]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/tty/tty_io.c
Merge tag 'samsung-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[mirror_ubuntu-artful-kernel.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * free_tty_struct - free a disused tty
161 * @tty: tty struct to free
162 *
163 * Free the write buffers, tty queue and tty memory itself.
164 *
165 * Locking: none. Must be called after tty is definitely unused
166 */
167
168 void free_tty_struct(struct tty_struct *tty)
169 {
170 if (!tty)
171 return;
172 if (tty->dev)
173 put_device(tty->dev);
174 kfree(tty->write_buf);
175 tty->magic = 0xDEADDEAD;
176 kfree(tty);
177 }
178
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181 return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
184 int tty_alloc_file(struct file *file)
185 {
186 struct tty_file_private *priv;
187
188 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189 if (!priv)
190 return -ENOMEM;
191
192 file->private_data = priv;
193
194 return 0;
195 }
196
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 struct tty_file_private *priv = file->private_data;
201
202 priv->tty = tty;
203 priv->file = file;
204
205 spin_lock(&tty_files_lock);
206 list_add(&priv->list, &tty->tty_files);
207 spin_unlock(&tty_files_lock);
208 }
209
210 /**
211 * tty_free_file - free file->private_data
212 *
213 * This shall be used only for fail path handling when tty_add_file was not
214 * called yet.
215 */
216 void tty_free_file(struct file *file)
217 {
218 struct tty_file_private *priv = file->private_data;
219
220 file->private_data = NULL;
221 kfree(priv);
222 }
223
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227 struct tty_file_private *priv = file->private_data;
228
229 spin_lock(&tty_files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty_files_lock);
232 tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239 * tty_name - return tty naming
240 * @tty: tty structure
241 * @buf: buffer for output
242 *
243 * Convert a tty structure into a name. The name reflects the kernel
244 * naming policy and if udev is in use may not reflect user space
245 *
246 * Locking: none
247 */
248
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251 if (!tty) /* Hmm. NULL pointer. That's fun. */
252 strcpy(buf, "NULL tty");
253 else
254 strcpy(buf, tty->name);
255 return buf;
256 }
257
258 EXPORT_SYMBOL(tty_name);
259
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 if (!tty) {
265 printk(KERN_WARNING
266 "null TTY for (%d:%d) in %s\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 printk(KERN_WARNING
272 "bad magic number for tty struct (%d:%d) in %s\n",
273 imajor(inode), iminor(inode), routine);
274 return 1;
275 }
276 #endif
277 return 0;
278 }
279
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0;
285
286 spin_lock(&tty_files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty_files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty->count != count) {
296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 "!= #fd's(%d) in %s\n",
298 tty->name, tty->count, count, routine);
299 return count;
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383 * tty_check_change - check for POSIX terminal changes
384 * @tty: tty to check
385 *
386 * If we try to write to, or set the state of, a terminal and we're
387 * not in the foreground, send a SIGTTOU. If the signal is blocked or
388 * ignored, go ahead and perform the operation. (POSIX 7.2)
389 *
390 * Locking: ctrl_lock
391 */
392
393 int tty_check_change(struct tty_struct *tty)
394 {
395 unsigned long flags;
396 int ret = 0;
397
398 if (current->signal->tty != tty)
399 return 0;
400
401 spin_lock_irqsave(&tty->ctrl_lock, flags);
402
403 if (!tty->pgrp) {
404 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405 goto out_unlock;
406 }
407 if (task_pgrp(current) == tty->pgrp)
408 goto out_unlock;
409 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410 if (is_ignored(SIGTTOU))
411 goto out;
412 if (is_current_pgrp_orphaned()) {
413 ret = -EIO;
414 goto out;
415 }
416 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417 set_thread_flag(TIF_SIGPENDING);
418 ret = -ERESTARTSYS;
419 out:
420 return ret;
421 out_unlock:
422 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 return ret;
424 }
425
426 EXPORT_SYMBOL(tty_check_change);
427
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429 size_t count, loff_t *ppos)
430 {
431 return 0;
432 }
433
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435 size_t count, loff_t *ppos)
436 {
437 return -EIO;
438 }
439
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447 unsigned long arg)
448 {
449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static long hung_up_tty_compat_ioctl(struct file *file,
453 unsigned int cmd, unsigned long arg)
454 {
455 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457
458 static const struct file_operations tty_fops = {
459 .llseek = no_llseek,
460 .read = tty_read,
461 .write = tty_write,
462 .poll = tty_poll,
463 .unlocked_ioctl = tty_ioctl,
464 .compat_ioctl = tty_compat_ioctl,
465 .open = tty_open,
466 .release = tty_release,
467 .fasync = tty_fasync,
468 };
469
470 static const struct file_operations console_fops = {
471 .llseek = no_llseek,
472 .read = tty_read,
473 .write = redirected_tty_write,
474 .poll = tty_poll,
475 .unlocked_ioctl = tty_ioctl,
476 .compat_ioctl = tty_compat_ioctl,
477 .open = tty_open,
478 .release = tty_release,
479 .fasync = tty_fasync,
480 };
481
482 static const struct file_operations hung_up_tty_fops = {
483 .llseek = no_llseek,
484 .read = hung_up_tty_read,
485 .write = hung_up_tty_write,
486 .poll = hung_up_tty_poll,
487 .unlocked_ioctl = hung_up_tty_ioctl,
488 .compat_ioctl = hung_up_tty_compat_ioctl,
489 .release = tty_release,
490 };
491
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494
495 /**
496 * tty_wakeup - request more data
497 * @tty: terminal
498 *
499 * Internal and external helper for wakeups of tty. This function
500 * informs the line discipline if present that the driver is ready
501 * to receive more output data.
502 */
503
504 void tty_wakeup(struct tty_struct *tty)
505 {
506 struct tty_ldisc *ld;
507
508 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509 ld = tty_ldisc_ref(tty);
510 if (ld) {
511 if (ld->ops->write_wakeup)
512 ld->ops->write_wakeup(tty);
513 tty_ldisc_deref(ld);
514 }
515 }
516 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520
521 /**
522 * tty_signal_session_leader - sends SIGHUP to session leader
523 * @tty controlling tty
524 * @exit_session if non-zero, signal all foreground group processes
525 *
526 * Send SIGHUP and SIGCONT to the session leader and its process group.
527 * Optionally, signal all processes in the foreground process group.
528 *
529 * Returns the number of processes in the session with this tty
530 * as their controlling terminal. This value is used to drop
531 * tty references for those processes.
532 */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535 struct task_struct *p;
536 int refs = 0;
537 struct pid *tty_pgrp = NULL;
538
539 read_lock(&tasklist_lock);
540 if (tty->session) {
541 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542 spin_lock_irq(&p->sighand->siglock);
543 if (p->signal->tty == tty) {
544 p->signal->tty = NULL;
545 /* We defer the dereferences outside fo
546 the tasklist lock */
547 refs++;
548 }
549 if (!p->signal->leader) {
550 spin_unlock_irq(&p->sighand->siglock);
551 continue;
552 }
553 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555 put_pid(p->signal->tty_old_pgrp); /* A noop */
556 spin_lock(&tty->ctrl_lock);
557 tty_pgrp = get_pid(tty->pgrp);
558 if (tty->pgrp)
559 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560 spin_unlock(&tty->ctrl_lock);
561 spin_unlock_irq(&p->sighand->siglock);
562 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563 }
564 read_unlock(&tasklist_lock);
565
566 if (tty_pgrp) {
567 if (exit_session)
568 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569 put_pid(tty_pgrp);
570 }
571
572 return refs;
573 }
574
575 /**
576 * __tty_hangup - actual handler for hangup events
577 * @work: tty device
578 *
579 * This can be called by a "kworker" kernel thread. That is process
580 * synchronous but doesn't hold any locks, so we need to make sure we
581 * have the appropriate locks for what we're doing.
582 *
583 * The hangup event clears any pending redirections onto the hung up
584 * device. It ensures future writes will error and it does the needed
585 * line discipline hangup and signal delivery. The tty object itself
586 * remains intact.
587 *
588 * Locking:
589 * BTM
590 * redirect lock for undoing redirection
591 * file list lock for manipulating list of ttys
592 * tty_ldiscs_lock from called functions
593 * termios_rwsem resetting termios data
594 * tasklist_lock to walk task list for hangup event
595 * ->siglock to protect ->signal/->sighand
596 */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599 struct file *cons_filp = NULL;
600 struct file *filp, *f = NULL;
601 struct tty_file_private *priv;
602 int closecount = 0, n;
603 int refs;
604
605 if (!tty)
606 return;
607
608
609 spin_lock(&redirect_lock);
610 if (redirect && file_tty(redirect) == tty) {
611 f = redirect;
612 redirect = NULL;
613 }
614 spin_unlock(&redirect_lock);
615
616 tty_lock(tty);
617
618 if (test_bit(TTY_HUPPED, &tty->flags)) {
619 tty_unlock(tty);
620 return;
621 }
622
623 /* some functions below drop BTM, so we need this bit */
624 set_bit(TTY_HUPPING, &tty->flags);
625
626 /* inuse_filps is protected by the single tty lock,
627 this really needs to change if we want to flush the
628 workqueue with the lock held */
629 check_tty_count(tty, "tty_hangup");
630
631 spin_lock(&tty_files_lock);
632 /* This breaks for file handles being sent over AF_UNIX sockets ? */
633 list_for_each_entry(priv, &tty->tty_files, list) {
634 filp = priv->file;
635 if (filp->f_op->write == redirected_tty_write)
636 cons_filp = filp;
637 if (filp->f_op->write != tty_write)
638 continue;
639 closecount++;
640 __tty_fasync(-1, filp, 0); /* can't block */
641 filp->f_op = &hung_up_tty_fops;
642 }
643 spin_unlock(&tty_files_lock);
644
645 refs = tty_signal_session_leader(tty, exit_session);
646 /* Account for the p->signal references we killed */
647 while (refs--)
648 tty_kref_put(tty);
649
650 /*
651 * it drops BTM and thus races with reopen
652 * we protect the race by TTY_HUPPING
653 */
654 tty_ldisc_hangup(tty);
655
656 spin_lock_irq(&tty->ctrl_lock);
657 clear_bit(TTY_THROTTLED, &tty->flags);
658 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659 put_pid(tty->session);
660 put_pid(tty->pgrp);
661 tty->session = NULL;
662 tty->pgrp = NULL;
663 tty->ctrl_status = 0;
664 spin_unlock_irq(&tty->ctrl_lock);
665
666 /*
667 * If one of the devices matches a console pointer, we
668 * cannot just call hangup() because that will cause
669 * tty->count and state->count to go out of sync.
670 * So we just call close() the right number of times.
671 */
672 if (cons_filp) {
673 if (tty->ops->close)
674 for (n = 0; n < closecount; n++)
675 tty->ops->close(tty, cons_filp);
676 } else if (tty->ops->hangup)
677 tty->ops->hangup(tty);
678 /*
679 * We don't want to have driver/ldisc interactions beyond
680 * the ones we did here. The driver layer expects no
681 * calls after ->hangup() from the ldisc side. However we
682 * can't yet guarantee all that.
683 */
684 set_bit(TTY_HUPPED, &tty->flags);
685 clear_bit(TTY_HUPPING, &tty->flags);
686
687 tty_unlock(tty);
688
689 if (f)
690 fput(f);
691 }
692
693 static void do_tty_hangup(struct work_struct *work)
694 {
695 struct tty_struct *tty =
696 container_of(work, struct tty_struct, hangup_work);
697
698 __tty_hangup(tty, 0);
699 }
700
701 /**
702 * tty_hangup - trigger a hangup event
703 * @tty: tty to hangup
704 *
705 * A carrier loss (virtual or otherwise) has occurred on this like
706 * schedule a hangup sequence to run after this event.
707 */
708
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712 char buf[64];
713 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715 schedule_work(&tty->hangup_work);
716 }
717
718 EXPORT_SYMBOL(tty_hangup);
719
720 /**
721 * tty_vhangup - process vhangup
722 * @tty: tty to hangup
723 *
724 * The user has asked via system call for the terminal to be hung up.
725 * We do this synchronously so that when the syscall returns the process
726 * is complete. That guarantee is necessary for security reasons.
