]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/usb/core/hcd.c
Merge branch 'WIP.x86/boot' into x86/boot, to pick up ready branch
[mirror_ubuntu-focal-kernel.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50
51 #include "usb.h"
52
53
54 /*-------------------------------------------------------------------------*/
55
56 /*
57 * USB Host Controller Driver framework
58 *
59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60 * HCD-specific behaviors/bugs.
61 *
62 * This does error checks, tracks devices and urbs, and delegates to a
63 * "hc_driver" only for code (and data) that really needs to know about
64 * hardware differences. That includes root hub registers, i/o queues,
65 * and so on ... but as little else as possible.
66 *
67 * Shared code includes most of the "root hub" code (these are emulated,
68 * though each HC's hardware works differently) and PCI glue, plus request
69 * tracking overhead. The HCD code should only block on spinlocks or on
70 * hardware handshaking; blocking on software events (such as other kernel
71 * threads releasing resources, or completing actions) is all generic.
72 *
73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75 * only by the hub driver ... and that neither should be seen or used by
76 * usb client device drivers.
77 *
78 * Contributors of ideas or unattributed patches include: David Brownell,
79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80 *
81 * HISTORY:
82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
83 * associated cleanup. "usb_hcd" still != "usb_bus".
84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
85 */
86
87 /*-------------------------------------------------------------------------*/
88
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS 64
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192 };
193
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196 0x12, /* __u8 bLength; */
197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
199
200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
201 0x00, /* __u8 bDeviceSubClass; */
202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
204
205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
208
209 0x03, /* __u8 iManufacturer; */
210 0x02, /* __u8 iProduct; */
211 0x01, /* __u8 iSerialNumber; */
212 0x01 /* __u8 bNumConfigurations; */
213 };
214
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219 0x12, /* __u8 bLength; */
220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
222
223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
224 0x00, /* __u8 bDeviceSubClass; */
225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
227
228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
231
232 0x03, /* __u8 iManufacturer; */
233 0x02, /* __u8 iProduct; */
234 0x01, /* __u8 iSerialNumber; */
235 0x01 /* __u8 bNumConfigurations; */
236 };
237
238
239 /*-------------------------------------------------------------------------*/
240
241 /* Configuration descriptors for our root hubs */
242
243 static const u8 fs_rh_config_descriptor[] = {
244
245 /* one configuration */
246 0x09, /* __u8 bLength; */
247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 0x19, 0x00, /* __le16 wTotalLength; */
249 0x01, /* __u8 bNumInterfaces; (1) */
250 0x01, /* __u8 bConfigurationValue; */
251 0x00, /* __u8 iConfiguration; */
252 0xc0, /* __u8 bmAttributes;
253 Bit 7: must be set,
254 6: Self-powered,
255 5: Remote wakeup,
256 4..0: resvd */
257 0x00, /* __u8 MaxPower; */
258
259 /* USB 1.1:
260 * USB 2.0, single TT organization (mandatory):
261 * one interface, protocol 0
262 *
263 * USB 2.0, multiple TT organization (optional):
264 * two interfaces, protocols 1 (like single TT)
265 * and 2 (multiple TT mode) ... config is
266 * sometimes settable
267 * NOT IMPLEMENTED
268 */
269
270 /* one interface */
271 0x09, /* __u8 if_bLength; */
272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
273 0x00, /* __u8 if_bInterfaceNumber; */
274 0x00, /* __u8 if_bAlternateSetting; */
275 0x01, /* __u8 if_bNumEndpoints; */
276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
277 0x00, /* __u8 if_bInterfaceSubClass; */
278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
279 0x00, /* __u8 if_iInterface; */
280
281 /* one endpoint (status change endpoint) */
282 0x07, /* __u8 ep_bLength; */
283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
285 0x03, /* __u8 ep_bmAttributes; Interrupt */
286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289
290 static const u8 hs_rh_config_descriptor[] = {
291
292 /* one configuration */
293 0x09, /* __u8 bLength; */
294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 0x19, 0x00, /* __le16 wTotalLength; */
296 0x01, /* __u8 bNumInterfaces; (1) */
297 0x01, /* __u8 bConfigurationValue; */
298 0x00, /* __u8 iConfiguration; */
299 0xc0, /* __u8 bmAttributes;
300 Bit 7: must be set,
301 6: Self-powered,
302 5: Remote wakeup,
303 4..0: resvd */
304 0x00, /* __u8 MaxPower; */
305
306 /* USB 1.1:
307 * USB 2.0, single TT organization (mandatory):
308 * one interface, protocol 0
309 *
310 * USB 2.0, multiple TT organization (optional):
311 * two interfaces, protocols 1 (like single TT)
312 * and 2 (multiple TT mode) ... config is
313 * sometimes settable
314 * NOT IMPLEMENTED
315 */
316
317 /* one interface */
318 0x09, /* __u8 if_bLength; */
319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 0x00, /* __u8 if_bInterfaceNumber; */
321 0x00, /* __u8 if_bAlternateSetting; */
322 0x01, /* __u8 if_bNumEndpoints; */
323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
324 0x00, /* __u8 if_bInterfaceSubClass; */
325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
326 0x00, /* __u8 if_iInterface; */
327
328 /* one endpoint (status change endpoint) */
329 0x07, /* __u8 ep_bLength; */
330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
332 0x03, /* __u8 ep_bmAttributes; Interrupt */
333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 * see hub.c:hub_configure() for details. */
335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338
339 static const u8 ss_rh_config_descriptor[] = {
340 /* one configuration */
341 0x09, /* __u8 bLength; */
342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 0x1f, 0x00, /* __le16 wTotalLength; */
344 0x01, /* __u8 bNumInterfaces; (1) */
345 0x01, /* __u8 bConfigurationValue; */
346 0x00, /* __u8 iConfiguration; */
347 0xc0, /* __u8 bmAttributes;
348 Bit 7: must be set,
349 6: Self-powered,
350 5: Remote wakeup,
351 4..0: resvd */
352 0x00, /* __u8 MaxPower; */
353
354 /* one interface */
355 0x09, /* __u8 if_bLength; */
356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 0x00, /* __u8 if_bInterfaceNumber; */
358 0x00, /* __u8 if_bAlternateSetting; */
359 0x01, /* __u8 if_bNumEndpoints; */
360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
361 0x00, /* __u8 if_bInterfaceSubClass; */
362 0x00, /* __u8 if_bInterfaceProtocol; */
363 0x00, /* __u8 if_iInterface; */
364
365 /* one endpoint (status change endpoint) */
366 0x07, /* __u8 ep_bLength; */
367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
369 0x03, /* __u8 ep_bmAttributes; Interrupt */
370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 * see hub.c:hub_configure() for details. */
372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
374
375 /* one SuperSpeed endpoint companion descriptor */
376 0x06, /* __u8 ss_bLength */
377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 /* Companion */
379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383
384 /* authorized_default behaviour:
385 * -1 is authorized for all devices except wireless (old behaviour)
386 * 0 is unauthorized for all devices
387 * 1 is authorized for all devices
388 */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392 "Default USB device authorization: 0 is not authorized, 1 is "
393 "authorized, -1 is authorized except for wireless USB (default, "
394 "old behaviour");
395 /*-------------------------------------------------------------------------*/
396
397 /**
398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401 * @len: Length (in bytes; may be odd) of descriptor buffer.
402 *
403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404 * whichever is less.
405 *
406 * Note:
407 * USB String descriptors can contain at most 126 characters; input
408 * strings longer than that are truncated.
409 */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413 unsigned n, t = 2 + 2*strlen(s);
414
415 if (t > 254)
416 t = 254; /* Longest possible UTF string descriptor */
417 if (len > t)
418 len = t;
419
420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
421
422 n = len;
423 while (n--) {
424 *buf++ = t;
425 if (!n--)
426 break;
427 *buf++ = t >> 8;
428 t = (unsigned char)*s++;
429 }
430 return len;
431 }
432
433 /**
434 * rh_string() - provides string descriptors for root hub
435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436 * @hcd: the host controller for this root hub
437 * @data: buffer for output packet
438 * @len: length of the provided buffer
439 *
440 * Produces either a manufacturer, product or serial number string for the
441 * virtual root hub device.
442 *
443 * Return: The number of bytes filled in: the length of the descriptor or
444 * of the provided buffer, whichever is less.
445 */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449 char buf[100];
450 char const *s;
451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453 /* language ids */
454 switch (id) {
455 case 0:
456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 if (len > 4)
459 len = 4;
460 memcpy(data, langids, len);
461 return len;
462 case 1:
463 /* Serial number */
464 s = hcd->self.bus_name;
465 break;
466 case 2:
467 /* Product name */
468 s = hcd->product_desc;
469 break;
470 case 3:
471 /* Manufacturer */
472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 init_utsname()->release, hcd->driver->description);
474 s = buf;
475 break;
476 default:
477 /* Can't happen; caller guarantees it */
478 return 0;
479 }
480
481 return ascii2desc(s, data, len);
482 }
483
484
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488 struct usb_ctrlrequest *cmd;
489 u16 typeReq, wValue, wIndex, wLength;
490 u8 *ubuf = urb->transfer_buffer;
491 unsigned len = 0;
492 int status;
493 u8 patch_wakeup = 0;
494 u8 patch_protocol = 0;
495 u16 tbuf_size;
496 u8 *tbuf = NULL;
497 const u8 *bufp;
498
499 might_sleep();
500
501 spin_lock_irq(&hcd_root_hub_lock);
502 status = usb_hcd_link_urb_to_ep(hcd, urb);
503 spin_unlock_irq(&hcd_root_hub_lock);
504 if (status)
505 return status;
506 urb->hcpriv = hcd; /* Indicate it's queued */
507
508 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
510 wValue = le16_to_cpu (cmd->wValue);
511 wIndex = le16_to_cpu (cmd->wIndex);
512 wLength = le16_to_cpu (cmd->wLength);
513
514 if (wLength > urb->transfer_buffer_length)
515 goto error;
516
517 /*
518 * tbuf should be at least as big as the
519 * USB hub descriptor.
520 */
521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 if (!tbuf)
524 return -ENOMEM;
525
526 bufp = tbuf;
527
528
529 urb->actual_length = 0;
530 switch (typeReq) {
531
532 /* DEVICE REQUESTS */
533
534 /* The root hub's remote wakeup enable bit is implemented using
535 * driver model wakeup flags. If this system supports wakeup
536 * through USB, userspace may change the default "allow wakeup"
537 * policy through sysfs or these calls.
538 *
539 * Most root hubs support wakeup from downstream devices, for
540 * runtime power management (disabling USB clocks and reducing
541 * VBUS power usage). However, not all of them do so; silicon,
542 * board, and BIOS bugs here are not uncommon, so these can't
543 * be treated quite like external hubs.
544 *
545 * Likewise, not all root hubs will pass wakeup events upstream,
546 * to wake up the whole system. So don't assume root hub and
547 * controller capabilities are identical.
