protect the rest.
1869 * ->siglock protects ->signal/->sighand
1870 *
1871 * Note: the tty_unlock/lock cases without a ref are only safe due to
1872 * tty_mutex
1873 */
1874
1875 static int tty_open(struct inode *inode, struct file *filp)
1876 {
1877 struct tty_struct *tty;
1878 int noctty, retval;
1879 dev_t device = inode->i_rdev;
1880 unsigned saved_flags = filp->f_flags;
1881
1882 nonseekable_open(inode, filp);
1883
1884 retry_open:
1885 retval = tty_alloc_file(filp);
1886 if (retval)
1887 return -ENOMEM;
1888
1889 tty = tty_open_current_tty(device, filp);
1890 if (!tty)
1891 tty = tty_open_by_driver(device, inode, filp);
1892
1893 if (IS_ERR(tty)) {
1894 tty_free_file(filp);
1895 retval = PTR_ERR(tty);
1896 if (retval != -EAGAIN || signal_pending(current))
1897 return retval;
1898 schedule();
1899 goto retry_open;
1900 }
1901
1902 tty_add_file(tty, filp);
1903
1904 check_tty_count(tty, __func__);
1905 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
1906
1907 if (tty->ops->open)
1908 retval = tty->ops->open(tty, filp);
1909 else
1910 retval = -ENODEV;
1911 filp->f_flags = saved_flags;
1912
1913 if (retval) {
1914 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
1915
1916 tty_unlock(tty); /* need to call tty_release without BTM */
1917 tty_release(inode, filp);
1918 if (retval != -ERESTARTSYS)
1919 return retval;
1920
1921 if (signal_pending(current))
1922 return retval;
1923
1924 schedule();
1925 /*
1926 * Need to reset f_op in case a hangup happened.
1927 */
1928 if (tty_hung_up_p(filp))
1929 filp->f_op = &tty_fops;
1930 goto retry_open;
1931 }
1932 clear_bit(TTY_HUPPED, &tty->flags);
1933
1934 noctty = (filp->f_flags & O_NOCTTY) ||
1935 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
1936 device == MKDEV(TTYAUX_MAJOR, 1) ||
1937 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1938 tty->driver->subtype == PTY_TYPE_MASTER);
1939 if (!noctty)
1940 tty_open_proc_set_tty(filp, tty);
1941 tty_unlock(tty);
1942 return 0;
1943 }
1944
1945
1946
1947 /**
1948 * tty_poll - check tty status
1949 * @filp: file being polled
1950 * @wait: poll wait structures to update
1951 *
1952 * Call the line discipline polling method to obtain the poll
1953 * status of the device.
1954 *
1955 * Locking: locks called line discipline but ldisc poll method
1956 * may be re-entered freely by other callers.
1957 */
1958
1959 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1960 {
1961 struct tty_struct *tty = file_tty(filp);
1962 struct tty_ldisc *ld;
1963 int ret = 0;
1964
1965 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
1966 return 0;
1967
1968 ld = tty_ldisc_ref_wait(tty);
1969 if (!ld)
1970 return hung_up_tty_poll(filp, wait);
1971 if (ld->ops->poll)
1972 ret = ld->ops->poll(tty, filp, wait);
1973 tty_ldisc_deref(ld);
1974 return ret;
1975 }
1976
1977 static int __tty_fasync(int fd, struct file *filp, int on)
1978 {
1979 struct tty_struct *tty = file_tty(filp);
1980 unsigned long flags;
1981 int retval = 0;
1982
1983 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
1984 goto out;
1985
1986 retval = fasync_helper(fd, filp, on, &tty->fasync);
1987 if (retval <= 0)
1988 goto out;
1989
1990 if (on) {
1991 enum pid_type type;
1992 struct pid *pid;
1993
1994 spin_lock_irqsave(&tty->ctrl_lock, flags);
1995 if (tty->pgrp) {
1996 pid = tty->pgrp;
1997 type = PIDTYPE_PGID;
1998 } else {
1999 pid = task_pid(current);
2000 type = PIDTYPE_PID;
2001 }
2002 get_pid(pid);
2003 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2004 __f_setown(filp, pid, type, 0);
2005 put_pid(pid);
2006 retval = 0;
2007 }
2008 out:
2009 return retval;
2010 }
2011
2012 static int tty_fasync(int fd, struct file *filp, int on)
2013 {
2014 struct tty_struct *tty = file_tty(filp);
2015 int retval = -ENOTTY;
2016
2017 tty_lock(tty);
2018 if (!tty_hung_up_p(filp))
2019 retval = __tty_fasync(fd, filp, on);
2020 tty_unlock(tty);
2021
2022 return retval;
2023 }
2024
2025 /**
2026 * tiocsti - fake input character
2027 * @tty: tty to fake input into
2028 * @p: pointer to character
2029 *
2030 * Fake input to a tty device. Does the necessary locking and
2031 * input management.
2032 *
2033 * FIXME: does not honour flow control ??