727 */
728
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732 char buf[64];
733
734 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736 __tty_hangup(tty, 0);
737 }
738
739 EXPORT_SYMBOL(tty_vhangup);
740
741
742 /**
743 * tty_vhangup_self - process vhangup for own ctty
744 *
745 * Perform a vhangup on the current controlling tty
746 */
747
748 void tty_vhangup_self(void)
749 {
750 struct tty_struct *tty;
751
752 tty = get_current_tty();
753 if (tty) {
754 tty_vhangup(tty);
755 tty_kref_put(tty);
756 }
757 }
758
759 /**
760 * tty_vhangup_session - hangup session leader exit
761 * @tty: tty to hangup
762 *
763 * The session leader is exiting and hanging up its controlling terminal.
764 * Every process in the foreground process group is signalled SIGHUP.
765 *
766 * We do this synchronously so that when the syscall returns the process
767 * is complete. That guarantee is necessary for security reasons.
768 */
769
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 char buf[64];
774
775 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777 __tty_hangup(tty, 1);
778 }
779
780 /**
781 * tty_hung_up_p - was tty hung up
782 * @filp: file pointer of tty
783 *
784 * Return true if the tty has been subject to a vhangup or a carrier
785 * loss
786 */
787
788 int tty_hung_up_p(struct file *filp)
789 {
790 return (filp->f_op == &hung_up_tty_fops);
791 }
792
793 EXPORT_SYMBOL(tty_hung_up_p);
794
795 static void session_clear_tty(struct pid *session)
796 {
797 struct task_struct *p;
798 do_each_pid_task(session, PIDTYPE_SID, p) {
799 proc_clear_tty(p);
800 } while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802
803 /**
804 * disassociate_ctty - disconnect controlling tty
805 * @on_exit: true if exiting so need to "hang up" the session
806 *
807 * This function is typically called only by the session leader, when
808 * it wants to disassociate itself from its controlling tty.
809 *
810 * It performs the following functions:
811 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
812 * (2) Clears the tty from being controlling the session
813 * (3) Clears the controlling tty for all processes in the
814 * session group.
815 *
816 * The argument on_exit is set to 1 if called when a process is
817 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
818 *
819 * Locking:
820 * BTM is taken for hysterical raisins, and held when
821 * called from no_tty().
822 * tty_mutex is taken to protect tty
823 * ->siglock is taken to protect ->signal/->sighand
824 * tasklist_lock is taken to walk process list for sessions
825 * ->siglock is taken to protect ->signal/->sighand
826 */
827
828 void disassociate_ctty(int on_exit)
829 {
830 struct tty_struct *tty;
831
832 if (!current->signal->leader)
833 return;
834
835 tty = get_current_tty();
836 if (tty) {
837 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838 tty_vhangup_session(tty);
839 } else {
840 struct pid *tty_pgrp = tty_get_pgrp(tty);
841 if (tty_pgrp) {
842 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843 if (!on_exit)
844 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845 put_pid(tty_pgrp);
846 }
847 }
848 tty_kref_put(tty);
849
850 } else if (on_exit) {
851 struct pid *old_pgrp;
852 spin_lock_irq(&current->sighand->siglock);
853 old_pgrp = current->signal->tty_old_pgrp;
854 current->signal->tty_old_pgrp = NULL;
855 spin_unlock_irq(&current->sighand->siglock);
856 if (old_pgrp) {
857 kill_pgrp(old_pgrp, SIGHUP, on_exit);
858 kill_pgrp(old_pgrp, SIGCONT, on_exit);
859 put_pid(old_pgrp);
860 }
861 return;
862 }
863
864 spin_lock_irq(&current->sighand->siglock);
865 put_pid(current->signal->tty_old_pgrp);
866 current->signal->tty_old_pgrp = NULL;
867
868 tty = tty_kref_get(current->signal->tty);
869 if (tty) {
870 unsigned long flags;
871 spin_lock_irqsave(&tty->ctrl_lock, flags);
872 put_pid(tty->session);
873 put_pid(tty->pgrp);
874 tty->session = NULL;
875 tty->pgrp = NULL;
876 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 tty_kref_put(tty);
878 } else {
879 #ifdef TTY_DEBUG_HANGUP
880 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881 " = NULL", tty);
882 #endif
883 }
884
885 spin_unlock_irq(&current->sighand->siglock);
886 /* Now clear signal->tty under the lock */
887 read_lock(&tasklist_lock);
888 session_clear_tty(task_session(current));
889 read_unlock(&tasklist_lock);
890 }
891
892 /**
893 *
894 * no_tty - Ensure the current process does not have a controlling tty
895 */
896 void no_tty(void)
897 {
898 /* FIXME: Review locking here. The tty_lock never covered any race
899 between a new association and proc_clear_tty but possible we need
900 to protect against this anyway */
901 struct task_struct *tsk = current;
902 disassociate_ctty(0);
903 proc_clear_tty(tsk);
904 }
905
906
907 /**
908 * stop_tty - propagate flow control
909 * @tty: tty to stop
910 *
911 * Perform flow control to the driver. May be called
912 * on an already stopped device and will not re-call the driver
913 * method.
914 *
915 * This functionality is used by both the line disciplines for
916 * halting incoming flow and by the driver. It may therefore be
917 * called from any context, may be under the tty atomic_write_lock
918 * but not always.
919 *
920 * Locking:
921 * flow_lock
922 */
923
924 void __stop_tty(struct tty_struct *tty)
925 {
926 if (tty->stopped)
927 return;
928 tty->stopped = 1;
929 if (tty->ops->stop)
930 (tty->ops->stop)(tty);
931 }
932
933 void stop_tty(struct tty_struct *tty)
934 {
935 unsigned long flags;
936
937 spin_lock_irqsave(&tty->flow_lock, flags);
938 __stop_tty(tty);
939 spin_unlock_irqrestore(&tty->flow_lock, flags);
940 }
941 EXPORT_SYMBOL(stop_tty);
942
943 /**
944 * start_tty - propagate flow control
945 * @tty: tty to start
946 *
947 * Start a tty that has been stopped if at all possible. If this
948 * tty was previous stopped and is now being started, the driver
949 * start method is invoked and the line discipline woken.
950 *
951 * Locking:
952 * flow_lock
953 */
954
955 void __start_tty(struct tty_struct *tty)
956 {
957 if (!tty->stopped || tty->flow_stopped)
958 return;
959 tty->stopped = 0;
960 if (tty->ops->start)
961 (tty->ops->start)(tty);
962 tty_wakeup(tty);
963 }
964
965 void start_tty(struct tty_struct *tty)
966 {
967 unsigned long flags;
968
969 spin_lock_irqsave(&tty->flow_lock, flags);
970 __start_tty(tty);
971 spin_unlock_irqrestore(&tty->flow_lock, flags);
972 }
973 EXPORT_SYMBOL(start_tty);
974
975 /* We limit tty time update visibility to every 8 seconds or so. */
976 static void tty_update_time(struct timespec *time)
977 {
978 unsigned long sec = get_seconds() & ~7;
979 if ((long)(sec - time->tv_sec) > 0)
980 time->tv_sec = sec;
981 }
982
983 /**
984 * tty_read - read method for tty device files
985 * @file: pointer to tty file
986 * @buf: user buffer
987 * @count: size of user buffer
988 * @ppos: unused
989 *
990 * Perform the read system call function on this terminal device. Checks
991 * for hung up devices before calling the line discipline method.
992 *
993 * Locking:
994 * Locks the line discipline internally while needed. Multiple
995 * read calls may be outstanding in parallel.
996 */
997
998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
999 loff_t *ppos)
1000 {
1001 int i;
1002 struct inode *inode = file_inode(file);
1003 struct tty_struct *tty = file_tty(file);
1004 struct tty_ldisc *ld;
1005
1006 if (tty_paranoia_check(tty, inode, "tty_read"))
1007 return -EIO;
1008 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1009 return -EIO;
1010
1011 /* We want to wait for the line discipline to sort out in this
1012 situation */
1013 ld = tty_ldisc_ref_wait(tty);
1014 if (ld->ops->read)
1015 i = (ld->ops->read)(tty, file, buf, count);
1016 else
1017 i = -EIO;
1018 tty_ldisc_deref(ld);
1019
1020 if (i > 0)
1021 tty_update_time(&inode->i_atime);
1022
1023 return i;
1024 }
1025
1026 static void tty_write_unlock(struct tty_struct *tty)
1027 __releases(&tty->atomic_write_lock)
1028 {
1029 mutex_unlock(&tty->atomic_write_lock);
1030 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1031 }
1032
1033 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1034 __acquires(&tty->atomic_write_lock)
1035 {
1036 if (!mutex_trylock(&tty->atomic_write_lock)) {
1037 if (ndelay)
1038 return -EAGAIN;
1039 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1040 return -ERESTARTSYS;
1041 }
1042 return 0;
1043 }
1044
1045 /*
1046 * Split writes up in sane blocksizes to avoid
1047 * denial-of-service type attacks
1048 */
1049 static inline ssize_t do_tty_write(
1050 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1051 struct tty_struct *tty,
1052 struct file *file,
1053 const char __user *buf,
1054 size_t count)
1055 {
1056 ssize_t ret, written = 0;
1057 unsigned int chunk;
1058
1059 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1060 if (ret < 0)
1061 return ret;
1062
1063 /*
1064 * We chunk up writes into a temporary buffer. This
1065 * simplifies low-level drivers immensely, since they
1066 * don't have locking issues and user mode accesses.
1067 *
1068 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1069 * big chunk-size..
1070 *
1071 * The default chunk-size is 2kB, because the NTTY
1072 * layer has problems with bigger chunks. It will
1073 * claim to be able to handle more characters than
1074 * it actually does.
1075 *
1076 * FIXME: This can probably go away now except that 64K chunks
1077 * are too likely to fail unless switched to vmalloc...
1078 */
1079 chunk = 2048;
1080 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1081 chunk = 65536;
1082 if (count < chunk)
1083 chunk = count;
1084
1085 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1086 if (tty->write_cnt < chunk) {
1087 unsigned char *buf_chunk;
1088
1089 if (chunk < 1024)
1090 chunk = 1024;
1091
1092 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1093 if (!buf_chunk) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
1097 kfree(tty->write_buf);
1098 tty->write_cnt = chunk;
1099 tty->write_buf = buf_chunk;
1100 }
1101
1102 /* Do the write .. */
1103 for (;;) {
1104 size_t size = count;
1105 if (size > chunk)
1106 size = chunk;
1107 ret = -EFAULT;
1108 if (copy_from_user(tty->write_buf, buf, size))
1109 break;
1110 ret = write(tty, file, tty->write_buf, size);
1111 if (ret <= 0)
1112 break;
1113 written += ret;
1114 buf += ret;
1115 count -= ret;
1116 if (!count)
1117 break;
1118 ret = -ERESTARTSYS;
1119 if (signal_pending(current))
1120 break;
1121 cond_resched();
1122 }
1123 if (written) {
1124 tty_update_time(&file_inode(file)->i_mtime);
1125 ret = written;
1126 }
1127 out:
1128 tty_write_unlock(tty);
1129 return ret;
1130 }
1131
1132 /**
1133 * tty_write_message - write a message to a certain tty, not just the console.
1134 * @tty: the destination tty_struct
1135 * @msg: the message to write
1136 *
1137 * This is used for messages that need to be redirected to a specific tty.
1138 * We don't put it into the syslog queue right now maybe in the future if
1139 * really needed.
1140 *
1141 * We must still hold the BTM and test the CLOSING flag for the moment.
1142 */
1143
1144 void tty_write_message(struct tty_struct *tty, char *msg)
1145 {
1146 if (tty) {
1147 mutex_lock(&tty->atomic_write_lock);
1148 tty_lock(tty);
1149 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1150 tty_unlock(tty);
1151 tty->ops->write(tty, msg, strlen(msg));
1152 } else
1153 tty_unlock(tty);
1154 tty_write_unlock(tty);
1155 }
1156 return;
1157 }
1158
1159
1160 /**
1161 * tty_write - write method for tty device file
1162 * @file: tty file pointer
1163 * @buf: user data to write
1164 * @count: bytes to write
1165 * @ppos: unused
1166 *
1167 * Write data to a tty device via the line discipline.
1168 *
1169 * Locking:
1170 * Locks the line discipline as required
1171 * Writes to the tty driver are serialized by the atomic_write_lock
1172 * and are then processed in chunks to the device. The line discipline
1173 * write method will not be invoked in parallel for each device.