548 */
549
550 case DeviceRequest | USB_REQ_GET_STATUS:
551 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
552 << USB_DEVICE_REMOTE_WAKEUP)
553 | (1 << USB_DEVICE_SELF_POWERED);
554 tbuf[1] = 0;
555 len = 2;
556 break;
557 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
558 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
560 else
561 goto error;
562 break;
563 case DeviceOutRequest | USB_REQ_SET_FEATURE:
564 if (device_can_wakeup(&hcd->self.root_hub->dev)
565 && wValue == USB_DEVICE_REMOTE_WAKEUP)
566 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
567 else
568 goto error;
569 break;
570 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
571 tbuf[0] = 1;
572 len = 1;
573 /* FALLTHROUGH */
574 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
575 break;
576 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
577 switch (wValue & 0xff00) {
578 case USB_DT_DEVICE << 8:
579 switch (hcd->speed) {
580 case HCD_USB31:
581 bufp = usb31_rh_dev_descriptor;
582 break;
583 case HCD_USB3:
584 bufp = usb3_rh_dev_descriptor;
585 break;
586 case HCD_USB25:
587 bufp = usb25_rh_dev_descriptor;
588 break;
589 case HCD_USB2:
590 bufp = usb2_rh_dev_descriptor;
591 break;
592 case HCD_USB11:
593 bufp = usb11_rh_dev_descriptor;
594 break;
595 default:
596 goto error;
597 }
598 len = 18;
599 if (hcd->has_tt)
600 patch_protocol = 1;
601 break;
602 case USB_DT_CONFIG << 8:
603 switch (hcd->speed) {
604 case HCD_USB31:
605 case HCD_USB3:
606 bufp = ss_rh_config_descriptor;
607 len = sizeof ss_rh_config_descriptor;
608 break;
609 case HCD_USB25:
610 case HCD_USB2:
611 bufp = hs_rh_config_descriptor;
612 len = sizeof hs_rh_config_descriptor;
613 break;
614 case HCD_USB11:
615 bufp = fs_rh_config_descriptor;
616 len = sizeof fs_rh_config_descriptor;
617 break;
618 default:
619 goto error;
620 }
621 if (device_can_wakeup(&hcd->self.root_hub->dev))
622 patch_wakeup = 1;
623 break;
624 case USB_DT_STRING << 8:
625 if ((wValue & 0xff) < 4)
626 urb->actual_length = rh_string(wValue & 0xff,
627 hcd, ubuf, wLength);
628 else /* unsupported IDs --> "protocol stall" */
629 goto error;
630 break;
631 case USB_DT_BOS << 8:
632 goto nongeneric;
633 default:
634 goto error;
635 }
636 break;
637 case DeviceRequest | USB_REQ_GET_INTERFACE:
638 tbuf[0] = 0;
639 len = 1;
640 /* FALLTHROUGH */
641 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
642 break;
643 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
644 /* wValue == urb->dev->devaddr */
645 dev_dbg (hcd->self.controller, "root hub device address %d\n",
646 wValue);
647 break;
648
649 /* INTERFACE REQUESTS (no defined feature/status flags) */
650
651 /* ENDPOINT REQUESTS */
652
653 case EndpointRequest | USB_REQ_GET_STATUS:
654 /* ENDPOINT_HALT flag */
655 tbuf[0] = 0;
656 tbuf[1] = 0;
657 len = 2;
658 /* FALLTHROUGH */
659 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
660 case EndpointOutRequest | USB_REQ_SET_FEATURE:
661 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
662 break;
663
664 /* CLASS REQUESTS (and errors) */
665
666 default:
667 nongeneric:
668 /* non-generic request */
669 switch (typeReq) {
670 case GetHubStatus:
671 len = 4;
672 break;
673 case GetPortStatus:
674 if (wValue == HUB_PORT_STATUS)
675 len = 4;
676 else
677 /* other port status types return 8 bytes */
678 len = 8;
679 break;
680 case GetHubDescriptor:
681 len = sizeof (struct usb_hub_descriptor);
682 break;
683 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
684 /* len is returned by hub_control */
685 break;
686 }
687 status = hcd->driver->hub_control (hcd,
688 typeReq, wValue, wIndex,
689 tbuf, wLength);
690
691 if (typeReq == GetHubDescriptor)
692 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
693 (struct usb_hub_descriptor *)tbuf);
694 break;
695 error:
696 /* "protocol stall" on error */
697 status = -EPIPE;
698 }
699
700 if (status < 0) {
701 len = 0;
702 if (status != -EPIPE) {
703 dev_dbg (hcd->self.controller,
704 "CTRL: TypeReq=0x%x val=0x%x "
705 "idx=0x%x len=%d ==> %d\n",
706 typeReq, wValue, wIndex,
707 wLength, status);
708 }
709 } else if (status > 0) {
710 /* hub_control may return the length of data copied. */
711 len = status;
712 status = 0;
713 }
714 if (len) {
715 if (urb->transfer_buffer_length < len)
716 len = urb->transfer_buffer_length;
717 urb->actual_length = len;
718 /* always USB_DIR_IN, toward host */
719 memcpy (ubuf, bufp, len);
720
721 /* report whether RH hardware supports remote wakeup */
722 if (patch_wakeup &&
723 len > offsetof (struct usb_config_descriptor,
724 bmAttributes))
725 ((struct usb_config_descriptor *)ubuf)->bmAttributes
726 |= USB_CONFIG_ATT_WAKEUP;
727
728 /* report whether RH hardware has an integrated TT */
729 if (patch_protocol &&
730 len > offsetof(struct usb_device_descriptor,
731 bDeviceProtocol))
732 ((struct usb_device_descriptor *) ubuf)->
733 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
734 }
735
736 kfree(tbuf);
737
738 /* any errors get returned through the urb completion */
739 spin_lock_irq(&hcd_root_hub_lock);
740 usb_hcd_unlink_urb_from_ep(hcd, urb);
741 usb_hcd_giveback_urb(hcd, urb, status);
742 spin_unlock_irq(&hcd_root_hub_lock);
743 return 0;
744 }
745
746 /*-------------------------------------------------------------------------*/
747
748 /*
749 * Root Hub interrupt transfers are polled using a timer if the
750 * driver requests it; otherwise the driver is responsible for
751 * calling usb_hcd_poll_rh_status() when an event occurs.
752 *
753 * Completions are called in_interrupt(), but they may or may not
754 * be in_irq().
755 */
756 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
757 {
758 struct urb *urb;
759 int length;
760 unsigned long flags;
761 char buffer[6]; /* Any root hubs with > 31 ports? */
762
763 if (unlikely(!hcd->rh_pollable))
764 return;
765 if (!hcd->uses_new_polling && !hcd->status_urb)
766 return;
767
768 length = hcd->driver->hub_status_data(hcd, buffer);
769 if (length > 0) {
770
771 /* try to complete the status urb */
772 spin_lock_irqsave(&hcd_root_hub_lock, flags);
773 urb = hcd->status_urb;
774 if (urb) {
775 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
776 hcd->status_urb = NULL;
777 urb->actual_length = length;
778 memcpy(urb->transfer_buffer, buffer, length);
779
780 usb_hcd_unlink_urb_from_ep(hcd, urb);
781 usb_hcd_giveback_urb(hcd, urb, 0);
782 } else {
783 length = 0;
784 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
785 }
786 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
787 }
788
789 /* The USB 2.0 spec says 256 ms. This is close enough and won't
790 * exceed that limit if HZ is 100. The math is more clunky than
791 * maybe expected, this is to make sure that all timers for USB devices
792 * fire at the same time to give the CPU a break in between */
793 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
794 (length == 0 && hcd->status_urb != NULL))
795 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796 }
797 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
798
799 /* timer callback */
800 static void rh_timer_func (unsigned long _hcd)
801 {
802 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
803 }
804
805 /*-------------------------------------------------------------------------*/
806
807 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
808 {
809 int retval;
810 unsigned long flags;
811 unsigned len = 1 + (urb->dev->maxchild / 8);
812
813 spin_lock_irqsave (&hcd_root_hub_lock, flags);
814 if (hcd->status_urb || urb->transfer_buffer_length < len) {
815 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
816 retval = -EINVAL;
817 goto done;
818 }
819
820 retval = usb_hcd_link_urb_to_ep(hcd, urb);
821 if (retval)
822 goto done;
823
824 hcd->status_urb = urb;
825 urb->hcpriv = hcd; /* indicate it's queued */
826 if (!hcd->uses_new_polling)
827 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
828
829 /* If a status change has already occurred, report it ASAP */
830 else if (HCD_POLL_PENDING(hcd))
831 mod_timer(&hcd->rh_timer, jiffies);
832 retval = 0;
833 done:
834 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
835 return retval;
836 }
837
838 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
839 {
840 if (usb_endpoint_xfer_int(&urb->ep->desc))
841 return rh_queue_status (hcd, urb);
842 if (usb_endpoint_xfer_control(&urb->ep->desc))
843 return rh_call_control (hcd, urb);
844 return -EINVAL;
845 }
846
847 /*-------------------------------------------------------------------------*/
848
849 /* Unlinks of root-hub control URBs are legal, but they don't do anything
850 * since these URBs always execute synchronously.
851 */
852 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
853 {
854 unsigned long flags;
855 int rc;
856
857 spin_lock_irqsave(&hcd_root_hub_lock, flags);
858 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
859 if (rc)
860 goto done;
861
862 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
863 ; /* Do nothing */
864
865 } else { /* Status URB */
866 if (!hcd->uses_new_polling)
867 del_timer (&hcd->rh_timer);
868 if (urb == hcd->status_urb) {
869 hcd->status_urb = NULL;
870 usb_hcd_unlink_urb_from_ep(hcd, urb);
871 usb_hcd_giveback_urb(hcd, urb, status);
872 }
873 }
874 done:
875 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
876 return rc;
877 }
878
879
880
881 /*
882 * Show & store the current value of authorized_default
883 */
884 static ssize_t authorized_default_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886 {
887 struct usb_device *rh_usb_dev = to_usb_device(dev);
888 struct usb_bus *usb_bus = rh_usb_dev->bus;
889 struct usb_hcd *hcd;
890
891 hcd = bus_to_hcd(usb_bus);
892 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
893 }
894
895 static ssize_t authorized_default_store(struct device *dev,
896 struct device_attribute *attr,
897 const char *buf, size_t size)
898 {
899 ssize_t result;
900 unsigned val;
901 struct usb_device *rh_usb_dev = to_usb_device(dev);
902 struct usb_bus *usb_bus = rh_usb_dev->bus;
903 struct usb_hcd *hcd;
904
905 hcd = bus_to_hcd(usb_bus);
906 result = sscanf(buf, "%u\n", &val);
907 if (result == 1) {
908 if (val)
909 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
910 else
911 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
912
913 result = size;
914 } else {
915 result = -EINVAL;
916 }
917 return result;
918 }
919 static DEVICE_ATTR_RW(authorized_default);
920
921 /*
922 * interface_authorized_default_show - show default authorization status
923 * for USB interfaces
924 *
925 * note: interface_authorized_default is the default value
926 * for initializing the authorized attribute of interfaces
927 */
928 static ssize_t interface_authorized_default_show(struct device *dev,
929 struct device_attribute *attr, char *buf)
930 {
931 struct usb_device *usb_dev = to_usb_device(dev);
932 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
933
934 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
935 }
936
937 /*
938 * interface_authorized_default_store - store default authorization status
939 * for USB interfaces
940 *
941 * note: interface_authorized_default is the default value
942 * for initializing the authorized attribute of interfaces
943 */
944 static ssize_t interface_authorized_default_store(struct device *dev,
945 struct device_attribute *attr, const char *buf, size_t count)
946 {
947 struct usb_device *usb_dev = to_usb_device(dev);
948 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
949 int rc = count;
950 bool val;
951
952 if (strtobool(buf, &val) != 0)
953 return -EINVAL;
954
955 if (val)
956 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
957 else
958 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
959
960 return rc;
961 }
962 static DEVICE_ATTR_RW(interface_authorized_default);
963
964 /* Group all the USB bus attributes */
965 static struct attribute *usb_bus_attrs[] = {
966 &dev_attr_authorized_default.attr,
967 &dev_attr_interface_authorized_default.attr,
968 NULL,
969 };
970
971 static struct attribute_group usb_bus_attr_group = {
972 .name = NULL, /* we want them in the same directory */
973 .attrs = usb_bus_attrs,
974 };
975
976
977
978 /*-------------------------------------------------------------------------*/
979
980 /**
981 * usb_bus_init - shared initialization code
982 * @bus: the bus structure being initialized
983 *
984 * This code is used to initialize a usb_bus structure, memory for which is
985 * separately managed.