2034 *
2035 * Locking:
2036 * Called functions take tty_ldiscs_lock
2037 * current->signal->tty check is safe without locks
2038 *
2039 * FIXME: may race normal receive processing
2040 */
2041
2042 static int tiocsti(struct tty_struct *tty, char __user *p)
2043 {
2044 char ch, mbz = 0;
2045 struct tty_ldisc *ld;
2046
2047 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2048 return -EPERM;
2049 if (get_user(ch, p))
2050 return -EFAULT;
2051 tty_audit_tiocsti(tty, ch);
2052 ld = tty_ldisc_ref_wait(tty);
2053 if (!ld)
2054 return -EIO;
2055 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2056 tty_ldisc_deref(ld);
2057 return 0;
2058 }
2059
2060 /**
2061 * tiocgwinsz - implement window query ioctl
2062 * @tty; tty
2063 * @arg: user buffer for result
2064 *
2065 * Copies the kernel idea of the window size into the user buffer.
2066 *
2067 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2068 * is consistent.
2069 */
2070
2071 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2072 {
2073 int err;
2074
2075 mutex_lock(&tty->winsize_mutex);
2076 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2077 mutex_unlock(&tty->winsize_mutex);
2078
2079 return err ? -EFAULT: 0;
2080 }
2081
2082 /**
2083 * tty_do_resize - resize event
2084 * @tty: tty being resized
2085 * @rows: rows (character)
2086 * @cols: cols (character)
2087 *
2088 * Update the termios variables and send the necessary signals to
2089 * peform a terminal resize correctly
2090 */
2091
2092 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2093 {
2094 struct pid *pgrp;
2095
2096 /* Lock the tty */
2097 mutex_lock(&tty->winsize_mutex);
2098 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2099 goto done;
2100
2101 /* Signal the foreground process group */
2102 pgrp = tty_get_pgrp(tty);
2103 if (pgrp)
2104 kill_pgrp(pgrp, SIGWINCH, 1);
2105 put_pid(pgrp);
2106
2107 tty->winsize = *ws;
2108 done:
2109 mutex_unlock(&tty->winsize_mutex);
2110 return 0;
2111 }
2112 EXPORT_SYMBOL(tty_do_resize);
2113
2114 /**
2115 * tiocswinsz - implement window size set ioctl
2116 * @tty; tty side of tty
2117 * @arg: user buffer for result
2118 *
2119 * Copies the user idea of the window size to the kernel. Traditionally
2120 * this is just advisory information but for the Linux console it
2121 * actually has driver level meaning and triggers a VC resize.
2122 *
2123 * Locking:
2124 * Driver dependent. The default do_resize method takes the
2125 * tty termios mutex and ctrl_lock. The console takes its own lock
2126 * then calls into the default method.
2127 */
2128
2129 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2130 {
2131 struct winsize tmp_ws;
2132 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2133 return -EFAULT;
2134
2135 if (tty->ops->resize)
2136 return tty->ops->resize(tty, &tmp_ws);
2137 else
2138 return tty_do_resize(tty, &tmp_ws);
2139 }
2140
2141 /**
2142 * tioccons - allow admin to move logical console
2143 * @file: the file to become console
2144 *
2145 * Allow the administrator to move the redirected console device
2146 *
2147 * Locking: uses redirect_lock to guard the redirect information
2148 */
2149
2150 static int tioccons(struct file *file)
2151 {
2152 if (!capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154 if (file->f_op->write == redirected_tty_write) {
2155 struct file *f;
2156 spin_lock(&redirect_lock);
2157 f = redirect;
2158 redirect = NULL;
2159 spin_unlock(&redirect_lock);
2160 if (f)
2161 fput(f);
2162 return 0;
2163 }
2164 spin_lock(&redirect_lock);
2165 if (redirect) {
2166 spin_unlock(&redirect_lock);
2167 return -EBUSY;
2168 }
2169 redirect = get_file(file);
2170 spin_unlock(&redirect_lock);
2171 return 0;
2172 }
2173
2174 /**
2175 * fionbio - non blocking ioctl
2176 * @file: file to set blocking value
2177 * @p: user parameter
2178 *
2179 * Historical tty interfaces had a blocking control ioctl before
2180 * the generic functionality existed. This piece of history is preserved
2181 * in the expected tty API of posix OS's.
2182 *
2183 * Locking: none, the open file handle ensures it won't go away.
2184 */
2185
2186 static int fionbio(struct file *file, int __user *p)
2187 {
2188 int nonblock;
2189
2190 if (get_user(nonblock, p))
2191 return -EFAULT;
2192
2193 spin_lock(&file->f_lock);
2194 if (nonblock)
2195 file->f_flags |= O_NONBLOCK;
2196 else
2197 file->f_flags &= ~O_NONBLOCK;
2198 spin_unlock(&file->f_lock);
2199 return 0;
2200 }
2201
2202 /**
2203 * tiocsetd - set line discipline
2204 * @tty: tty device
2205 * @p: pointer to user data
2206 *
2207 * Set the line discipline according to user request.
2208 *
2209 * Locking: see tty_set_ldisc, this function is just a helper
2210 */
2211
2212 static int tiocsetd(struct tty_struct *tty, int __user *p)
2213 {
2214 int disc;
2215 int ret;
2216
2217 if (get_user(disc, p))
2218 return -EFAULT;
2219
2220 ret = tty_set_ldisc(tty, disc);
2221
2222 return ret;
2223 }
2224
2225 /**
2226 * tiocgetd - get line discipline
2227 * @tty: tty device
2228 * @p: pointer to user data
2229 *
2230 * Retrieves the line discipline id directly from the ldisc.
