]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/tty/tty_io.c
mac80211: don't WARN on bad WMM parameters from buggy APs
[mirror_ubuntu-eoan-kernel.git] / drivers / tty / tty_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6 /*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100
101 #include <linux/uaccess.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...) do { } while (0)
115 #endif
116
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119
120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
121 .c_iflag = ICRNL | IXON,
122 .c_oflag = OPOST | ONLCR,
123 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 ECHOCTL | ECHOKE | IEXTEN,
126 .c_cc = INIT_C_CC,
127 .c_ispeed = 38400,
128 .c_ospeed = 38400,
129 /* .c_line = N_TTY, */
130 };
131
132 EXPORT_SYMBOL(tty_std_termios);
133
134 /* This list gets poked at by procfs and various bits of boot up code. This
135 could do with some rationalisation such as pulling the tty proc function
136 into this file */
137
138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
139
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 size_t, loff_t *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159
160 /**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kfree(tty->write_buf);
174 tty->magic = 0xDEADDEAD;
175 kfree(tty);
176 }
177
178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 return ((struct tty_file_private *)file->private_data)->tty;
181 }
182
183 int tty_alloc_file(struct file *file)
184 {
185 struct tty_file_private *priv;
186
187 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 if (!priv)
189 return -ENOMEM;
190
191 file->private_data = priv;
192
193 return 0;
194 }
195
196 /* Associate a new file with the tty structure */
197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 struct tty_file_private *priv = file->private_data;
200
201 priv->tty = tty;
202 priv->file = file;
203
204 spin_lock(&tty->files_lock);
205 list_add(&priv->list, &tty->tty_files);
206 spin_unlock(&tty->files_lock);
207 }
208
209 /**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215 void tty_free_file(struct file *file)
216 {
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221 }
222
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233 }
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 if (!tty || !tty->driver)
257 return "";
258 return tty->driver->name;
259 }
260
261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 if (!tty) {
266 pr_warn("(%d:%d): %s: NULL tty\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 pr_warn("(%d:%d): %s: bad magic number\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275 #endif
276 return 0;
277 }
278
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0, kopen_count = 0;
285
286 spin_lock(&tty->files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty->files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty_port_kopened(tty->port))
296 kopen_count++;
297 if (tty->count != (count + kopen_count)) {
298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 routine, tty->count, count, kopen_count);
300 return (count + kopen_count);
301 }
302 #endif
303 return 0;
304 }
305
306 /**
307 * get_tty_driver - find device of a tty
308 * @dev_t: device identifier
309 * @index: returns the index of the tty
310 *
311 * This routine returns a tty driver structure, given a device number
312 * and also passes back the index number.
313 *
314 * Locking: caller must hold tty_mutex
315 */
316
317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 struct tty_driver *p;
320
321 list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 dev_t base = MKDEV(p->major, p->minor_start);
323 if (device < base || device >= base + p->num)
324 continue;
325 *index = device - base;
326 return tty_driver_kref_get(p);
327 }
328 return NULL;
329 }
330
331 /**
332 * tty_dev_name_to_number - return dev_t for device name
333 * @name: user space name of device under /dev
334 * @number: pointer to dev_t that this function will populate
335 *
336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 * like (4, 64) or (188, 1). If no corresponding driver is registered then
338 * the function returns -ENODEV.
339 *
340 * Locking: this acquires tty_mutex to protect the tty_drivers list from
341 * being modified while we are traversing it, and makes sure to
342 * release it before exiting.
343 */
344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 struct tty_driver *p;
347 int ret;
348 int index, prefix_length = 0;
349 const char *str;
350
351 for (str = name; *str && !isdigit(*str); str++)
352 ;
353
354 if (!*str)
355 return -EINVAL;
356
357 ret = kstrtoint(str, 10, &index);
358 if (ret)
359 return ret;
360
361 prefix_length = str - name;
362 mutex_lock(&tty_mutex);
363
364 list_for_each_entry(p, &tty_drivers, tty_drivers)
365 if (prefix_length == strlen(p->name) && strncmp(name,
366 p->name, prefix_length) == 0) {
367 if (index < p->num) {
368 *number = MKDEV(p->major, p->minor_start + index);
369 goto out;
370 }
371 }
372
373 /* if here then driver wasn't found */
374 ret = -ENODEV;
375 out:
376 mutex_unlock(&tty_mutex);
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381 #ifdef CONFIG_CONSOLE_POLL
382
383 /**
384 * tty_find_polling_driver - find device of a polled tty
385 * @name: name string to match
386 * @line: pointer to resulting tty line nr
387 *
388 * This routine returns a tty driver structure, given a name
389 * and the condition that the tty driver is capable of polled
390 * operation.
391 */
392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 struct tty_driver *p, *res = NULL;
395 int tty_line = 0;
396 int len;
397 char *str, *stp;
398
399 for (str = name; *str; str++)
400 if ((*str >= '0' && *str <= '9') || *str == ',')
401 break;
402 if (!*str)
403 return NULL;
404
405 len = str - name;
406 tty_line = simple_strtoul(str, &str, 10);
407
408 mutex_lock(&tty_mutex);
409 /* Search through the tty devices to look for a match */
410 list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 if (strncmp(name, p->name, len) != 0)
412 continue;
413 stp = str;
414 if (*stp == ',')
415 stp++;
416 if (*stp == '\0')
417 stp = NULL;
418
419 if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 res = tty_driver_kref_get(p);
422 *line = tty_line;
423 break;
424 }
425 }
426 mutex_unlock(&tty_mutex);
427
428 return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432
433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 size_t count, loff_t *ppos)
435 {
436 return 0;
437 }
438
439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 size_t count, loff_t *ppos)
441 {
442 return -EIO;
443 }
444
445 /* No kernel lock held - none needed ;) */
446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
449 }
450
451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 unsigned long arg)
453 {
454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456
457 static long hung_up_tty_compat_ioctl(struct file *file,
458 unsigned int cmd, unsigned long arg)
459 {
460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462
463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 return -ENOTTY;
466 }
467
468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 struct tty_struct *tty = file_tty(file);
471
472 if (tty && tty->ops && tty->ops->show_fdinfo)
473 tty->ops->show_fdinfo(tty, m);
474 }
475
476 static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 .show_fdinfo = tty_show_fdinfo,
487 };
488
489 static const struct file_operations console_fops = {
490 .llseek = no_llseek,
491 .read = tty_read,
492 .write = redirected_tty_write,
493 .poll = tty_poll,
494 .unlocked_ioctl = tty_ioctl,
495 .compat_ioctl = tty_compat_ioctl,
496 .open = tty_open,
497 .release = tty_release,
498 .fasync = tty_fasync,
499 };
500
501 static const struct file_operations hung_up_tty_fops = {
502 .llseek = no_llseek,
503 .read = hung_up_tty_read,
504 .write = hung_up_tty_write,
505 .poll = hung_up_tty_poll,
506 .unlocked_ioctl = hung_up_tty_ioctl,
507 .compat_ioctl = hung_up_tty_compat_ioctl,
508 .release = tty_release,
509 .fasync = hung_up_tty_fasync,
510 };
511
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514
515 /**
516 * tty_wakeup - request more data
517 * @tty: terminal
518 *
519 * Internal and external helper for wakeups of tty. This function
520 * informs the line discipline if present that the driver is ready
521 * to receive more output data.
522 */
523
524 void tty_wakeup(struct tty_struct *tty)
525 {
526 struct tty_ldisc *ld;
527
528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 ld = tty_ldisc_ref(tty);
530 if (ld) {
531 if (ld->ops->write_wakeup)
532 ld->ops->write_wakeup(tty);
533 tty_ldisc_deref(ld);
534 }
535 }
536 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
537 }
538
539 EXPORT_SYMBOL_GPL(tty_wakeup);
540
541 /**
542 * __tty_hangup - actual handler for hangup events
543 * @work: tty device
544 *
545 * This can be called by a "kworker" kernel thread. That is process
546 * synchronous but doesn't hold any locks, so we need to make sure we
547 * have the appropriate locks for what we're doing.
548 *
549 * The hangup event clears any pending redirections onto the hung up
550 * device. It ensures future writes will error and it does the needed
551 * line discipline hangup and signal delivery. The tty object itself
552 * remains intact.
553 *
554 * Locking:
555 * BTM
556 * redirect lock for undoing redirection
557 * file list lock for manipulating list of ttys
558 * tty_ldiscs_lock from called functions
559 * termios_rwsem resetting termios data
560 * tasklist_lock to walk task list for hangup event
561 * ->siglock to protect ->signal/->sighand
562 */
563 static void __tty_hangup(struct tty_struct *tty, int exit_session)
564 {
565 struct file *cons_filp = NULL;
566 struct file *filp, *f = NULL;
567 struct tty_file_private *priv;
568 int closecount = 0, n;
569 int refs;
570
571 if (!tty)
572 return;
573
574
575 spin_lock(&redirect_lock);
576 if (redirect && file_tty(redirect) == tty) {
577 f = redirect;
578 redirect = NULL;
579 }
580 spin_unlock(&redirect_lock);
581
582 tty_lock(tty);
583
584 if (test_bit(TTY_HUPPED, &tty->flags)) {
585 tty_unlock(tty);
586 return;
587 }
588
589 /* inuse_filps is protected by the single tty lock,
590 this really needs to change if we want to flush the
591 workqueue with the lock held */
592 check_tty_count(tty, "tty_hangup");
593
594 spin_lock(&tty->files_lock);
595 /* This breaks for file handles being sent over AF_UNIX sockets ? */
596 list_for_each_entry(priv, &tty->tty_files, list) {
597 filp = priv->file;
598 if (filp->f_op->write == redirected_tty_write)
599 cons_filp = filp;
600 if (filp->f_op->write != tty_write)
601 continue;
602 closecount++;
603 __tty_fasync(-1, filp, 0); /* can't block */
604 filp->f_op = &hung_up_tty_fops;
605 }
606 spin_unlock(&tty->files_lock);
607
608 refs = tty_signal_session_leader(tty, exit_session);
609 /* Account for the p->signal references we killed */
610 while (refs--)
611 tty_kref_put(tty);
612
613 tty_ldisc_hangup(tty, cons_filp != NULL);
614
615 spin_lock_irq(&tty->ctrl_lock);
616 clear_bit(TTY_THROTTLED, &tty->flags);
617 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618 put_pid(tty->session);
619 put_pid(tty->pgrp);
620 tty->session = NULL;
621 tty->pgrp = NULL;
622 tty->ctrl_status = 0;
623 spin_unlock_irq(&tty->ctrl_lock);
624
625 /*
626 * If one of the devices matches a console pointer, we
627 * cannot just call hangup() because that will cause
628 * tty->count and state->count to go out of sync.
629 * So we just call close() the right number of times.
630 */
631 if (cons_filp) {
632 if (tty->ops->close)
633 for (n = 0; n < closecount; n++)
634 tty->ops->close(tty, cons_filp);
635 } else if (tty->ops->hangup)
636 tty->ops->hangup(tty);
637 /*
638 * We don't want to have driver/ldisc interactions beyond the ones
639 * we did here. The driver layer expects no calls after ->hangup()
640 * from the ldisc side, which is now guaranteed.
641 */
642 set_bit(TTY_HUPPED, &tty->flags);
643 tty_unlock(tty);
644
645 if (f)
646 fput(f);
647 }
648
649 static void do_tty_hangup(struct work_struct *work)
650 {
651 struct tty_struct *tty =
652 container_of(work, struct tty_struct, hangup_work);
653
654 __tty_hangup(tty, 0);
655 }
656
657 /**
658 * tty_hangup - trigger a hangup event
659 * @tty: tty to hangup
660 *
661 * A carrier loss (virtual or otherwise) has occurred on this like
662 * schedule a hangup sequence to run after this event.