986 */
987 static void usb_bus_init (struct usb_bus *bus)
988 {
989 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
990
991 bus->devnum_next = 1;
992
993 bus->root_hub = NULL;
994 bus->busnum = -1;
995 bus->bandwidth_allocated = 0;
996 bus->bandwidth_int_reqs = 0;
997 bus->bandwidth_isoc_reqs = 0;
998 mutex_init(&bus->devnum_next_mutex);
999 }
1000
1001 /*-------------------------------------------------------------------------*/
1002
1003 /**
1004 * usb_register_bus - registers the USB host controller with the usb core
1005 * @bus: pointer to the bus to register
1006 * Context: !in_interrupt()
1007 *
1008 * Assigns a bus number, and links the controller into usbcore data
1009 * structures so that it can be seen by scanning the bus list.
1010 *
1011 * Return: 0 if successful. A negative error code otherwise.
1012 */
1013 static int usb_register_bus(struct usb_bus *bus)
1014 {
1015 int result = -E2BIG;
1016 int busnum;
1017
1018 mutex_lock(&usb_bus_idr_lock);
1019 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1020 if (busnum < 0) {
1021 pr_err("%s: failed to get bus number\n", usbcore_name);
1022 goto error_find_busnum;
1023 }
1024 bus->busnum = busnum;
1025 mutex_unlock(&usb_bus_idr_lock);
1026
1027 usb_notify_add_bus(bus);
1028
1029 dev_info (bus->controller, "new USB bus registered, assigned bus "
1030 "number %d\n", bus->busnum);
1031 return 0;
1032
1033 error_find_busnum:
1034 mutex_unlock(&usb_bus_idr_lock);
1035 return result;
1036 }
1037
1038 /**
1039 * usb_deregister_bus - deregisters the USB host controller
1040 * @bus: pointer to the bus to deregister
1041 * Context: !in_interrupt()
1042 *
1043 * Recycles the bus number, and unlinks the controller from usbcore data
1044 * structures so that it won't be seen by scanning the bus list.
1045 */
1046 static void usb_deregister_bus (struct usb_bus *bus)
1047 {
1048 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1049
1050 /*
1051 * NOTE: make sure that all the devices are removed by the
1052 * controller code, as well as having it call this when cleaning
1053 * itself up
1054 */
1055 mutex_lock(&usb_bus_idr_lock);
1056 idr_remove(&usb_bus_idr, bus->busnum);
1057 mutex_unlock(&usb_bus_idr_lock);
1058
1059 usb_notify_remove_bus(bus);
1060 }
1061
1062 /**
1063 * register_root_hub - called by usb_add_hcd() to register a root hub
1064 * @hcd: host controller for this root hub
1065 *
1066 * This function registers the root hub with the USB subsystem. It sets up
1067 * the device properly in the device tree and then calls usb_new_device()
1068 * to register the usb device. It also assigns the root hub's USB address
1069 * (always 1).
1070 *
1071 * Return: 0 if successful. A negative error code otherwise.
1072 */
1073 static int register_root_hub(struct usb_hcd *hcd)
1074 {
1075 struct device *parent_dev = hcd->self.controller;
1076 struct usb_device *usb_dev = hcd->self.root_hub;
1077 const int devnum = 1;
1078 int retval;
1079
1080 usb_dev->devnum = devnum;
1081 usb_dev->bus->devnum_next = devnum + 1;
1082 memset (&usb_dev->bus->devmap.devicemap, 0,
1083 sizeof usb_dev->bus->devmap.devicemap);
1084 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1085 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1086
1087 mutex_lock(&usb_bus_idr_lock);
1088
1089 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1090 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1091 if (retval != sizeof usb_dev->descriptor) {
1092 mutex_unlock(&usb_bus_idr_lock);
1093 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1094 dev_name(&usb_dev->dev), retval);
1095 return (retval < 0) ? retval : -EMSGSIZE;
1096 }
1097
1098 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1099 retval = usb_get_bos_descriptor(usb_dev);
1100 if (!retval) {
1101 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1102 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1103 mutex_unlock(&usb_bus_idr_lock);
1104 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1105 dev_name(&usb_dev->dev), retval);
1106 return retval;
1107 }
1108 }
1109
1110 retval = usb_new_device (usb_dev);
1111 if (retval) {
1112 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1113 dev_name(&usb_dev->dev), retval);
1114 } else {
1115 spin_lock_irq (&hcd_root_hub_lock);
1116 hcd->rh_registered = 1;
1117 spin_unlock_irq (&hcd_root_hub_lock);
1118
1119 /* Did the HC die before the root hub was registered? */
1120 if (HCD_DEAD(hcd))
1121 usb_hc_died (hcd); /* This time clean up */
1122 usb_dev->dev.of_node = parent_dev->of_node;
1123 }
1124 mutex_unlock(&usb_bus_idr_lock);
1125
1126 return retval;
1127 }
1128
1129 /*
1130 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1131 * @bus: the bus which the root hub belongs to
1132 * @portnum: the port which is being resumed
1133 *
1134 * HCDs should call this function when they know that a resume signal is
1135 * being sent to a root-hub port. The root hub will be prevented from
1136 * going into autosuspend until usb_hcd_end_port_resume() is called.
1137 *
1138 * The bus's private lock must be held by the caller.
1139 */
1140 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1141 {
1142 unsigned bit = 1 << portnum;
1143
1144 if (!(bus->resuming_ports & bit)) {
1145 bus->resuming_ports |= bit;
1146 pm_runtime_get_noresume(&bus->root_hub->dev);
1147 }
1148 }
1149 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1150
1151 /*
1152 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1153 * @bus: the bus which the root hub belongs to
1154 * @portnum: the port which is being resumed
1155 *
1156 * HCDs should call this function when they know that a resume signal has
1157 * stopped being sent to a root-hub port. The root hub will be allowed to
1158 * autosuspend again.
1159 *
1160 * The bus's private lock must be held by the caller.
1161 */
1162 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1163 {
1164 unsigned bit = 1 << portnum;
1165
1166 if (bus->resuming_ports & bit) {
1167 bus->resuming_ports &= ~bit;
1168 pm_runtime_put_noidle(&bus->root_hub->dev);
1169 }
1170 }
1171 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1172
1173 /*-------------------------------------------------------------------------*/
1174
1175 /**
1176 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1177 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1178 * @is_input: true iff the transaction sends data to the host
1179 * @isoc: true for isochronous transactions, false for interrupt ones
1180 * @bytecount: how many bytes in the transaction.
1181 *
1182 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1183 *
1184 * Note:
1185 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1186 * scheduled in software, this function is only used for such scheduling.
1187 */
1188 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1189 {
1190 unsigned long tmp;
1191
1192 switch (speed) {
1193 case USB_SPEED_LOW: /* INTR only */
1194 if (is_input) {
1195 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1196 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1197 } else {
1198 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 }
1201 case USB_SPEED_FULL: /* ISOC or INTR */
1202 if (isoc) {
1203 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1204 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1205 } else {
1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 return 9107L + BW_HOST_DELAY + tmp;
1208 }
1209 case USB_SPEED_HIGH: /* ISOC or INTR */
1210 /* FIXME adjust for input vs output */
1211 if (isoc)
1212 tmp = HS_NSECS_ISO (bytecount);
1213 else
1214 tmp = HS_NSECS (bytecount);
1215 return tmp;
1216 default:
1217 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1218 return -1;
1219 }
1220 }
1221 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1222
1223
1224 /*-------------------------------------------------------------------------*/
1225
1226 /*
1227 * Generic HC operations.
1228 */
1229
1230 /*-------------------------------------------------------------------------*/
1231
1232 /**
1233 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1234 * @hcd: host controller to which @urb was submitted
1235 * @urb: URB being submitted
1236 *
1237 * Host controller drivers should call this routine in their enqueue()
1238 * method. The HCD's private spinlock must be held and interrupts must
1239 * be disabled. The actions carried out here are required for URB
1240 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1241 *
1242 * Return: 0 for no error, otherwise a negative error code (in which case
1243 * the enqueue() method must fail). If no error occurs but enqueue() fails
1244 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1245 * the private spinlock and returning.
1246 */
1247 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1248 {
1249 int rc = 0;
1250
1251 spin_lock(&hcd_urb_list_lock);
1252
1253 /* Check that the URB isn't being killed */
1254 if (unlikely(atomic_read(&urb->reject))) {
1255 rc = -EPERM;
1256 goto done;
1257 }
1258
1259 if (unlikely(!urb->ep->enabled)) {
1260 rc = -ENOENT;
1261 goto done;
1262 }
1263
1264 if (unlikely(!urb->dev->can_submit)) {
1265 rc = -EHOSTUNREACH;
1266 goto done;
1267 }
1268
1269 /*
1270 * Check the host controller's state and add the URB to the
1271 * endpoint's queue.
1272 */
1273 if (HCD_RH_RUNNING(hcd)) {
1274 urb->unlinked = 0;
1275 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1276 } else {
1277 rc = -ESHUTDOWN;
1278 goto done;
1279 }
1280 done:
1281 spin_unlock(&hcd_urb_list_lock);
1282 return rc;
1283 }
1284 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1285
1286 /**
1287 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1288 * @hcd: host controller to which @urb was submitted
1289 * @urb: URB being checked for unlinkability
1290 * @status: error code to store in @urb if the unlink succeeds
1291 *
1292 * Host controller drivers should call this routine in their dequeue()
1293 * method. The HCD's private spinlock must be held and interrupts must
1294 * be disabled. The actions carried out here are required for making
1295 * sure than an unlink is valid.
1296 *
1297 * Return: 0 for no error, otherwise a negative error code (in which case
1298 * the dequeue() method must fail). The possible error codes are:
1299 *
1300 * -EIDRM: @urb was not submitted or has already completed.
1301 * The completion function may not have been called yet.
1302 *
1303 * -EBUSY: @urb has already been unlinked.
1304 */
1305 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1306 int status)
1307 {
1308 struct list_head *tmp;
1309
1310 /* insist the urb is still queued */
1311 list_for_each(tmp, &urb->ep->urb_list) {
1312 if (tmp == &urb->urb_list)
1313 break;
1314 }
1315 if (tmp != &urb->urb_list)
1316 return -EIDRM;
1317
1318 /* Any status except -EINPROGRESS means something already started to
1319 * unlink this URB from the hardware. So there's no more work to do.