2231 *
2232 * Locking: waits for ldisc reference (in case the line discipline
2233 * is changing or the tty is being hungup)
2234 */
2235
2236 static int tiocgetd(struct tty_struct *tty, int __user *p)
2237 {
2238 struct tty_ldisc *ld;
2239 int ret;
2240
2241 ld = tty_ldisc_ref_wait(tty);
2242 if (!ld)
2243 return -EIO;
2244 ret = put_user(ld->ops->num, p);
2245 tty_ldisc_deref(ld);
2246 return ret;
2247 }
2248
2249 /**
2250 * send_break - performed time break
2251 * @tty: device to break on
2252 * @duration: timeout in mS
2253 *
2254 * Perform a timed break on hardware that lacks its own driver level
2255 * timed break functionality.
2256 *
2257 * Locking:
2258 * atomic_write_lock serializes
2259 *
2260 */
2261
2262 static int send_break(struct tty_struct *tty, unsigned int duration)
2263 {
2264 int retval;
2265
2266 if (tty->ops->break_ctl == NULL)
2267 return 0;
2268
2269 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2270 retval = tty->ops->break_ctl(tty, duration);
2271 else {
2272 /* Do the work ourselves */
2273 if (tty_write_lock(tty, 0) < 0)
2274 return -EINTR;
2275 retval = tty->ops->break_ctl(tty, -1);
2276 if (retval)
2277 goto out;
2278 if (!signal_pending(current))
2279 msleep_interruptible(duration);
2280 retval = tty->ops->break_ctl(tty, 0);
2281 out:
2282 tty_write_unlock(tty);
2283 if (signal_pending(current))
2284 retval = -EINTR;
2285 }
2286 return retval;
2287 }
2288
2289 /**
2290 * tty_tiocmget - get modem status
2291 * @tty: tty device
2292 * @file: user file pointer
2293 * @p: pointer to result
2294 *
2295 * Obtain the modem status bits from the tty driver if the feature
2296 * is supported. Return -EINVAL if it is not available.
2297 *
2298 * Locking: none (up to the driver)
2299 */
2300
2301 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2302 {
2303 int retval = -EINVAL;
2304
2305 if (tty->ops->tiocmget) {
2306 retval = tty->ops->tiocmget(tty);
2307
2308 if (retval >= 0)
2309 retval = put_user(retval, p);
2310 }
2311 return retval;
2312 }
2313
2314 /**
2315 * tty_tiocmset - set modem status
2316 * @tty: tty device
2317 * @cmd: command - clear bits, set bits or set all
2318 * @p: pointer to desired bits
2319 *
2320 * Set the modem status bits from the tty driver if the feature
2321 * is supported. Return -EINVAL if it is not available.
2322 *
2323 * Locking: none (up to the driver)
2324 */
2325
2326 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2327 unsigned __user *p)
2328 {
2329 int retval;
2330 unsigned int set, clear, val;
2331
2332 if (tty->ops->tiocmset == NULL)
2333 return -EINVAL;
2334
2335 retval = get_user(val, p);
2336 if (retval)
2337 return retval;
2338 set = clear = 0;
2339 switch (cmd) {
2340 case TIOCMBIS:
2341 set = val;
2342 break;
2343 case TIOCMBIC:
2344 clear = val;
2345 break;
2346 case TIOCMSET:
2347 set = val;
2348 clear = ~val;
2349 break;
2350 }
2351 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2352 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2353 return tty->ops->tiocmset(tty, set, clear);
2354 }
2355
2356 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2357 {
2358 int retval = -EINVAL;
2359 struct serial_icounter_struct icount;
2360 memset(&icount, 0, sizeof(icount));
2361 if (tty->ops->get_icount)
2362 retval = tty->ops->get_icount(tty, &icount);
2363 if (retval != 0)
2364 return retval;
2365 if (copy_to_user(arg, &icount, sizeof(icount)))
2366 return -EFAULT;
2367 return 0;
2368 }
2369
2370 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2371 {
2372 static DEFINE_RATELIMIT_STATE(depr_flags,
2373 DEFAULT_RATELIMIT_INTERVAL,
2374 DEFAULT_RATELIMIT_BURST);
2375 char comm[TASK_COMM_LEN];
2376 int flags;
2377
2378 if (get_user(flags, &ss->flags))
2379 return;
2380
2381 flags &= ASYNC_DEPRECATED;
2382
2383 if (flags && __ratelimit(&depr_flags))
2384 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2385 __func__, get_task_comm(comm, current), flags);
2386 }
2387
2388 /*
2389 * if pty, return the slave side (real_tty)
2390 * otherwise, return self
2391 */
2392 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2393 {
2394 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2395 tty->driver->subtype == PTY_TYPE_MASTER)
2396 tty = tty->link;
2397 return tty;
2398 }
2399
2400 /*
2401 * Split this up, as gcc can choke on it otherwise..