663 */
664
665 void tty_hangup(struct tty_struct *tty)
666 {
667 tty_debug_hangup(tty, "hangup\n");
668 schedule_work(&tty->hangup_work);
669 }
670
671 EXPORT_SYMBOL(tty_hangup);
672
673 /**
674 * tty_vhangup - process vhangup
675 * @tty: tty to hangup
676 *
677 * The user has asked via system call for the terminal to be hung up.
678 * We do this synchronously so that when the syscall returns the process
679 * is complete. That guarantee is necessary for security reasons.
680 */
681
682 void tty_vhangup(struct tty_struct *tty)
683 {
684 tty_debug_hangup(tty, "vhangup\n");
685 __tty_hangup(tty, 0);
686 }
687
688 EXPORT_SYMBOL(tty_vhangup);
689
690
691 /**
692 * tty_vhangup_self - process vhangup for own ctty
693 *
694 * Perform a vhangup on the current controlling tty
695 */
696
697 void tty_vhangup_self(void)
698 {
699 struct tty_struct *tty;
700
701 tty = get_current_tty();
702 if (tty) {
703 tty_vhangup(tty);
704 tty_kref_put(tty);
705 }
706 }
707
708 /**
709 * tty_vhangup_session - hangup session leader exit
710 * @tty: tty to hangup
711 *
712 * The session leader is exiting and hanging up its controlling terminal.
713 * Every process in the foreground process group is signalled SIGHUP.
714 *
715 * We do this synchronously so that when the syscall returns the process
716 * is complete. That guarantee is necessary for security reasons.
717 */
718
719 void tty_vhangup_session(struct tty_struct *tty)
720 {
721 tty_debug_hangup(tty, "session hangup\n");
722 __tty_hangup(tty, 1);
723 }
724
725 /**
726 * tty_hung_up_p - was tty hung up
727 * @filp: file pointer of tty
728 *
729 * Return true if the tty has been subject to a vhangup or a carrier
730 * loss
731 */
732
733 int tty_hung_up_p(struct file *filp)
734 {
735 return (filp && filp->f_op == &hung_up_tty_fops);
736 }
737
738 EXPORT_SYMBOL(tty_hung_up_p);
739
740 /**
741 * stop_tty - propagate flow control
742 * @tty: tty to stop
743 *
744 * Perform flow control to the driver. May be called
745 * on an already stopped device and will not re-call the driver
746 * method.
747 *
748 * This functionality is used by both the line disciplines for
749 * halting incoming flow and by the driver. It may therefore be
750 * called from any context, may be under the tty atomic_write_lock
751 * but not always.
752 *
753 * Locking:
754 * flow_lock
755 */
756
757 void __stop_tty(struct tty_struct *tty)
758 {
759 if (tty->stopped)
760 return;
761 tty->stopped = 1;
762 if (tty->ops->stop)
763 tty->ops->stop(tty);
764 }
765
766 void stop_tty(struct tty_struct *tty)
767 {
768 unsigned long flags;
769
770 spin_lock_irqsave(&tty->flow_lock, flags);
771 __stop_tty(tty);
772 spin_unlock_irqrestore(&tty->flow_lock, flags);
773 }
774 EXPORT_SYMBOL(stop_tty);
775
776 /**
777 * start_tty - propagate flow control
778 * @tty: tty to start
779 *
780 * Start a tty that has been stopped if at all possible. If this
781 * tty was previous stopped and is now being started, the driver
782 * start method is invoked and the line discipline woken.
783 *
784 * Locking:
785 * flow_lock
786 */
787
788 void __start_tty(struct tty_struct *tty)
789 {
790 if (!tty->stopped || tty->flow_stopped)
791 return;
792 tty->stopped = 0;
793 if (tty->ops->start)
794 tty->ops->start(tty);
795 tty_wakeup(tty);
796 }
797
798 void start_tty(struct tty_struct *tty)
799 {
800 unsigned long flags;
801
802 spin_lock_irqsave(&tty->flow_lock, flags);
803 __start_tty(tty);
804 spin_unlock_irqrestore(&tty->flow_lock, flags);
805 }
806 EXPORT_SYMBOL(start_tty);
807
808 static void tty_update_time(struct timespec *time)
809 {
810 unsigned long sec = get_seconds();
811
812 /*
813 * We only care if the two values differ in anything other than the
814 * lower three bits (i.e every 8 seconds). If so, then we can update
815 * the time of the tty device, otherwise it could be construded as a
816 * security leak to let userspace know the exact timing of the tty.
817 */
818 if ((sec ^ time->tv_sec) & ~7)
819 time->tv_sec = sec;
820 }
821
822 /**
823 * tty_read - read method for tty device files
824 * @file: pointer to tty file
825 * @buf: user buffer
826 * @count: size of user buffer
827 * @ppos: unused
828 *
829 * Perform the read system call function on this terminal device. Checks
830 * for hung up devices before calling the line discipline method.
831 *
832 * Locking:
833 * Locks the line discipline internally while needed. Multiple
834 * read calls may be outstanding in parallel.
835 */
836
837 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
838 loff_t *ppos)
839 {
840 int i;
841 struct inode *inode = file_inode(file);
842 struct tty_struct *tty = file_tty(file);
843 struct tty_ldisc *ld;
844
845 if (tty_paranoia_check(tty, inode, "tty_read"))
846 return -EIO;
847 if (!tty || tty_io_error(tty))
848 return -EIO;
849
850 /* We want to wait for the line discipline to sort out in this
851 situation */
852 ld = tty_ldisc_ref_wait(tty);
853 if (!ld)
854 return hung_up_tty_read(file, buf, count, ppos);
855 if (ld->ops->read)
856 i = ld->ops->read(tty, file, buf, count);
857 else
858 i = -EIO;
859 tty_ldisc_deref(ld);
860
861 if (i > 0)
862 tty_update_time(&inode->i_atime);
863
864 return i;
865 }
866
867 static void tty_write_unlock(struct tty_struct *tty)
868 {
869 mutex_unlock(&tty->atomic_write_lock);
870 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
871 }
872
873 static int tty_write_lock(struct tty_struct *tty, int ndelay)
874 {
875 if (!mutex_trylock(&tty->atomic_write_lock)) {
876 if (ndelay)
877 return -EAGAIN;
878 if (mutex_lock_interruptible(&tty->atomic_write_lock))
879 return -ERESTARTSYS;
880 }
881 return 0;
882 }
883
884 /*
885 * Split writes up in sane blocksizes to avoid
886 * denial-of-service type attacks
887 */
888 static inline ssize_t do_tty_write(
889 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
890 struct tty_struct *tty,
891 struct file *file,
892 const char __user *buf,
893 size_t count)
894 {
895 ssize_t ret, written = 0;
896 unsigned int chunk;
897
898 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
899 if (ret < 0)
900 return ret;
901
902 /*
903 * We chunk up writes into a temporary buffer. This
904 * simplifies low-level drivers immensely, since they
905 * don't have locking issues and user mode accesses.
906 *
907 * But if TTY_NO_WRITE_SPLIT is set, we should use a
908 * big chunk-size..
909 *
910 * The default chunk-size is 2kB, because the NTTY
911 * layer has problems with bigger chunks. It will
912 * claim to be able to handle more characters than
913 * it actually does.
914 *
915 * FIXME: This can probably go away now except that 64K chunks
916 * are too likely to fail unless switched to vmalloc...
917 */
918 chunk = 2048;
919 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
920 chunk = 65536;
921 if (count < chunk)
922 chunk = count;
923
924 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
925 if (tty->write_cnt < chunk) {
926 unsigned char *buf_chunk;
927
928 if (chunk < 1024)
929 chunk = 1024;
930
931 buf_chunk = kmalloc(chunk, GFP_KERNEL);
932 if (!buf_chunk) {
933 ret = -ENOMEM;
934 goto out;
935 }
936 kfree(tty->write_buf);
937 tty->write_cnt = chunk;
938 tty->write_buf = buf_chunk;
939 }
940
941 /* Do the write .. */
942 for (;;) {
943 size_t size = count;
944 if (size > chunk)
945 size = chunk;
946 ret = -EFAULT;
947 if (copy_from_user(tty->write_buf, buf, size))
948 break;
949 ret = write(tty, file, tty->write_buf, size);
950 if (ret <= 0)
951 break;
952 written += ret;
953 buf += ret;
954 count -= ret;
955 if (!count)
956 break;
957 ret = -ERESTARTSYS;
958 if (signal_pending(current))
959 break;
960 cond_resched();
961 }
962 if (written) {
963 tty_update_time(&file_inode(file)->i_mtime);
964 ret = written;
965 }
966 out:
967 tty_write_unlock(tty);
968 return ret;
969 }
970
971 /**
972 * tty_write_message - write a message to a certain tty, not just the console.
973 * @tty: the destination tty_struct
974 * @msg: the message to write
975 *
976 * This is used for messages that need to be redirected to a specific tty.
977 * We don't put it into the syslog queue right now maybe in the future if
978 * really needed.
979 *
980 * We must still hold the BTM and test the CLOSING flag for the moment.
981 */
982
983 void tty_write_message(struct tty_struct *tty, char *msg)
984 {
985 if (tty) {
986 mutex_lock(&tty->atomic_write_lock);
987 tty_lock(tty);
988 if (tty->ops->write && tty->count > 0)
989 tty->ops->write(tty, msg, strlen(msg));
990 tty_unlock(tty);
991 tty_write_unlock(tty);
992 }
993 return;
994 }
995
996
997 /**
998 * tty_write - write method for tty device file
999 * @file: tty file pointer
1000 * @buf: user data to write
1001 * @count: bytes to write
1002 * @ppos: unused
1003 *
1004 * Write data to a tty device via the line discipline.
1005 *
1006 * Locking:
1007 * Locks the line discipline as required
1008 * Writes to the tty driver are serialized by the atomic_write_lock
1009 * and are then processed in chunks to the device. The line discipline
1010 * write method will not be invoked in parallel for each device.
1011 */
1012
1013 static ssize_t tty_write(struct file *file, const char __user *buf,
1014 size_t count, loff_t *ppos)
1015 {
1016 struct tty_struct *tty = file_tty(file);
1017 struct tty_ldisc *ld;
1018 ssize_t ret;
1019
1020 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1021 return -EIO;
1022 if (!tty || !tty->ops->write || tty_io_error(tty))
1023 return -EIO;
1024 /* Short term debug to catch buggy drivers */
1025 if (tty->ops->write_room == NULL)
1026 tty_err(tty, "missing write_room method\n");
1027 ld = tty_ldisc_ref_wait(tty);
1028 if (!ld)
1029 return hung_up_tty_write(file, buf, count, ppos);
1030 if (!ld->ops->write)
1031 ret = -EIO;
1032 else
1033 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1034 tty_ldisc_deref(ld);
1035 return ret;
1036 }
1037
1038 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1039 size_t count, loff_t *ppos)
1040 {
1041 struct file *p = NULL;
1042
1043 spin_lock(&redirect_lock);
1044 if (redirect)
1045 p = get_file(redirect);
1046 spin_unlock(&redirect_lock);
1047
1048 if (p) {
1049 ssize_t res;
1050 res = vfs_write(p, buf, count, &p->f_pos);
1051 fput(p);
1052 return res;
1053 }
1054 return tty_write(file, buf, count, ppos);
1055 }
1056
1057 /**
1058 * tty_send_xchar - send priority character
1059 *
1060 * Send a high priority character to the tty even if stopped
1061 *
1062 * Locking: none for xchar method, write ordering for write method.