1320 */
1321 if (urb->unlinked)
1322 return -EBUSY;
1323 urb->unlinked = status;
1324 return 0;
1325 }
1326 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1327
1328 /**
1329 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1330 * @hcd: host controller to which @urb was submitted
1331 * @urb: URB being unlinked
1332 *
1333 * Host controller drivers should call this routine before calling
1334 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1335 * interrupts must be disabled. The actions carried out here are required
1336 * for URB completion.
1337 */
1338 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1339 {
1340 /* clear all state linking urb to this dev (and hcd) */
1341 spin_lock(&hcd_urb_list_lock);
1342 list_del_init(&urb->urb_list);
1343 spin_unlock(&hcd_urb_list_lock);
1344 }
1345 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1346
1347 /*
1348 * Some usb host controllers can only perform dma using a small SRAM area.
1349 * The usb core itself is however optimized for host controllers that can dma
1350 * using regular system memory - like pci devices doing bus mastering.
1351 *
1352 * To support host controllers with limited dma capabilities we provide dma
1353 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1354 * For this to work properly the host controller code must first use the
1355 * function dma_declare_coherent_memory() to point out which memory area
1356 * that should be used for dma allocations.
1357 *
1358 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1359 * dma using dma_alloc_coherent() which in turn allocates from the memory
1360 * area pointed out with dma_declare_coherent_memory().
1361 *
1362 * So, to summarize...
1363 *
1364 * - We need "local" memory, canonical example being
1365 * a small SRAM on a discrete controller being the
1366 * only memory that the controller can read ...
1367 * (a) "normal" kernel memory is no good, and
1368 * (b) there's not enough to share
1369 *
1370 * - The only *portable* hook for such stuff in the
1371 * DMA framework is dma_declare_coherent_memory()
1372 *
1373 * - So we use that, even though the primary requirement
1374 * is that the memory be "local" (hence addressable
1375 * by that device), not "coherent".
1376 *
1377 */
1378
1379 static int hcd_alloc_coherent(struct usb_bus *bus,
1380 gfp_t mem_flags, dma_addr_t *dma_handle,
1381 void **vaddr_handle, size_t size,
1382 enum dma_data_direction dir)
1383 {
1384 unsigned char *vaddr;
1385
1386 if (*vaddr_handle == NULL) {
1387 WARN_ON_ONCE(1);
1388 return -EFAULT;
1389 }
1390
1391 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1392 mem_flags, dma_handle);
1393 if (!vaddr)
1394 return -ENOMEM;
1395
1396 /*
1397 * Store the virtual address of the buffer at the end
1398 * of the allocated dma buffer. The size of the buffer
1399 * may be uneven so use unaligned functions instead
1400 * of just rounding up. It makes sense to optimize for
1401 * memory footprint over access speed since the amount
1402 * of memory available for dma may be limited.
1403 */
1404 put_unaligned((unsigned long)*vaddr_handle,
1405 (unsigned long *)(vaddr + size));
1406
1407 if (dir == DMA_TO_DEVICE)
1408 memcpy(vaddr, *vaddr_handle, size);
1409
1410 *vaddr_handle = vaddr;
1411 return 0;
1412 }
1413
1414 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1415 void **vaddr_handle, size_t size,
1416 enum dma_data_direction dir)
1417 {
1418 unsigned char *vaddr = *vaddr_handle;
1419
1420 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1421
1422 if (dir == DMA_FROM_DEVICE)
1423 memcpy(vaddr, *vaddr_handle, size);
1424
1425 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1426
1427 *vaddr_handle = vaddr;
1428 *dma_handle = 0;
1429 }
1430
1431 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1432 {
1433 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1434 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1435 dma_unmap_single(hcd->self.controller,
1436 urb->setup_dma,
1437 sizeof(struct usb_ctrlrequest),
1438 DMA_TO_DEVICE);
1439 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1440 hcd_free_coherent(urb->dev->bus,
1441 &urb->setup_dma,
1442 (void **) &urb->setup_packet,
1443 sizeof(struct usb_ctrlrequest),
1444 DMA_TO_DEVICE);
1445
1446 /* Make it safe to call this routine more than once */
1447 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1448 }
1449 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1450
1451 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453 if (hcd->driver->unmap_urb_for_dma)
1454 hcd->driver->unmap_urb_for_dma(hcd, urb);
1455 else
1456 usb_hcd_unmap_urb_for_dma(hcd, urb);
1457 }
1458
1459 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1460 {
1461 enum dma_data_direction dir;
1462
1463 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1464
1465 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1466 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1467 (urb->transfer_flags & URB_DMA_MAP_SG))
1468 dma_unmap_sg(hcd->self.controller,
1469 urb->sg,
1470 urb->num_sgs,
1471 dir);
1472 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1473 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1474 dma_unmap_page(hcd->self.controller,
1475 urb->transfer_dma,
1476 urb->transfer_buffer_length,
1477 dir);
1478 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1479 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1480 dma_unmap_single(hcd->self.controller,
1481 urb->transfer_dma,
1482 urb->transfer_buffer_length,
1483 dir);
1484 else if (urb->transfer_flags & URB_MAP_LOCAL)
1485 hcd_free_coherent(urb->dev->bus,
1486 &urb->transfer_dma,
1487 &urb->transfer_buffer,
1488 urb->transfer_buffer_length,
1489 dir);
1490
1491 /* Make it safe to call this routine more than once */
1492 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1493 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1494 }
1495 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1496
1497 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1498 gfp_t mem_flags)
1499 {
1500 if (hcd->driver->map_urb_for_dma)
1501 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1502 else
1503 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1504 }
1505
1506 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1507 gfp_t mem_flags)
1508 {
1509 enum dma_data_direction dir;
1510 int ret = 0;
1511
1512 /* Map the URB's buffers for DMA access.
1513 * Lower level HCD code should use *_dma exclusively,
1514 * unless it uses pio or talks to another transport,
1515 * or uses the provided scatter gather list for bulk.
1516 */
1517
1518 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1519 if (hcd->self.uses_pio_for_control)
1520 return ret;
1521 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1522 urb->setup_dma = dma_map_single(
1523 hcd->self.controller,
1524 urb->setup_packet,
1525 sizeof(struct usb_ctrlrequest),
1526 DMA_TO_DEVICE);
1527 if (dma_mapping_error(hcd->self.controller,
1528 urb->setup_dma))
1529 return -EAGAIN;
1530 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1531 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1532 ret = hcd_alloc_coherent(
1533 urb->dev->bus, mem_flags,
1534 &urb->setup_dma,
1535 (void **)&urb->setup_packet,
1536 sizeof(struct usb_ctrlrequest),
1537 DMA_TO_DEVICE);
1538 if (ret)
1539 return ret;
1540 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1541 }
1542 }
1543
1544 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1545 if (urb->transfer_buffer_length != 0
1546 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1547 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1548 if (urb->num_sgs) {
1549 int n;
1550
1551 /* We don't support sg for isoc transfers ! */
1552 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1553 WARN_ON(1);
1554 return -EINVAL;
1555 }
1556
1557 n = dma_map_sg(
1558 hcd->self.controller,
1559 urb->sg,
1560 urb->num_sgs,
1561 dir);
1562 if (n <= 0)
1563 ret = -EAGAIN;
1564 else
1565 urb->transfer_flags |= URB_DMA_MAP_SG;
1566 urb->num_mapped_sgs = n;
1567 if (n != urb->num_sgs)
1568 urb->transfer_flags |=
1569 URB_DMA_SG_COMBINED;
1570 } else if (urb->sg) {
1571 struct scatterlist *sg = urb->sg;
1572 urb->transfer_dma = dma_map_page(
1573 hcd->self.controller,
1574 sg_page(sg),
1575 sg->offset,
1576 urb->transfer_buffer_length,
1577 dir);
1578 if (dma_mapping_error(hcd->self.controller,
1579 urb->transfer_dma))
1580 ret = -EAGAIN;
1581 else
1582 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1583 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1584 WARN_ONCE(1, "transfer buffer not dma capable\n");
1585 ret = -EAGAIN;
1586 } else {
1587 urb->transfer_dma = dma_map_single(
1588 hcd->self.controller,
1589 urb->transfer_buffer,
1590 urb->transfer_buffer_length,
1591 dir);
1592 if (dma_mapping_error(hcd->self.controller,
1593 urb->transfer_dma))
1594 ret = -EAGAIN;
1595 else
1596 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1597 }
1598 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1599 ret = hcd_alloc_coherent(
1600 urb->dev->bus, mem_flags,
1601 &urb->transfer_dma,
1602 &urb->transfer_buffer,
1603 urb->transfer_buffer_length,
1604 dir);
1605 if (ret == 0)
1606 urb->transfer_flags |= URB_MAP_LOCAL;
1607 }
1608 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1609 URB_SETUP_MAP_LOCAL)))
1610 usb_hcd_unmap_urb_for_dma(hcd, urb);
1611 }
1612 return ret;
1613 }
1614 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1615
1616 /*-------------------------------------------------------------------------*/
1617
1618 /* may be called in any context with a valid urb->dev usecount
1619 * caller surrenders "ownership" of urb
1620 * expects usb_submit_urb() to have sanity checked and conditioned all
1621 * inputs in the urb
1622 */
1623 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1624 {
1625 int status;
1626 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1627
1628 /* increment urb's reference count as part of giving it to the HCD
1629 * (which will control it). HCD guarantees that it either returns
1630 * an error or calls giveback(), but not both.
1631 */
1632 usb_get_urb(urb);
1633 atomic_inc(&urb->use_count);
1634 atomic_inc(&urb->dev->urbnum);
1635 usbmon_urb_submit(&hcd->self, urb);
1636
1637 /* NOTE requirements on root-hub callers (usbfs and the hub
1638 * driver, for now): URBs' urb->transfer_buffer must be
1639 * valid and usb_buffer_{sync,unmap}() not be needed, since
1640 * they could clobber root hub response data. Also, control
1641 * URBs must be submitted in process context with interrupts
1642 * enabled.
1643 */
1644
1645 if (is_root_hub(urb->dev)) {
1646 status = rh_urb_enqueue(hcd, urb);
1647 } else {
1648 status = map_urb_for_dma(hcd, urb, mem_flags);
1649 if (likely(status == 0)) {
1650 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1651 if (unlikely(status))
1652 unmap_urb_for_dma(hcd, urb);
1653 }
1654 }
1655
1656 if (unlikely(status)) {
1657 usbmon_urb_submit_error(&hcd->self, urb, status);
1658 urb->hcpriv = NULL;
1659 INIT_LIST_HEAD(&urb->urb_list);
1660 atomic_dec(&urb->use_count);
1661 atomic_dec(&urb->dev->urbnum);
1662 if (atomic_read(&urb->reject))
1663 wake_up(&usb_kill_urb_queue);
1664 usb_put_urb(urb);
1665 }
1666 return status;
1667 }
1668
1669 /*-------------------------------------------------------------------------*/
1670
1671 /* this makes the hcd giveback() the urb more quickly, by kicking it
1672 * off hardware queues (which may take a while) and returning it as
1673 * soon as practical. we've already set up the urb's return status,
1674 * but we can't know if the callback completed already.