1174 */
1175
1176 static ssize_t tty_write(struct file *file, const char __user *buf,
1177 size_t count, loff_t *ppos)
1178 {
1179 struct tty_struct *tty = file_tty(file);
1180 struct tty_ldisc *ld;
1181 ssize_t ret;
1182
1183 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1184 return -EIO;
1185 if (!tty || !tty->ops->write ||
1186 (test_bit(TTY_IO_ERROR, &tty->flags)))
1187 return -EIO;
1188 /* Short term debug to catch buggy drivers */
1189 if (tty->ops->write_room == NULL)
1190 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1191 tty->driver->name);
1192 ld = tty_ldisc_ref_wait(tty);
1193 if (!ld->ops->write)
1194 ret = -EIO;
1195 else
1196 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1197 tty_ldisc_deref(ld);
1198 return ret;
1199 }
1200
1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1202 size_t count, loff_t *ppos)
1203 {
1204 struct file *p = NULL;
1205
1206 spin_lock(&redirect_lock);
1207 if (redirect)
1208 p = get_file(redirect);
1209 spin_unlock(&redirect_lock);
1210
1211 if (p) {
1212 ssize_t res;
1213 res = vfs_write(p, buf, count, &p->f_pos);
1214 fput(p);
1215 return res;
1216 }
1217 return tty_write(file, buf, count, ppos);
1218 }
1219
1220 /**
1221 * tty_send_xchar - send priority character
1222 *
1223 * Send a high priority character to the tty even if stopped
1224 *
1225 * Locking: none for xchar method, write ordering for write method.
1226 */
1227
1228 int tty_send_xchar(struct tty_struct *tty, char ch)
1229 {
1230 int was_stopped = tty->stopped;
1231
1232 if (tty->ops->send_xchar) {
1233 tty->ops->send_xchar(tty, ch);
1234 return 0;
1235 }
1236
1237 if (tty_write_lock(tty, 0) < 0)
1238 return -ERESTARTSYS;
1239
1240 if (was_stopped)
1241 start_tty(tty);
1242 tty->ops->write(tty, &ch, 1);
1243 if (was_stopped)
1244 stop_tty(tty);
1245 tty_write_unlock(tty);
1246 return 0;
1247 }
1248
1249 static char ptychar[] = "pqrstuvwxyzabcde";
1250
1251 /**
1252 * pty_line_name - generate name for a pty
1253 * @driver: the tty driver in use
1254 * @index: the minor number
1255 * @p: output buffer of at least 6 bytes
1256 *
1257 * Generate a name from a driver reference and write it to the output
1258 * buffer.
1259 *
1260 * Locking: None
1261 */
1262 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1263 {
1264 int i = index + driver->name_base;
1265 /* ->name is initialized to "ttyp", but "tty" is expected */
1266 sprintf(p, "%s%c%x",
1267 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1268 ptychar[i >> 4 & 0xf], i & 0xf);
1269 }
1270
1271 /**
1272 * tty_line_name - generate name for a tty
1273 * @driver: the tty driver in use
1274 * @index: the minor number
1275 * @p: output buffer of at least 7 bytes
1276 *
1277 * Generate a name from a driver reference and write it to the output
1278 * buffer.
1279 *
1280 * Locking: None
1281 */
1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1283 {
1284 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1285 return sprintf(p, "%s", driver->name);
1286 else
1287 return sprintf(p, "%s%d", driver->name,
1288 index + driver->name_base);
1289 }
1290
1291 /**
1292 * tty_driver_lookup_tty() - find an existing tty, if any
1293 * @driver: the driver for the tty
1294 * @idx: the minor number
1295 *
1296 * Return the tty, if found or ERR_PTR() otherwise.
1297 *
1298 * Locking: tty_mutex must be held. If tty is found, the mutex must
1299 * be held until the 'fast-open' is also done. Will change once we
1300 * have refcounting in the driver and per driver locking
1301 */
1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1303 struct inode *inode, int idx)
1304 {
1305 if (driver->ops->lookup)
1306 return driver->ops->lookup(driver, inode, idx);
1307
1308 return driver->ttys[idx];
1309 }
1310
1311 /**
1312 * tty_init_termios - helper for termios setup
1313 * @tty: the tty to set up
1314 *
1315 * Initialise the termios structures for this tty. Thus runs under
1316 * the tty_mutex currently so we can be relaxed about ordering.
1317 */
1318
1319 int tty_init_termios(struct tty_struct *tty)
1320 {
1321 struct ktermios *tp;
1322 int idx = tty->index;
1323
1324 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1325 tty->termios = tty->driver->init_termios;
1326 else {
1327 /* Check for lazy saved data */
1328 tp = tty->driver->termios[idx];
1329 if (tp != NULL)
1330 tty->termios = *tp;
1331 else
1332 tty->termios = tty->driver->init_termios;
1333 }
1334 /* Compatibility until drivers always set this */
1335 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1336 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1337 return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(tty_init_termios);
1340
1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1342 {
1343 int ret = tty_init_termios(tty);
1344 if (ret)
1345 return ret;
1346
1347 tty_driver_kref_get(driver);
1348 tty->count++;
1349 driver->ttys[tty->index] = tty;
1350 return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(tty_standard_install);
1353
1354 /**
1355 * tty_driver_install_tty() - install a tty entry in the driver
1356 * @driver: the driver for the tty
1357 * @tty: the tty
1358 *
1359 * Install a tty object into the driver tables. The tty->index field
1360 * will be set by the time this is called. This method is responsible
1361 * for ensuring any need additional structures are allocated and
1362 * configured.
1363 *
1364 * Locking: tty_mutex for now
1365 */
1366 static int tty_driver_install_tty(struct tty_driver *driver,
1367 struct tty_struct *tty)
1368 {
1369 return driver->ops->install ? driver->ops->install(driver, tty) :
1370 tty_standard_install(driver, tty);
1371 }
1372
1373 /**
1374 * tty_driver_remove_tty() - remove a tty from the driver tables
1375 * @driver: the driver for the tty
1376 * @idx: the minor number
1377 *
1378 * Remvoe a tty object from the driver tables. The tty->index field
1379 * will be set by the time this is called.
1380 *
1381 * Locking: tty_mutex for now
1382 */
1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1384 {
1385 if (driver->ops->remove)
1386 driver->ops->remove(driver, tty);
1387 else
1388 driver->ttys[tty->index] = NULL;
1389 }
1390
1391 /*
1392 * tty_reopen() - fast re-open of an open tty
1393 * @tty - the tty to open
1394 *
1395 * Return 0 on success, -errno on error.
1396 *
1397 * Locking: tty_mutex must be held from the time the tty was found
1398 * till this open completes.
1399 */
1400 static int tty_reopen(struct tty_struct *tty)
1401 {
1402 struct tty_driver *driver = tty->driver;
1403
1404 if (test_bit(TTY_CLOSING, &tty->flags) ||
1405 test_bit(TTY_HUPPING, &tty->flags))
1406 return -EIO;
1407
1408 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1409 driver->subtype == PTY_TYPE_MASTER) {
1410 /*
1411 * special case for PTY masters: only one open permitted,
1412 * and the slave side open count is incremented as well.
1413 */
1414 if (tty->count)
1415 return -EIO;
1416
1417 tty->link->count++;
1418 }
1419 tty->count++;
1420
1421 WARN_ON(!tty->ldisc);
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * tty_init_dev - initialise a tty device
1428 * @driver: tty driver we are opening a device on
1429 * @idx: device index
1430 * @ret_tty: returned tty structure
1431 *
1432 * Prepare a tty device. This may not be a "new" clean device but
1433 * could also be an active device. The pty drivers require special
1434 * handling because of this.
1435 *
1436 * Locking:
1437 * The function is called under the tty_mutex, which
1438 * protects us from the tty struct or driver itself going away.
1439 *
1440 * On exit the tty device has the line discipline attached and
1441 * a reference count of 1. If a pair was created for pty/tty use
1442 * and the other was a pty master then it too has a reference count of 1.
1443 *
1444 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1445 * failed open. The new code protects the open with a mutex, so it's
1446 * really quite straightforward. The mutex locking can probably be
1447 * relaxed for the (most common) case of reopening a tty.
1448 */
1449
1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1451 {
1452 struct tty_struct *tty;
1453 int retval;
1454
1455 /*
1456 * First time open is complex, especially for PTY devices.
1457 * This code guarantees that either everything succeeds and the
1458 * TTY is ready for operation, or else the table slots are vacated
1459 * and the allocated memory released. (Except that the termios
1460 * and locked termios may be retained.)
1461 */
1462
1463 if (!try_module_get(driver->owner))
1464 return ERR_PTR(-ENODEV);
1465
1466 tty = alloc_tty_struct(driver, idx);
1467 if (!tty) {
1468 retval = -ENOMEM;
1469 goto err_module_put;
1470 }
1471
1472 tty_lock(tty);
1473 retval = tty_driver_install_tty(driver, tty);
1474 if (retval < 0)
1475 goto err_deinit_tty;
1476
1477 if (!tty->port)
1478 tty->port = driver->ports[idx];
1479
1480 WARN_RATELIMIT(!tty->port,
1481 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1482 __func__, tty->driver->name);
1483
1484 tty->port->itty = tty;
1485
1486 /*
1487 * Structures all installed ... call the ldisc open routines.
1488 * If we fail here just call release_tty to clean up. No need
1489 * to decrement the use counts, as release_tty doesn't care.
1490 */
1491 retval = tty_ldisc_setup(tty, tty->link);
1492 if (retval)
1493 goto err_release_tty;
1494 /* Return the tty locked so that it cannot vanish under the caller */
1495 return tty;
1496
1497 err_deinit_tty:
1498 tty_unlock(tty);
1499 deinitialize_tty_struct(tty);
1500 free_tty_struct(tty);
1501 err_module_put:
1502 module_put(driver->owner);
1503 return ERR_PTR(retval);
1504
1505 /* call the tty release_tty routine to clean out this slot */
1506 err_release_tty:
1507 tty_unlock(tty);
1508 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1509 "clearing slot %d\n", idx);
1510 release_tty(tty, idx);
1511 return ERR_PTR(retval);
1512 }
1513
1514 void tty_free_termios(struct tty_struct *tty)
1515 {
1516 struct ktermios *tp;
1517 int idx = tty->index;
1518
1519 /* If the port is going to reset then it has no termios to save */
1520 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1521 return;
1522
1523 /* Stash the termios data */
1524 tp = tty->driver->termios[idx];
1525 if (tp == NULL) {
1526 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1527 if (tp == NULL) {
1528 pr_warn("tty: no memory to save termios state.\n");
1529 return;
1530 }
1531 tty->driver->termios[idx] = tp;
1532 }
1533 *tp = tty->termios;
1534 }
1535 EXPORT_SYMBOL(tty_free_termios);
1536
1537 /**
1538 * tty_flush_works - flush all works of a tty
1539 * @tty: tty device to flush works for
1540 *
1541 * Sync flush all works belonging to @tty.
1542 */
1543 static void tty_flush_works(struct tty_struct *tty)
1544 {
1545 flush_work(&tty->SAK_work);
1546 flush_work(&tty->hangup_work);
1547 }
1548
1549 /**
1550 * release_one_tty - release tty structure memory
1551 * @kref: kref of tty we are obliterating
1552 *
1553 * Releases memory associated with a tty structure, and clears out the
1554 * driver table slots. This function is called when a device is no longer
1555 * in use. It also gets called when setup of a device fails.
1556 *
1557 * Locking:
1558 * takes the file list lock internally when working on the list
1559 * of ttys that the driver keeps.
1560 *
1561 * This method gets called from a work queue so that the driver private
1562 * cleanup ops can sleep (needed for USB at least)
1563 */
1564 static void release_one_tty(struct work_struct *work)
1565 {
1566 struct tty_struct *tty =
1567 container_of(work, struct tty_struct, hangup_work);
1568 struct tty_driver *driver = tty->driver;
1569 struct module *owner = driver->owner;
1570
1571 if (tty->ops->cleanup)
1572 tty->ops->cleanup(tty);
1573
1574 tty->magic = 0;
1575 tty_driver_kref_put(driver);
1576 module_put(owner);
1577
1578 spin_lock(&tty_files_lock);
1579 list_del_init(&tty->tty_files);
1580 spin_unlock(&tty_files_lock);
1581
1582 put_pid(tty->pgrp);
1583 put_pid(tty->session);
1584 free_tty_struct(tty);
1585 }
1586
1587 static void queue_release_one_tty(struct kref *kref)
1588 {
1589 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1590
1591 /* The hangup queue is now free so we can reuse it rather than
1592 waste a chunk of memory for each port */
1593 INIT_WORK(&tty->hangup_work, release_one_tty);
1594 schedule_work(&tty->hangup_work);
1595 }
1596
1597 /**
1598 * tty_kref_put - release a tty kref
1599 * @tty: tty device
1600 *
1601 * Release a reference to a tty device and if need be let the kref
1602 * layer destruct the object for us
1603 */
1604
1605 void tty_kref_put(struct tty_struct *tty)
1606 {
1607 if (tty)
1608 kref_put(&tty->kref, queue_release_one_tty);
1609 }
1610 EXPORT_SYMBOL(tty_kref_put);
1611
1612 /**
1613 * release_tty - release tty structure memory
1614 *
1615 * Release both @tty and a possible linked partner (think pty pair),
1616 * and decrement the refcount of the backing module.