2402 */
2403 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2404 {
2405 struct tty_struct *tty = file_tty(file);
2406 struct tty_struct *real_tty;
2407 void __user *p = (void __user *)arg;
2408 int retval;
2409 struct tty_ldisc *ld;
2410
2411 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2412 return -EINVAL;
2413
2414 real_tty = tty_pair_get_tty(tty);
2415
2416 /*
2417 * Factor out some common prep work
2418 */
2419 switch (cmd) {
2420 case TIOCSETD:
2421 case TIOCSBRK:
2422 case TIOCCBRK:
2423 case TCSBRK:
2424 case TCSBRKP:
2425 retval = tty_check_change(tty);
2426 if (retval)
2427 return retval;
2428 if (cmd != TIOCCBRK) {
2429 tty_wait_until_sent(tty, 0);
2430 if (signal_pending(current))
2431 return -EINTR;
2432 }
2433 break;
2434 }
2435
2436 /*
2437 * Now do the stuff.
2438 */
2439 switch (cmd) {
2440 case TIOCSTI:
2441 return tiocsti(tty, p);
2442 case TIOCGWINSZ:
2443 return tiocgwinsz(real_tty, p);
2444 case TIOCSWINSZ:
2445 return tiocswinsz(real_tty, p);
2446 case TIOCCONS:
2447 return real_tty != tty ? -EINVAL : tioccons(file);
2448 case FIONBIO:
2449 return fionbio(file, p);
2450 case TIOCEXCL:
2451 set_bit(TTY_EXCLUSIVE, &tty->flags);
2452 return 0;
2453 case TIOCNXCL:
2454 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2455 return 0;
2456 case TIOCGEXCL:
2457 {
2458 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2459 return put_user(excl, (int __user *)p);
2460 }
2461 case TIOCGETD:
2462 return tiocgetd(tty, p);
2463 case TIOCSETD:
2464 return tiocsetd(tty, p);
2465 case TIOCVHANGUP:
2466 if (!capable(CAP_SYS_ADMIN))
2467 return -EPERM;
2468 tty_vhangup(tty);
2469 return 0;
2470 case TIOCGDEV:
2471 {
2472 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2473 return put_user(ret, (unsigned int __user *)p);
2474 }
2475 /*
2476 * Break handling
2477 */
2478 case TIOCSBRK: /* Turn break on, unconditionally */
2479 if (tty->ops->break_ctl)
2480 return tty->ops->break_ctl(tty, -1);
2481 return 0;
2482 case TIOCCBRK: /* Turn break off, unconditionally */
2483 if (tty->ops->break_ctl)
2484 return tty->ops->break_ctl(tty, 0);
2485 return 0;
2486 case TCSBRK: /* SVID version: non-zero arg --> no break */
2487 /* non-zero arg means wait for all output data
2488 * to be sent (performed above) but don't send break.
2489 * This is used by the tcdrain() termios function.
2490 */
2491 if (!arg)
2492 return send_break(tty, 250);
2493 return 0;
2494 case TCSBRKP: /* support for POSIX tcsendbreak() */
2495 return send_break(tty, arg ? arg*100 : 250);
2496
2497 case TIOCMGET:
2498 return tty_tiocmget(tty, p);
2499 case TIOCMSET:
2500 case TIOCMBIC:
2501 case TIOCMBIS:
2502 return tty_tiocmset(tty, cmd, p);
2503 case TIOCGICOUNT:
2504 retval = tty_tiocgicount(tty, p);
2505 /* For the moment allow fall through to the old method */
2506 if (retval != -EINVAL)
2507 return retval;
2508 break;
2509 case TCFLSH:
2510 switch (arg) {
2511 case TCIFLUSH:
2512 case TCIOFLUSH:
2513 /* flush tty buffer and allow ldisc to process ioctl */
2514 tty_buffer_flush(tty, NULL);
2515 break;
2516 }
2517 break;
2518 case TIOCSSERIAL:
2519 tty_warn_deprecated_flags(p);
2520 break;
2521 default:
2522 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2523 if (retval != -ENOIOCTLCMD)
2524 return retval;
2525 }
2526 if (tty->ops->ioctl) {
2527 retval = tty->ops->ioctl(tty, cmd, arg);
2528 if (retval != -ENOIOCTLCMD)
2529 return retval;
2530 }
2531 ld = tty_ldisc_ref_wait(tty);
2532 if (!ld)
2533 return hung_up_tty_ioctl(file, cmd, arg);
2534 retval = -EINVAL;
2535 if (ld->ops->ioctl) {
2536 retval = ld->ops->ioctl(tty, file, cmd, arg);
2537 if (retval == -ENOIOCTLCMD)
2538 retval = -ENOTTY;
2539 }
2540 tty_ldisc_deref(ld);
2541 return retval;
2542 }
2543
2544 #ifdef CONFIG_COMPAT
2545 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2546 unsigned long arg)
2547 {
2548 struct tty_struct *tty = file_tty(file);
2549 struct tty_ldisc *ld;
2550 int retval = -ENOIOCTLCMD;
2551
2552 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2553 return -EINVAL;
2554
2555 if (tty->ops->compat_ioctl) {
2556 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2557 if (retval != -ENOIOCTLCMD)
2558 return retval;
2559 }
2560
2561 ld = tty_ldisc_ref_wait(tty);
2562 if (!ld)
2563 return hung_up_tty_compat_ioctl(file, cmd, arg);
2564 if (ld->ops->compat_ioctl)
2565 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2566 else
2567 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2568 tty_ldisc_deref(ld);
2569
2570 return retval;
2571 }
2572 #endif
2573
2574 static int this_tty(const void *t, struct file *file, unsigned fd)
2575 {
2576 if (likely(file->f_op->read != tty_read))
2577 return 0;
2578 return file_tty(file) != t ? 0 : fd + 1;
2579 }
2580
2581 /*
2582 * This implements the "Secure Attention Key" --- the idea is to
2583 * prevent trojan horses by killing all processes associated with this
2584 * tty when the user hits the "Secure Attention Key". Required for
2585 * super-paranoid applications --- see the Orange Book for more details.