1675 */
1676 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1677 {
1678 int value;
1679
1680 if (is_root_hub(urb->dev))
1681 value = usb_rh_urb_dequeue(hcd, urb, status);
1682 else {
1683
1684 /* The only reason an HCD might fail this call is if
1685 * it has not yet fully queued the urb to begin with.
1686 * Such failures should be harmless. */
1687 value = hcd->driver->urb_dequeue(hcd, urb, status);
1688 }
1689 return value;
1690 }
1691
1692 /*
1693 * called in any context
1694 *
1695 * caller guarantees urb won't be recycled till both unlink()
1696 * and the urb's completion function return
1697 */
1698 int usb_hcd_unlink_urb (struct urb *urb, int status)
1699 {
1700 struct usb_hcd *hcd;
1701 struct usb_device *udev = urb->dev;
1702 int retval = -EIDRM;
1703 unsigned long flags;
1704
1705 /* Prevent the device and bus from going away while
1706 * the unlink is carried out. If they are already gone
1707 * then urb->use_count must be 0, since disconnected
1708 * devices can't have any active URBs.
1709 */
1710 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1711 if (atomic_read(&urb->use_count) > 0) {
1712 retval = 0;
1713 usb_get_dev(udev);
1714 }
1715 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1716 if (retval == 0) {
1717 hcd = bus_to_hcd(urb->dev->bus);
1718 retval = unlink1(hcd, urb, status);
1719 if (retval == 0)
1720 retval = -EINPROGRESS;
1721 else if (retval != -EIDRM && retval != -EBUSY)
1722 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1723 urb, retval);
1724 usb_put_dev(udev);
1725 }
1726 return retval;
1727 }
1728
1729 /*-------------------------------------------------------------------------*/
1730
1731 static void __usb_hcd_giveback_urb(struct urb *urb)
1732 {
1733 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1734 struct usb_anchor *anchor = urb->anchor;
1735 int status = urb->unlinked;
1736 unsigned long flags;
1737
1738 urb->hcpriv = NULL;
1739 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1740 urb->actual_length < urb->transfer_buffer_length &&
1741 !status))
1742 status = -EREMOTEIO;
1743
1744 unmap_urb_for_dma(hcd, urb);
1745 usbmon_urb_complete(&hcd->self, urb, status);
1746 usb_anchor_suspend_wakeups(anchor);
1747 usb_unanchor_urb(urb);
1748 if (likely(status == 0))
1749 usb_led_activity(USB_LED_EVENT_HOST);
1750
1751 /* pass ownership to the completion handler */
1752 urb->status = status;
1753
1754 /*
1755 * We disable local IRQs here avoid possible deadlock because
1756 * drivers may call spin_lock() to hold lock which might be
1757 * acquired in one hard interrupt handler.
1758 *
1759 * The local_irq_save()/local_irq_restore() around complete()
1760 * will be removed if current USB drivers have been cleaned up
1761 * and no one may trigger the above deadlock situation when
1762 * running complete() in tasklet.
1763 */
1764 local_irq_save(flags);
1765 urb->complete(urb);
1766 local_irq_restore(flags);
1767
1768 usb_anchor_resume_wakeups(anchor);
1769 atomic_dec(&urb->use_count);
1770 if (unlikely(atomic_read(&urb->reject)))
1771 wake_up(&usb_kill_urb_queue);
1772 usb_put_urb(urb);
1773 }
1774
1775 static void usb_giveback_urb_bh(unsigned long param)
1776 {
1777 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1778 struct list_head local_list;
1779
1780 spin_lock_irq(&bh->lock);
1781 bh->running = true;
1782 restart:
1783 list_replace_init(&bh->head, &local_list);
1784 spin_unlock_irq(&bh->lock);
1785
1786 while (!list_empty(&local_list)) {
1787 struct urb *urb;
1788
1789 urb = list_entry(local_list.next, struct urb, urb_list);
1790 list_del_init(&urb->urb_list);
1791 bh->completing_ep = urb->ep;
1792 __usb_hcd_giveback_urb(urb);
1793 bh->completing_ep = NULL;
1794 }
1795
1796 /* check if there are new URBs to giveback */
1797 spin_lock_irq(&bh->lock);
1798 if (!list_empty(&bh->head))
1799 goto restart;
1800 bh->running = false;
1801 spin_unlock_irq(&bh->lock);
1802 }
1803
1804 /**
1805 * usb_hcd_giveback_urb - return URB from HCD to device driver
1806 * @hcd: host controller returning the URB
1807 * @urb: urb being returned to the USB device driver.
1808 * @status: completion status code for the URB.
1809 * Context: in_interrupt()
1810 *
1811 * This hands the URB from HCD to its USB device driver, using its
1812 * completion function. The HCD has freed all per-urb resources
1813 * (and is done using urb->hcpriv). It also released all HCD locks;
1814 * the device driver won't cause problems if it frees, modifies,
1815 * or resubmits this URB.
1816 *
1817 * If @urb was unlinked, the value of @status will be overridden by
1818 * @urb->unlinked. Erroneous short transfers are detected in case
1819 * the HCD hasn't checked for them.
1820 */
1821 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1822 {
1823 struct giveback_urb_bh *bh;
1824 bool running, high_prio_bh;
1825
1826 /* pass status to tasklet via unlinked */
1827 if (likely(!urb->unlinked))
1828 urb->unlinked = status;
1829
1830 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1831 __usb_hcd_giveback_urb(urb);
1832 return;
1833 }
1834
1835 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1836 bh = &hcd->high_prio_bh;
1837 high_prio_bh = true;
1838 } else {
1839 bh = &hcd->low_prio_bh;
1840 high_prio_bh = false;
1841 }
1842
1843 spin_lock(&bh->lock);
1844 list_add_tail(&urb->urb_list, &bh->head);
1845 running = bh->running;
1846 spin_unlock(&bh->lock);
1847
1848 if (running)
1849 ;
1850 else if (high_prio_bh)
1851 tasklet_hi_schedule(&bh->bh);
1852 else
1853 tasklet_schedule(&bh->bh);
1854 }
1855 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1856
1857 /*-------------------------------------------------------------------------*/
1858
1859 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1860 * queue to drain completely. The caller must first insure that no more
1861 * URBs can be submitted for this endpoint.
1862 */
1863 void usb_hcd_flush_endpoint(struct usb_device *udev,
1864 struct usb_host_endpoint *ep)
1865 {
1866 struct usb_hcd *hcd;
1867 struct urb *urb;
1868
1869 if (!ep)
1870 return;
1871 might_sleep();
1872 hcd = bus_to_hcd(udev->bus);
1873
1874 /* No more submits can occur */
1875 spin_lock_irq(&hcd_urb_list_lock);
1876 rescan:
1877 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1878 int is_in;
1879
1880 if (urb->unlinked)
1881 continue;
1882 usb_get_urb (urb);
1883 is_in = usb_urb_dir_in(urb);
1884 spin_unlock(&hcd_urb_list_lock);
1885
1886 /* kick hcd */
1887 unlink1(hcd, urb, -ESHUTDOWN);
1888 dev_dbg (hcd->self.controller,
1889 "shutdown urb %p ep%d%s%s\n",
1890 urb, usb_endpoint_num(&ep->desc),
1891 is_in ? "in" : "out",
1892 ({ char *s;
1893
1894 switch (usb_endpoint_type(&ep->desc)) {
1895 case USB_ENDPOINT_XFER_CONTROL:
1896 s = ""; break;
1897 case USB_ENDPOINT_XFER_BULK:
1898 s = "-bulk"; break;
1899 case USB_ENDPOINT_XFER_INT:
1900 s = "-intr"; break;
1901 default:
1902 s = "-iso"; break;
1903 };
1904 s;
1905 }));
1906 usb_put_urb (urb);
1907
1908 /* list contents may have changed */
1909 spin_lock(&hcd_urb_list_lock);
1910 goto rescan;
1911 }
1912 spin_unlock_irq(&hcd_urb_list_lock);
1913
1914 /* Wait until the endpoint queue is completely empty */
1915 while (!list_empty (&ep->urb_list)) {
1916 spin_lock_irq(&hcd_urb_list_lock);
1917
1918 /* The list may have changed while we acquired the spinlock */
1919 urb = NULL;
1920 if (!list_empty (&ep->urb_list)) {
1921 urb = list_entry (ep->urb_list.prev, struct urb,
1922 urb_list);
1923 usb_get_urb (urb);
1924 }
1925 spin_unlock_irq(&hcd_urb_list_lock);
1926
1927 if (urb) {
1928 usb_kill_urb (urb);
1929 usb_put_urb (urb);
1930 }
1931 }
1932 }
1933
1934 /**
1935 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1936 * the bus bandwidth
1937 * @udev: target &usb_device
1938 * @new_config: new configuration to install
1939 * @cur_alt: the current alternate interface setting
1940 * @new_alt: alternate interface setting that is being installed
1941 *
1942 * To change configurations, pass in the new configuration in new_config,
1943 * and pass NULL for cur_alt and new_alt.
1944 *
1945 * To reset a device's configuration (put the device in the ADDRESSED state),
1946 * pass in NULL for new_config, cur_alt, and new_alt.
1947 *
1948 * To change alternate interface settings, pass in NULL for new_config,
1949 * pass in the current alternate interface setting in cur_alt,
1950 * and pass in the new alternate interface setting in new_alt.
1951 *
1952 * Return: An error if the requested bandwidth change exceeds the
1953 * bus bandwidth or host controller internal resources.
1954 */
1955 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1956 struct usb_host_config *new_config,
1957 struct usb_host_interface *cur_alt,
1958 struct usb_host_interface *new_alt)
1959 {
1960 int num_intfs, i, j;
1961 struct usb_host_interface *alt = NULL;
1962 int ret = 0;
1963 struct usb_hcd *hcd;
1964 struct usb_host_endpoint *ep;
1965
1966 hcd = bus_to_hcd(udev->bus);
1967 if (!hcd->driver->check_bandwidth)
1968 return 0;
1969
1970 /* Configuration is being removed - set configuration 0 */
1971 if (!new_config && !cur_alt) {
1972 for (i = 1; i < 16; ++i) {
1973 ep = udev->ep_out[i];
1974 if (ep)
1975 hcd->driver->drop_endpoint(hcd, udev, ep);
1976 ep = udev->ep_in[i];
1977 if (ep)
1978 hcd->driver->drop_endpoint(hcd, udev, ep);
1979 }
1980 hcd->driver->check_bandwidth(hcd, udev);
1981 return 0;
1982 }
1983 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1984 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1985 * of the bus. There will always be bandwidth for endpoint 0, so it's
1986 * ok to exclude it.