1617 *
1618 * Locking:
1619 * tty_mutex
1620 * takes the file list lock internally when working on the list
1621 * of ttys that the driver keeps.
1622 *
1623 */
1624 static void release_tty(struct tty_struct *tty, int idx)
1625 {
1626 /* This should always be true but check for the moment */
1627 WARN_ON(tty->index != idx);
1628 WARN_ON(!mutex_is_locked(&tty_mutex));
1629 if (tty->ops->shutdown)
1630 tty->ops->shutdown(tty);
1631 tty_free_termios(tty);
1632 tty_driver_remove_tty(tty->driver, tty);
1633 tty->port->itty = NULL;
1634 if (tty->link)
1635 tty->link->port->itty = NULL;
1636 cancel_work_sync(&tty->port->buf.work);
1637
1638 if (tty->link)
1639 tty_kref_put(tty->link);
1640 tty_kref_put(tty);
1641 }
1642
1643 /**
1644 * tty_release_checks - check a tty before real release
1645 * @tty: tty to check
1646 * @o_tty: link of @tty (if any)
1647 * @idx: index of the tty
1648 *
1649 * Performs some paranoid checking before true release of the @tty.
1650 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1651 */
1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1653 int idx)
1654 {
1655 #ifdef TTY_PARANOIA_CHECK
1656 if (idx < 0 || idx >= tty->driver->num) {
1657 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1658 __func__, tty->name);
1659 return -1;
1660 }
1661
1662 /* not much to check for devpts */
1663 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1664 return 0;
1665
1666 if (tty != tty->driver->ttys[idx]) {
1667 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1668 __func__, idx, tty->name);
1669 return -1;
1670 }
1671 if (tty->driver->other) {
1672 if (o_tty != tty->driver->other->ttys[idx]) {
1673 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1674 __func__, idx, tty->name);
1675 return -1;
1676 }
1677 if (o_tty->link != tty) {
1678 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1679 return -1;
1680 }
1681 }
1682 #endif
1683 return 0;
1684 }
1685
1686 /**
1687 * tty_release - vfs callback for close
1688 * @inode: inode of tty
1689 * @filp: file pointer for handle to tty
1690 *
1691 * Called the last time each file handle is closed that references
1692 * this tty. There may however be several such references.
1693 *
1694 * Locking:
1695 * Takes bkl. See tty_release_dev
1696 *
1697 * Even releasing the tty structures is a tricky business.. We have
1698 * to be very careful that the structures are all released at the
1699 * same time, as interrupts might otherwise get the wrong pointers.
1700 *
1701 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1702 * lead to double frees or releasing memory still in use.
1703 */
1704
1705 int tty_release(struct inode *inode, struct file *filp)
1706 {
1707 struct tty_struct *tty = file_tty(filp);
1708 struct tty_struct *o_tty;
1709 int pty_master, tty_closing, o_tty_closing, do_sleep;
1710 int idx;
1711 char buf[64];
1712
1713 if (tty_paranoia_check(tty, inode, __func__))
1714 return 0;
1715
1716 tty_lock(tty);
1717 check_tty_count(tty, __func__);
1718
1719 __tty_fasync(-1, filp, 0);
1720
1721 idx = tty->index;
1722 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1723 tty->driver->subtype == PTY_TYPE_MASTER);
1724 /* Review: parallel close */
1725 o_tty = tty->link;
1726
1727 if (tty_release_checks(tty, o_tty, idx)) {
1728 tty_unlock(tty);
1729 return 0;
1730 }
1731
1732 #ifdef TTY_DEBUG_HANGUP
1733 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1734 tty_name(tty, buf), tty->count);
1735 #endif
1736
1737 if (tty->ops->close)
1738 tty->ops->close(tty, filp);
1739
1740 tty_unlock(tty);
1741 /*
1742 * Sanity check: if tty->count is going to zero, there shouldn't be
1743 * any waiters on tty->read_wait or tty->write_wait. We test the
1744 * wait queues and kick everyone out _before_ actually starting to
1745 * close. This ensures that we won't block while releasing the tty
1746 * structure.
1747 *
1748 * The test for the o_tty closing is necessary, since the master and
1749 * slave sides may close in any order. If the slave side closes out
1750 * first, its count will be one, since the master side holds an open.
1751 * Thus this test wouldn't be triggered at the time the slave closes,
1752 * so we do it now.
1753 *
1754 * Note that it's possible for the tty to be opened again while we're
1755 * flushing out waiters. By recalculating the closing flags before
1756 * each iteration we avoid any problems.
1757 */
1758 while (1) {
1759 /* Guard against races with tty->count changes elsewhere and
1760 opens on /dev/tty */
1761
1762 mutex_lock(&tty_mutex);
1763 tty_lock_pair(tty, o_tty);
1764 tty_closing = tty->count <= 1;
1765 o_tty_closing = o_tty &&
1766 (o_tty->count <= (pty_master ? 1 : 0));
1767 do_sleep = 0;
1768
1769 if (tty_closing) {
1770 if (waitqueue_active(&tty->read_wait)) {
1771 wake_up_poll(&tty->read_wait, POLLIN);
1772 do_sleep++;
1773 }
1774 if (waitqueue_active(&tty->write_wait)) {
1775 wake_up_poll(&tty->write_wait, POLLOUT);
1776 do_sleep++;
1777 }
1778 }
1779 if (o_tty_closing) {
1780 if (waitqueue_active(&o_tty->read_wait)) {
1781 wake_up_poll(&o_tty->read_wait, POLLIN);
1782 do_sleep++;
1783 }
1784 if (waitqueue_active(&o_tty->write_wait)) {
1785 wake_up_poll(&o_tty->write_wait, POLLOUT);
1786 do_sleep++;
1787 }
1788 }
1789 if (!do_sleep)
1790 break;
1791
1792 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1793 __func__, tty_name(tty, buf));
1794 tty_unlock_pair(tty, o_tty);
1795 mutex_unlock(&tty_mutex);
1796 schedule();
1797 }
1798
1799 /*
1800 * The closing flags are now consistent with the open counts on
1801 * both sides, and we've completed the last operation that could
1802 * block, so it's safe to proceed with closing.
1803 *
1804 * We must *not* drop the tty_mutex until we ensure that a further
1805 * entry into tty_open can not pick up this tty.
1806 */
1807 if (pty_master) {
1808 if (--o_tty->count < 0) {
1809 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1810 __func__, o_tty->count, tty_name(o_tty, buf));
1811 o_tty->count = 0;
1812 }
1813 }
1814 if (--tty->count < 0) {
1815 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1816 __func__, tty->count, tty_name(tty, buf));
1817 tty->count = 0;
1818 }
1819
1820 /*
1821 * We've decremented tty->count, so we need to remove this file
1822 * descriptor off the tty->tty_files list; this serves two
1823 * purposes:
1824 * - check_tty_count sees the correct number of file descriptors
1825 * associated with this tty.
1826 * - do_tty_hangup no longer sees this file descriptor as
1827 * something that needs to be handled for hangups.
1828 */
1829 tty_del_file(filp);
1830
1831 /*
1832 * Perform some housekeeping before deciding whether to return.
1833 *
1834 * Set the TTY_CLOSING flag if this was the last open. In the
1835 * case of a pty we may have to wait around for the other side
1836 * to close, and TTY_CLOSING makes sure we can't be reopened.
1837 */
1838 if (tty_closing)
1839 set_bit(TTY_CLOSING, &tty->flags);
1840 if (o_tty_closing)
1841 set_bit(TTY_CLOSING, &o_tty->flags);
1842
1843 /*
1844 * If _either_ side is closing, make sure there aren't any
1845 * processes that still think tty or o_tty is their controlling
1846 * tty.
1847 */
1848 if (tty_closing || o_tty_closing) {
1849 read_lock(&tasklist_lock);
1850 session_clear_tty(tty->session);
1851 if (o_tty)
1852 session_clear_tty(o_tty->session);
1853 read_unlock(&tasklist_lock);
1854 }
1855
1856 mutex_unlock(&tty_mutex);
1857 tty_unlock_pair(tty, o_tty);
1858 /* At this point the TTY_CLOSING flag should ensure a dead tty
1859 cannot be re-opened by a racing opener */
1860
1861 /* check whether both sides are closing ... */
1862 if (!tty_closing || (o_tty && !o_tty_closing))
1863 return 0;
1864
1865 #ifdef TTY_DEBUG_HANGUP
1866 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1867 #endif
1868 /*
1869 * Ask the line discipline code to release its structures
1870 */
1871 tty_ldisc_release(tty, o_tty);
1872
1873 /* Wait for pending work before tty destruction commmences */
1874 tty_flush_works(tty);
1875 if (o_tty)
1876 tty_flush_works(o_tty);
1877
1878 #ifdef TTY_DEBUG_HANGUP
1879 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1880 #endif
1881 /*
1882 * The release_tty function takes care of the details of clearing
1883 * the slots and preserving the termios structure. The tty_unlock_pair
1884 * should be safe as we keep a kref while the tty is locked (so the
1885 * unlock never unlocks a freed tty).
1886 */
1887 mutex_lock(&tty_mutex);
1888 release_tty(tty, idx);
1889 mutex_unlock(&tty_mutex);
1890
1891 return 0;
1892 }
1893
1894 /**
1895 * tty_open_current_tty - get tty of current task for open
1896 * @device: device number
1897 * @filp: file pointer to tty
1898 * @return: tty of the current task iff @device is /dev/tty
1899 *
1900 * We cannot return driver and index like for the other nodes because
1901 * devpts will not work then. It expects inodes to be from devpts FS.
1902 *
1903 * We need to move to returning a refcounted object from all the lookup
1904 * paths including this one.
1905 */
1906 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1907 {
1908 struct tty_struct *tty;
1909
1910 if (device != MKDEV(TTYAUX_MAJOR, 0))
1911 return NULL;
1912
1913 tty = get_current_tty();
1914 if (!tty)
1915 return ERR_PTR(-ENXIO);
1916
1917 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1918 /* noctty = 1; */
1919 tty_kref_put(tty);
1920 /* FIXME: we put a reference and return a TTY! */
1921 /* This is only safe because the caller holds tty_mutex */
1922 return tty;
1923 }
1924
1925 /**
1926 * tty_lookup_driver - lookup a tty driver for a given device file
1927 * @device: device number
1928 * @filp: file pointer to tty
1929 * @noctty: set if the device should not become a controlling tty
1930 * @index: index for the device in the @return driver
1931 * @return: driver for this inode (with increased refcount)
1932 *
1933 * If @return is not erroneous, the caller is responsible to decrement the
1934 * refcount by tty_driver_kref_put.
1935 *
1936 * Locking: tty_mutex protects get_tty_driver
1937 */
1938 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1939 int *noctty, int *index)
1940 {
1941 struct tty_driver *driver;
1942
1943 switch (device) {
1944 #ifdef CONFIG_VT
1945 case MKDEV(TTY_MAJOR, 0): {
1946 extern struct tty_driver *console_driver;
1947 driver = tty_driver_kref_get(console_driver);
1948 *index = fg_console;
1949 *noctty = 1;
1950 break;
1951 }
1952 #endif
1953 case MKDEV(TTYAUX_MAJOR, 1): {
1954 struct tty_driver *console_driver = console_device(index);
1955 if (console_driver) {
1956 driver = tty_driver_kref_get(console_driver);
1957 if (driver) {
1958 /* Don't let /dev/console block */
1959 filp->f_flags |= O_NONBLOCK;
1960 *noctty = 1;
1961 break;
1962 }
1963 }
1964 return ERR_PTR(-ENODEV);
1965 }
1966 default:
1967 driver = get_tty_driver(device, index);
1968 if (!driver)
1969 return ERR_PTR(-ENODEV);
1970 break;
1971 }
1972 return driver;
1973 }
1974
1975 /**
1976 * tty_open - open a tty device
1977 * @inode: inode of device file
1978 * @filp: file pointer to tty
1979 *
1980 * tty_open and tty_release keep up the tty count that contains the
1981 * number of opens done on a tty. We cannot use the inode-count, as
1982 * different inodes might point to the same tty.