2586 *
2587 * This code could be nicer; ideally it should send a HUP, wait a few
2588 * seconds, then send a INT, and then a KILL signal. But you then
2589 * have to coordinate with the init process, since all processes associated
2590 * with the current tty must be dead before the new getty is allowed
2591 * to spawn.
2592 *
2593 * Now, if it would be correct ;-/ The current code has a nasty hole -
2594 * it doesn't catch files in flight. We may send the descriptor to ourselves
2595 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2596 *
2597 * Nasty bug: do_SAK is being called in interrupt context. This can
2598 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2599 */
2600 void __do_SAK(struct tty_struct *tty)
2601 {
2602 #ifdef TTY_SOFT_SAK
2603 tty_hangup(tty);
2604 #else
2605 struct task_struct *g, *p;
2606 struct pid *session;
2607 int i;
2608
2609 if (!tty)
2610 return;
2611 session = tty->session;
2612
2613 tty_ldisc_flush(tty);
2614
2615 tty_driver_flush_buffer(tty);
2616
2617 read_lock(&tasklist_lock);
2618 /* Kill the entire session */
2619 do_each_pid_task(session, PIDTYPE_SID, p) {
2620 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2621 task_pid_nr(p), p->comm);
2622 send_sig(SIGKILL, p, 1);
2623 } while_each_pid_task(session, PIDTYPE_SID, p);
2624
2625 /* Now kill any processes that happen to have the tty open */
2626 do_each_thread(g, p) {
2627 if (p->signal->tty == tty) {
2628 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2629 task_pid_nr(p), p->comm);
2630 send_sig(SIGKILL, p, 1);
2631 continue;
2632 }
2633 task_lock(p);
2634 i = iterate_fd(p->files, 0, this_tty, tty);
2635 if (i != 0) {
2636 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2637 task_pid_nr(p), p->comm, i - 1);
2638 force_sig(SIGKILL, p);
2639 }
2640 task_unlock(p);
2641 } while_each_thread(g, p);
2642 read_unlock(&tasklist_lock);
2643 #endif
2644 }
2645
2646 static void do_SAK_work(struct work_struct *work)
2647 {
2648 struct tty_struct *tty =
2649 container_of(work, struct tty_struct, SAK_work);
2650 __do_SAK(tty);
2651 }
2652
2653 /*
2654 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2655 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2656 * the values which we write to it will be identical to the values which it
2657 * already has. --akpm
2658 */
2659 void do_SAK(struct tty_struct *tty)
2660 {
2661 if (!tty)
2662 return;
2663 schedule_work(&tty->SAK_work);
2664 }
2665
2666 EXPORT_SYMBOL(do_SAK);
2667
2668 static int dev_match_devt(struct device *dev, const void *data)
2669 {
2670 const dev_t *devt = data;
2671 return dev->devt == *devt;
2672 }
2673
2674 /* Must put_device() after it's unused! */
2675 static struct device *tty_get_device(struct tty_struct *tty)
2676 {
2677 dev_t devt = tty_devnum(tty);
2678 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2679 }
2680
2681
2682 /**
2683 * alloc_tty_struct
2684 *
2685 * This subroutine allocates and initializes a tty structure.
2686 *
2687 * Locking: none - tty in question is not exposed at this point
2688 */
2689
2690 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2691 {
2692 struct tty_struct *tty;
2693
2694 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2695 if (!tty)
2696 return NULL;
2697
2698 kref_init(&tty->kref);
2699 tty->magic = TTY_MAGIC;
2700 tty_ldisc_init(tty);
2701 tty->session = NULL;
2702 tty->pgrp = NULL;
2703 mutex_init(&tty->legacy_mutex);
2704 mutex_init(&tty->throttle_mutex);
2705 init_rwsem(&tty->termios_rwsem);
2706 mutex_init(&tty->winsize_mutex);
2707 init_ldsem(&tty->ldisc_sem);
2708 init_waitqueue_head(&tty->write_wait);
2709 init_waitqueue_head(&tty->read_wait);
2710 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2711 mutex_init(&tty->atomic_write_lock);
2712 spin_lock_init(&tty->ctrl_lock);
2713 spin_lock_init(&tty->flow_lock);
2714 spin_lock_init(&tty->files_lock);
2715 INIT_LIST_HEAD(&tty->tty_files);
2716 INIT_WORK(&tty->SAK_work, do_SAK_work);
2717
2718 tty->driver = driver;
2719 tty->ops = driver->ops;
2720 tty->index = idx;
2721 tty_line_name(driver, idx, tty->name);
2722 tty->dev = tty_get_device(tty);
2723
2724 return tty;
2725 }
2726
2727 /**
2728 * tty_put_char - write one character to a tty
2729 * @tty: tty
2730 * @ch: character
2731 *
2732 * Write one byte to the tty using the provided put_char method
2733 * if present. Returns the number of characters successfully output.