1063 */
1064
1065 int tty_send_xchar(struct tty_struct *tty, char ch)
1066 {
1067 int was_stopped = tty->stopped;
1068
1069 if (tty->ops->send_xchar) {
1070 down_read(&tty->termios_rwsem);
1071 tty->ops->send_xchar(tty, ch);
1072 up_read(&tty->termios_rwsem);
1073 return 0;
1074 }
1075
1076 if (tty_write_lock(tty, 0) < 0)
1077 return -ERESTARTSYS;
1078
1079 down_read(&tty->termios_rwsem);
1080 if (was_stopped)
1081 start_tty(tty);
1082 tty->ops->write(tty, &ch, 1);
1083 if (was_stopped)
1084 stop_tty(tty);
1085 up_read(&tty->termios_rwsem);
1086 tty_write_unlock(tty);
1087 return 0;
1088 }
1089
1090 static char ptychar[] = "pqrstuvwxyzabcde";
1091
1092 /**
1093 * pty_line_name - generate name for a pty
1094 * @driver: the tty driver in use
1095 * @index: the minor number
1096 * @p: output buffer of at least 6 bytes
1097 *
1098 * Generate a name from a driver reference and write it to the output
1099 * buffer.
1100 *
1101 * Locking: None
1102 */
1103 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1104 {
1105 int i = index + driver->name_base;
1106 /* ->name is initialized to "ttyp", but "tty" is expected */
1107 sprintf(p, "%s%c%x",
1108 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1109 ptychar[i >> 4 & 0xf], i & 0xf);
1110 }
1111
1112 /**
1113 * tty_line_name - generate name for a tty
1114 * @driver: the tty driver in use
1115 * @index: the minor number
1116 * @p: output buffer of at least 7 bytes
1117 *
1118 * Generate a name from a driver reference and write it to the output
1119 * buffer.
1120 *
1121 * Locking: None
1122 */
1123 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1124 {
1125 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1126 return sprintf(p, "%s", driver->name);
1127 else
1128 return sprintf(p, "%s%d", driver->name,
1129 index + driver->name_base);
1130 }
1131
1132 /**
1133 * tty_driver_lookup_tty() - find an existing tty, if any
1134 * @driver: the driver for the tty
1135 * @idx: the minor number
1136 *
1137 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1138 * driver lookup() method returns an error.
1139 *
1140 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1141 */
1142 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1143 struct file *file, int idx)
1144 {
1145 struct tty_struct *tty;
1146
1147 if (driver->ops->lookup)
1148 if (!file)
1149 tty = ERR_PTR(-EIO);
1150 else
1151 tty = driver->ops->lookup(driver, file, idx);
1152 else
1153 tty = driver->ttys[idx];
1154
1155 if (!IS_ERR(tty))
1156 tty_kref_get(tty);
1157 return tty;
1158 }
1159
1160 /**
1161 * tty_init_termios - helper for termios setup
1162 * @tty: the tty to set up
1163 *
1164 * Initialise the termios structures for this tty. Thus runs under
1165 * the tty_mutex currently so we can be relaxed about ordering.
1166 */
1167
1168 void tty_init_termios(struct tty_struct *tty)
1169 {
1170 struct ktermios *tp;
1171 int idx = tty->index;
1172
1173 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1174 tty->termios = tty->driver->init_termios;
1175 else {
1176 /* Check for lazy saved data */
1177 tp = tty->driver->termios[idx];
1178 if (tp != NULL) {
1179 tty->termios = *tp;
1180 tty->termios.c_line = tty->driver->init_termios.c_line;
1181 } else
1182 tty->termios = tty->driver->init_termios;
1183 }
1184 /* Compatibility until drivers always set this */
1185 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1186 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1187 }
1188 EXPORT_SYMBOL_GPL(tty_init_termios);
1189
1190 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1191 {
1192 tty_init_termios(tty);
1193 tty_driver_kref_get(driver);
1194 tty->count++;
1195 driver->ttys[tty->index] = tty;
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(tty_standard_install);
1199
1200 /**
1201 * tty_driver_install_tty() - install a tty entry in the driver
1202 * @driver: the driver for the tty
1203 * @tty: the tty
1204 *
1205 * Install a tty object into the driver tables. The tty->index field
1206 * will be set by the time this is called. This method is responsible
1207 * for ensuring any need additional structures are allocated and
1208 * configured.
1209 *
1210 * Locking: tty_mutex for now
1211 */
1212 static int tty_driver_install_tty(struct tty_driver *driver,
1213 struct tty_struct *tty)
1214 {
1215 return driver->ops->install ? driver->ops->install(driver, tty) :
1216 tty_standard_install(driver, tty);
1217 }
1218
1219 /**
1220 * tty_driver_remove_tty() - remove a tty from the driver tables
1221 * @driver: the driver for the tty
1222 * @idx: the minor number
1223 *
1224 * Remvoe a tty object from the driver tables. The tty->index field
1225 * will be set by the time this is called.
1226 *
1227 * Locking: tty_mutex for now
1228 */
1229 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1230 {
1231 if (driver->ops->remove)
1232 driver->ops->remove(driver, tty);
1233 else
1234 driver->ttys[tty->index] = NULL;
1235 }
1236
1237 /*
1238 * tty_reopen() - fast re-open of an open tty
1239 * @tty - the tty to open
1240 *
1241 * Return 0 on success, -errno on error.
1242 * Re-opens on master ptys are not allowed and return -EIO.
1243 *
1244 * Locking: Caller must hold tty_lock
1245 */
1246 static int tty_reopen(struct tty_struct *tty)
1247 {
1248 struct tty_driver *driver = tty->driver;
1249
1250 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1251 driver->subtype == PTY_TYPE_MASTER)
1252 return -EIO;
1253
1254 if (!tty->count)
1255 return -EAGAIN;
1256
1257 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1258 return -EBUSY;
1259
1260 tty->count++;
1261
1262 if (!tty->ldisc)
1263 return tty_ldisc_reinit(tty, tty->termios.c_line);
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * tty_init_dev - initialise a tty device
1270 * @driver: tty driver we are opening a device on
1271 * @idx: device index
1272 * @ret_tty: returned tty structure
1273 *
1274 * Prepare a tty device. This may not be a "new" clean device but
1275 * could also be an active device. The pty drivers require special
1276 * handling because of this.
1277 *
1278 * Locking:
1279 * The function is called under the tty_mutex, which
1280 * protects us from the tty struct or driver itself going away.
1281 *
1282 * On exit the tty device has the line discipline attached and
1283 * a reference count of 1. If a pair was created for pty/tty use
1284 * and the other was a pty master then it too has a reference count of 1.
1285 *
1286 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1287 * failed open. The new code protects the open with a mutex, so it's
1288 * really quite straightforward. The mutex locking can probably be
1289 * relaxed for the (most common) case of reopening a tty.
1290 */
1291
1292 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1293 {
1294 struct tty_struct *tty;
1295 int retval;
1296
1297 /*
1298 * First time open is complex, especially for PTY devices.
1299 * This code guarantees that either everything succeeds and the
1300 * TTY is ready for operation, or else the table slots are vacated
1301 * and the allocated memory released. (Except that the termios
1302 * may be retained.)
1303 */
1304
1305 if (!try_module_get(driver->owner))
1306 return ERR_PTR(-ENODEV);
1307
1308 tty = alloc_tty_struct(driver, idx);
1309 if (!tty) {
1310 retval = -ENOMEM;
1311 goto err_module_put;
1312 }
1313
1314 tty_lock(tty);
1315 retval = tty_driver_install_tty(driver, tty);
1316 if (retval < 0)
1317 goto err_free_tty;
1318
1319 if (!tty->port)
1320 tty->port = driver->ports[idx];
1321
1322 WARN_RATELIMIT(!tty->port,
1323 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1324 __func__, tty->driver->name);
1325
1326 retval = tty_ldisc_lock(tty, 5 * HZ);
1327 if (retval)
1328 goto err_release_lock;
1329 tty->port->itty = tty;
1330
1331 /*
1332 * Structures all installed ... call the ldisc open routines.
1333 * If we fail here just call release_tty to clean up. No need
1334 * to decrement the use counts, as release_tty doesn't care.
1335 */
1336 retval = tty_ldisc_setup(tty, tty->link);
1337 if (retval)
1338 goto err_release_tty;
1339 tty_ldisc_unlock(tty);
1340 /* Return the tty locked so that it cannot vanish under the caller */
1341 return tty;
1342
1343 err_free_tty:
1344 tty_unlock(tty);
1345 free_tty_struct(tty);
1346 err_module_put:
1347 module_put(driver->owner);
1348 return ERR_PTR(retval);
1349
1350 /* call the tty release_tty routine to clean out this slot */
1351 err_release_tty:
1352 tty_ldisc_unlock(tty);
1353 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1354 retval, idx);
1355 err_release_lock:
1356 tty_unlock(tty);
1357 release_tty(tty, idx);
1358 return ERR_PTR(retval);
1359 }
1360
1361 static void tty_free_termios(struct tty_struct *tty)
1362 {
1363 struct ktermios *tp;
1364 int idx = tty->index;
1365
1366 /* If the port is going to reset then it has no termios to save */
1367 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1368 return;
1369
1370 /* Stash the termios data */
1371 tp = tty->driver->termios[idx];
1372 if (tp == NULL) {
1373 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1374 if (tp == NULL)
1375 return;
1376 tty->driver->termios[idx] = tp;
1377 }
1378 *tp = tty->termios;
1379 }
1380
1381 /**
1382 * tty_flush_works - flush all works of a tty/pty pair
1383 * @tty: tty device to flush works for (or either end of a pty pair)
1384 *
1385 * Sync flush all works belonging to @tty (and the 'other' tty).
1386 */
1387 static void tty_flush_works(struct tty_struct *tty)
1388 {
1389 flush_work(&tty->SAK_work);
1390 flush_work(&tty->hangup_work);
1391 if (tty->link) {
1392 flush_work(&tty->link->SAK_work);
1393 flush_work(&tty->link->hangup_work);
1394 }
1395 }
1396
1397 /**
1398 * release_one_tty - release tty structure memory
1399 * @kref: kref of tty we are obliterating
1400 *
1401 * Releases memory associated with a tty structure, and clears out the
1402 * driver table slots. This function is called when a device is no longer
1403 * in use. It also gets called when setup of a device fails.
1404 *
1405 * Locking:
1406 * takes the file list lock internally when working on the list
1407 * of ttys that the driver keeps.
1408 *
1409 * This method gets called from a work queue so that the driver private
1410 * cleanup ops can sleep (needed for USB at least)
1411 */
1412 static void release_one_tty(struct work_struct *work)
1413 {
1414 struct tty_struct *tty =
1415 container_of(work, struct tty_struct, hangup_work);
1416 struct tty_driver *driver = tty->driver;
1417 struct module *owner = driver->owner;
1418
1419 if (tty->ops->cleanup)
1420 tty->ops->cleanup(tty);
1421
1422 tty->magic = 0;
1423 tty_driver_kref_put(driver);
1424 module_put(owner);
1425
1426 spin_lock(&tty->files_lock);
1427 list_del_init(&tty->tty_files);
1428 spin_unlock(&tty->files_lock);
1429
1430 put_pid(tty->pgrp);
1431 put_pid(tty->session);
1432 free_tty_struct(tty);
1433 }
1434
1435 static void queue_release_one_tty(struct kref *kref)
1436 {
1437 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1438
1439 /* The hangup queue is now free so we can reuse it rather than
1440 waste a chunk of memory for each port */
1441 INIT_WORK(&tty->hangup_work, release_one_tty);
1442 schedule_work(&tty->hangup_work);
1443 }
1444
1445 /**
1446 * tty_kref_put - release a tty kref
1447 * @tty: tty device
1448 *
1449 * Release a reference to a tty device and if need be let the kref
1450 * layer destruct the object for us
1451 */
1452
1453 void tty_kref_put(struct tty_struct *tty)
1454 {
1455 if (tty)
1456 kref_put(&tty->kref, queue_release_one_tty);
1457 }
1458 EXPORT_SYMBOL(tty_kref_put);
1459
1460 /**
1461 * release_tty - release tty structure memory
1462 *
1463 * Release both @tty and a possible linked partner (think pty pair),
1464 * and decrement the refcount of the backing module.