1983 *
1984 * Open-counting is needed for pty masters, as well as for keeping
1985 * track of serial lines: DTR is dropped when the last close happens.
1986 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1987 *
1988 * The termios state of a pty is reset on first open so that
1989 * settings don't persist across reuse.
1990 *
1991 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1992 * tty->count should protect the rest.
1993 * ->siglock protects ->signal/->sighand
1994 *
1995 * Note: the tty_unlock/lock cases without a ref are only safe due to
1996 * tty_mutex
1997 */
1998
1999 static int tty_open(struct inode *inode, struct file *filp)
2000 {
2001 struct tty_struct *tty;
2002 int noctty, retval;
2003 struct tty_driver *driver = NULL;
2004 int index;
2005 dev_t device = inode->i_rdev;
2006 unsigned saved_flags = filp->f_flags;
2007
2008 nonseekable_open(inode, filp);
2009
2010 retry_open:
2011 retval = tty_alloc_file(filp);
2012 if (retval)
2013 return -ENOMEM;
2014
2015 noctty = filp->f_flags & O_NOCTTY;
2016 index = -1;
2017 retval = 0;
2018
2019 mutex_lock(&tty_mutex);
2020 /* This is protected by the tty_mutex */
2021 tty = tty_open_current_tty(device, filp);
2022 if (IS_ERR(tty)) {
2023 retval = PTR_ERR(tty);
2024 goto err_unlock;
2025 } else if (!tty) {
2026 driver = tty_lookup_driver(device, filp, &noctty, &index);
2027 if (IS_ERR(driver)) {
2028 retval = PTR_ERR(driver);
2029 goto err_unlock;
2030 }
2031
2032 /* check whether we're reopening an existing tty */
2033 tty = tty_driver_lookup_tty(driver, inode, index);
2034 if (IS_ERR(tty)) {
2035 retval = PTR_ERR(tty);
2036 goto err_unlock;
2037 }
2038 }
2039
2040 if (tty) {
2041 tty_lock(tty);
2042 retval = tty_reopen(tty);
2043 if (retval < 0) {
2044 tty_unlock(tty);
2045 tty = ERR_PTR(retval);
2046 }
2047 } else /* Returns with the tty_lock held for now */
2048 tty = tty_init_dev(driver, index);
2049
2050 mutex_unlock(&tty_mutex);
2051 if (driver)
2052 tty_driver_kref_put(driver);
2053 if (IS_ERR(tty)) {
2054 retval = PTR_ERR(tty);
2055 goto err_file;
2056 }
2057
2058 tty_add_file(tty, filp);
2059
2060 check_tty_count(tty, __func__);
2061 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2062 tty->driver->subtype == PTY_TYPE_MASTER)
2063 noctty = 1;
2064 #ifdef TTY_DEBUG_HANGUP
2065 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2066 #endif
2067 if (tty->ops->open)
2068 retval = tty->ops->open(tty, filp);
2069 else
2070 retval = -ENODEV;
2071 filp->f_flags = saved_flags;
2072
2073 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2074 !capable(CAP_SYS_ADMIN))
2075 retval = -EBUSY;
2076
2077 if (retval) {
2078 #ifdef TTY_DEBUG_HANGUP
2079 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2080 retval, tty->name);
2081 #endif
2082 tty_unlock(tty); /* need to call tty_release without BTM */
2083 tty_release(inode, filp);
2084 if (retval != -ERESTARTSYS)
2085 return retval;
2086
2087 if (signal_pending(current))
2088 return retval;
2089
2090 schedule();
2091 /*
2092 * Need to reset f_op in case a hangup happened.
2093 */
2094 if (filp->f_op == &hung_up_tty_fops)
2095 filp->f_op = &tty_fops;
2096 goto retry_open;
2097 }
2098 clear_bit(TTY_HUPPED, &tty->flags);
2099 tty_unlock(tty);
2100
2101
2102 mutex_lock(&tty_mutex);
2103 tty_lock(tty);
2104 spin_lock_irq(&current->sighand->siglock);
2105 if (!noctty &&
2106 current->signal->leader &&
2107 !current->signal->tty &&
2108 tty->session == NULL)
2109 __proc_set_tty(current, tty);
2110 spin_unlock_irq(&current->sighand->siglock);
2111 tty_unlock(tty);
2112 mutex_unlock(&tty_mutex);
2113 return 0;
2114 err_unlock:
2115 mutex_unlock(&tty_mutex);
2116 /* after locks to avoid deadlock */
2117 if (!IS_ERR_OR_NULL(driver))
2118 tty_driver_kref_put(driver);
2119 err_file:
2120 tty_free_file(filp);
2121 return retval;
2122 }
2123
2124
2125
2126 /**
2127 * tty_poll - check tty status
2128 * @filp: file being polled
2129 * @wait: poll wait structures to update
2130 *
2131 * Call the line discipline polling method to obtain the poll
2132 * status of the device.
2133 *
2134 * Locking: locks called line discipline but ldisc poll method
2135 * may be re-entered freely by other callers.
2136 */
2137
2138 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2139 {
2140 struct tty_struct *tty = file_tty(filp);
2141 struct tty_ldisc *ld;
2142 int ret = 0;
2143
2144 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2145 return 0;
2146
2147 ld = tty_ldisc_ref_wait(tty);
2148 if (ld->ops->poll)
2149 ret = (ld->ops->poll)(tty, filp, wait);
2150 tty_ldisc_deref(ld);
2151 return ret;
2152 }
2153
2154 static int __tty_fasync(int fd, struct file *filp, int on)
2155 {
2156 struct tty_struct *tty = file_tty(filp);
2157 struct tty_ldisc *ldisc;
2158 unsigned long flags;
2159 int retval = 0;
2160
2161 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2162 goto out;
2163
2164 retval = fasync_helper(fd, filp, on, &tty->fasync);
2165 if (retval <= 0)
2166 goto out;
2167
2168 ldisc = tty_ldisc_ref(tty);
2169 if (ldisc) {
2170 if (ldisc->ops->fasync)
2171 ldisc->ops->fasync(tty, on);
2172 tty_ldisc_deref(ldisc);
2173 }
2174
2175 if (on) {
2176 enum pid_type type;
2177 struct pid *pid;
2178
2179 spin_lock_irqsave(&tty->ctrl_lock, flags);
2180 if (tty->pgrp) {
2181 pid = tty->pgrp;
2182 type = PIDTYPE_PGID;
2183 } else {
2184 pid = task_pid(current);
2185 type = PIDTYPE_PID;
2186 }
2187 get_pid(pid);
2188 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2189 __f_setown(filp, pid, type, 0);
2190 put_pid(pid);
2191 retval = 0;
2192 }
2193 out:
2194 return retval;
2195 }
2196
2197 static int tty_fasync(int fd, struct file *filp, int on)
2198 {
2199 struct tty_struct *tty = file_tty(filp);
2200 int retval;
2201
2202 tty_lock(tty);
2203 retval = __tty_fasync(fd, filp, on);
2204 tty_unlock(tty);
2205
2206 return retval;
2207 }
2208
2209 /**
2210 * tiocsti - fake input character
2211 * @tty: tty to fake input into
2212 * @p: pointer to character
2213 *
2214 * Fake input to a tty device. Does the necessary locking and
2215 * input management.
2216 *
2217 * FIXME: does not honour flow control ??
2218 *
2219 * Locking:
2220 * Called functions take tty_ldiscs_lock
2221 * current->signal->tty check is safe without locks
2222 *
2223 * FIXME: may race normal receive processing
2224 */
2225
2226 static int tiocsti(struct tty_struct *tty, char __user *p)
2227 {
2228 char ch, mbz = 0;
2229 struct tty_ldisc *ld;
2230
2231 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2232 return -EPERM;
2233 if (get_user(ch, p))
2234 return -EFAULT;
2235 tty_audit_tiocsti(tty, ch);
2236 ld = tty_ldisc_ref_wait(tty);
2237 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2238 tty_ldisc_deref(ld);
2239 return 0;
2240 }
2241
2242 /**
2243 * tiocgwinsz - implement window query ioctl
2244 * @tty; tty
2245 * @arg: user buffer for result
2246 *
2247 * Copies the kernel idea of the window size into the user buffer.
2248 *
2249 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2250 * is consistent.
2251 */
2252
2253 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2254 {
2255 int err;
2256
2257 mutex_lock(&tty->winsize_mutex);
2258 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2259 mutex_unlock(&tty->winsize_mutex);
2260
2261 return err ? -EFAULT: 0;
2262 }
2263
2264 /**
2265 * tty_do_resize - resize event
2266 * @tty: tty being resized
2267 * @rows: rows (character)
2268 * @cols: cols (character)
2269 *
2270 * Update the termios variables and send the necessary signals to
2271 * peform a terminal resize correctly
2272 */
2273
2274 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2275 {
2276 struct pid *pgrp;
2277 unsigned long flags;
2278
2279 /* Lock the tty */
2280 mutex_lock(&tty->winsize_mutex);
2281 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2282 goto done;
2283 /* Get the PID values and reference them so we can
2284 avoid holding the tty ctrl lock while sending signals */
2285 spin_lock_irqsave(&tty->ctrl_lock, flags);
2286 pgrp = get_pid(tty->pgrp);
2287 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2288
2289 if (pgrp)
2290 kill_pgrp(pgrp, SIGWINCH, 1);
2291 put_pid(pgrp);
2292
2293 tty->winsize = *ws;
2294 done:
2295 mutex_unlock(&tty->winsize_mutex);
2296 return 0;
2297 }
2298 EXPORT_SYMBOL(tty_do_resize);
2299
2300 /**
2301 * tiocswinsz - implement window size set ioctl
2302 * @tty; tty side of tty
2303 * @arg: user buffer for result
2304 *
2305 * Copies the user idea of the window size to the kernel. Traditionally
2306 * this is just advisory information but for the Linux console it
2307 * actually has driver level meaning and triggers a VC resize.
2308 *
2309 * Locking:
2310 * Driver dependent. The default do_resize method takes the
2311 * tty termios mutex and ctrl_lock. The console takes its own lock
2312 * then calls into the default method.
2313 */
2314
2315 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2316 {
2317 struct winsize tmp_ws;
2318 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2319 return -EFAULT;
2320
2321 if (tty->ops->resize)
2322 return tty->ops->resize(tty, &tmp_ws);
2323 else
2324 return tty_do_resize(tty, &tmp_ws);
2325 }
2326
2327 /**
2328 * tioccons - allow admin to move logical console
2329 * @file: the file to become console
2330 *
2331 * Allow the administrator to move the redirected console device
2332 *
2333 * Locking: uses redirect_lock to guard the redirect information
2334 */
2335
2336 static int tioccons(struct file *file)
2337 {
2338 if (!capable(CAP_SYS_ADMIN))
2339 return -EPERM;
2340 if (file->f_op->write == redirected_tty_write) {
2341 struct file *f;
2342 spin_lock(&redirect_lock);
2343 f = redirect;
2344 redirect = NULL;
2345 spin_unlock(&redirect_lock);
2346 if (f)
2347 fput(f);
2348 return 0;
2349 }
2350 spin_lock(&redirect_lock);
2351 if (redirect) {
2352 spin_unlock(&redirect_lock);
2353 return -EBUSY;
2354 }
2355 redirect = get_file(file);
2356 spin_unlock(&redirect_lock);
2357 return 0;
2358 }
2359
2360 /**
2361 * fionbio - non blocking ioctl
2362 * @file: file to set blocking value
2363 * @p: user parameter
2364 *
2365 * Historical tty interfaces had a blocking control ioctl before
2366 * the generic functionality existed. This piece of history is preserved
2367 * in the expected tty API of posix OS's.
2368 *
2369 * Locking: none, the open file handle ensures it won't go away.