2734 *
2735 * Note: the specific put_char operation in the driver layer may go
2736 * away soon. Don't call it directly, use this method
2737 */
2738
2739 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2740 {
2741 if (tty->ops->put_char)
2742 return tty->ops->put_char(tty, ch);
2743 return tty->ops->write(tty, &ch, 1);
2744 }
2745 EXPORT_SYMBOL_GPL(tty_put_char);
2746
2747 struct class *tty_class;
2748
2749 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2750 unsigned int index, unsigned int count)
2751 {
2752 int err;
2753
2754 /* init here, since reused cdevs cause crashes */
2755 driver->cdevs[index] = cdev_alloc();
2756 if (!driver->cdevs[index])
2757 return -ENOMEM;
2758 driver->cdevs[index]->ops = &tty_fops;
2759 driver->cdevs[index]->owner = driver->owner;
2760 err = cdev_add(driver->cdevs[index], dev, count);
2761 if (err)
2762 kobject_put(&driver->cdevs[index]->kobj);
2763 return err;
2764 }
2765
2766 /**
2767 * tty_register_device - register a tty device
2768 * @driver: the tty driver that describes the tty device
2769 * @index: the index in the tty driver for this tty device
2770 * @device: a struct device that is associated with this tty device.
2771 * This field is optional, if there is no known struct device
2772 * for this tty device it can be set to NULL safely.
2773 *
2774 * Returns a pointer to the struct device for this tty device
2775 * (or ERR_PTR(-EFOO) on error).
2776 *
2777 * This call is required to be made to register an individual tty device
2778 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2779 * that bit is not set, this function should not be called by a tty
2780 * driver.
2781 *
2782 * Locking: ??
2783 */
2784
2785 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2786 struct device *device)
2787 {
2788 return tty_register_device_attr(driver, index, device, NULL, NULL);
2789 }
2790 EXPORT_SYMBOL(tty_register_device);
2791
2792 static void tty_device_create_release(struct device *dev)
2793 {
2794 dev_dbg(dev, "releasing...\n");
2795 kfree(dev);
2796 }
2797
2798 /**
2799 * tty_register_device_attr - register a tty device
2800 * @driver: the tty driver that describes the tty device
2801 * @index: the index in the tty driver for this tty device
2802 * @device: a struct device that is associated with this tty device.
2803 * This field is optional, if there is no known struct device
2804 * for this tty device it can be set to NULL safely.
2805 * @drvdata: Driver data to be set to device.
2806 * @attr_grp: Attribute group to be set on device.
2807 *
2808 * Returns a pointer to the struct device for this tty device
2809 * (or ERR_PTR(-EFOO) on error).
2810 *
2811 * This call is required to be made to register an individual tty device
2812 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2813 * that bit is not set, this function should not be called by a tty
2814 * driver.
2815 *
2816 * Locking: ??
2817 */
2818 struct device *tty_register_device_attr(struct tty_driver *driver,
2819 unsigned index, struct device *device,
2820 void *drvdata,
2821 const struct attribute_group **attr_grp)
2822 {
2823 char name[64];
2824 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2825 struct ktermios *tp;
2826 struct device *dev;
2827 int retval;
2828
2829 if (index >= driver->num) {
2830 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2831 driver->name, index);
2832 return ERR_PTR(-EINVAL);
2833 }
2834
2835 if (driver->type == TTY_DRIVER_TYPE_PTY)
2836 pty_line_name(driver, index, name);
2837 else
2838 tty_line_name(driver, index, name);
2839
2840 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2841 if (!dev)
2842 return ERR_PTR(-ENOMEM);
2843
2844 dev->devt = devt;
2845 dev->class = tty_class;
2846 dev->parent = device;
2847 dev->release = tty_device_create_release;
2848 dev_set_name(dev, "%s", name);
2849 dev->groups = attr_grp;
2850 dev_set_drvdata(dev, drvdata);
2851
2852 dev_set_uevent_suppress(dev, 1);
2853
2854 retval = device_register(dev);
2855 if (retval)
2856 goto err_put;
2857
2858 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2859 /*
2860 * Free any saved termios data so that the termios state is
2861 * reset when reusing a minor number.