1465 *
1466 * Locking:
1467 * tty_mutex
1468 * takes the file list lock internally when working on the list
1469 * of ttys that the driver keeps.
1470 *
1471 */
1472 static void release_tty(struct tty_struct *tty, int idx)
1473 {
1474 /* This should always be true but check for the moment */
1475 WARN_ON(tty->index != idx);
1476 WARN_ON(!mutex_is_locked(&tty_mutex));
1477 if (tty->ops->shutdown)
1478 tty->ops->shutdown(tty);
1479 tty_free_termios(tty);
1480 tty_driver_remove_tty(tty->driver, tty);
1481 tty->port->itty = NULL;
1482 if (tty->link)
1483 tty->link->port->itty = NULL;
1484 tty_buffer_cancel_work(tty->port);
1485 if (tty->link)
1486 tty_buffer_cancel_work(tty->link->port);
1487
1488 tty_kref_put(tty->link);
1489 tty_kref_put(tty);
1490 }
1491
1492 /**
1493 * tty_release_checks - check a tty before real release
1494 * @tty: tty to check
1495 * @o_tty: link of @tty (if any)
1496 * @idx: index of the tty
1497 *
1498 * Performs some paranoid checking before true release of the @tty.
1499 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1500 */
1501 static int tty_release_checks(struct tty_struct *tty, int idx)
1502 {
1503 #ifdef TTY_PARANOIA_CHECK
1504 if (idx < 0 || idx >= tty->driver->num) {
1505 tty_debug(tty, "bad idx %d\n", idx);
1506 return -1;
1507 }
1508
1509 /* not much to check for devpts */
1510 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1511 return 0;
1512
1513 if (tty != tty->driver->ttys[idx]) {
1514 tty_debug(tty, "bad driver table[%d] = %p\n",
1515 idx, tty->driver->ttys[idx]);
1516 return -1;
1517 }
1518 if (tty->driver->other) {
1519 struct tty_struct *o_tty = tty->link;
1520
1521 if (o_tty != tty->driver->other->ttys[idx]) {
1522 tty_debug(tty, "bad other table[%d] = %p\n",
1523 idx, tty->driver->other->ttys[idx]);
1524 return -1;
1525 }
1526 if (o_tty->link != tty) {
1527 tty_debug(tty, "bad link = %p\n", o_tty->link);
1528 return -1;
1529 }
1530 }
1531 #endif
1532 return 0;
1533 }
1534
1535 /**
1536 * tty_kclose - closes tty opened by tty_kopen
1537 * @tty: tty device
1538 *
1539 * Performs the final steps to release and free a tty device. It is the
1540 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1541 * flag on tty->port.
1542 */
1543 void tty_kclose(struct tty_struct *tty)
1544 {
1545 /*
1546 * Ask the line discipline code to release its structures
1547 */
1548 tty_ldisc_release(tty);
1549
1550 /* Wait for pending work before tty destruction commmences */
1551 tty_flush_works(tty);
1552
1553 tty_debug_hangup(tty, "freeing structure\n");
1554 /*
1555 * The release_tty function takes care of the details of clearing
1556 * the slots and preserving the termios structure. The tty_unlock_pair
1557 * should be safe as we keep a kref while the tty is locked (so the
1558 * unlock never unlocks a freed tty).
1559 */
1560 mutex_lock(&tty_mutex);
1561 tty_port_set_kopened(tty->port, 0);
1562 release_tty(tty, tty->index);
1563 mutex_unlock(&tty_mutex);
1564 }
1565 EXPORT_SYMBOL_GPL(tty_kclose);
1566
1567 /**
1568 * tty_release_struct - release a tty struct
1569 * @tty: tty device
1570 * @idx: index of the tty
1571 *
1572 * Performs the final steps to release and free a tty device. It is
1573 * roughly the reverse of tty_init_dev.
1574 */
1575 void tty_release_struct(struct tty_struct *tty, int idx)
1576 {
1577 /*
1578 * Ask the line discipline code to release its structures
1579 */
1580 tty_ldisc_release(tty);
1581
1582 /* Wait for pending work before tty destruction commmences */
1583 tty_flush_works(tty);
1584
1585 tty_debug_hangup(tty, "freeing structure\n");
1586 /*
1587 * The release_tty function takes care of the details of clearing
1588 * the slots and preserving the termios structure. The tty_unlock_pair
1589 * should be safe as we keep a kref while the tty is locked (so the
1590 * unlock never unlocks a freed tty).
1591 */
1592 mutex_lock(&tty_mutex);
1593 release_tty(tty, idx);
1594 mutex_unlock(&tty_mutex);
1595 }
1596 EXPORT_SYMBOL_GPL(tty_release_struct);
1597
1598 /**
1599 * tty_release - vfs callback for close
1600 * @inode: inode of tty
1601 * @filp: file pointer for handle to tty
1602 *
1603 * Called the last time each file handle is closed that references
1604 * this tty. There may however be several such references.
1605 *
1606 * Locking:
1607 * Takes bkl. See tty_release_dev
1608 *
1609 * Even releasing the tty structures is a tricky business.. We have
1610 * to be very careful that the structures are all released at the
1611 * same time, as interrupts might otherwise get the wrong pointers.
1612 *
1613 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1614 * lead to double frees or releasing memory still in use.
1615 */
1616
1617 int tty_release(struct inode *inode, struct file *filp)
1618 {
1619 struct tty_struct *tty = file_tty(filp);
1620 struct tty_struct *o_tty = NULL;
1621 int do_sleep, final;
1622 int idx;
1623 long timeout = 0;
1624 int once = 1;
1625
1626 if (tty_paranoia_check(tty, inode, __func__))
1627 return 0;
1628
1629 tty_lock(tty);
1630 check_tty_count(tty, __func__);
1631
1632 __tty_fasync(-1, filp, 0);
1633
1634 idx = tty->index;
1635 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1636 tty->driver->subtype == PTY_TYPE_MASTER)
1637 o_tty = tty->link;
1638
1639 if (tty_release_checks(tty, idx)) {
1640 tty_unlock(tty);
1641 return 0;
1642 }
1643
1644 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1645
1646 if (tty->ops->close)
1647 tty->ops->close(tty, filp);
1648
1649 /* If tty is pty master, lock the slave pty (stable lock order) */
1650 tty_lock_slave(o_tty);
1651
1652 /*
1653 * Sanity check: if tty->count is going to zero, there shouldn't be
1654 * any waiters on tty->read_wait or tty->write_wait. We test the
1655 * wait queues and kick everyone out _before_ actually starting to
1656 * close. This ensures that we won't block while releasing the tty
1657 * structure.
1658 *
1659 * The test for the o_tty closing is necessary, since the master and
1660 * slave sides may close in any order. If the slave side closes out
1661 * first, its count will be one, since the master side holds an open.
1662 * Thus this test wouldn't be triggered at the time the slave closed,
1663 * so we do it now.
1664 */
1665 while (1) {
1666 do_sleep = 0;
1667
1668 if (tty->count <= 1) {
1669 if (waitqueue_active(&tty->read_wait)) {
1670 wake_up_poll(&tty->read_wait, EPOLLIN);
1671 do_sleep++;
1672 }
1673 if (waitqueue_active(&tty->write_wait)) {
1674 wake_up_poll(&tty->write_wait, EPOLLOUT);
1675 do_sleep++;
1676 }
1677 }
1678 if (o_tty && o_tty->count <= 1) {
1679 if (waitqueue_active(&o_tty->read_wait)) {
1680 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1681 do_sleep++;
1682 }
1683 if (waitqueue_active(&o_tty->write_wait)) {
1684 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1685 do_sleep++;
1686 }
1687 }
1688 if (!do_sleep)
1689 break;
1690
1691 if (once) {
1692 once = 0;
1693 tty_warn(tty, "read/write wait queue active!\n");
1694 }
1695 schedule_timeout_killable(timeout);
1696 if (timeout < 120 * HZ)
1697 timeout = 2 * timeout + 1;
1698 else
1699 timeout = MAX_SCHEDULE_TIMEOUT;
1700 }
1701
1702 if (o_tty) {
1703 if (--o_tty->count < 0) {
1704 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1705 o_tty->count = 0;
1706 }
1707 }
1708 if (--tty->count < 0) {
1709 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1710 tty->count = 0;
1711 }
1712
1713 /*
1714 * We've decremented tty->count, so we need to remove this file
1715 * descriptor off the tty->tty_files list; this serves two
1716 * purposes:
1717 * - check_tty_count sees the correct number of file descriptors
1718 * associated with this tty.
1719 * - do_tty_hangup no longer sees this file descriptor as
1720 * something that needs to be handled for hangups.
1721 */
1722 tty_del_file(filp);
1723
1724 /*
1725 * Perform some housekeeping before deciding whether to return.
1726 *
1727 * If _either_ side is closing, make sure there aren't any
1728 * processes that still think tty or o_tty is their controlling
1729 * tty.
1730 */
1731 if (!tty->count) {
1732 read_lock(&tasklist_lock);
1733 session_clear_tty(tty->session);
1734 if (o_tty)
1735 session_clear_tty(o_tty->session);
1736 read_unlock(&tasklist_lock);
1737 }
1738
1739 /* check whether both sides are closing ... */
1740 final = !tty->count && !(o_tty && o_tty->count);
1741
1742 tty_unlock_slave(o_tty);
1743 tty_unlock(tty);
1744
1745 /* At this point, the tty->count == 0 should ensure a dead tty
1746 cannot be re-opened by a racing opener */
1747
1748 if (!final)
1749 return 0;
1750
1751 tty_debug_hangup(tty, "final close\n");
1752
1753 tty_release_struct(tty, idx);
1754 return 0;
1755 }
1756
1757 /**
1758 * tty_open_current_tty - get locked tty of current task
1759 * @device: device number
1760 * @filp: file pointer to tty
1761 * @return: locked tty of the current task iff @device is /dev/tty
1762 *
1763 * Performs a re-open of the current task's controlling tty.
1764 *
1765 * We cannot return driver and index like for the other nodes because
1766 * devpts will not work then. It expects inodes to be from devpts FS.
1767 */
1768 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1769 {
1770 struct tty_struct *tty;
1771 int retval;
1772
1773 if (device != MKDEV(TTYAUX_MAJOR, 0))
1774 return NULL;
1775
1776 tty = get_current_tty();
1777 if (!tty)
1778 return ERR_PTR(-ENXIO);
1779
1780 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1781 /* noctty = 1; */
1782 tty_lock(tty);
1783 tty_kref_put(tty); /* safe to drop the kref now */
1784
1785 retval = tty_reopen(tty);
1786 if (retval < 0) {
1787 tty_unlock(tty);
1788 tty = ERR_PTR(retval);
1789 }
1790 return tty;
1791 }
1792
1793 /**
1794 * tty_lookup_driver - lookup a tty driver for a given device file
1795 * @device: device number
1796 * @filp: file pointer to tty
1797 * @index: index for the device in the @return driver
1798 * @return: driver for this inode (with increased refcount)
1799 *
1800 * If @return is not erroneous, the caller is responsible to decrement the
1801 * refcount by tty_driver_kref_put.