2370 */
2371
2372 static int fionbio(struct file *file, int __user *p)
2373 {
2374 int nonblock;
2375
2376 if (get_user(nonblock, p))
2377 return -EFAULT;
2378
2379 spin_lock(&file->f_lock);
2380 if (nonblock)
2381 file->f_flags |= O_NONBLOCK;
2382 else
2383 file->f_flags &= ~O_NONBLOCK;
2384 spin_unlock(&file->f_lock);
2385 return 0;
2386 }
2387
2388 /**
2389 * tiocsctty - set controlling tty
2390 * @tty: tty structure
2391 * @arg: user argument
2392 *
2393 * This ioctl is used to manage job control. It permits a session
2394 * leader to set this tty as the controlling tty for the session.
2395 *
2396 * Locking:
2397 * Takes tty_mutex() to protect tty instance
2398 * Takes tasklist_lock internally to walk sessions
2399 * Takes ->siglock() when updating signal->tty
2400 */
2401
2402 static int tiocsctty(struct tty_struct *tty, int arg)
2403 {
2404 int ret = 0;
2405 if (current->signal->leader && (task_session(current) == tty->session))
2406 return ret;
2407
2408 mutex_lock(&tty_mutex);
2409 /*
2410 * The process must be a session leader and
2411 * not have a controlling tty already.
2412 */
2413 if (!current->signal->leader || current->signal->tty) {
2414 ret = -EPERM;
2415 goto unlock;
2416 }
2417
2418 if (tty->session) {
2419 /*
2420 * This tty is already the controlling
2421 * tty for another session group!
2422 */
2423 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2424 /*
2425 * Steal it away
2426 */
2427 read_lock(&tasklist_lock);
2428 session_clear_tty(tty->session);
2429 read_unlock(&tasklist_lock);
2430 } else {
2431 ret = -EPERM;
2432 goto unlock;
2433 }
2434 }
2435 proc_set_tty(current, tty);
2436 unlock:
2437 mutex_unlock(&tty_mutex);
2438 return ret;
2439 }
2440
2441 /**
2442 * tty_get_pgrp - return a ref counted pgrp pid
2443 * @tty: tty to read
2444 *
2445 * Returns a refcounted instance of the pid struct for the process
2446 * group controlling the tty.
2447 */
2448
2449 struct pid *tty_get_pgrp(struct tty_struct *tty)
2450 {
2451 unsigned long flags;
2452 struct pid *pgrp;
2453
2454 spin_lock_irqsave(&tty->ctrl_lock, flags);
2455 pgrp = get_pid(tty->pgrp);
2456 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2457
2458 return pgrp;
2459 }
2460 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2461
2462 /**
2463 * tiocgpgrp - get process group
2464 * @tty: tty passed by user
2465 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2466 * @p: returned pid
2467 *
2468 * Obtain the process group of the tty. If there is no process group
2469 * return an error.
2470 *
2471 * Locking: none. Reference to current->signal->tty is safe.
2472 */
2473
2474 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2475 {
2476 struct pid *pid;
2477 int ret;
2478 /*
2479 * (tty == real_tty) is a cheap way of
2480 * testing if the tty is NOT a master pty.
2481 */
2482 if (tty == real_tty && current->signal->tty != real_tty)
2483 return -ENOTTY;
2484 pid = tty_get_pgrp(real_tty);
2485 ret = put_user(pid_vnr(pid), p);
2486 put_pid(pid);
2487 return ret;
2488 }
2489
2490 /**
2491 * tiocspgrp - attempt to set process group
2492 * @tty: tty passed by user
2493 * @real_tty: tty side device matching tty passed by user
2494 * @p: pid pointer
2495 *
2496 * Set the process group of the tty to the session passed. Only
2497 * permitted where the tty session is our session.
2498 *
2499 * Locking: RCU, ctrl lock
2500 */
2501
2502 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2503 {
2504 struct pid *pgrp;
2505 pid_t pgrp_nr;
2506 int retval = tty_check_change(real_tty);
2507 unsigned long flags;
2508
2509 if (retval == -EIO)
2510 return -ENOTTY;
2511 if (retval)
2512 return retval;
2513 if (!current->signal->tty ||
2514 (current->signal->tty != real_tty) ||
2515 (real_tty->session != task_session(current)))
2516 return -ENOTTY;
2517 if (get_user(pgrp_nr, p))
2518 return -EFAULT;
2519 if (pgrp_nr < 0)
2520 return -EINVAL;
2521 rcu_read_lock();
2522 pgrp = find_vpid(pgrp_nr);
2523 retval = -ESRCH;
2524 if (!pgrp)
2525 goto out_unlock;
2526 retval = -EPERM;
2527 if (session_of_pgrp(pgrp) != task_session(current))
2528 goto out_unlock;
2529 retval = 0;
2530 spin_lock_irqsave(&tty->ctrl_lock, flags);
2531 put_pid(real_tty->pgrp);
2532 real_tty->pgrp = get_pid(pgrp);
2533 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2534 out_unlock:
2535 rcu_read_unlock();
2536 return retval;
2537 }
2538
2539 /**
2540 * tiocgsid - get session id
2541 * @tty: tty passed by user
2542 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2543 * @p: pointer to returned session id
2544 *
2545 * Obtain the session id of the tty. If there is no session
2546 * return an error.
2547 *
2548 * Locking: none. Reference to current->signal->tty is safe.
2549 */
2550
2551 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2552 {
2553 /*
2554 * (tty == real_tty) is a cheap way of
2555 * testing if the tty is NOT a master pty.
2556 */
2557 if (tty == real_tty && current->signal->tty != real_tty)
2558 return -ENOTTY;
2559 if (!real_tty->session)
2560 return -ENOTTY;
2561 return put_user(pid_vnr(real_tty->session), p);
2562 }
2563
2564 /**
2565 * tiocsetd - set line discipline
2566 * @tty: tty device
2567 * @p: pointer to user data
2568 *
2569 * Set the line discipline according to user request.
2570 *
2571 * Locking: see tty_set_ldisc, this function is just a helper
2572 */
2573
2574 static int tiocsetd(struct tty_struct *tty, int __user *p)
2575 {
2576 int ldisc;
2577 int ret;
2578
2579 if (get_user(ldisc, p))
2580 return -EFAULT;
2581
2582 ret = tty_set_ldisc(tty, ldisc);
2583
2584 return ret;
2585 }
2586
2587 /**
2588 * send_break - performed time break
2589 * @tty: device to break on
2590 * @duration: timeout in mS
2591 *
2592 * Perform a timed break on hardware that lacks its own driver level
2593 * timed break functionality.
2594 *
2595 * Locking:
2596 * atomic_write_lock serializes
2597 *
2598 */
2599
2600 static int send_break(struct tty_struct *tty, unsigned int duration)
2601 {
2602 int retval;
2603
2604 if (tty->ops->break_ctl == NULL)
2605 return 0;
2606
2607 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2608 retval = tty->ops->break_ctl(tty, duration);
2609 else {
2610 /* Do the work ourselves */
2611 if (tty_write_lock(tty, 0) < 0)
2612 return -EINTR;
2613 retval = tty->ops->break_ctl(tty, -1);
2614 if (retval)
2615 goto out;
2616 if (!signal_pending(current))
2617 msleep_interruptible(duration);
2618 retval = tty->ops->break_ctl(tty, 0);
2619 out:
2620 tty_write_unlock(tty);
2621 if (signal_pending(current))
2622 retval = -EINTR;
2623 }
2624 return retval;
2625 }
2626
2627 /**
2628 * tty_tiocmget - get modem status
2629 * @tty: tty device
2630 * @file: user file pointer
2631 * @p: pointer to result
2632 *
2633 * Obtain the modem status bits from the tty driver if the feature
2634 * is supported. Return -EINVAL if it is not available.
2635 *
2636 * Locking: none (up to the driver)
2637 */
2638
2639 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2640 {
2641 int retval = -EINVAL;
2642
2643 if (tty->ops->tiocmget) {
2644 retval = tty->ops->tiocmget(tty);
2645
2646 if (retval >= 0)
2647 retval = put_user(retval, p);
2648 }
2649 return retval;
2650 }
2651
2652 /**
2653 * tty_tiocmset - set modem status
2654 * @tty: tty device
2655 * @cmd: command - clear bits, set bits or set all
2656 * @p: pointer to desired bits
2657 *
2658 * Set the modem status bits from the tty driver if the feature
2659 * is supported. Return -EINVAL if it is not available.
2660 *
2661 * Locking: none (up to the driver)
2662 */
2663
2664 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2665 unsigned __user *p)
2666 {
2667 int retval;
2668 unsigned int set, clear, val;
2669
2670 if (tty->ops->tiocmset == NULL)
2671 return -EINVAL;
2672
2673 retval = get_user(val, p);
2674 if (retval)
2675 return retval;
2676 set = clear = 0;
2677 switch (cmd) {
2678 case TIOCMBIS:
2679 set = val;
2680 break;
2681 case TIOCMBIC:
2682 clear = val;
2683 break;
2684 case TIOCMSET:
2685 set = val;
2686 clear = ~val;
2687 break;
2688 }
2689 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2690 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2691 return tty->ops->tiocmset(tty, set, clear);
2692 }
2693
2694 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2695 {
2696 int retval = -EINVAL;
2697 struct serial_icounter_struct icount;
2698 memset(&icount, 0, sizeof(icount));
2699 if (tty->ops->get_icount)
2700 retval = tty->ops->get_icount(tty, &icount);
2701 if (retval != 0)
2702 return retval;
2703 if (copy_to_user(arg, &icount, sizeof(icount)))
2704 return -EFAULT;
2705 return 0;
2706 }
2707
2708 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2709 {
2710 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711 tty->driver->subtype == PTY_TYPE_MASTER)
2712 tty = tty->link;
2713 return tty;
2714 }
2715 EXPORT_SYMBOL(tty_pair_get_tty);
2716
2717 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2718 {
2719 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2720 tty->driver->subtype == PTY_TYPE_MASTER)
2721 return tty;
2722 return tty->link;
2723 }
2724 EXPORT_SYMBOL(tty_pair_get_pty);
2725
2726 /*
2727 * Split this up, as gcc can choke on it otherwise..
2728 */
2729 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2730 {
2731 struct tty_struct *tty = file_tty(file);
2732 struct tty_struct *real_tty;
2733 void __user *p = (void __user *)arg;
2734 int retval;
2735 struct tty_ldisc *ld;
2736
2737 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2738 return -EINVAL;
2739
2740 real_tty = tty_pair_get_tty(tty);
2741
2742 /*
2743 * Factor out some common prep work
2744 */
2745 switch (cmd) {
2746 case TIOCSETD:
2747 case TIOCSBRK:
2748 case TIOCCBRK:
2749 case TCSBRK:
2750 case TCSBRKP:
2751 retval = tty_check_change(tty);
2752 if (retval)
2753 return retval;
2754 if (cmd != TIOCCBRK) {
2755 tty_wait_until_sent(tty, 0);
2756 if (signal_pending(current))
2757 return -EINTR;
2758 }
2759 break;
2760 }
2761
2762 /*
2763 * Now do the stuff.
2764 */
2765 switch (cmd) {
2766 case TIOCSTI:
2767 return tiocsti(tty, p);
2768 case TIOCGWINSZ:
2769 return tiocgwinsz(real_tty, p);
2770 case TIOCSWINSZ:
2771 return tiocswinsz(real_tty, p);
2772 case TIOCCONS:
2773 return real_tty != tty ? -EINVAL : tioccons(file);
2774 case FIONBIO:
2775 return fionbio(file, p);
2776 case TIOCEXCL:
2777 set_bit(TTY_EXCLUSIVE, &tty->flags);
2778 return 0;
2779 case TIOCNXCL:
2780 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2781 return 0;
2782 case TIOCGEXCL:
2783 {
2784 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2785 return put_user(excl, (int __user *)p);
2786 }
2787 case TIOCNOTTY:
2788 if (current->signal->tty != tty)
2789 return -ENOTTY;
2790 no_tty();
2791 return 0;
2792 case TIOCSCTTY:
2793 return tiocsctty(tty, arg);
2794 case TIOCGPGRP:
2795 return tiocgpgrp(tty, real_tty, p);
2796 case TIOCSPGRP:
2797 return tiocspgrp(tty, real_tty, p);
2798 case TIOCGSID:
2799 return tiocgsid(tty, real_tty, p);
2800 case TIOCGETD:
2801 return put_user(tty->ldisc->ops->num, (int __user *)p);
2802 case TIOCSETD:
2803 return tiocsetd(tty, p);
2804 case TIOCVHANGUP:
2805 if (!capable(CAP_SYS_ADMIN))
2806 return -EPERM;
2807 tty_vhangup(tty);
2808 return 0;
2809 case TIOCGDEV:
2810 {
2811 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2812 return put_user(ret, (unsigned int __user *)p);
2813 }
2814 /*
2815 * Break handling
2816 */
2817 case TIOCSBRK: /* Turn break on, unconditionally */
2818 if (tty->ops->break_ctl)
2819 return tty->ops->break_ctl(tty, -1);
2820 return 0;
2821 case TIOCCBRK: /* Turn break off, unconditionally */
2822 if (tty->ops->break_ctl)
2823 return tty->ops->break_ctl(tty, 0);
2824 return 0;
2825 case TCSBRK: /* SVID version: non-zero arg --> no break */
2826 /* non-zero arg means wait for all output data
2827 * to be sent (performed above) but don't send break.