2862 */
2863 tp = driver->termios[index];
2864 if (tp) {
2865 driver->termios[index] = NULL;
2866 kfree(tp);
2867 }
2868
2869 retval = tty_cdev_add(driver, devt, index, 1);
2870 if (retval)
2871 goto err_del;
2872 }
2873
2874 dev_set_uevent_suppress(dev, 0);
2875 kobject_uevent(&dev->kobj, KOBJ_ADD);
2876
2877 return dev;
2878
2879 err_del:
2880 device_del(dev);
2881 err_put:
2882 put_device(dev);
2883
2884 return ERR_PTR(retval);
2885 }
2886 EXPORT_SYMBOL_GPL(tty_register_device_attr);
2887
2888 /**
2889 * tty_unregister_device - unregister a tty device
2890 * @driver: the tty driver that describes the tty device
2891 * @index: the index in the tty driver for this tty device
2892 *
2893 * If a tty device is registered with a call to tty_register_device() then
2894 * this function must be called when the tty device is gone.
2895 *
2896 * Locking: ??
2897 */
2898
2899 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2900 {
2901 device_destroy(tty_class,
2902 MKDEV(driver->major, driver->minor_start) + index);
2903 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2904 cdev_del(driver->cdevs[index]);
2905 driver->cdevs[index] = NULL;
2906 }
2907 }
2908 EXPORT_SYMBOL(tty_unregister_device);
2909
2910 /**
2911 * __tty_alloc_driver -- allocate tty driver
2912 * @lines: count of lines this driver can handle at most
2913 * @owner: module which is responsible for this driver
2914 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
2915 *
2916 * This should not be called directly, some of the provided macros should be
2917 * used instead. Use IS_ERR and friends on @retval.
2918 */
2919 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
2920 unsigned long flags)
2921 {
2922 struct tty_driver *driver;
2923 unsigned int cdevs = 1;
2924 int err;
2925
2926 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
2927 return ERR_PTR(-EINVAL);
2928
2929 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2930 if (!driver)
2931 return ERR_PTR(-ENOMEM);
2932
2933 kref_init(&driver->kref);
2934 driver->magic = TTY_DRIVER_MAGIC;
2935 driver->num = lines;
2936 driver->owner = owner;
2937 driver->flags = flags;
2938
2939 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
2940 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
2941 GFP_KERNEL);
2942 driver->termios = kcalloc(lines, sizeof(*driver->termios),
2943 GFP_KERNEL);
2944 if (!driver->ttys || !driver->termios) {
2945 err = -ENOMEM;
2946 goto err_free_all;
2947 }
2948 }
2949
2950 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2951 driver->ports = kcalloc(lines, sizeof(*driver->ports),
2952 GFP_KERNEL);
2953 if (!driver->ports) {
2954 err = -ENOMEM;
2955 goto err_free_all;
2956 }
2957 cdevs = lines;
2958 }
2959
2960 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
2961 if (!driver->cdevs) {
2962 err = -ENOMEM;
2963 goto err_free_all;
2964 }
2965
2966 return driver;
2967 err_free_all:
2968 kfree(driver->ports);
2969 kfree(driver->ttys);
2970 kfree(driver->termios);
2971 kfree(driver->cdevs);
2972 kfree(driver);
2973 return ERR_PTR(err);
2974 }
2975 EXPORT_SYMBOL(__tty_alloc_driver);
2976
2977 static void destruct_tty_driver(struct kref *kref)
2978 {
2979 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2980 int i;
2981 struct ktermios *tp;
2982
2983 if (driver->flags & TTY_DRIVER_INSTALLED) {
2984 for (i = 0; i < driver->num; i++) {
2985 tp = driver->termios[i];
2986 if (tp) {
2987 driver->termios[i] = NULL;
2988 kfree(tp);
2989 }
2990 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2991 tty_unregister_device(driver, i);
2992 }
2993 proc_tty_unregister_driver(driver);
2994 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
2995 cdev_del(driver->cdevs[0]);
2996 }
2997 kfree(driver->cdevs);
2998 kfree(driver->ports);
2999 kfree(driver->termios);
3000 kfree(driver->ttys);
3001 kfree(driver);
3002 }
3003
3004 void tty_driver_kref_put(struct tty_driver *driver)
3005 {
3006 kref_put(&driver->kref, destruct_tty_driver);
3007 }
3008 EXPORT_SYMBOL(tty_driver_kref_put);
3009
3010 void tty_set_operations(struct tty_driver *driver,
3011 const struct tty_operations *op)
3012 {
3013 driver->ops = op;
3014 };
3015 EXPORT_SYMBOL(tty_set_operations);
3016
3017 void put_tty_driver(struct tty_driver *d)
3018 {
3019 tty_driver_kref_put(d);
3020 }
3021 EXPORT_SYMBOL(put_tty_driver);
3022
3023 /*
3024 * Called by a tty driver to register itself.