1802 *
1803 * Locking: tty_mutex protects get_tty_driver
1804 */
1805 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1806 int *index)
1807 {
1808 struct tty_driver *driver;
1809
1810 switch (device) {
1811 #ifdef CONFIG_VT
1812 case MKDEV(TTY_MAJOR, 0): {
1813 extern struct tty_driver *console_driver;
1814 driver = tty_driver_kref_get(console_driver);
1815 *index = fg_console;
1816 break;
1817 }
1818 #endif
1819 case MKDEV(TTYAUX_MAJOR, 1): {
1820 struct tty_driver *console_driver = console_device(index);
1821 if (console_driver) {
1822 driver = tty_driver_kref_get(console_driver);
1823 if (driver && filp) {
1824 /* Don't let /dev/console block */
1825 filp->f_flags |= O_NONBLOCK;
1826 break;
1827 }
1828 }
1829 return ERR_PTR(-ENODEV);
1830 }
1831 default:
1832 driver = get_tty_driver(device, index);
1833 if (!driver)
1834 return ERR_PTR(-ENODEV);
1835 break;
1836 }
1837 return driver;
1838 }
1839
1840 /**
1841 * tty_kopen - open a tty device for kernel
1842 * @device: dev_t of device to open
1843 *
1844 * Opens tty exclusively for kernel. Performs the driver lookup,
1845 * makes sure it's not already opened and performs the first-time
1846 * tty initialization.
1847 *
1848 * Returns the locked initialized &tty_struct
1849 *
1850 * Claims the global tty_mutex to serialize:
1851 * - concurrent first-time tty initialization
1852 * - concurrent tty driver removal w/ lookup
1853 * - concurrent tty removal from driver table
1854 */
1855 struct tty_struct *tty_kopen(dev_t device)
1856 {
1857 struct tty_struct *tty;
1858 struct tty_driver *driver = NULL;
1859 int index = -1;
1860
1861 mutex_lock(&tty_mutex);
1862 driver = tty_lookup_driver(device, NULL, &index);
1863 if (IS_ERR(driver)) {
1864 mutex_unlock(&tty_mutex);
1865 return ERR_CAST(driver);
1866 }
1867
1868 /* check whether we're reopening an existing tty */
1869 tty = tty_driver_lookup_tty(driver, NULL, index);
1870 if (IS_ERR(tty))
1871 goto out;
1872
1873 if (tty) {
1874 /* drop kref from tty_driver_lookup_tty() */
1875 tty_kref_put(tty);
1876 tty = ERR_PTR(-EBUSY);
1877 } else { /* tty_init_dev returns tty with the tty_lock held */
1878 tty = tty_init_dev(driver, index);
1879 if (IS_ERR(tty))
1880 goto out;
1881 tty_port_set_kopened(tty->port, 1);
1882 }
1883 out:
1884 mutex_unlock(&tty_mutex);
1885 tty_driver_kref_put(driver);
1886 return tty;
1887 }
1888 EXPORT_SYMBOL_GPL(tty_kopen);
1889
1890 /**
1891 * tty_open_by_driver - open a tty device
1892 * @device: dev_t of device to open
1893 * @inode: inode of device file
1894 * @filp: file pointer to tty
1895 *
1896 * Performs the driver lookup, checks for a reopen, or otherwise
1897 * performs the first-time tty initialization.
1898 *
1899 * Returns the locked initialized or re-opened &tty_struct
1900 *
1901 * Claims the global tty_mutex to serialize:
1902 * - concurrent first-time tty initialization
1903 * - concurrent tty driver removal w/ lookup
1904 * - concurrent tty removal from driver table
1905 */
1906 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1907 struct file *filp)
1908 {
1909 struct tty_struct *tty;
1910 struct tty_driver *driver = NULL;
1911 int index = -1;
1912 int retval;
1913
1914 mutex_lock(&tty_mutex);
1915 driver = tty_lookup_driver(device, filp, &index);
1916 if (IS_ERR(driver)) {
1917 mutex_unlock(&tty_mutex);
1918 return ERR_CAST(driver);
1919 }
1920
1921 /* check whether we're reopening an existing tty */
1922 tty = tty_driver_lookup_tty(driver, filp, index);
1923 if (IS_ERR(tty)) {
1924 mutex_unlock(&tty_mutex);
1925 goto out;
1926 }
1927
1928 if (tty) {
1929 if (tty_port_kopened(tty->port)) {
1930 tty_kref_put(tty);
1931 mutex_unlock(&tty_mutex);
1932 tty = ERR_PTR(-EBUSY);
1933 goto out;
1934 }
1935 mutex_unlock(&tty_mutex);
1936 retval = tty_lock_interruptible(tty);
1937 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1938 if (retval) {
1939 if (retval == -EINTR)
1940 retval = -ERESTARTSYS;
1941 tty = ERR_PTR(retval);
1942 goto out;
1943 }
1944 retval = tty_reopen(tty);
1945 if (retval < 0) {
1946 tty_unlock(tty);
1947 tty = ERR_PTR(retval);
1948 }
1949 } else { /* Returns with the tty_lock held for now */
1950 tty = tty_init_dev(driver, index);
1951 mutex_unlock(&tty_mutex);
1952 }
1953 out:
1954 tty_driver_kref_put(driver);
1955 return tty;
1956 }
1957
1958 /**
1959 * tty_open - open a tty device
1960 * @inode: inode of device file
1961 * @filp: file pointer to tty
1962 *
1963 * tty_open and tty_release keep up the tty count that contains the
1964 * number of opens done on a tty. We cannot use the inode-count, as
1965 * different inodes might point to the same tty.
1966 *
1967 * Open-counting is needed for pty masters, as well as for keeping
1968 * track of serial lines: DTR is dropped when the last close happens.
1969 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1970 *
1971 * The termios state of a pty is reset on first open so that
1972 * settings don't persist across reuse.
1973 *
1974 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1975 * tty->count should protect the rest.
1976 * ->siglock protects ->signal/->sighand
1977 *
1978 * Note: the tty_unlock/lock cases without a ref are only safe due to
1979 * tty_mutex
1980 */
1981
1982 static int tty_open(struct inode *inode, struct file *filp)
1983 {
1984 struct tty_struct *tty;
1985 int noctty, retval;
1986 dev_t device = inode->i_rdev;
1987 unsigned saved_flags = filp->f_flags;
1988
1989 nonseekable_open(inode, filp);
1990
1991 retry_open:
1992 retval = tty_alloc_file(filp);
1993 if (retval)
1994 return -ENOMEM;
1995
1996 tty = tty_open_current_tty(device, filp);
1997 if (!tty)
1998 tty = tty_open_by_driver(device, inode, filp);
1999
2000 if (IS_ERR(tty)) {
2001 tty_free_file(filp);
2002 retval = PTR_ERR(tty);
2003 if (retval != -EAGAIN || signal_pending(current))
2004 return retval;
2005 schedule();
2006 goto retry_open;
2007 }
2008
2009 tty_add_file(tty, filp);
2010
2011 check_tty_count(tty, __func__);
2012 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2013
2014 if (tty->ops->open)
2015 retval = tty->ops->open(tty, filp);
2016 else
2017 retval = -ENODEV;
2018 filp->f_flags = saved_flags;
2019
2020 if (retval) {
2021 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2022
2023 tty_unlock(tty); /* need to call tty_release without BTM */
2024 tty_release(inode, filp);
2025 if (retval != -ERESTARTSYS)
2026 return retval;
2027
2028 if (signal_pending(current))
2029 return retval;
2030
2031 schedule();
2032 /*
2033 * Need to reset f_op in case a hangup happened.
2034 */
2035 if (tty_hung_up_p(filp))
2036 filp->f_op = &tty_fops;
2037 goto retry_open;
2038 }
2039 clear_bit(TTY_HUPPED, &tty->flags);
2040
2041 noctty = (filp->f_flags & O_NOCTTY) ||
2042 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2043 device == MKDEV(TTYAUX_MAJOR, 1) ||
2044 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2045 tty->driver->subtype == PTY_TYPE_MASTER);
2046 if (!noctty)
2047 tty_open_proc_set_tty(filp, tty);
2048 tty_unlock(tty);
2049 return 0;
2050 }
2051
2052
2053
2054 /**
2055 * tty_poll - check tty status
2056 * @filp: file being polled
2057 * @wait: poll wait structures to update
2058 *
2059 * Call the line discipline polling method to obtain the poll
2060 * status of the device.
2061 *
2062 * Locking: locks called line discipline but ldisc poll method
2063 * may be re-entered freely by other callers.
2064 */
2065
2066 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2067 {
2068 struct tty_struct *tty = file_tty(filp);
2069 struct tty_ldisc *ld;
2070 __poll_t ret = 0;
2071
2072 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2073 return 0;
2074
2075 ld = tty_ldisc_ref_wait(tty);
2076 if (!ld)
2077 return hung_up_tty_poll(filp, wait);
2078 if (ld->ops->poll)
2079 ret = ld->ops->poll(tty, filp, wait);
2080 tty_ldisc_deref(ld);
2081 return ret;
2082 }
2083
2084 static int __tty_fasync(int fd, struct file *filp, int on)
2085 {
2086 struct tty_struct *tty = file_tty(filp);
2087 unsigned long flags;
2088 int retval = 0;
2089
2090 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2091 goto out;
2092
2093 retval = fasync_helper(fd, filp, on, &tty->fasync);
2094 if (retval <= 0)
2095 goto out;
2096
2097 if (on) {
2098 enum pid_type type;
2099 struct pid *pid;
2100
2101 spin_lock_irqsave(&tty->ctrl_lock, flags);
2102 if (tty->pgrp) {
2103 pid = tty->pgrp;
2104 type = PIDTYPE_PGID;
2105 } else {
2106 pid = task_pid(current);
2107 type = PIDTYPE_PID;
2108 }
2109 get_pid(pid);
2110 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2111 __f_setown(filp, pid, type, 0);
2112 put_pid(pid);
2113 retval = 0;
2114 }
2115 out:
2116 return retval;
2117 }
2118
2119 static int tty_fasync(int fd, struct file *filp, int on)
2120 {
2121 struct tty_struct *tty = file_tty(filp);
2122 int retval = -ENOTTY;
2123
2124 tty_lock(tty);
2125 if (!tty_hung_up_p(filp))
2126 retval = __tty_fasync(fd, filp, on);
2127 tty_unlock(tty);
2128
2129 return retval;
2130 }
2131
2132 /**
2133 * tiocsti - fake input character
2134 * @tty: tty to fake input into
2135 * @p: pointer to character
2136 *
2137 * Fake input to a tty device. Does the necessary locking and
2138 * input management.
2139 *
2140 * FIXME: does not honour flow control ??
2141 *
2142 * Locking:
2143 * Called functions take tty_ldiscs_lock
2144 * current->signal->tty check is safe without locks
2145 *
2146 * FIXME: may race normal receive processing
2147 */
2148
2149 static int tiocsti(struct tty_struct *tty, char __user *p)
2150 {
2151 char ch, mbz = 0;
2152 struct tty_ldisc *ld;
2153
2154 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2155 return -EPERM;
2156 if (get_user(ch, p))
2157 return -EFAULT;
2158 tty_audit_tiocsti(tty, ch);
2159 ld = tty_ldisc_ref_wait(tty);
2160 if (!ld)
2161 return -EIO;
2162 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2163 tty_ldisc_deref(ld);
2164 return 0;
2165 }
2166
2167 /**
2168 * tiocgwinsz - implement window query ioctl
2169 * @tty; tty
2170 * @arg: user buffer for result
2171 *
2172 * Copies the kernel idea of the window size into the user buffer.