1987 */
1988 if (new_config) {
1989 num_intfs = new_config->desc.bNumInterfaces;
1990 /* Remove endpoints (except endpoint 0, which is always on the
1991 * schedule) from the old config from the schedule
1992 */
1993 for (i = 1; i < 16; ++i) {
1994 ep = udev->ep_out[i];
1995 if (ep) {
1996 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1997 if (ret < 0)
1998 goto reset;
1999 }
2000 ep = udev->ep_in[i];
2001 if (ep) {
2002 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2003 if (ret < 0)
2004 goto reset;
2005 }
2006 }
2007 for (i = 0; i < num_intfs; ++i) {
2008 struct usb_host_interface *first_alt;
2009 int iface_num;
2010
2011 first_alt = &new_config->intf_cache[i]->altsetting[0];
2012 iface_num = first_alt->desc.bInterfaceNumber;
2013 /* Set up endpoints for alternate interface setting 0 */
2014 alt = usb_find_alt_setting(new_config, iface_num, 0);
2015 if (!alt)
2016 /* No alt setting 0? Pick the first setting. */
2017 alt = first_alt;
2018
2019 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2020 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2021 if (ret < 0)
2022 goto reset;
2023 }
2024 }
2025 }
2026 if (cur_alt && new_alt) {
2027 struct usb_interface *iface = usb_ifnum_to_if(udev,
2028 cur_alt->desc.bInterfaceNumber);
2029
2030 if (!iface)
2031 return -EINVAL;
2032 if (iface->resetting_device) {
2033 /*
2034 * The USB core just reset the device, so the xHCI host
2035 * and the device will think alt setting 0 is installed.
2036 * However, the USB core will pass in the alternate
2037 * setting installed before the reset as cur_alt. Dig
2038 * out the alternate setting 0 structure, or the first
2039 * alternate setting if a broken device doesn't have alt
2040 * setting 0.
2041 */
2042 cur_alt = usb_altnum_to_altsetting(iface, 0);
2043 if (!cur_alt)
2044 cur_alt = &iface->altsetting[0];
2045 }
2046
2047 /* Drop all the endpoints in the current alt setting */
2048 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2049 ret = hcd->driver->drop_endpoint(hcd, udev,
2050 &cur_alt->endpoint[i]);
2051 if (ret < 0)
2052 goto reset;
2053 }
2054 /* Add all the endpoints in the new alt setting */
2055 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2056 ret = hcd->driver->add_endpoint(hcd, udev,
2057 &new_alt->endpoint[i]);
2058 if (ret < 0)
2059 goto reset;
2060 }
2061 }
2062 ret = hcd->driver->check_bandwidth(hcd, udev);
2063 reset:
2064 if (ret < 0)
2065 hcd->driver->reset_bandwidth(hcd, udev);
2066 return ret;
2067 }
2068
2069 /* Disables the endpoint: synchronizes with the hcd to make sure all
2070 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2071 * have been called previously. Use for set_configuration, set_interface,
2072 * driver removal, physical disconnect.
2073 *
2074 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2075 * type, maxpacket size, toggle, halt status, and scheduling.
2076 */
2077 void usb_hcd_disable_endpoint(struct usb_device *udev,
2078 struct usb_host_endpoint *ep)
2079 {
2080 struct usb_hcd *hcd;
2081
2082 might_sleep();
2083 hcd = bus_to_hcd(udev->bus);
2084 if (hcd->driver->endpoint_disable)
2085 hcd->driver->endpoint_disable(hcd, ep);
2086 }
2087
2088 /**
2089 * usb_hcd_reset_endpoint - reset host endpoint state
2090 * @udev: USB device.
2091 * @ep: the endpoint to reset.
2092 *
2093 * Resets any host endpoint state such as the toggle bit, sequence
2094 * number and current window.
2095 */
2096 void usb_hcd_reset_endpoint(struct usb_device *udev,
2097 struct usb_host_endpoint *ep)
2098 {
2099 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2100
2101 if (hcd->driver->endpoint_reset)
2102 hcd->driver->endpoint_reset(hcd, ep);
2103 else {
2104 int epnum = usb_endpoint_num(&ep->desc);
2105 int is_out = usb_endpoint_dir_out(&ep->desc);
2106 int is_control = usb_endpoint_xfer_control(&ep->desc);
2107
2108 usb_settoggle(udev, epnum, is_out, 0);
2109 if (is_control)
2110 usb_settoggle(udev, epnum, !is_out, 0);
2111 }
2112 }
2113
2114 /**
2115 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2116 * @interface: alternate setting that includes all endpoints.
2117 * @eps: array of endpoints that need streams.
2118 * @num_eps: number of endpoints in the array.
2119 * @num_streams: number of streams to allocate.
2120 * @mem_flags: flags hcd should use to allocate memory.
2121 *
2122 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2123 * Drivers may queue multiple transfers to different stream IDs, which may
2124 * complete in a different order than they were queued.
2125 *
2126 * Return: On success, the number of allocated streams. On failure, a negative
2127 * error code.
2128 */
2129 int usb_alloc_streams(struct usb_interface *interface,
2130 struct usb_host_endpoint **eps, unsigned int num_eps,
2131 unsigned int num_streams, gfp_t mem_flags)
2132 {
2133 struct usb_hcd *hcd;
2134 struct usb_device *dev;
2135 int i, ret;
2136
2137 dev = interface_to_usbdev(interface);
2138 hcd = bus_to_hcd(dev->bus);
2139 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2140 return -EINVAL;
2141 if (dev->speed < USB_SPEED_SUPER)
2142 return -EINVAL;
2143 if (dev->state < USB_STATE_CONFIGURED)
2144 return -ENODEV;
2145
2146 for (i = 0; i < num_eps; i++) {
2147 /* Streams only apply to bulk endpoints. */
2148 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2149 return -EINVAL;
2150 /* Re-alloc is not allowed */
2151 if (eps[i]->streams)
2152 return -EINVAL;
2153 }
2154
2155 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2156 num_streams, mem_flags);
2157 if (ret < 0)
2158 return ret;
2159
2160 for (i = 0; i < num_eps; i++)
2161 eps[i]->streams = ret;
2162
2163 return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2166
2167 /**
2168 * usb_free_streams - free bulk endpoint stream IDs.
2169 * @interface: alternate setting that includes all endpoints.
2170 * @eps: array of endpoints to remove streams from.
2171 * @num_eps: number of endpoints in the array.
2172 * @mem_flags: flags hcd should use to allocate memory.
2173 *
2174 * Reverts a group of bulk endpoints back to not using stream IDs.
2175 * Can fail if we are given bad arguments, or HCD is broken.
2176 *
2177 * Return: 0 on success. On failure, a negative error code.
2178 */
2179 int usb_free_streams(struct usb_interface *interface,
2180 struct usb_host_endpoint **eps, unsigned int num_eps,
2181 gfp_t mem_flags)
2182 {
2183 struct usb_hcd *hcd;
2184 struct usb_device *dev;
2185 int i, ret;
2186
2187 dev = interface_to_usbdev(interface);
2188 hcd = bus_to_hcd(dev->bus);
2189 if (dev->speed < USB_SPEED_SUPER)
2190 return -EINVAL;
2191
2192 /* Double-free is not allowed */
2193 for (i = 0; i < num_eps; i++)
2194 if (!eps[i] || !eps[i]->streams)
2195 return -EINVAL;
2196
2197 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2198 if (ret < 0)
2199 return ret;
2200
2201 for (i = 0; i < num_eps; i++)
2202 eps[i]->streams = 0;
2203
2204 return ret;
2205 }
2206 EXPORT_SYMBOL_GPL(usb_free_streams);
2207
2208 /* Protect against drivers that try to unlink URBs after the device
2209 * is gone, by waiting until all unlinks for @udev are finished.
2210 * Since we don't currently track URBs by device, simply wait until
2211 * nothing is running in the locked region of usb_hcd_unlink_urb().
2212 */
2213 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2214 {
2215 spin_lock_irq(&hcd_urb_unlink_lock);
2216 spin_unlock_irq(&hcd_urb_unlink_lock);
2217 }
2218
2219 /*-------------------------------------------------------------------------*/
2220
2221 /* called in any context */
2222 int usb_hcd_get_frame_number (struct usb_device *udev)
2223 {
2224 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2225
2226 if (!HCD_RH_RUNNING(hcd))
2227 return -ESHUTDOWN;
2228 return hcd->driver->get_frame_number (hcd);
2229 }
2230
2231 /*-------------------------------------------------------------------------*/
2232
2233 #ifdef CONFIG_PM
2234
2235 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2236 {
2237 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2238 int status;
2239 int old_state = hcd->state;
2240
2241 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2242 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2243 rhdev->do_remote_wakeup);
2244 if (HCD_DEAD(hcd)) {
2245 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2246 return 0;
2247 }
2248
2249 if (!hcd->driver->bus_suspend) {
2250 status = -ENOENT;
2251 } else {
2252 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2253 hcd->state = HC_STATE_QUIESCING;
2254 status = hcd->driver->bus_suspend(hcd);
2255 }
2256 if (status == 0) {
2257 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2258 hcd->state = HC_STATE_SUSPENDED;
2259
2260 /* Did we race with a root-hub wakeup event? */
2261 if (rhdev->do_remote_wakeup) {
2262 char buffer[6];
2263
2264 status = hcd->driver->hub_status_data(hcd, buffer);
2265 if (status != 0) {
2266 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2267 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2268 status = -EBUSY;
2269 }
2270 }
2271 } else {
2272 spin_lock_irq(&hcd_root_hub_lock);
2273 if (!HCD_DEAD(hcd)) {
2274 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2275 hcd->state = old_state;
2276 }
2277 spin_unlock_irq(&hcd_root_hub_lock);
2278 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2279 "suspend", status);
2280 }
2281 return status;
2282 }
2283
2284 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2285 {
2286 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2287 int status;
2288 int old_state = hcd->state;
2289
2290 dev_dbg(&rhdev->dev, "usb %sresume\n",
2291 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2292 if (HCD_DEAD(hcd)) {
2293 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2294 return 0;
2295 }
2296 if (!hcd->driver->bus_resume)
2297 return -ENOENT;
2298 if (HCD_RH_RUNNING(hcd))
2299 return 0;
2300
2301 hcd->state = HC_STATE_RESUMING;
2302 status = hcd->driver->bus_resume(hcd);
2303 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2304 if (status == 0) {
2305 struct usb_device *udev;
2306 int port1;
2307
2308 spin_lock_irq(&hcd_root_hub_lock);
2309 if (!HCD_DEAD(hcd)) {
2310 usb_set_device_state(rhdev, rhdev->actconfig
2311 ? USB_STATE_CONFIGURED
2312 : USB_STATE_ADDRESS);
2313 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2314 hcd->state = HC_STATE_RUNNING;
2315 }
2316 spin_unlock_irq(&hcd_root_hub_lock);
2317
2318 /*
2319 * Check whether any of the enabled ports on the root hub are
2320 * unsuspended. If they are then a TRSMRCY delay is needed
2321 * (this is what the USB-2 spec calls a "global resume").
2322 * Otherwise we can skip the delay.
2323 */
2324 usb_hub_for_each_child(rhdev, port1, udev) {
2325 if (udev->state != USB_STATE_NOTATTACHED &&
2326 !udev->port_is_suspended) {
2327 usleep_range(10000, 11000); /* TRSMRCY */
2328 break;
2329 }
2330 }
2331 } else {
2332 hcd->state = old_state;
2333 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2334 "resume", status);
2335 if (status != -ESHUTDOWN)
2336 usb_hc_died(hcd);
2337 }
2338 return status;
2339 }
2340
2341 /* Workqueue routine for root-hub remote wakeup */
2342 static void hcd_resume_work(struct work_struct *work)
2343 {
2344 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2345 struct usb_device *udev = hcd->self.root_hub;
2346
2347 usb_remote_wakeup(udev);
2348 }
2349
2350 /**
2351 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2352 * @hcd: host controller for this root hub
2353 *
2354 * The USB host controller calls this function when its root hub is
2355 * suspended (with the remote wakeup feature enabled) and a remote
2356 * wakeup request is received. The routine submits a workqueue request
2357 * to resume the root hub (that is, manage its downstream ports again).