3025 */
3026 int tty_register_driver(struct tty_driver *driver)
3027 {
3028 int error;
3029 int i;
3030 dev_t dev;
3031 struct device *d;
3032
3033 if (!driver->major) {
3034 error = alloc_chrdev_region(&dev, driver->minor_start,
3035 driver->num, driver->name);
3036 if (!error) {
3037 driver->major = MAJOR(dev);
3038 driver->minor_start = MINOR(dev);
3039 }
3040 } else {
3041 dev = MKDEV(driver->major, driver->minor_start);
3042 error = register_chrdev_region(dev, driver->num, driver->name);
3043 }
3044 if (error < 0)
3045 goto err;
3046
3047 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3048 error = tty_cdev_add(driver, dev, 0, driver->num);
3049 if (error)
3050 goto err_unreg_char;
3051 }
3052
3053 mutex_lock(&tty_mutex);
3054 list_add(&driver->tty_drivers, &tty_drivers);
3055 mutex_unlock(&tty_mutex);
3056
3057 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3058 for (i = 0; i < driver->num; i++) {
3059 d = tty_register_device(driver, i, NULL);
3060 if (IS_ERR(d)) {
3061 error = PTR_ERR(d);
3062 goto err_unreg_devs;
3063 }
3064 }
3065 }
3066 proc_tty_register_driver(driver);
3067 driver->flags |= TTY_DRIVER_INSTALLED;
3068 return 0;
3069
3070 err_unreg_devs:
3071 for (i--; i >= 0; i--)
3072 tty_unregister_device(driver, i);
3073
3074 mutex_lock(&tty_mutex);
3075 list_del(&driver->tty_drivers);
3076 mutex_unlock(&tty_mutex);
3077
3078 err_unreg_char:
3079 unregister_chrdev_region(dev, driver->num);
3080 err:
3081 return error;
3082 }
3083 EXPORT_SYMBOL(tty_register_driver);
3084
3085 /*
3086 * Called by a tty driver to unregister itself.
3087 */
3088 int tty_unregister_driver(struct tty_driver *driver)
3089 {
3090 #if 0
3091 /* FIXME */
3092 if (driver->refcount)
3093 return -EBUSY;
3094 #endif
3095 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3096 driver->num);
3097 mutex_lock(&tty_mutex);
3098 list_del(&driver->tty_drivers);
3099 mutex_unlock(&tty_mutex);
3100 return 0;
3101 }
3102
3103 EXPORT_SYMBOL(tty_unregister_driver);
3104
3105 dev_t tty_devnum(struct tty_struct *tty)
3106 {
3107 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3108 }
3109 EXPORT_SYMBOL(tty_devnum);
3110
3111 void tty_default_fops(struct file_operations *fops)
3112 {
3113 *fops = tty_fops;
3114 }
3115
3116 static char *tty_devnode(struct device *dev, umode_t *mode)
3117 {
3118 if (!mode)
3119 return NULL;
3120 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3121 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3122 *mode = 0666;
3123 return NULL;
3124 }
3125
3126 static int __init tty_class_init(void)
3127 {
3128 tty_class = class_create(THIS_MODULE, "tty");
3129 if (IS_ERR(tty_class))
3130 return PTR_ERR(tty_class);
3131 tty_class->devnode = tty_devnode;
3132 return 0;
3133 }
3134
3135 postcore_initcall(tty_class_init);
3136
3137 /* 3/2004 jmc: why do these devices exist? */
3138 static struct cdev tty_cdev, console_cdev;
3139
3140 static ssize_t show_cons_active(struct device *dev,
3141 struct device_attribute *attr, char *buf)
3142 {
3143 struct console *cs[16];
3144 int i = 0;
3145 struct console *c;
3146 ssize_t count = 0;
3147
3148 console_lock();
3149 for_each_console(c) {
3150 if (!c->device)
3151 continue;
3152 if (!c->write)
3153 continue;
3154 if ((c->flags & CON_ENABLED) == 0)
3155 continue;
3156 cs[i++] = c;
3157 if (i >= ARRAY_SIZE(cs))
3158 break;
3159 }
3160 while (i--) {
3161 int index = cs[i]->index;
3162 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3163
3164 /* don't resolve tty0 as some programs depend on it */
3165 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3166 count += tty_line_name(drv, index, buf + count);
3167 else
3168 count += sprintf(buf + count, "%s%d",
3169 cs[i]->name, cs[i]->index);
3170
3171 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3172 }
3173 console_unlock();
3174
3175 return count;
3176 }
3177 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3178
3179 static struct attribute *cons_dev_attrs[] = {
3180 &dev_attr_active.attr,
3181 NULL
3182 };
3183
3184 ATTRIBUTE_GROUPS(cons_dev);
3185
3186 static struct device *consdev;
3187
3188 void console_sysfs_notify(void)
3189 {
3190 if (consdev)
3191 sysfs_notify(&consdev->kobj, NULL, "active");
3192 }
3193
3194 /*
3195 * Ok, now we can initialize the rest of the tty devices and can count
3196 * on memory allocations, interrupts etc..
3197 */
3198 int __init tty_init(void)
3199 {
3200 cdev_init(&tty_cdev, &tty_fops);
3201 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3202 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3203 panic("Couldn't register /dev/tty driver\n");
3204 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3205
3206 cdev_init(&console_cdev, &console_fops);
3207 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3208 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3209 panic("Couldn't register /dev/console driver\n");
3210 consdev = device_create_with_groups(tty_class, NULL,
3211 MKDEV(TTYAUX_MAJOR, 1), NULL,
3212 cons_dev_groups, "console");
3213 if (IS_ERR(consdev))
3214 consdev = NULL;
3215
3216 #ifdef CONFIG_VT
3217 vty_init(&console_fops);
3218 #endif
3219 return 0;
3220 }
3221