2173 *
2174 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2175 * is consistent.
2176 */
2177
2178 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2179 {
2180 int err;
2181
2182 mutex_lock(&tty->winsize_mutex);
2183 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2184 mutex_unlock(&tty->winsize_mutex);
2185
2186 return err ? -EFAULT: 0;
2187 }
2188
2189 /**
2190 * tty_do_resize - resize event
2191 * @tty: tty being resized
2192 * @rows: rows (character)
2193 * @cols: cols (character)
2194 *
2195 * Update the termios variables and send the necessary signals to
2196 * peform a terminal resize correctly
2197 */
2198
2199 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2200 {
2201 struct pid *pgrp;
2202
2203 /* Lock the tty */
2204 mutex_lock(&tty->winsize_mutex);
2205 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2206 goto done;
2207
2208 /* Signal the foreground process group */
2209 pgrp = tty_get_pgrp(tty);
2210 if (pgrp)
2211 kill_pgrp(pgrp, SIGWINCH, 1);
2212 put_pid(pgrp);
2213
2214 tty->winsize = *ws;
2215 done:
2216 mutex_unlock(&tty->winsize_mutex);
2217 return 0;
2218 }
2219 EXPORT_SYMBOL(tty_do_resize);
2220
2221 /**
2222 * tiocswinsz - implement window size set ioctl
2223 * @tty; tty side of tty
2224 * @arg: user buffer for result
2225 *
2226 * Copies the user idea of the window size to the kernel. Traditionally
2227 * this is just advisory information but for the Linux console it
2228 * actually has driver level meaning and triggers a VC resize.
2229 *
2230 * Locking:
2231 * Driver dependent. The default do_resize method takes the
2232 * tty termios mutex and ctrl_lock. The console takes its own lock
2233 * then calls into the default method.
2234 */
2235
2236 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2237 {
2238 struct winsize tmp_ws;
2239 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2240 return -EFAULT;
2241
2242 if (tty->ops->resize)
2243 return tty->ops->resize(tty, &tmp_ws);
2244 else
2245 return tty_do_resize(tty, &tmp_ws);
2246 }
2247
2248 /**
2249 * tioccons - allow admin to move logical console
2250 * @file: the file to become console
2251 *
2252 * Allow the administrator to move the redirected console device
2253 *
2254 * Locking: uses redirect_lock to guard the redirect information
2255 */
2256
2257 static int tioccons(struct file *file)
2258 {
2259 if (!capable(CAP_SYS_ADMIN))
2260 return -EPERM;
2261 if (file->f_op->write == redirected_tty_write) {
2262 struct file *f;
2263 spin_lock(&redirect_lock);
2264 f = redirect;
2265 redirect = NULL;
2266 spin_unlock(&redirect_lock);
2267 if (f)
2268 fput(f);
2269 return 0;
2270 }
2271 spin_lock(&redirect_lock);
2272 if (redirect) {
2273 spin_unlock(&redirect_lock);
2274 return -EBUSY;
2275 }
2276 redirect = get_file(file);
2277 spin_unlock(&redirect_lock);
2278 return 0;
2279 }
2280
2281 /**
2282 * fionbio - non blocking ioctl
2283 * @file: file to set blocking value
2284 * @p: user parameter
2285 *
2286 * Historical tty interfaces had a blocking control ioctl before
2287 * the generic functionality existed. This piece of history is preserved
2288 * in the expected tty API of posix OS's.
2289 *
2290 * Locking: none, the open file handle ensures it won't go away.
2291 */
2292
2293 static int fionbio(struct file *file, int __user *p)
2294 {
2295 int nonblock;
2296
2297 if (get_user(nonblock, p))
2298 return -EFAULT;
2299
2300 spin_lock(&file->f_lock);
2301 if (nonblock)
2302 file->f_flags |= O_NONBLOCK;
2303 else
2304 file->f_flags &= ~O_NONBLOCK;
2305 spin_unlock(&file->f_lock);
2306 return 0;
2307 }
2308
2309 /**
2310 * tiocsetd - set line discipline
2311 * @tty: tty device
2312 * @p: pointer to user data
2313 *
2314 * Set the line discipline according to user request.
2315 *
2316 * Locking: see tty_set_ldisc, this function is just a helper
2317 */
2318
2319 static int tiocsetd(struct tty_struct *tty, int __user *p)
2320 {
2321 int disc;
2322 int ret;
2323
2324 if (get_user(disc, p))
2325 return -EFAULT;
2326
2327 ret = tty_set_ldisc(tty, disc);
2328
2329 return ret;
2330 }
2331
2332 /**
2333 * tiocgetd - get line discipline
2334 * @tty: tty device
2335 * @p: pointer to user data
2336 *
2337 * Retrieves the line discipline id directly from the ldisc.
2338 *
2339 * Locking: waits for ldisc reference (in case the line discipline
2340 * is changing or the tty is being hungup)
2341 */
2342
2343 static int tiocgetd(struct tty_struct *tty, int __user *p)
2344 {
2345 struct tty_ldisc *ld;
2346 int ret;
2347
2348 ld = tty_ldisc_ref_wait(tty);
2349 if (!ld)
2350 return -EIO;
2351 ret = put_user(ld->ops->num, p);
2352 tty_ldisc_deref(ld);
2353 return ret;
2354 }
2355
2356 /**
2357 * send_break - performed time break
2358 * @tty: device to break on
2359 * @duration: timeout in mS
2360 *
2361 * Perform a timed break on hardware that lacks its own driver level
2362 * timed break functionality.
2363 *
2364 * Locking:
2365 * atomic_write_lock serializes
2366 *
2367 */
2368
2369 static int send_break(struct tty_struct *tty, unsigned int duration)
2370 {
2371 int retval;
2372
2373 if (tty->ops->break_ctl == NULL)
2374 return 0;
2375
2376 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2377 retval = tty->ops->break_ctl(tty, duration);
2378 else {
2379 /* Do the work ourselves */
2380 if (tty_write_lock(tty, 0) < 0)
2381 return -EINTR;
2382 retval = tty->ops->break_ctl(tty, -1);
2383 if (retval)
2384 goto out;
2385 if (!signal_pending(current))
2386 msleep_interruptible(duration);
2387 retval = tty->ops->break_ctl(tty, 0);
2388 out:
2389 tty_write_unlock(tty);
2390 if (signal_pending(current))
2391 retval = -EINTR;
2392 }
2393 return retval;
2394 }
2395
2396 /**
2397 * tty_tiocmget - get modem status
2398 * @tty: tty device
2399 * @file: user file pointer
2400 * @p: pointer to result
2401 *
2402 * Obtain the modem status bits from the tty driver if the feature
2403 * is supported. Return -EINVAL if it is not available.
2404 *
2405 * Locking: none (up to the driver)
2406 */
2407
2408 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2409 {
2410 int retval = -EINVAL;
2411
2412 if (tty->ops->tiocmget) {
2413 retval = tty->ops->tiocmget(tty);
2414
2415 if (retval >= 0)
2416 retval = put_user(retval, p);
2417 }
2418 return retval;
2419 }
2420
2421 /**
2422 * tty_tiocmset - set modem status
2423 * @tty: tty device
2424 * @cmd: command - clear bits, set bits or set all
2425 * @p: pointer to desired bits
2426 *
2427 * Set the modem status bits from the tty driver if the feature
2428 * is supported. Return -EINVAL if it is not available.
2429 *
2430 * Locking: none (up to the driver)
2431 */
2432
2433 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2434 unsigned __user *p)
2435 {
2436 int retval;
2437 unsigned int set, clear, val;
2438
2439 if (tty->ops->tiocmset == NULL)
2440 return -EINVAL;
2441
2442 retval = get_user(val, p);
2443 if (retval)
2444 return retval;
2445 set = clear = 0;
2446 switch (cmd) {
2447 case TIOCMBIS:
2448 set = val;
2449 break;
2450 case TIOCMBIC:
2451 clear = val;
2452 break;
2453 case TIOCMSET:
2454 set = val;
2455 clear = ~val;
2456 break;
2457 }
2458 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2459 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2460 return tty->ops->tiocmset(tty, set, clear);
2461 }
2462
2463 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2464 {
2465 int retval = -EINVAL;
2466 struct serial_icounter_struct icount;
2467 memset(&icount, 0, sizeof(icount));
2468 if (tty->ops->get_icount)
2469 retval = tty->ops->get_icount(tty, &icount);
2470 if (retval != 0)
2471 return retval;
2472 if (copy_to_user(arg, &icount, sizeof(icount)))
2473 return -EFAULT;
2474 return 0;
2475 }
2476
2477 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2478 {
2479 static DEFINE_RATELIMIT_STATE(depr_flags,
2480 DEFAULT_RATELIMIT_INTERVAL,
2481 DEFAULT_RATELIMIT_BURST);
2482 char comm[TASK_COMM_LEN];
2483 int flags;
2484
2485 if (get_user(flags, &ss->flags))
2486 return;
2487
2488 flags &= ASYNC_DEPRECATED;
2489
2490 if (flags && __ratelimit(&depr_flags))
2491 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2492 __func__, get_task_comm(comm, current), flags);
2493 }
2494
2495 /*
2496 * if pty, return the slave side (real_tty)
2497 * otherwise, return self
2498 */
2499 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2500 {
2501 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2502 tty->driver->subtype == PTY_TYPE_MASTER)
2503 tty = tty->link;
2504 return tty;
2505 }
2506
2507 /*
2508 * Split this up, as gcc can choke on it otherwise..
2509 */
2510 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2511 {
2512 struct tty_struct *tty = file_tty(file);
2513 struct tty_struct *real_tty;
2514 void __user *p = (void __user *)arg;
2515 int retval;
2516 struct tty_ldisc *ld;
2517
2518 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2519 return -EINVAL;
2520
2521 real_tty = tty_pair_get_tty(tty);
2522
2523 /*
2524 * Factor out some common prep work
2525 */
2526 switch (cmd) {
2527 case TIOCSETD:
2528 case TIOCSBRK:
2529 case TIOCCBRK:
2530 case TCSBRK:
2531 case TCSBRKP:
2532 retval = tty_check_change(tty);
2533 if (retval)
2534 return retval;
2535 if (cmd != TIOCCBRK) {
2536 tty_wait_until_sent(tty, 0);
2537 if (signal_pending(current))
2538 return -EINTR;
2539 }
2540 break;
2541 }
2542
2543 /*
2544 * Now do the stuff.
2545 */
2546 switch (cmd) {
2547 case TIOCSTI:
2548 return tiocsti(tty, p);
2549 case TIOCGWINSZ:
2550 return tiocgwinsz(real_tty, p);
2551 case TIOCSWINSZ:
2552 return tiocswinsz(real_tty, p);
2553 case TIOCCONS:
2554 return real_tty != tty ? -EINVAL : tioccons(file);
2555 case FIONBIO:
2556 return fionbio(file, p);
2557 case TIOCEXCL:
2558 set_bit(TTY_EXCLUSIVE, &tty->flags);
2559 return 0;
2560 case TIOCNXCL:
2561 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2562 return 0;
2563 case TIOCGEXCL:
2564 {
2565 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2566 return put_user(excl, (int __user *)p);
2567 }
2568 case TIOCGETD:
2569 return tiocgetd(tty, p);
2570 case TIOCSETD:
2571 return tiocsetd(tty, p);
2572 case TIOCVHANGUP:
2573 if (!capable(CAP_SYS_ADMIN))
2574 return -EPERM;
2575 tty_vhangup(tty);
2576 return 0;
2577 case TIOCGDEV:
2578 {
2579 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2580 return put_user(ret, (unsigned int __user *)p);
2581 }
2582 /*
2583 * Break handling
2584 */
2585 case TIOCSBRK: /* Turn break on, unconditionally */
2586 if (tty->ops->break_ctl)
2587 return tty->ops->break_ctl(tty, -1);
2588 return 0;
2589 case TIOCCBRK: /* Turn break off, unconditionally */
2590 if (tty->ops->break_ctl)
2591 return tty->ops->break_ctl(tty, 0);
2592 return 0;
2593 case TCSBRK: /* SVID version: non-zero arg --> no break */
2594 /* non-zero arg means wait for all output data
2595 * to be sent (performed above) but don't send break.