2828 * This is used by the tcdrain() termios function.
2829 */
2830 if (!arg)
2831 return send_break(tty, 250);
2832 return 0;
2833 case TCSBRKP: /* support for POSIX tcsendbreak() */
2834 return send_break(tty, arg ? arg*100 : 250);
2835
2836 case TIOCMGET:
2837 return tty_tiocmget(tty, p);
2838 case TIOCMSET:
2839 case TIOCMBIC:
2840 case TIOCMBIS:
2841 return tty_tiocmset(tty, cmd, p);
2842 case TIOCGICOUNT:
2843 retval = tty_tiocgicount(tty, p);
2844 /* For the moment allow fall through to the old method */
2845 if (retval != -EINVAL)
2846 return retval;
2847 break;
2848 case TCFLSH:
2849 switch (arg) {
2850 case TCIFLUSH:
2851 case TCIOFLUSH:
2852 /* flush tty buffer and allow ldisc to process ioctl */
2853 tty_buffer_flush(tty);
2854 break;
2855 }
2856 break;
2857 }
2858 if (tty->ops->ioctl) {
2859 retval = (tty->ops->ioctl)(tty, cmd, arg);
2860 if (retval != -ENOIOCTLCMD)
2861 return retval;
2862 }
2863 ld = tty_ldisc_ref_wait(tty);
2864 retval = -EINVAL;
2865 if (ld->ops->ioctl) {
2866 retval = ld->ops->ioctl(tty, file, cmd, arg);
2867 if (retval == -ENOIOCTLCMD)
2868 retval = -ENOTTY;
2869 }
2870 tty_ldisc_deref(ld);
2871 return retval;
2872 }
2873
2874 #ifdef CONFIG_COMPAT
2875 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2876 unsigned long arg)
2877 {
2878 struct tty_struct *tty = file_tty(file);
2879 struct tty_ldisc *ld;
2880 int retval = -ENOIOCTLCMD;
2881
2882 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2883 return -EINVAL;
2884
2885 if (tty->ops->compat_ioctl) {
2886 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2887 if (retval != -ENOIOCTLCMD)
2888 return retval;
2889 }
2890
2891 ld = tty_ldisc_ref_wait(tty);
2892 if (ld->ops->compat_ioctl)
2893 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2894 else
2895 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2896 tty_ldisc_deref(ld);
2897
2898 return retval;
2899 }
2900 #endif
2901
2902 static int this_tty(const void *t, struct file *file, unsigned fd)
2903 {
2904 if (likely(file->f_op->read != tty_read))
2905 return 0;
2906 return file_tty(file) != t ? 0 : fd + 1;
2907 }
2908
2909 /*
2910 * This implements the "Secure Attention Key" --- the idea is to
2911 * prevent trojan horses by killing all processes associated with this
2912 * tty when the user hits the "Secure Attention Key". Required for
2913 * super-paranoid applications --- see the Orange Book for more details.
2914 *
2915 * This code could be nicer; ideally it should send a HUP, wait a few
2916 * seconds, then send a INT, and then a KILL signal. But you then
2917 * have to coordinate with the init process, since all processes associated
2918 * with the current tty must be dead before the new getty is allowed
2919 * to spawn.
2920 *
2921 * Now, if it would be correct ;-/ The current code has a nasty hole -
2922 * it doesn't catch files in flight. We may send the descriptor to ourselves
2923 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2924 *
2925 * Nasty bug: do_SAK is being called in interrupt context. This can
2926 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2927 */
2928 void __do_SAK(struct tty_struct *tty)
2929 {
2930 #ifdef TTY_SOFT_SAK
2931 tty_hangup(tty);
2932 #else
2933 struct task_struct *g, *p;
2934 struct pid *session;
2935 int i;
2936
2937 if (!tty)
2938 return;
2939 session = tty->session;
2940
2941 tty_ldisc_flush(tty);
2942
2943 tty_driver_flush_buffer(tty);
2944
2945 read_lock(&tasklist_lock);
2946 /* Kill the entire session */
2947 do_each_pid_task(session, PIDTYPE_SID, p) {
2948 printk(KERN_NOTICE "SAK: killed process %d"
2949 " (%s): task_session(p)==tty->session\n",
2950 task_pid_nr(p), p->comm);
2951 send_sig(SIGKILL, p, 1);
2952 } while_each_pid_task(session, PIDTYPE_SID, p);
2953 /* Now kill any processes that happen to have the
2954 * tty open.
2955 */
2956 do_each_thread(g, p) {
2957 if (p->signal->tty == tty) {
2958 printk(KERN_NOTICE "SAK: killed process %d"
2959 " (%s): task_session(p)==tty->session\n",
2960 task_pid_nr(p), p->comm);
2961 send_sig(SIGKILL, p, 1);
2962 continue;
2963 }
2964 task_lock(p);
2965 i = iterate_fd(p->files, 0, this_tty, tty);
2966 if (i != 0) {
2967 printk(KERN_NOTICE "SAK: killed process %d"
2968 " (%s): fd#%d opened to the tty\n",
2969 task_pid_nr(p), p->comm, i - 1);
2970 force_sig(SIGKILL, p);
2971 }
2972 task_unlock(p);
2973 } while_each_thread(g, p);
2974 read_unlock(&tasklist_lock);
2975 #endif
2976 }
2977
2978 static void do_SAK_work(struct work_struct *work)
2979 {
2980 struct tty_struct *tty =
2981 container_of(work, struct tty_struct, SAK_work);
2982 __do_SAK(tty);
2983 }
2984
2985 /*
2986 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2987 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2988 * the values which we write to it will be identical to the values which it
2989 * already has. --akpm
2990 */
2991 void do_SAK(struct tty_struct *tty)
2992 {
2993 if (!tty)
2994 return;
2995 schedule_work(&tty->SAK_work);
2996 }
2997
2998 EXPORT_SYMBOL(do_SAK);
2999
3000 static int dev_match_devt(struct device *dev, const void *data)
3001 {
3002 const dev_t *devt = data;
3003 return dev->devt == *devt;
3004 }
3005
3006 /* Must put_device() after it's unused! */
3007 static struct device *tty_get_device(struct tty_struct *tty)
3008 {
3009 dev_t devt = tty_devnum(tty);
3010 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3011 }
3012
3013
3014 /**
3015 * alloc_tty_struct
3016 *
3017 * This subroutine allocates and initializes a tty structure.
3018 *
3019 * Locking: none - tty in question is not exposed at this point
3020 */
3021
3022 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3023 {
3024 struct tty_struct *tty;
3025
3026 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3027 if (!tty)
3028 return NULL;
3029
3030 kref_init(&tty->kref);
3031 tty->magic = TTY_MAGIC;
3032 tty_ldisc_init(tty);
3033 tty->session = NULL;
3034 tty->pgrp = NULL;
3035 mutex_init(&tty->legacy_mutex);
3036 mutex_init(&tty->throttle_mutex);
3037 init_rwsem(&tty->termios_rwsem);
3038 mutex_init(&tty->winsize_mutex);
3039 init_ldsem(&tty->ldisc_sem);
3040 init_waitqueue_head(&tty->write_wait);
3041 init_waitqueue_head(&tty->read_wait);
3042 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3043 mutex_init(&tty->atomic_write_lock);
3044 spin_lock_init(&tty->ctrl_lock);
3045 spin_lock_init(&tty->flow_lock);
3046 INIT_LIST_HEAD(&tty->tty_files);
3047 INIT_WORK(&tty->SAK_work, do_SAK_work);
3048
3049 tty->driver = driver;
3050 tty->ops = driver->ops;
3051 tty->index = idx;
3052 tty_line_name(driver, idx, tty->name);
3053 tty->dev = tty_get_device(tty);
3054
3055 return tty;
3056 }
3057
3058 /**
3059 * deinitialize_tty_struct
3060 * @tty: tty to deinitialize
3061 *
3062 * This subroutine deinitializes a tty structure that has been newly
3063 * allocated but tty_release cannot be called on that yet.
3064 *
3065 * Locking: none - tty in question must not be exposed at this point
3066 */
3067 void deinitialize_tty_struct(struct tty_struct *tty)
3068 {
3069 tty_ldisc_deinit(tty);
3070 }
3071
3072 /**
3073 * tty_put_char - write one character to a tty
3074 * @tty: tty
3075 * @ch: character
3076 *
3077 * Write one byte to the tty using the provided put_char method
3078 * if present. Returns the number of characters successfully output.
3079 *
3080 * Note: the specific put_char operation in the driver layer may go
3081 * away soon. Don't call it directly, use this method
3082 */
3083
3084 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3085 {
3086 if (tty->ops->put_char)
3087 return tty->ops->put_char(tty, ch);
3088 return tty->ops->write(tty, &ch, 1);
3089 }
3090 EXPORT_SYMBOL_GPL(tty_put_char);
3091
3092 struct class *tty_class;
3093
3094 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3095 unsigned int index, unsigned int count)
3096 {
3097 /* init here, since reused cdevs cause crashes */
3098 cdev_init(&driver->cdevs[index], &tty_fops);
3099 driver->cdevs[index].owner = driver->owner;
3100 return cdev_add(&driver->cdevs[index], dev, count);
3101 }
3102
3103 /**
3104 * tty_register_device - register a tty device
3105 * @driver: the tty driver that describes the tty device
3106 * @index: the index in the tty driver for this tty device
3107 * @device: a struct device that is associated with this tty device.
3108 * This field is optional, if there is no known struct device
3109 * for this tty device it can be set to NULL safely.
3110 *
3111 * Returns a pointer to the struct device for this tty device
3112 * (or ERR_PTR(-EFOO) on error).
3113 *
3114 * This call is required to be made to register an individual tty device
3115 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3116 * that bit is not set, this function should not be called by a tty
3117 * driver.
3118 *
3119 * Locking: ??
3120 */
3121
3122 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3123 struct device *device)
3124 {
3125 return tty_register_device_attr(driver, index, device, NULL, NULL);
3126 }
3127 EXPORT_SYMBOL(tty_register_device);
3128
3129 static void tty_device_create_release(struct device *dev)
3130 {
3131 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3132 kfree(dev);
3133 }
3134
3135 /**
3136 * tty_register_device_attr - register a tty device
3137 * @driver: the tty driver that describes the tty device
3138 * @index: the index in the tty driver for this tty device
3139 * @device: a struct device that is associated with this tty device.
3140 * This field is optional, if there is no known struct device
3141 * for this tty device it can be set to NULL safely.
3142 * @drvdata: Driver data to be set to device.
3143 * @attr_grp: Attribute group to be set on device.
3144 *
3145 * Returns a pointer to the struct device for this tty device
3146 * (or ERR_PTR(-EFOO) on error).
3147 *
3148 * This call is required to be made to register an individual tty device
3149 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3150 * that bit is not set, this function should not be called by a tty
3151 * driver.
3152 *
3153 * Locking: ??
3154 */
3155 struct device *tty_register_device_attr(struct tty_driver *driver,
3156 unsigned index, struct device *device,
3157 void *drvdata,
3158 const struct attribute_group **attr_grp)
3159 {
3160 char name[64];
3161 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3162 struct device *dev = NULL;
3163 int retval = -ENODEV;
3164 bool cdev = false;
3165
3166 if (index >= driver->num) {
3167 printk(KERN_ERR "Attempt to register invalid tty line number "
3168 " (%d).\n", index);
3169 return ERR_PTR(-EINVAL);
3170 }
3171
3172 if (driver->type == TTY_DRIVER_TYPE_PTY)
3173 pty_line_name(driver, index, name);
3174 else
3175 tty_line_name(driver, index, name);
3176
3177 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3178 retval = tty_cdev_add(driver, devt, index, 1);
3179 if (retval)
3180 goto error;
3181 cdev = true;
3182 }
3183
3184 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3185 if (!dev) {
3186 retval = -ENOMEM;
3187 goto error;
3188 }
3189
3190 dev->devt = devt;
3191 dev->class = tty_class;
3192 dev->parent = device;
3193 dev->release = tty_device_create_release;
3194 dev_set_name(dev, "%s", name);
3195 dev->groups = attr_grp;
3196 dev_set_drvdata(dev, drvdata);
3197
3198 retval = device_register(dev);
3199 if (retval)
3200 goto error;
3201
3202 return dev;
3203
3204 error:
3205 put_device(dev);
3206 if (cdev)
3207 cdev_del(&driver->cdevs[index]);
3208 return ERR_PTR(retval);
3209 }
3210 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3211
3212 /**
3213 * tty_unregister_device - unregister a tty device
3214 * @driver: the tty driver that describes the tty device
3215 * @index: the index in the tty driver for this tty device
3216 *
3217 * If a tty device is registered with a call to tty_register_device() then
3218 * this function must be called when the tty device is gone.
3219 *
3220 * Locking: ??
3221 */
3222
3223 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3224 {
3225 device_destroy(tty_class,
3226 MKDEV(driver->major, driver->minor_start) + index);
3227 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3228 cdev_del(&driver->cdevs[index]);
3229 }
3230 EXPORT_SYMBOL(tty_unregister_device);
3231
3232 /**
3233 * __tty_alloc_driver -- allocate tty driver
3234 * @lines: count of lines this driver can handle at most
3235 * @owner: module which is repsonsible for this driver
3236 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3237 *
3238 * This should not be called directly, some of the provided macros should be
3239 * used instead. Use IS_ERR and friends on @retval.
3240 */
3241 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3242 unsigned long flags)
3243 {
3244 struct tty_driver *driver;
3245 unsigned int cdevs = 1;
3246 int err;
3247
3248 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3249 return ERR_PTR(-EINVAL);
3250
3251 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3252 if (!driver)
3253 return ERR_PTR(-ENOMEM);
3254
3255 kref_init(&driver->kref);
3256 driver->magic = TTY_DRIVER_MAGIC;
3257 driver->num = lines;
3258 driver->owner = owner;
3259 driver->flags = flags;
3260
3261 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3262 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3263 GFP_KERNEL);
3264 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3265 GFP_KERNEL);
3266 if (!driver->ttys || !driver->termios) {
3267 err = -ENOMEM;
3268 goto err_free_all;
3269 }
3270 }
3271
3272 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3273 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3274 GFP_KERNEL);
3275 if (!driver->ports) {
3276 err = -ENOMEM;
3277 goto err_free_all;
3278 }
3279 cdevs = lines;
3280 }
3281
3282 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3283 if (!driver->cdevs) {
3284 err = -ENOMEM;
3285 goto err_free_all;
3286 }
3287
3288 return driver;
3289 err_free_all:
3290 kfree(driver->ports);
3291 kfree(driver->ttys);
3292 kfree(driver->termios);
3293 kfree(driver);
3294 return ERR_PTR(err);
3295 }
3296 EXPORT_SYMBOL(__tty_alloc_driver);
3297
3298 static void destruct_tty_driver(struct kref *kref)
3299 {
3300 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3301 int i;
3302 struct ktermios *tp;
3303
3304 if (driver->flags & TTY_DRIVER_INSTALLED) {
3305 /*
3306 * Free the termios and termios_locked structures because
3307 * we don't want to get memory leaks when modular tty
3308 * drivers are removed from the kernel.
3309 */
3310 for (i = 0; i < driver->num; i++) {
3311 tp = driver->termios[i];
3312 if (tp) {
3313 driver->termios[i] = NULL;
3314 kfree(tp);
3315 }
3316 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3317 tty_unregister_device(driver, i);
3318 }
3319 proc_tty_unregister_driver(driver);
3320 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3321 cdev_del(&driver->cdevs[0]);
3322 }
3323 kfree(driver->cdevs);
3324 kfree(driver->ports);
3325 kfree(driver->termios);
3326 kfree(driver->ttys);
3327 kfree(driver);
3328 }
3329
3330 void tty_driver_kref_put(struct tty_driver *driver)
3331 {
3332 kref_put(&driver->kref, destruct_tty_driver);
3333 }
3334 EXPORT_SYMBOL(tty_driver_kref_put);
3335
3336 void tty_set_operations(struct tty_driver *driver,
3337 const struct tty_operations *op)
3338 {
3339 driver->ops = op;
3340 };
3341 EXPORT_SYMBOL(tty_set_operations);
3342
3343 void put_tty_driver(struct tty_driver *d)
3344 {
3345 tty_driver_kref_put(d);
3346 }
3347 EXPORT_SYMBOL(put_tty_driver);
3348
3349 /*
3350 * Called by a tty driver to register itself.
3351 */
3352 int tty_register_driver(struct tty_driver *driver)
3353 {
3354 int error;
3355 int i;
3356 dev_t dev;
3357 struct device *d;
3358
3359 if (!driver->major) {
3360 error = alloc_chrdev_region(&dev, driver->minor_start,
3361 driver->num, driver->name);
3362 if (!error) {
3363 driver->major = MAJOR(dev);
3364 driver->minor_start = MINOR(dev);
3365 }
3366 } else {
3367 dev = MKDEV(driver->major, driver->minor_start);
3368 error = register_chrdev_region(dev, driver->num, driver->name);
3369 }
3370 if (error < 0)
3371 goto err;
3372
3373 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3374 error = tty_cdev_add(driver, dev, 0, driver->num);
3375 if (error)
3376 goto err_unreg_char;
3377 }
3378
3379 mutex_lock(&tty_mutex);
3380 list_add(&driver->tty_drivers, &tty_drivers);
3381 mutex_unlock(&tty_mutex);
3382
3383 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3384 for (i = 0; i < driver->num; i++) {
3385 d = tty_register_device(driver, i, NULL);
3386 if (IS_ERR(d)) {
3387 error = PTR_ERR(d);
3388 goto err_unreg_devs;
3389 }
3390 }
3391 }
3392 proc_tty_register_driver(driver);
3393 driver->flags |= TTY_DRIVER_INSTALLED;
3394 return 0;
3395
3396 err_unreg_devs:
3397 for (i--; i >= 0; i--)
3398 tty_unregister_device(driver, i);
3399
3400 mutex_lock(&tty_mutex);
3401 list_del(&driver->tty_drivers);
3402 mutex_unlock(&tty_mutex);
3403
3404 err_unreg_char:
3405 unregister_chrdev_region(dev, driver->num);
3406 err:
3407 return error;
3408 }
3409 EXPORT_SYMBOL(tty_register_driver);
3410
3411 /*
3412 * Called by a tty driver to unregister itself.
3413 */
3414 int tty_unregister_driver(struct tty_driver *driver)
3415 {
3416 #if 0
3417 /* FIXME */
3418 if (driver->refcount)
3419 return -EBUSY;
3420 #endif
3421 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3422 driver->num);
3423 mutex_lock(&tty_mutex);
3424 list_del(&driver->tty_drivers);
3425 mutex_unlock(&tty_mutex);
3426 return 0;
3427 }
3428
3429 EXPORT_SYMBOL(tty_unregister_driver);
3430
3431 dev_t tty_devnum(struct tty_struct *tty)
3432 {
3433 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3434 }
3435 EXPORT_SYMBOL(tty_devnum);
3436
3437 void proc_clear_tty(struct task_struct *p)
3438 {
3439 unsigned long flags;
3440 struct tty_struct *tty;
3441 spin_lock_irqsave(&p->sighand->siglock, flags);
3442 tty = p->signal->tty;
3443 p->signal->tty = NULL;
3444 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3445 tty_kref_put(tty);
3446 }
3447
3448 /* Called under the sighand lock */
3449
3450 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3451 {
3452 if (tty) {
3453 unsigned long flags;
3454 /* We should not have a session or pgrp to put here but.... */
3455 spin_lock_irqsave(&tty->ctrl_lock, flags);
3456 put_pid(tty->session);
3457 put_pid(tty->pgrp);
3458 tty->pgrp = get_pid(task_pgrp(tsk));
3459 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3460 tty->session = get_pid(task_session(tsk));
3461 if (tsk->signal->tty) {
3462 printk(KERN_DEBUG "tty not NULL!!\n");
3463 tty_kref_put(tsk->signal->tty);
3464 }
3465 }
3466 put_pid(tsk->signal->tty_old_pgrp);
3467 tsk->signal->tty = tty_kref_get(tty);
3468 tsk->signal->tty_old_pgrp = NULL;
3469 }
3470
3471 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3472 {
3473 spin_lock_irq(&tsk->sighand->siglock);
3474 __proc_set_tty(tsk, tty);
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476 }
3477
3478 struct tty_struct *get_current_tty(void)
3479 {
3480 struct tty_struct *tty;
3481 unsigned long flags;
3482
3483 spin_lock_irqsave(&current->sighand->siglock, flags);
3484 tty = tty_kref_get(current->signal->tty);
3485 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3486 return tty;
3487 }
3488 EXPORT_SYMBOL_GPL(get_current_tty);
3489
3490 void tty_default_fops(struct file_operations *fops)
3491 {
3492 *fops = tty_fops;
3493 }
3494
3495 /*
3496 * Initialize the console device. This is called *early*, so
3497 * we can't necessarily depend on lots of kernel help here.
3498 * Just do some early initializations, and do the complex setup
3499 * later.
3500 */
3501 void __init console_init(void)
3502 {
3503 initcall_t *call;
3504
3505 /* Setup the default TTY line discipline. */
3506 tty_ldisc_begin();
3507
3508 /*
3509 * set up the console device so that later boot sequences can
3510 * inform about problems etc..
3511 */
3512 call = __con_initcall_start;
3513 while (call < __con_initcall_end) {
3514 (*call)();
3515 call++;
3516 }
3517 }
3518
3519 static char *tty_devnode(struct device *dev, umode_t *mode)
3520 {
3521 if (!mode)
3522 return NULL;
3523 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3524 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3525 *mode = 0666;
3526 return NULL;
3527 }
3528
3529 static int __init tty_class_init(void)
3530 {
3531 tty_class = class_create(THIS_MODULE, "tty");
3532 if (IS_ERR(tty_class))
3533 return PTR_ERR(tty_class);
3534 tty_class->devnode = tty_devnode;
3535 return 0;
3536 }
3537
3538 postcore_initcall(tty_class_init);
3539
3540 /* 3/2004 jmc: why do these devices exist? */
3541 static struct cdev tty_cdev, console_cdev;
3542
3543 static ssize_t show_cons_active(struct device *dev,
3544 struct device_attribute *attr, char *buf)
3545 {
3546 struct console *cs[16];
3547 int i = 0;
3548 struct console *c;
3549 ssize_t count = 0;
3550
3551 console_lock();
3552 for_each_console(c) {
3553 if (!c->device)
3554 continue;
3555 if (!c->write)
3556 continue;
3557 if ((c->flags & CON_ENABLED) == 0)
3558 continue;
3559 cs[i++] = c;
3560 if (i >= ARRAY_SIZE(cs))
3561 break;
3562 }
3563 while (i--) {
3564 int index = cs[i]->index;
3565 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3566
3567 /* don't resolve tty0 as some programs depend on it */
3568 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3569 count += tty_line_name(drv, index, buf + count);
3570 else
3571 count += sprintf(buf + count, "%s%d",
3572 cs[i]->name, cs[i]->index);
3573
3574 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3575 }
3576 console_unlock();
3577
3578 return count;
3579 }
3580 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3581
3582 static struct device *consdev;
3583
3584 void console_sysfs_notify(void)
3585 {
3586 if (consdev)
3587 sysfs_notify(&consdev->kobj, NULL, "active");
3588 }
3589
3590 /*
3591 * Ok, now we can initialize the rest of the tty devices and can count
3592 * on memory allocations, interrupts etc..
3593 */
3594 int __init tty_init(void)
3595 {
3596 cdev_init(&tty_cdev, &tty_fops);
3597 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3598 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3599 panic("Couldn't register /dev/tty driver\n");
3600 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3601
3602 cdev_init(&console_cdev, &console_fops);
3603 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3604 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3605 panic("Couldn't register /dev/console driver\n");
3606 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3607 "console");
3608 if (IS_ERR(consdev))
3609 consdev = NULL;
3610 else
3611 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3612
3613 #ifdef CONFIG_VT
3614 vty_init(&console_fops);
3615 #endif
3616 return 0;
3617 }
3618