2358 */
2359 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2360 {
2361 unsigned long flags;
2362
2363 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2364 if (hcd->rh_registered) {
2365 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2366 queue_work(pm_wq, &hcd->wakeup_work);
2367 }
2368 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2369 }
2370 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2371
2372 #endif /* CONFIG_PM */
2373
2374 /*-------------------------------------------------------------------------*/
2375
2376 #ifdef CONFIG_USB_OTG
2377
2378 /**
2379 * usb_bus_start_enum - start immediate enumeration (for OTG)
2380 * @bus: the bus (must use hcd framework)
2381 * @port_num: 1-based number of port; usually bus->otg_port
2382 * Context: in_interrupt()
2383 *
2384 * Starts enumeration, with an immediate reset followed later by
2385 * hub_wq identifying and possibly configuring the device.
2386 * This is needed by OTG controller drivers, where it helps meet
2387 * HNP protocol timing requirements for starting a port reset.
2388 *
2389 * Return: 0 if successful.
2390 */
2391 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2392 {
2393 struct usb_hcd *hcd;
2394 int status = -EOPNOTSUPP;
2395
2396 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2397 * boards with root hubs hooked up to internal devices (instead of
2398 * just the OTG port) may need more attention to resetting...
2399 */
2400 hcd = bus_to_hcd(bus);
2401 if (port_num && hcd->driver->start_port_reset)
2402 status = hcd->driver->start_port_reset(hcd, port_num);
2403
2404 /* allocate hub_wq shortly after (first) root port reset finishes;
2405 * it may issue others, until at least 50 msecs have passed.
2406 */
2407 if (status == 0)
2408 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2409 return status;
2410 }
2411 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2412
2413 #endif
2414
2415 /*-------------------------------------------------------------------------*/
2416
2417 /**
2418 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2419 * @irq: the IRQ being raised
2420 * @__hcd: pointer to the HCD whose IRQ is being signaled
2421 *
2422 * If the controller isn't HALTed, calls the driver's irq handler.
2423 * Checks whether the controller is now dead.
2424 *
2425 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2426 */
2427 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2428 {
2429 struct usb_hcd *hcd = __hcd;
2430 irqreturn_t rc;
2431
2432 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2433 rc = IRQ_NONE;
2434 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2435 rc = IRQ_NONE;
2436 else
2437 rc = IRQ_HANDLED;
2438
2439 return rc;
2440 }
2441 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2442
2443 /*-------------------------------------------------------------------------*/
2444
2445 /**
2446 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2447 * @hcd: pointer to the HCD representing the controller
2448 *
2449 * This is called by bus glue to report a USB host controller that died
2450 * while operations may still have been pending. It's called automatically
2451 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2452 *
2453 * Only call this function with the primary HCD.
2454 */
2455 void usb_hc_died (struct usb_hcd *hcd)
2456 {
2457 unsigned long flags;
2458
2459 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2460
2461 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2462 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2463 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2464 if (hcd->rh_registered) {
2465 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2466
2467 /* make hub_wq clean up old urbs and devices */
2468 usb_set_device_state (hcd->self.root_hub,
2469 USB_STATE_NOTATTACHED);
2470 usb_kick_hub_wq(hcd->self.root_hub);
2471 }
2472 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2473 hcd = hcd->shared_hcd;
2474 if (hcd->rh_registered) {
2475 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2476
2477 /* make hub_wq clean up old urbs and devices */
2478 usb_set_device_state(hcd->self.root_hub,
2479 USB_STATE_NOTATTACHED);
2480 usb_kick_hub_wq(hcd->self.root_hub);
2481 }
2482 }
2483 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2484 /* Make sure that the other roothub is also deallocated. */
2485 }
2486 EXPORT_SYMBOL_GPL (usb_hc_died);
2487
2488 /*-------------------------------------------------------------------------*/
2489
2490 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2491 {
2492
2493 spin_lock_init(&bh->lock);
2494 INIT_LIST_HEAD(&bh->head);
2495 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2496 }
2497
2498 /**
2499 * usb_create_shared_hcd - create and initialize an HCD structure
2500 * @driver: HC driver that will use this hcd
2501 * @dev: device for this HC, stored in hcd->self.controller
2502 * @bus_name: value to store in hcd->self.bus_name
2503 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2504 * PCI device. Only allocate certain resources for the primary HCD
2505 * Context: !in_interrupt()
2506 *
2507 * Allocate a struct usb_hcd, with extra space at the end for the
2508 * HC driver's private data. Initialize the generic members of the
2509 * hcd structure.
2510 *
2511 * Return: On success, a pointer to the created and initialized HCD structure.
2512 * On failure (e.g. if memory is unavailable), %NULL.
2513 */
2514 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2515 struct device *dev, const char *bus_name,
2516 struct usb_hcd *primary_hcd)
2517 {
2518 struct usb_hcd *hcd;
2519
2520 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2521 if (!hcd)
2522 return NULL;
2523 if (primary_hcd == NULL) {
2524 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2525 GFP_KERNEL);
2526 if (!hcd->address0_mutex) {
2527 kfree(hcd);
2528 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2529 return NULL;
2530 }
2531 mutex_init(hcd->address0_mutex);
2532 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2533 GFP_KERNEL);
2534 if (!hcd->bandwidth_mutex) {
2535 kfree(hcd);
2536 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2537 return NULL;
2538 }
2539 mutex_init(hcd->bandwidth_mutex);
2540 dev_set_drvdata(dev, hcd);
2541 } else {
2542 mutex_lock(&usb_port_peer_mutex);
2543 hcd->address0_mutex = primary_hcd->address0_mutex;
2544 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2545 hcd->primary_hcd = primary_hcd;
2546 primary_hcd->primary_hcd = primary_hcd;
2547 hcd->shared_hcd = primary_hcd;
2548 primary_hcd->shared_hcd = hcd;
2549 mutex_unlock(&usb_port_peer_mutex);
2550 }
2551
2552 kref_init(&hcd->kref);
2553
2554 usb_bus_init(&hcd->self);
2555 hcd->self.controller = dev;
2556 hcd->self.bus_name = bus_name;
2557 hcd->self.uses_dma = (dev->dma_mask != NULL);
2558
2559 init_timer(&hcd->rh_timer);
2560 hcd->rh_timer.function = rh_timer_func;
2561 hcd->rh_timer.data = (unsigned long) hcd;
2562 #ifdef CONFIG_PM
2563 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2564 #endif
2565
2566 hcd->driver = driver;
2567 hcd->speed = driver->flags & HCD_MASK;
2568 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2569 "USB Host Controller";
2570 return hcd;
2571 }
2572 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2573
2574 /**
2575 * usb_create_hcd - create and initialize an HCD structure
2576 * @driver: HC driver that will use this hcd
2577 * @dev: device for this HC, stored in hcd->self.controller
2578 * @bus_name: value to store in hcd->self.bus_name
2579 * Context: !in_interrupt()
2580 *
2581 * Allocate a struct usb_hcd, with extra space at the end for the
2582 * HC driver's private data. Initialize the generic members of the
2583 * hcd structure.
2584 *
2585 * Return: On success, a pointer to the created and initialized HCD
2586 * structure. On failure (e.g. if memory is unavailable), %NULL.
2587 */
2588 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2589 struct device *dev, const char *bus_name)
2590 {
2591 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2592 }
2593 EXPORT_SYMBOL_GPL(usb_create_hcd);
2594
2595 /*
2596 * Roothubs that share one PCI device must also share the bandwidth mutex.
2597 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2598 * deallocated.
2599 *
2600 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2601 * freed. When hcd_release() is called for either hcd in a peer set,
2602 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2603 */
2604 static void hcd_release(struct kref *kref)
2605 {
2606 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2607
2608 mutex_lock(&usb_port_peer_mutex);
2609 if (hcd->shared_hcd) {
2610 struct usb_hcd *peer = hcd->shared_hcd;
2611
2612 peer->shared_hcd = NULL;
2613 peer->primary_hcd = NULL;
2614 } else {
2615 kfree(hcd->address0_mutex);
2616 kfree(hcd->bandwidth_mutex);
2617 }
2618 mutex_unlock(&usb_port_peer_mutex);
2619 kfree(hcd);
2620 }
2621
2622 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2623 {
2624 if (hcd)
2625 kref_get (&hcd->kref);
2626 return hcd;
2627 }
2628 EXPORT_SYMBOL_GPL(usb_get_hcd);
2629
2630 void usb_put_hcd (struct usb_hcd *hcd)
2631 {
2632 if (hcd)
2633 kref_put (&hcd->kref, hcd_release);
2634 }
2635 EXPORT_SYMBOL_GPL(usb_put_hcd);
2636
2637 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2638 {
2639 if (!hcd->primary_hcd)
2640 return 1;
2641 return hcd == hcd->primary_hcd;
2642 }
2643 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2644
2645 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2646 {
2647 if (!hcd->driver->find_raw_port_number)
2648 return port1;
2649
2650 return hcd->driver->find_raw_port_number(hcd, port1);
2651 }
2652
2653 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2654 unsigned int irqnum, unsigned long irqflags)
2655 {
2656 int retval;
2657
2658 if (hcd->driver->irq) {
2659
2660 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2661 hcd->driver->description, hcd->self.busnum);
2662 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2663 hcd->irq_descr, hcd);
2664 if (retval != 0) {
2665 dev_err(hcd->self.controller,
2666 "request interrupt %d failed\n",
2667 irqnum);
2668 return retval;
2669 }
2670 hcd->irq = irqnum;
2671 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2672 (hcd->driver->flags & HCD_MEMORY) ?
2673 "io mem" : "io base",
2674 (unsigned long long)hcd->rsrc_start);
2675 } else {
2676 hcd->irq = 0;
2677 if (hcd->rsrc_start)
2678 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2679 (hcd->driver->flags & HCD_MEMORY) ?
2680 "io mem" : "io base",
2681 (unsigned long long)hcd->rsrc_start);
2682 }
2683 return 0;
2684 }
2685
2686 /*
2687 * Before we free this root hub, flush in-flight peering attempts
2688 * and disable peer lookups
2689 */
2690 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2691 {
2692 struct usb_device *rhdev;
2693
2694 mutex_lock(&usb_port_peer_mutex);
2695 rhdev = hcd->self.root_hub;
2696 hcd->self.root_hub = NULL;
2697 mutex_unlock(&usb_port_peer_mutex);
2698 usb_put_dev(rhdev);
2699 }
2700
2701 /**
2702 * usb_add_hcd - finish generic HCD structure initialization and register
2703 * @hcd: the usb_hcd structure to initialize
2704 * @irqnum: Interrupt line to allocate
2705 * @irqflags: Interrupt type flags
2706 *
2707 * Finish the remaining parts of generic HCD initialization: allocate the
2708 * buffers of consistent memory, register the bus, request the IRQ line,
2709 * and call the driver's reset() and start() routines.