2596 * This is used by the tcdrain() termios function.
2597 */
2598 if (!arg)
2599 return send_break(tty, 250);
2600 return 0;
2601 case TCSBRKP: /* support for POSIX tcsendbreak() */
2602 return send_break(tty, arg ? arg*100 : 250);
2603
2604 case TIOCMGET:
2605 return tty_tiocmget(tty, p);
2606 case TIOCMSET:
2607 case TIOCMBIC:
2608 case TIOCMBIS:
2609 return tty_tiocmset(tty, cmd, p);
2610 case TIOCGICOUNT:
2611 retval = tty_tiocgicount(tty, p);
2612 /* For the moment allow fall through to the old method */
2613 if (retval != -EINVAL)
2614 return retval;
2615 break;
2616 case TCFLSH:
2617 switch (arg) {
2618 case TCIFLUSH:
2619 case TCIOFLUSH:
2620 /* flush tty buffer and allow ldisc to process ioctl */
2621 tty_buffer_flush(tty, NULL);
2622 break;
2623 }
2624 break;
2625 case TIOCSSERIAL:
2626 tty_warn_deprecated_flags(p);
2627 break;
2628 case TIOCGPTPEER:
2629 /* Special because the struct file is needed */
2630 return ptm_open_peer(file, tty, (int)arg);
2631 default:
2632 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2633 if (retval != -ENOIOCTLCMD)
2634 return retval;
2635 }
2636 if (tty->ops->ioctl) {
2637 retval = tty->ops->ioctl(tty, cmd, arg);
2638 if (retval != -ENOIOCTLCMD)
2639 return retval;
2640 }
2641 ld = tty_ldisc_ref_wait(tty);
2642 if (!ld)
2643 return hung_up_tty_ioctl(file, cmd, arg);
2644 retval = -EINVAL;
2645 if (ld->ops->ioctl) {
2646 retval = ld->ops->ioctl(tty, file, cmd, arg);
2647 if (retval == -ENOIOCTLCMD)
2648 retval = -ENOTTY;
2649 }
2650 tty_ldisc_deref(ld);
2651 return retval;
2652 }
2653
2654 #ifdef CONFIG_COMPAT
2655 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2656 unsigned long arg)
2657 {
2658 struct tty_struct *tty = file_tty(file);
2659 struct tty_ldisc *ld;
2660 int retval = -ENOIOCTLCMD;
2661
2662 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2663 return -EINVAL;
2664
2665 if (tty->ops->compat_ioctl) {
2666 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2667 if (retval != -ENOIOCTLCMD)
2668 return retval;
2669 }
2670
2671 ld = tty_ldisc_ref_wait(tty);
2672 if (!ld)
2673 return hung_up_tty_compat_ioctl(file, cmd, arg);
2674 if (ld->ops->compat_ioctl)
2675 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2676 else
2677 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2678 tty_ldisc_deref(ld);
2679
2680 return retval;
2681 }
2682 #endif
2683
2684 static int this_tty(const void *t, struct file *file, unsigned fd)
2685 {
2686 if (likely(file->f_op->read != tty_read))
2687 return 0;
2688 return file_tty(file) != t ? 0 : fd + 1;
2689 }
2690
2691 /*
2692 * This implements the "Secure Attention Key" --- the idea is to
2693 * prevent trojan horses by killing all processes associated with this
2694 * tty when the user hits the "Secure Attention Key". Required for
2695 * super-paranoid applications --- see the Orange Book for more details.
2696 *
2697 * This code could be nicer; ideally it should send a HUP, wait a few
2698 * seconds, then send a INT, and then a KILL signal. But you then
2699 * have to coordinate with the init process, since all processes associated
2700 * with the current tty must be dead before the new getty is allowed
2701 * to spawn.
2702 *
2703 * Now, if it would be correct ;-/ The current code has a nasty hole -
2704 * it doesn't catch files in flight. We may send the descriptor to ourselves
2705 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2706 *
2707 * Nasty bug: do_SAK is being called in interrupt context. This can
2708 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2709 */
2710 void __do_SAK(struct tty_struct *tty)
2711 {
2712 #ifdef TTY_SOFT_SAK
2713 tty_hangup(tty);
2714 #else
2715 struct task_struct *g, *p;
2716 struct pid *session;
2717 int i;
2718
2719 if (!tty)
2720 return;
2721 session = tty->session;
2722
2723 tty_ldisc_flush(tty);
2724
2725 tty_driver_flush_buffer(tty);
2726
2727 read_lock(&tasklist_lock);
2728 /* Kill the entire session */
2729 do_each_pid_task(session, PIDTYPE_SID, p) {
2730 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2731 task_pid_nr(p), p->comm);
2732 send_sig(SIGKILL, p, 1);
2733 } while_each_pid_task(session, PIDTYPE_SID, p);
2734
2735 /* Now kill any processes that happen to have the tty open */
2736 do_each_thread(g, p) {
2737 if (p->signal->tty == tty) {
2738 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2739 task_pid_nr(p), p->comm);
2740 send_sig(SIGKILL, p, 1);
2741 continue;
2742 }
2743 task_lock(p);
2744 i = iterate_fd(p->files, 0, this_tty, tty);
2745 if (i != 0) {
2746 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2747 task_pid_nr(p), p->comm, i - 1);
2748 force_sig(SIGKILL, p);
2749 }
2750 task_unlock(p);
2751 } while_each_thread(g, p);
2752 read_unlock(&tasklist_lock);
2753 #endif
2754 }
2755
2756 static void do_SAK_work(struct work_struct *work)
2757 {
2758 struct tty_struct *tty =
2759 container_of(work, struct tty_struct, SAK_work);
2760 __do_SAK(tty);
2761 }
2762
2763 /*
2764 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2765 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2766 * the values which we write to it will be identical to the values which it
2767 * already has. --akpm
2768 */
2769 void do_SAK(struct tty_struct *tty)
2770 {
2771 if (!tty)
2772 return;
2773 schedule_work(&tty->SAK_work);
2774 }
2775
2776 EXPORT_SYMBOL(do_SAK);
2777
2778 static int dev_match_devt(struct device *dev, const void *data)
2779 {
2780 const dev_t *devt = data;
2781 return dev->devt == *devt;
2782 }
2783
2784 /* Must put_device() after it's unused! */
2785 static struct device *tty_get_device(struct tty_struct *tty)
2786 {
2787 dev_t devt = tty_devnum(tty);
2788 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2789 }
2790
2791
2792 /**
2793 * alloc_tty_struct
2794 *
2795 * This subroutine allocates and initializes a tty structure.
2796 *
2797 * Locking: none - tty in question is not exposed at this point
2798 */
2799
2800 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2801 {
2802 struct tty_struct *tty;
2803
2804 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2805 if (!tty)
2806 return NULL;
2807
2808 kref_init(&tty->kref);
2809 tty->magic = TTY_MAGIC;
2810 tty_ldisc_init(tty);
2811 tty->session = NULL;
2812 tty->pgrp = NULL;
2813 mutex_init(&tty->legacy_mutex);
2814 mutex_init(&tty->throttle_mutex);
2815 init_rwsem(&tty->termios_rwsem);
2816 mutex_init(&tty->winsize_mutex);
2817 init_ldsem(&tty->ldisc_sem);
2818 init_waitqueue_head(&tty->write_wait);
2819 init_waitqueue_head(&tty->read_wait);
2820 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2821 mutex_init(&tty->atomic_write_lock);
2822 spin_lock_init(&tty->ctrl_lock);
2823 spin_lock_init(&tty->flow_lock);
2824 spin_lock_init(&tty->files_lock);
2825 INIT_LIST_HEAD(&tty->tty_files);
2826 INIT_WORK(&tty->SAK_work, do_SAK_work);
2827
2828 tty->driver = driver;
2829 tty->ops = driver->ops;
2830 tty->index = idx;
2831 tty_line_name(driver, idx, tty->name);
2832 tty->dev = tty_get_device(tty);
2833
2834 return tty;
2835 }
2836
2837 /**
2838 * tty_put_char - write one character to a tty
2839 * @tty: tty
2840 * @ch: character
2841 *
2842 * Write one byte to the tty using the provided put_char method
2843 * if present. Returns the number of characters successfully output.
2844 *
2845 * Note: the specific put_char operation in the driver layer may go
2846 * away soon. Don't call it directly, use this method
2847 */
2848
2849 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2850 {
2851 if (tty->ops->put_char)
2852 return tty->ops->put_char(tty, ch);
2853 return tty->ops->write(tty, &ch, 1);
2854 }
2855 EXPORT_SYMBOL_GPL(tty_put_char);
2856
2857 struct class *tty_class;
2858
2859 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2860 unsigned int index, unsigned int count)
2861 {
2862 int err;
2863
2864 /* init here, since reused cdevs cause crashes */
2865 driver->cdevs[index] = cdev_alloc();
2866 if (!driver->cdevs[index])
2867 return -ENOMEM;
2868 driver->cdevs[index]->ops = &tty_fops;
2869 driver->cdevs[index]->owner = driver->owner;
2870 err = cdev_add(driver->cdevs[index], dev, count);
2871 if (err)
2872 kobject_put(&driver->cdevs[index]->kobj);
2873 return err;
2874 }
2875
2876 /**
2877 * tty_register_device - register a tty device
2878 * @driver: the tty driver that describes the tty device
2879 * @index: the index in the tty driver for this tty device
2880 * @device: a struct device that is associated with this tty device.
2881 * This field is optional, if there is no known struct device
2882 * for this tty device it can be set to NULL safely.
2883 *
2884 * Returns a pointer to the struct device for this tty device
2885 * (or ERR_PTR(-EFOO) on error).
2886 *
2887 * This call is required to be made to register an individual tty device
2888 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2889 * that bit is not set, this function should not be called by a tty
2890 * driver.
2891 *
2892 * Locking: ??
2893 */
2894
2895 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2896 struct device *device)
2897 {
2898 return tty_register_device_attr(driver, index, device, NULL, NULL);
2899 }
2900 EXPORT_SYMBOL(tty_register_device);
2901
2902 static void tty_device_create_release(struct device *dev)
2903 {
2904 dev_dbg(dev, "releasing...\n");
2905 kfree(dev);
2906 }
2907
2908 /**
2909 * tty_register_device_attr - register a tty device
2910 * @driver: the tty driver that describes the tty device
2911 * @index: the index in the tty driver for this tty device
2912 * @device: a struct device that is associated with this tty device.
2913 * This field is optional, if there is no known struct device
2914 * for this tty device it can be set to NULL safely.
2915 * @drvdata: Driver data to be set to device.
2916 * @attr_grp: Attribute group to be set on device.
2917 *
2918 * Returns a pointer to the struct device for this tty device
2919 * (or ERR_PTR(-EFOO) on error).
2920 *
2921 * This call is required to be made to register an individual tty device
2922 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2923 * that bit is not set, this function should not be called by a tty
2924 * driver.
2925 *
2926 * Locking: ??
2927 */
2928 struct device *tty_register_device_attr(struct tty_driver *driver,
2929 unsigned index, struct device *device,
2930 void *drvdata,
2931 const struct attribute_group **attr_grp)
2932 {
2933 char name[64];
2934 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2935 struct ktermios *tp;
2936 struct device *dev;
2937 int retval;
2938
2939 if (index >= driver->num) {
2940 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2941 driver->name, index);
2942 return ERR_PTR(-EINVAL);
2943 }
2944
2945 if (driver->type == TTY_DRIVER_TYPE_PTY)
2946 pty_line_name(driver, index, name);
2947 else
2948 tty_line_name(driver, index, name);
2949
2950 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2951 if (!dev)
2952 return ERR_PTR(-ENOMEM);
2953
2954 dev->devt = devt;
2955 dev->class = tty_class;
2956 dev->parent = device;
2957 dev->release = tty_device_create_release;
2958 dev_set_name(dev, "%s", name);
2959 dev->groups = attr_grp;
2960 dev_set_drvdata(dev, drvdata);
2961
2962 dev_set_uevent_suppress(dev, 1);
2963
2964 retval = device_register(dev);
2965 if (retval)
2966 goto err_put;
2967
2968 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2969 /*
2970 * Free any saved termios data so that the termios state is
2971 * reset when reusing a minor number.
2972 */
2973 tp = driver->termios[index];
2974 if (tp) {
2975 driver->termios[index] = NULL;
2976 kfree(tp);
2977 }
2978
2979 retval = tty_cdev_add(driver, devt, index, 1);
2980 if (retval)
2981 goto err_del;
2982 }
2983
2984 dev_set_uevent_suppress(dev, 0);
2985 kobject_uevent(&dev->kobj, KOBJ_ADD);
2986
2987 return dev;
2988
2989 err_del:
2990 device_del(dev);
2991 err_put:
2992 put_device(dev);
2993
2994 return ERR_PTR(retval);
2995 }
2996 EXPORT_SYMBOL_GPL(tty_register_device_attr);
2997
2998 /**
2999 * tty_unregister_device - unregister a tty device
3000 * @driver: the tty driver that describes the tty device
3001 * @index: the index in the tty driver for this tty device
3002 *
3003 * If a tty device is registered with a call to tty_register_device() then
3004 * this function must be called when the tty device is gone.
3005 *
3006 * Locking: ??
3007 */
3008
3009 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3010 {
3011 device_destroy(tty_class,
3012 MKDEV(driver->major, driver->minor_start) + index);
3013 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3014 cdev_del(driver->cdevs[index]);
3015 driver->cdevs[index] = NULL;
3016 }
3017 }
3018 EXPORT_SYMBOL(tty_unregister_device);
3019
3020 /**
3021 * __tty_alloc_driver -- allocate tty driver
3022 * @lines: count of lines this driver can handle at most
3023 * @owner: module which is responsible for this driver
3024 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3025 *
3026 * This should not be called directly, some of the provided macros should be
3027 * used instead. Use IS_ERR and friends on @retval.
3028 */
3029 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3030 unsigned long flags)
3031 {
3032 struct tty_driver *driver;
3033 unsigned int cdevs = 1;
3034 int err;
3035
3036 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3037 return ERR_PTR(-EINVAL);
3038
3039 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3040 if (!driver)
3041 return ERR_PTR(-ENOMEM);
3042
3043 kref_init(&driver->kref);
3044 driver->magic = TTY_DRIVER_MAGIC;
3045 driver->num = lines;
3046 driver->owner = owner;
3047 driver->flags = flags;
3048
3049 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3050 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3051 GFP_KERNEL);
3052 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3053 GFP_KERNEL);
3054 if (!driver->ttys || !driver->termios) {
3055 err = -ENOMEM;
3056 goto err_free_all;
3057 }
3058 }
3059
3060 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3061 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3062 GFP_KERNEL);
3063 if (!driver->ports) {
3064 err = -ENOMEM;
3065 goto err_free_all;
3066 }
3067 cdevs = lines;
3068 }
3069
3070 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3071 if (!driver->cdevs) {
3072 err = -ENOMEM;
3073 goto err_free_all;
3074 }
3075
3076 return driver;
3077 err_free_all:
3078 kfree(driver->ports);
3079 kfree(driver->ttys);
3080 kfree(driver->termios);
3081 kfree(driver->cdevs);
3082 kfree(driver);
3083 return ERR_PTR(err);
3084 }
3085 EXPORT_SYMBOL(__tty_alloc_driver);
3086
3087 static void destruct_tty_driver(struct kref *kref)
3088 {
3089 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3090 int i;
3091 struct ktermios *tp;
3092
3093 if (driver->flags & TTY_DRIVER_INSTALLED) {
3094 for (i = 0; i < driver->num; i++) {
3095 tp = driver->termios[i];
3096 if (tp) {
3097 driver->termios[i] = NULL;
3098 kfree(tp);
3099 }
3100 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3101 tty_unregister_device(driver, i);
3102 }
3103 proc_tty_unregister_driver(driver);
3104 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3105 cdev_del(driver->cdevs[0]);
3106 }
3107 kfree(driver->cdevs);
3108 kfree(driver->ports);
3109 kfree(driver->termios);
3110 kfree(driver->ttys);
3111 kfree(driver);
3112 }
3113
3114 void tty_driver_kref_put(struct tty_driver *driver)
3115 {
3116 kref_put(&driver->kref, destruct_tty_driver);
3117 }
3118 EXPORT_SYMBOL(tty_driver_kref_put);
3119
3120 void tty_set_operations(struct tty_driver *driver,
3121 const struct tty_operations *op)
3122 {
3123 driver->ops = op;
3124 };
3125 EXPORT_SYMBOL(tty_set_operations);
3126
3127 void put_tty_driver(struct tty_driver *d)
3128 {
3129 tty_driver_kref_put(d);
3130 }
3131 EXPORT_SYMBOL(put_tty_driver);
3132
3133 /*
3134 * Called by a tty driver to register itself.
3135 */
3136 int tty_register_driver(struct tty_driver *driver)
3137 {
3138 int error;
3139 int i;
3140 dev_t dev;
3141 struct device *d;
3142
3143 if (!driver->major) {
3144 error = alloc_chrdev_region(&dev, driver->minor_start,
3145 driver->num, driver->name);
3146 if (!error) {
3147 driver->major = MAJOR(dev);
3148 driver->minor_start = MINOR(dev);
3149 }
3150 } else {
3151 dev = MKDEV(driver->major, driver->minor_start);
3152 error = register_chrdev_region(dev, driver->num, driver->name);
3153 }
3154 if (error < 0)
3155 goto err;
3156
3157 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3158 error = tty_cdev_add(driver, dev, 0, driver->num);
3159 if (error)
3160 goto err_unreg_char;
3161 }
3162
3163 mutex_lock(&tty_mutex);
3164 list_add(&driver->tty_drivers, &tty_drivers);
3165 mutex_unlock(&tty_mutex);
3166
3167 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3168 for (i = 0; i < driver->num; i++) {
3169 d = tty_register_device(driver, i, NULL);
3170 if (IS_ERR(d)) {
3171 error = PTR_ERR(d);
3172 goto err_unreg_devs;
3173 }
3174 }
3175 }
3176 proc_tty_register_driver(driver);
3177 driver->flags |= TTY_DRIVER_INSTALLED;
3178 return 0;
3179
3180 err_unreg_devs:
3181 for (i--; i >= 0; i--)
3182 tty_unregister_device(driver, i);
3183
3184 mutex_lock(&tty_mutex);
3185 list_del(&driver->tty_drivers);
3186 mutex_unlock(&tty_mutex);
3187
3188 err_unreg_char:
3189 unregister_chrdev_region(dev, driver->num);
3190 err:
3191 return error;
3192 }
3193 EXPORT_SYMBOL(tty_register_driver);
3194
3195 /*
3196 * Called by a tty driver to unregister itself.
3197 */
3198 int tty_unregister_driver(struct tty_driver *driver)
3199 {
3200 #if 0
3201 /* FIXME */
3202 if (driver->refcount)
3203 return -EBUSY;
3204 #endif
3205 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3206 driver->num);
3207 mutex_lock(&tty_mutex);
3208 list_del(&driver->tty_drivers);
3209 mutex_unlock(&tty_mutex);
3210 return 0;
3211 }
3212
3213 EXPORT_SYMBOL(tty_unregister_driver);
3214
3215 dev_t tty_devnum(struct tty_struct *tty)
3216 {
3217 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3218 }
3219 EXPORT_SYMBOL(tty_devnum);
3220
3221 void tty_default_fops(struct file_operations *fops)
3222 {
3223 *fops = tty_fops;
3224 }
3225
3226 static char *tty_devnode(struct device *dev, umode_t *mode)
3227 {
3228 if (!mode)
3229 return NULL;
3230 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3231 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3232 *mode = 0666;
3233 return NULL;
3234 }
3235
3236 static int __init tty_class_init(void)
3237 {
3238 tty_class = class_create(THIS_MODULE, "tty");
3239 if (IS_ERR(tty_class))
3240 return PTR_ERR(tty_class);
3241 tty_class->devnode = tty_devnode;
3242 return 0;
3243 }
3244
3245 postcore_initcall(tty_class_init);
3246
3247 /* 3/2004 jmc: why do these devices exist? */
3248 static struct cdev tty_cdev, console_cdev;
3249
3250 static ssize_t show_cons_active(struct device *dev,
3251 struct device_attribute *attr, char *buf)
3252 {
3253 struct console *cs[16];
3254 int i = 0;
3255 struct console *c;
3256 ssize_t count = 0;
3257
3258 console_lock();
3259 for_each_console(c) {
3260 if (!c->device)
3261 continue;
3262 if (!c->write)
3263 continue;
3264 if ((c->flags & CON_ENABLED) == 0)
3265 continue;
3266 cs[i++] = c;
3267 if (i >= ARRAY_SIZE(cs))
3268 break;
3269 }
3270 while (i--) {
3271 int index = cs[i]->index;
3272 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3273
3274 /* don't resolve tty0 as some programs depend on it */
3275 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3276 count += tty_line_name(drv, index, buf + count);
3277 else
3278 count += sprintf(buf + count, "%s%d",
3279 cs[i]->name, cs[i]->index);
3280
3281 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3282 }
3283 console_unlock();
3284
3285 return count;
3286 }
3287 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3288
3289 static struct attribute *cons_dev_attrs[] = {
3290 &dev_attr_active.attr,
3291 NULL
3292 };
3293
3294 ATTRIBUTE_GROUPS(cons_dev);
3295
3296 static struct device *consdev;
3297
3298 void console_sysfs_notify(void)
3299 {
3300 if (consdev)
3301 sysfs_notify(&consdev->kobj, NULL, "active");
3302 }
3303
3304 /*
3305 * Ok, now we can initialize the rest of the tty devices and can count
3306 * on memory allocations, interrupts etc..
3307 */
3308 int __init tty_init(void)
3309 {
3310 cdev_init(&tty_cdev, &tty_fops);
3311 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3312 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3313 panic("Couldn't register /dev/tty driver\n");
3314 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3315
3316 cdev_init(&console_cdev, &console_fops);
3317 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3318 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3319 panic("Couldn't register /dev/console driver\n");
3320 consdev = device_create_with_groups(tty_class, NULL,
3321 MKDEV(TTYAUX_MAJOR, 1), NULL,
3322 cons_dev_groups, "console");
3323 if (IS_ERR(consdev))
3324 consdev = NULL;
3325
3326 #ifdef CONFIG_VT
3327 vty_init(&console_fops);
3328 #endif
3329 return 0;
3330 }
3331