2710 */
2711 int usb_add_hcd(struct usb_hcd *hcd,
2712 unsigned int irqnum, unsigned long irqflags)
2713 {
2714 int retval;
2715 struct usb_device *rhdev;
2716
2717 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2718 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2719
2720 if (IS_ERR(phy)) {
2721 retval = PTR_ERR(phy);
2722 if (retval == -EPROBE_DEFER)
2723 return retval;
2724 } else {
2725 retval = usb_phy_init(phy);
2726 if (retval) {
2727 usb_put_phy(phy);
2728 return retval;
2729 }
2730 hcd->usb_phy = phy;
2731 hcd->remove_phy = 1;
2732 }
2733 }
2734
2735 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2736 struct phy *phy = phy_get(hcd->self.controller, "usb");
2737
2738 if (IS_ERR(phy)) {
2739 retval = PTR_ERR(phy);
2740 if (retval == -EPROBE_DEFER)
2741 goto err_phy;
2742 } else {
2743 retval = phy_init(phy);
2744 if (retval) {
2745 phy_put(phy);
2746 goto err_phy;
2747 }
2748 retval = phy_power_on(phy);
2749 if (retval) {
2750 phy_exit(phy);
2751 phy_put(phy);
2752 goto err_phy;
2753 }
2754 hcd->phy = phy;
2755 hcd->remove_phy = 1;
2756 }
2757 }
2758
2759 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2760
2761 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2762 if (authorized_default < 0 || authorized_default > 1) {
2763 if (hcd->wireless)
2764 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2765 else
2766 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2767 } else {
2768 if (authorized_default)
2769 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770 else
2771 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2772 }
2773 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2774
2775 /* per default all interfaces are authorized */
2776 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2777
2778 /* HC is in reset state, but accessible. Now do the one-time init,
2779 * bottom up so that hcds can customize the root hubs before hub_wq
2780 * starts talking to them. (Note, bus id is assigned early too.)
2781 */
2782 retval = hcd_buffer_create(hcd);
2783 if (retval != 0) {
2784 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2785 goto err_create_buf;
2786 }
2787
2788 retval = usb_register_bus(&hcd->self);
2789 if (retval < 0)
2790 goto err_register_bus;
2791
2792 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2793 if (rhdev == NULL) {
2794 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2795 retval = -ENOMEM;
2796 goto err_allocate_root_hub;
2797 }
2798 mutex_lock(&usb_port_peer_mutex);
2799 hcd->self.root_hub = rhdev;
2800 mutex_unlock(&usb_port_peer_mutex);
2801
2802 switch (hcd->speed) {
2803 case HCD_USB11:
2804 rhdev->speed = USB_SPEED_FULL;
2805 break;
2806 case HCD_USB2:
2807 rhdev->speed = USB_SPEED_HIGH;
2808 break;
2809 case HCD_USB25:
2810 rhdev->speed = USB_SPEED_WIRELESS;
2811 break;
2812 case HCD_USB3:
2813 rhdev->speed = USB_SPEED_SUPER;
2814 break;
2815 case HCD_USB31:
2816 rhdev->speed = USB_SPEED_SUPER_PLUS;
2817 break;
2818 default:
2819 retval = -EINVAL;
2820 goto err_set_rh_speed;
2821 }
2822
2823 /* wakeup flag init defaults to "everything works" for root hubs,
2824 * but drivers can override it in reset() if needed, along with
2825 * recording the overall controller's system wakeup capability.
2826 */
2827 device_set_wakeup_capable(&rhdev->dev, 1);
2828
2829 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2830 * registered. But since the controller can die at any time,
2831 * let's initialize the flag before touching the hardware.
2832 */
2833 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2834
2835 /* "reset" is misnamed; its role is now one-time init. the controller
2836 * should already have been reset (and boot firmware kicked off etc).
2837 */
2838 if (hcd->driver->reset) {
2839 retval = hcd->driver->reset(hcd);
2840 if (retval < 0) {
2841 dev_err(hcd->self.controller, "can't setup: %d\n",
2842 retval);
2843 goto err_hcd_driver_setup;
2844 }
2845 }
2846 hcd->rh_pollable = 1;
2847
2848 /* NOTE: root hub and controller capabilities may not be the same */
2849 if (device_can_wakeup(hcd->self.controller)
2850 && device_can_wakeup(&hcd->self.root_hub->dev))
2851 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2852
2853 /* initialize tasklets */
2854 init_giveback_urb_bh(&hcd->high_prio_bh);
2855 init_giveback_urb_bh(&hcd->low_prio_bh);
2856
2857 /* enable irqs just before we start the controller,
2858 * if the BIOS provides legacy PCI irqs.
2859 */
2860 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2861 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2862 if (retval)
2863 goto err_request_irq;
2864 }
2865
2866 hcd->state = HC_STATE_RUNNING;
2867 retval = hcd->driver->start(hcd);
2868 if (retval < 0) {
2869 dev_err(hcd->self.controller, "startup error %d\n", retval);
2870 goto err_hcd_driver_start;
2871 }
2872
2873 /* starting here, usbcore will pay attention to this root hub */
2874 retval = register_root_hub(hcd);
2875 if (retval != 0)
2876 goto err_register_root_hub;
2877
2878 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2879 if (retval < 0) {
2880 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2881 retval);
2882 goto error_create_attr_group;
2883 }
2884 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2885 usb_hcd_poll_rh_status(hcd);
2886
2887 return retval;
2888
2889 error_create_attr_group:
2890 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2891 if (HC_IS_RUNNING(hcd->state))
2892 hcd->state = HC_STATE_QUIESCING;
2893 spin_lock_irq(&hcd_root_hub_lock);
2894 hcd->rh_registered = 0;
2895 spin_unlock_irq(&hcd_root_hub_lock);
2896
2897 #ifdef CONFIG_PM
2898 cancel_work_sync(&hcd->wakeup_work);
2899 #endif
2900 mutex_lock(&usb_bus_idr_lock);
2901 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2902 mutex_unlock(&usb_bus_idr_lock);
2903 err_register_root_hub:
2904 hcd->rh_pollable = 0;
2905 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2906 del_timer_sync(&hcd->rh_timer);
2907 hcd->driver->stop(hcd);
2908 hcd->state = HC_STATE_HALT;
2909 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2910 del_timer_sync(&hcd->rh_timer);
2911 err_hcd_driver_start:
2912 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2913 free_irq(irqnum, hcd);
2914 err_request_irq:
2915 err_hcd_driver_setup:
2916 err_set_rh_speed:
2917 usb_put_invalidate_rhdev(hcd);
2918 err_allocate_root_hub:
2919 usb_deregister_bus(&hcd->self);
2920 err_register_bus:
2921 hcd_buffer_destroy(hcd);
2922 err_create_buf:
2923 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2924 phy_power_off(hcd->phy);
2925 phy_exit(hcd->phy);
2926 phy_put(hcd->phy);
2927 hcd->phy = NULL;
2928 }
2929 err_phy:
2930 if (hcd->remove_phy && hcd->usb_phy) {
2931 usb_phy_shutdown(hcd->usb_phy);
2932 usb_put_phy(hcd->usb_phy);
2933 hcd->usb_phy = NULL;
2934 }
2935 return retval;
2936 }
2937 EXPORT_SYMBOL_GPL(usb_add_hcd);
2938
2939 /**
2940 * usb_remove_hcd - shutdown processing for generic HCDs
2941 * @hcd: the usb_hcd structure to remove
2942 * Context: !in_interrupt()
2943 *
2944 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2945 * invoking the HCD's stop() method.
2946 */
2947 void usb_remove_hcd(struct usb_hcd *hcd)
2948 {
2949 struct usb_device *rhdev = hcd->self.root_hub;
2950
2951 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2952
2953 usb_get_dev(rhdev);
2954 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2955
2956 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2957 if (HC_IS_RUNNING (hcd->state))
2958 hcd->state = HC_STATE_QUIESCING;
2959
2960 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2961 spin_lock_irq (&hcd_root_hub_lock);
2962 hcd->rh_registered = 0;
2963 spin_unlock_irq (&hcd_root_hub_lock);
2964
2965 #ifdef CONFIG_PM
2966 cancel_work_sync(&hcd->wakeup_work);
2967 #endif
2968
2969 mutex_lock(&usb_bus_idr_lock);
2970 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2971 mutex_unlock(&usb_bus_idr_lock);
2972
2973 /*
2974 * tasklet_kill() isn't needed here because:
2975 * - driver's disconnect() called from usb_disconnect() should
2976 * make sure its URBs are completed during the disconnect()
2977 * callback
2978 *
2979 * - it is too late to run complete() here since driver may have
2980 * been removed already now
2981 */
2982
2983 /* Prevent any more root-hub status calls from the timer.
2984 * The HCD might still restart the timer (if a port status change
2985 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2986 * the hub_status_data() callback.
2987 */
2988 hcd->rh_pollable = 0;
2989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2990 del_timer_sync(&hcd->rh_timer);
2991
2992 hcd->driver->stop(hcd);
2993 hcd->state = HC_STATE_HALT;
2994
2995 /* In case the HCD restarted the timer, stop it again. */
2996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2997 del_timer_sync(&hcd->rh_timer);
2998
2999 if (usb_hcd_is_primary_hcd(hcd)) {
3000 if (hcd->irq > 0)
3001 free_irq(hcd->irq, hcd);
3002 }
3003
3004 usb_deregister_bus(&hcd->self);
3005 hcd_buffer_destroy(hcd);
3006
3007 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3008 phy_power_off(hcd->phy);
3009 phy_exit(hcd->phy);
3010 phy_put(hcd->phy);
3011 hcd->phy = NULL;
3012 }
3013 if (hcd->remove_phy && hcd->usb_phy) {
3014 usb_phy_shutdown(hcd->usb_phy);
3015 usb_put_phy(hcd->usb_phy);
3016 hcd->usb_phy = NULL;
3017 }
3018
3019 usb_put_invalidate_rhdev(hcd);
3020 hcd->flags = 0;
3021 }
3022 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3023
3024 void
3025 usb_hcd_platform_shutdown(struct platform_device *dev)
3026 {
3027 struct usb_hcd *hcd = platform_get_drvdata(dev);
3028
3029 if (hcd->driver->shutdown)
3030 hcd->driver->shutdown(hcd);
3031 }
3032 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3033
3034 /*-------------------------------------------------------------------------*/
3035
3036 #if IS_ENABLED(CONFIG_USB_MON)
3037
3038 const struct usb_mon_operations *mon_ops;
3039
3040 /*
3041 * The registration is unlocked.
3042 * We do it this way because we do not want to lock in hot paths.
3043 *
3044 * Notice that the code is minimally error-proof. Because usbmon needs
3045 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3046 */
3047
3048 int usb_mon_register(const struct usb_mon_operations *ops)
3049 {
3050
3051 if (mon_ops)
3052 return -EBUSY;
3053
3054 mon_ops = ops;
3055 mb();
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL (usb_mon_register);
3059
3060 void usb_mon_deregister (void)
3061 {
3062
3063 if (mon_ops == NULL) {
3064 printk(KERN_ERR "USB: monitor was not registered\n");
3065 return;
3066 }
3067 mon_ops = NULL;
3068 mb();
3069 }
3070 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3071
3072 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */