]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/core/hcd.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/completion.h>
32 #include <linux/utsname.h>
33 #include <linux/mm.h>
34 #include <asm/io.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/mutex.h>
38 #include <asm/irq.h>
39 #include <asm/byteorder.h>
40 #include <asm/unaligned.h>
41 #include <linux/platform_device.h>
42 #include <linux/workqueue.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/types.h>
45
46 #include <linux/phy/phy.h>
47 #include <linux/usb.h>
48 #include <linux/usb/hcd.h>
49 #include <linux/usb/phy.h>
50 #include <linux/usb/otg.h>
51
52 #include "usb.h"
53
54
55 /*-------------------------------------------------------------------------*/
56
57 /*
58 * USB Host Controller Driver framework
59 *
60 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
61 * HCD-specific behaviors/bugs.
62 *
63 * This does error checks, tracks devices and urbs, and delegates to a
64 * "hc_driver" only for code (and data) that really needs to know about
65 * hardware differences. That includes root hub registers, i/o queues,
66 * and so on ... but as little else as possible.
67 *
68 * Shared code includes most of the "root hub" code (these are emulated,
69 * though each HC's hardware works differently) and PCI glue, plus request
70 * tracking overhead. The HCD code should only block on spinlocks or on
71 * hardware handshaking; blocking on software events (such as other kernel
72 * threads releasing resources, or completing actions) is all generic.
73 *
74 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
75 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
76 * only by the hub driver ... and that neither should be seen or used by
77 * usb client device drivers.
78 *
79 * Contributors of ideas or unattributed patches include: David Brownell,
80 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
81 *
82 * HISTORY:
83 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
84 * associated cleanup. "usb_hcd" still != "usb_bus".
85 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
86 */
87
88 /*-------------------------------------------------------------------------*/
89
90 /* Keep track of which host controller drivers are loaded */
91 unsigned long usb_hcds_loaded;
92 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
93
94 /* host controllers we manage */
95 DEFINE_IDR (usb_bus_idr);
96 EXPORT_SYMBOL_GPL (usb_bus_idr);
97
98 /* used when allocating bus numbers */
99 #define USB_MAXBUS 64
100
101 /* used when updating list of hcds */
102 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
103 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
104
105 /* used for controlling access to virtual root hubs */
106 static DEFINE_SPINLOCK(hcd_root_hub_lock);
107
108 /* used when updating an endpoint's URB list */
109 static DEFINE_SPINLOCK(hcd_urb_list_lock);
110
111 /* used to protect against unlinking URBs after the device is gone */
112 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
113
114 /* wait queue for synchronous unlinks */
115 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
116
117 static inline int is_root_hub(struct usb_device *udev)
118 {
119 return (udev->parent == NULL);
120 }
121
122 /*-------------------------------------------------------------------------*/
123
124 /*
125 * Sharable chunks of root hub code.
126 */
127
128 /*-------------------------------------------------------------------------*/
129 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
130 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
131
132 /* usb 3.1 root hub device descriptor */
133 static const u8 usb31_rh_dev_descriptor[18] = {
134 0x12, /* __u8 bLength; */
135 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
136 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
137
138 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
139 0x00, /* __u8 bDeviceSubClass; */
140 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
141 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142
143 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
144 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
145 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
146
147 0x03, /* __u8 iManufacturer; */
148 0x02, /* __u8 iProduct; */
149 0x01, /* __u8 iSerialNumber; */
150 0x01 /* __u8 bNumConfigurations; */
151 };
152
153 /* usb 3.0 root hub device descriptor */
154 static const u8 usb3_rh_dev_descriptor[18] = {
155 0x12, /* __u8 bLength; */
156 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
157 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
158
159 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
160 0x00, /* __u8 bDeviceSubClass; */
161 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
162 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
163
164 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
165 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
166 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
167
168 0x03, /* __u8 iManufacturer; */
169 0x02, /* __u8 iProduct; */
170 0x01, /* __u8 iSerialNumber; */
171 0x01 /* __u8 bNumConfigurations; */
172 };
173
174 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
175 static const u8 usb25_rh_dev_descriptor[18] = {
176 0x12, /* __u8 bLength; */
177 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
178 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
183 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
186 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193 };
194
195 /* usb 2.0 root hub device descriptor */
196 static const u8 usb2_rh_dev_descriptor[18] = {
197 0x12, /* __u8 bLength; */
198 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
199 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
200
201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
202 0x00, /* __u8 bDeviceSubClass; */
203 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
205
206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
207 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
209
210 0x03, /* __u8 iManufacturer; */
211 0x02, /* __u8 iProduct; */
212 0x01, /* __u8 iSerialNumber; */
213 0x01 /* __u8 bNumConfigurations; */
214 };
215
216 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
217
218 /* usb 1.1 root hub device descriptor */
219 static const u8 usb11_rh_dev_descriptor[18] = {
220 0x12, /* __u8 bLength; */
221 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
222 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
223
224 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
225 0x00, /* __u8 bDeviceSubClass; */
226 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
227 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
228
229 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
230 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
231 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
232
233 0x03, /* __u8 iManufacturer; */
234 0x02, /* __u8 iProduct; */
235 0x01, /* __u8 iSerialNumber; */
236 0x01 /* __u8 bNumConfigurations; */
237 };
238
239
240 /*-------------------------------------------------------------------------*/
241
242 /* Configuration descriptors for our root hubs */
243
244 static const u8 fs_rh_config_descriptor[] = {
245
246 /* one configuration */
247 0x09, /* __u8 bLength; */
248 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
249 0x19, 0x00, /* __le16 wTotalLength; */
250 0x01, /* __u8 bNumInterfaces; (1) */
251 0x01, /* __u8 bConfigurationValue; */
252 0x00, /* __u8 iConfiguration; */
253 0xc0, /* __u8 bmAttributes;
254 Bit 7: must be set,
255 6: Self-powered,
256 5: Remote wakeup,
257 4..0: resvd */
258 0x00, /* __u8 MaxPower; */
259
260 /* USB 1.1:
261 * USB 2.0, single TT organization (mandatory):
262 * one interface, protocol 0
263 *
264 * USB 2.0, multiple TT organization (optional):
265 * two interfaces, protocols 1 (like single TT)
266 * and 2 (multiple TT mode) ... config is
267 * sometimes settable
268 * NOT IMPLEMENTED
269 */
270
271 /* one interface */
272 0x09, /* __u8 if_bLength; */
273 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
274 0x00, /* __u8 if_bInterfaceNumber; */
275 0x00, /* __u8 if_bAlternateSetting; */
276 0x01, /* __u8 if_bNumEndpoints; */
277 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
278 0x00, /* __u8 if_bInterfaceSubClass; */
279 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
280 0x00, /* __u8 if_iInterface; */
281
282 /* one endpoint (status change endpoint) */
283 0x07, /* __u8 ep_bLength; */
284 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
285 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
286 0x03, /* __u8 ep_bmAttributes; Interrupt */
287 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
288 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
289 };
290
291 static const u8 hs_rh_config_descriptor[] = {
292
293 /* one configuration */
294 0x09, /* __u8 bLength; */
295 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
296 0x19, 0x00, /* __le16 wTotalLength; */
297 0x01, /* __u8 bNumInterfaces; (1) */
298 0x01, /* __u8 bConfigurationValue; */
299 0x00, /* __u8 iConfiguration; */
300 0xc0, /* __u8 bmAttributes;
301 Bit 7: must be set,
302 6: Self-powered,
303 5: Remote wakeup,
304 4..0: resvd */
305 0x00, /* __u8 MaxPower; */
306
307 /* USB 1.1:
308 * USB 2.0, single TT organization (mandatory):
309 * one interface, protocol 0
310 *
311 * USB 2.0, multiple TT organization (optional):
312 * two interfaces, protocols 1 (like single TT)
313 * and 2 (multiple TT mode) ... config is
314 * sometimes settable
315 * NOT IMPLEMENTED
316 */
317
318 /* one interface */
319 0x09, /* __u8 if_bLength; */
320 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
321 0x00, /* __u8 if_bInterfaceNumber; */
322 0x00, /* __u8 if_bAlternateSetting; */
323 0x01, /* __u8 if_bNumEndpoints; */
324 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
325 0x00, /* __u8 if_bInterfaceSubClass; */
326 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
327 0x00, /* __u8 if_iInterface; */
328
329 /* one endpoint (status change endpoint) */
330 0x07, /* __u8 ep_bLength; */
331 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
332 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
333 0x03, /* __u8 ep_bmAttributes; Interrupt */
334 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
335 * see hub.c:hub_configure() for details. */
336 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
337 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
338 };
339
340 static const u8 ss_rh_config_descriptor[] = {
341 /* one configuration */
342 0x09, /* __u8 bLength; */
343 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
344 0x1f, 0x00, /* __le16 wTotalLength; */
345 0x01, /* __u8 bNumInterfaces; (1) */
346 0x01, /* __u8 bConfigurationValue; */
347 0x00, /* __u8 iConfiguration; */
348 0xc0, /* __u8 bmAttributes;
349 Bit 7: must be set,
350 6: Self-powered,
351 5: Remote wakeup,
352 4..0: resvd */
353 0x00, /* __u8 MaxPower; */
354
355 /* one interface */
356 0x09, /* __u8 if_bLength; */
357 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
358 0x00, /* __u8 if_bInterfaceNumber; */
359 0x00, /* __u8 if_bAlternateSetting; */
360 0x01, /* __u8 if_bNumEndpoints; */
361 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
362 0x00, /* __u8 if_bInterfaceSubClass; */
363 0x00, /* __u8 if_bInterfaceProtocol; */
364 0x00, /* __u8 if_iInterface; */
365
366 /* one endpoint (status change endpoint) */
367 0x07, /* __u8 ep_bLength; */
368 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
369 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
370 0x03, /* __u8 ep_bmAttributes; Interrupt */
371 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
372 * see hub.c:hub_configure() for details. */
373 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
374 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
375
376 /* one SuperSpeed endpoint companion descriptor */
377 0x06, /* __u8 ss_bLength */
378 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
379 /* Companion */
380 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
381 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
382 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
383 };
384
385 /* authorized_default behaviour:
386 * -1 is authorized for all devices except wireless (old behaviour)
387 * 0 is unauthorized for all devices
388 * 1 is authorized for all devices
389 */
390 static int authorized_default = -1;
391 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
392 MODULE_PARM_DESC(authorized_default,
393 "Default USB device authorization: 0 is not authorized, 1 is "
394 "authorized, -1 is authorized except for wireless USB (default, "
395 "old behaviour");
396 /*-------------------------------------------------------------------------*/
397
398 /**
399 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
400 * @s: Null-terminated ASCII (actually ISO-8859-1) string
401 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
402 * @len: Length (in bytes; may be odd) of descriptor buffer.
403 *
404 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
405 * whichever is less.
406 *
407 * Note:
408 * USB String descriptors can contain at most 126 characters; input
409 * strings longer than that are truncated.
410 */
411 static unsigned
412 ascii2desc(char const *s, u8 *buf, unsigned len)
413 {
414 unsigned n, t = 2 + 2*strlen(s);
415
416 if (t > 254)
417 t = 254; /* Longest possible UTF string descriptor */
418 if (len > t)
419 len = t;
420
421 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
422
423 n = len;
424 while (n--) {
425 *buf++ = t;
426 if (!n--)
427 break;
428 *buf++ = t >> 8;
429 t = (unsigned char)*s++;
430 }
431 return len;
432 }
433
434 /**
435 * rh_string() - provides string descriptors for root hub
436 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
437 * @hcd: the host controller for this root hub
438 * @data: buffer for output packet
439 * @len: length of the provided buffer
440 *
441 * Produces either a manufacturer, product or serial number string for the
442 * virtual root hub device.
443 *
444 * Return: The number of bytes filled in: the length of the descriptor or
445 * of the provided buffer, whichever is less.
446 */
447 static unsigned
448 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
449 {
450 char buf[100];
451 char const *s;
452 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
453
454 /* language ids */
455 switch (id) {
456 case 0:
457 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
458 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
459 if (len > 4)
460 len = 4;
461 memcpy(data, langids, len);
462 return len;
463 case 1:
464 /* Serial number */
465 s = hcd->self.bus_name;
466 break;
467 case 2:
468 /* Product name */
469 s = hcd->product_desc;
470 break;
471 case 3:
472 /* Manufacturer */
473 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
474 init_utsname()->release, hcd->driver->description);
475 s = buf;
476 break;
477 default:
478 /* Can't happen; caller guarantees it */
479 return 0;
480 }
481
482 return ascii2desc(s, data, len);
483 }
484
485
486 /* Root hub control transfers execute synchronously */
487 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
488 {
489 struct usb_ctrlrequest *cmd;
490 u16 typeReq, wValue, wIndex, wLength;
491 u8 *ubuf = urb->transfer_buffer;
492 unsigned len = 0;
493 int status;
494 u8 patch_wakeup = 0;
495 u8 patch_protocol = 0;
496 u16 tbuf_size;
497 u8 *tbuf = NULL;
498 const u8 *bufp;
499
500 might_sleep();
501
502 spin_lock_irq(&hcd_root_hub_lock);
503 status = usb_hcd_link_urb_to_ep(hcd, urb);
504 spin_unlock_irq(&hcd_root_hub_lock);
505 if (status)
506 return status;
507 urb->hcpriv = hcd; /* Indicate it's queued */
508
509 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
510 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
511 wValue = le16_to_cpu (cmd->wValue);
512 wIndex = le16_to_cpu (cmd->wIndex);
513 wLength = le16_to_cpu (cmd->wLength);
514
515 if (wLength > urb->transfer_buffer_length)
516 goto error;
517
518 /*
519 * tbuf should be at least as big as the
520 * USB hub descriptor.
521 */
522 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
523 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
524 if (!tbuf) {
525 status = -ENOMEM;
526 goto err_alloc;
527 }
528
529 bufp = tbuf;
530
531
532 urb->actual_length = 0;
533 switch (typeReq) {
534
535 /* DEVICE REQUESTS */
536
537 /* The root hub's remote wakeup enable bit is implemented using
538 * driver model wakeup flags. If this system supports wakeup
539 * through USB, userspace may change the default "allow wakeup"
540 * policy through sysfs or these calls.
541 *
542 * Most root hubs support wakeup from downstream devices, for
543 * runtime power management (disabling USB clocks and reducing
544 * VBUS power usage). However, not all of them do so; silicon,
545 * board, and BIOS bugs here are not uncommon, so these can't
546 * be treated quite like external hubs.
547 *
548 * Likewise, not all root hubs will pass wakeup events upstream,
549 * to wake up the whole system. So don't assume root hub and
550 * controller capabilities are identical.
551 */
552
553 case DeviceRequest | USB_REQ_GET_STATUS:
554 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
555 << USB_DEVICE_REMOTE_WAKEUP)
556 | (1 << USB_DEVICE_SELF_POWERED);
557 tbuf[1] = 0;
558 len = 2;
559 break;
560 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
561 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
562 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
563 else
564 goto error;
565 break;
566 case DeviceOutRequest | USB_REQ_SET_FEATURE:
567 if (device_can_wakeup(&hcd->self.root_hub->dev)
568 && wValue == USB_DEVICE_REMOTE_WAKEUP)
569 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
570 else
571 goto error;
572 break;
573 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
574 tbuf[0] = 1;
575 len = 1;
576 /* FALLTHROUGH */
577 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
578 break;
579 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
580 switch (wValue & 0xff00) {
581 case USB_DT_DEVICE << 8:
582 switch (hcd->speed) {
583 case HCD_USB31:
584 bufp = usb31_rh_dev_descriptor;
585 break;
586 case HCD_USB3:
587 bufp = usb3_rh_dev_descriptor;
588 break;
589 case HCD_USB25:
590 bufp = usb25_rh_dev_descriptor;
591 break;
592 case HCD_USB2:
593 bufp = usb2_rh_dev_descriptor;
594 break;
595 case HCD_USB11:
596 bufp = usb11_rh_dev_descriptor;
597 break;
598 default:
599 goto error;
600 }
601 len = 18;
602 if (hcd->has_tt)
603 patch_protocol = 1;
604 break;
605 case USB_DT_CONFIG << 8:
606 switch (hcd->speed) {
607 case HCD_USB31:
608 case HCD_USB3:
609 bufp = ss_rh_config_descriptor;
610 len = sizeof ss_rh_config_descriptor;
611 break;
612 case HCD_USB25:
613 case HCD_USB2:
614 bufp = hs_rh_config_descriptor;
615 len = sizeof hs_rh_config_descriptor;
616 break;
617 case HCD_USB11:
618 bufp = fs_rh_config_descriptor;
619 len = sizeof fs_rh_config_descriptor;
620 break;
621 default:
622 goto error;
623 }
624 if (device_can_wakeup(&hcd->self.root_hub->dev))
625 patch_wakeup = 1;
626 break;
627 case USB_DT_STRING << 8:
628 if ((wValue & 0xff) < 4)
629 urb->actual_length = rh_string(wValue & 0xff,
630 hcd, ubuf, wLength);
631 else /* unsupported IDs --> "protocol stall" */
632 goto error;
633 break;
634 case USB_DT_BOS << 8:
635 goto nongeneric;
636 default:
637 goto error;
638 }
639 break;
640 case DeviceRequest | USB_REQ_GET_INTERFACE:
641 tbuf[0] = 0;
642 len = 1;
643 /* FALLTHROUGH */
644 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
645 break;
646 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
647 /* wValue == urb->dev->devaddr */
648 dev_dbg (hcd->self.controller, "root hub device address %d\n",
649 wValue);
650 break;
651
652 /* INTERFACE REQUESTS (no defined feature/status flags) */
653
654 /* ENDPOINT REQUESTS */
655
656 case EndpointRequest | USB_REQ_GET_STATUS:
657 /* ENDPOINT_HALT flag */
658 tbuf[0] = 0;
659 tbuf[1] = 0;
660 len = 2;
661 /* FALLTHROUGH */
662 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
663 case EndpointOutRequest | USB_REQ_SET_FEATURE:
664 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
665 break;
666
667 /* CLASS REQUESTS (and errors) */
668
669 default:
670 nongeneric:
671 /* non-generic request */
672 switch (typeReq) {
673 case GetHubStatus:
674 len = 4;
675 break;
676 case GetPortStatus:
677 if (wValue == HUB_PORT_STATUS)
678 len = 4;
679 else
680 /* other port status types return 8 bytes */
681 len = 8;
682 break;
683 case GetHubDescriptor:
684 len = sizeof (struct usb_hub_descriptor);
685 break;
686 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
687 /* len is returned by hub_control */
688 break;
689 }
690 status = hcd->driver->hub_control (hcd,
691 typeReq, wValue, wIndex,
692 tbuf, wLength);
693
694 if (typeReq == GetHubDescriptor)
695 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
696 (struct usb_hub_descriptor *)tbuf);
697 break;
698 error:
699 /* "protocol stall" on error */
700 status = -EPIPE;
701 }
702
703 if (status < 0) {
704 len = 0;
705 if (status != -EPIPE) {
706 dev_dbg (hcd->self.controller,
707 "CTRL: TypeReq=0x%x val=0x%x "
708 "idx=0x%x len=%d ==> %d\n",
709 typeReq, wValue, wIndex,
710 wLength, status);
711 }
712 } else if (status > 0) {
713 /* hub_control may return the length of data copied. */
714 len = status;
715 status = 0;
716 }
717 if (len) {
718 if (urb->transfer_buffer_length < len)
719 len = urb->transfer_buffer_length;
720 urb->actual_length = len;
721 /* always USB_DIR_IN, toward host */
722 memcpy (ubuf, bufp, len);
723
724 /* report whether RH hardware supports remote wakeup */
725 if (patch_wakeup &&
726 len > offsetof (struct usb_config_descriptor,
727 bmAttributes))
728 ((struct usb_config_descriptor *)ubuf)->bmAttributes
729 |= USB_CONFIG_ATT_WAKEUP;
730
731 /* report whether RH hardware has an integrated TT */
732 if (patch_protocol &&
733 len > offsetof(struct usb_device_descriptor,
734 bDeviceProtocol))
735 ((struct usb_device_descriptor *) ubuf)->
736 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
737 }
738
739 kfree(tbuf);
740 err_alloc:
741
742 /* any errors get returned through the urb completion */
743 spin_lock_irq(&hcd_root_hub_lock);
744 usb_hcd_unlink_urb_from_ep(hcd, urb);
745 usb_hcd_giveback_urb(hcd, urb, status);
746 spin_unlock_irq(&hcd_root_hub_lock);
747 return 0;
748 }
749
750 /*-------------------------------------------------------------------------*/
751
752 /*
753 * Root Hub interrupt transfers are polled using a timer if the
754 * driver requests it; otherwise the driver is responsible for
755 * calling usb_hcd_poll_rh_status() when an event occurs.
756 *
757 * Completions are called in_interrupt(), but they may or may not
758 * be in_irq().
759 */
760 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
761 {
762 struct urb *urb;
763 int length;
764 unsigned long flags;
765 char buffer[6]; /* Any root hubs with > 31 ports? */
766
767 if (unlikely(!hcd->rh_pollable))
768 return;
769 if (!hcd->uses_new_polling && !hcd->status_urb)
770 return;
771
772 length = hcd->driver->hub_status_data(hcd, buffer);
773 if (length > 0) {
774
775 /* try to complete the status urb */
776 spin_lock_irqsave(&hcd_root_hub_lock, flags);
777 urb = hcd->status_urb;
778 if (urb) {
779 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
780 hcd->status_urb = NULL;
781 urb->actual_length = length;
782 memcpy(urb->transfer_buffer, buffer, length);
783
784 usb_hcd_unlink_urb_from_ep(hcd, urb);
785 usb_hcd_giveback_urb(hcd, urb, 0);
786 } else {
787 length = 0;
788 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 }
790 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 }
792
793 /* The USB 2.0 spec says 256 ms. This is close enough and won't
794 * exceed that limit if HZ is 100. The math is more clunky than
795 * maybe expected, this is to make sure that all timers for USB devices
796 * fire at the same time to give the CPU a break in between */
797 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 (length == 0 && hcd->status_urb != NULL))
799 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802
803 /* timer callback */
804 static void rh_timer_func (unsigned long _hcd)
805 {
806 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
807 }
808
809 /*-------------------------------------------------------------------------*/
810
811 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
812 {
813 int retval;
814 unsigned long flags;
815 unsigned len = 1 + (urb->dev->maxchild / 8);
816
817 spin_lock_irqsave (&hcd_root_hub_lock, flags);
818 if (hcd->status_urb || urb->transfer_buffer_length < len) {
819 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
820 retval = -EINVAL;
821 goto done;
822 }
823
824 retval = usb_hcd_link_urb_to_ep(hcd, urb);
825 if (retval)
826 goto done;
827
828 hcd->status_urb = urb;
829 urb->hcpriv = hcd; /* indicate it's queued */
830 if (!hcd->uses_new_polling)
831 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
832
833 /* If a status change has already occurred, report it ASAP */
834 else if (HCD_POLL_PENDING(hcd))
835 mod_timer(&hcd->rh_timer, jiffies);
836 retval = 0;
837 done:
838 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
839 return retval;
840 }
841
842 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
843 {
844 if (usb_endpoint_xfer_int(&urb->ep->desc))
845 return rh_queue_status (hcd, urb);
846 if (usb_endpoint_xfer_control(&urb->ep->desc))
847 return rh_call_control (hcd, urb);
848 return -EINVAL;
849 }
850
851 /*-------------------------------------------------------------------------*/
852
853 /* Unlinks of root-hub control URBs are legal, but they don't do anything
854 * since these URBs always execute synchronously.
855 */
856 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
857 {
858 unsigned long flags;
859 int rc;
860
861 spin_lock_irqsave(&hcd_root_hub_lock, flags);
862 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
863 if (rc)
864 goto done;
865
866 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
867 ; /* Do nothing */
868
869 } else { /* Status URB */
870 if (!hcd->uses_new_polling)
871 del_timer (&hcd->rh_timer);
872 if (urb == hcd->status_urb) {
873 hcd->status_urb = NULL;
874 usb_hcd_unlink_urb_from_ep(hcd, urb);
875 usb_hcd_giveback_urb(hcd, urb, status);
876 }
877 }
878 done:
879 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
880 return rc;
881 }
882
883
884
885 /*
886 * Show & store the current value of authorized_default
887 */
888 static ssize_t authorized_default_show(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 struct usb_device *rh_usb_dev = to_usb_device(dev);
892 struct usb_bus *usb_bus = rh_usb_dev->bus;
893 struct usb_hcd *hcd;
894
895 hcd = bus_to_hcd(usb_bus);
896 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
897 }
898
899 static ssize_t authorized_default_store(struct device *dev,
900 struct device_attribute *attr,
901 const char *buf, size_t size)
902 {
903 ssize_t result;
904 unsigned val;
905 struct usb_device *rh_usb_dev = to_usb_device(dev);
906 struct usb_bus *usb_bus = rh_usb_dev->bus;
907 struct usb_hcd *hcd;
908
909 hcd = bus_to_hcd(usb_bus);
910 result = sscanf(buf, "%u\n", &val);
911 if (result == 1) {
912 if (val)
913 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
914 else
915 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
916
917 result = size;
918 } else {
919 result = -EINVAL;
920 }
921 return result;
922 }
923 static DEVICE_ATTR_RW(authorized_default);
924
925 /*
926 * interface_authorized_default_show - show default authorization status
927 * for USB interfaces
928 *
929 * note: interface_authorized_default is the default value
930 * for initializing the authorized attribute of interfaces
931 */
932 static ssize_t interface_authorized_default_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934 {
935 struct usb_device *usb_dev = to_usb_device(dev);
936 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
937
938 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
939 }
940
941 /*
942 * interface_authorized_default_store - store default authorization status
943 * for USB interfaces
944 *
945 * note: interface_authorized_default is the default value
946 * for initializing the authorized attribute of interfaces
947 */
948 static ssize_t interface_authorized_default_store(struct device *dev,
949 struct device_attribute *attr, const char *buf, size_t count)
950 {
951 struct usb_device *usb_dev = to_usb_device(dev);
952 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
953 int rc = count;
954 bool val;
955
956 if (strtobool(buf, &val) != 0)
957 return -EINVAL;
958
959 if (val)
960 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
961 else
962 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
963
964 return rc;
965 }
966 static DEVICE_ATTR_RW(interface_authorized_default);
967
968 /* Group all the USB bus attributes */
969 static struct attribute *usb_bus_attrs[] = {
970 &dev_attr_authorized_default.attr,
971 &dev_attr_interface_authorized_default.attr,
972 NULL,
973 };
974
975 static struct attribute_group usb_bus_attr_group = {
976 .name = NULL, /* we want them in the same directory */
977 .attrs = usb_bus_attrs,
978 };
979
980
981
982 /*-------------------------------------------------------------------------*/
983
984 /**
985 * usb_bus_init - shared initialization code
986 * @bus: the bus structure being initialized
987 *
988 * This code is used to initialize a usb_bus structure, memory for which is
989 * separately managed.
990 */
991 static void usb_bus_init (struct usb_bus *bus)
992 {
993 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
994
995 bus->devnum_next = 1;
996
997 bus->root_hub = NULL;
998 bus->busnum = -1;
999 bus->bandwidth_allocated = 0;
1000 bus->bandwidth_int_reqs = 0;
1001 bus->bandwidth_isoc_reqs = 0;
1002 mutex_init(&bus->devnum_next_mutex);
1003 }
1004
1005 /*-------------------------------------------------------------------------*/
1006
1007 /**
1008 * usb_register_bus - registers the USB host controller with the usb core
1009 * @bus: pointer to the bus to register
1010 * Context: !in_interrupt()
1011 *
1012 * Assigns a bus number, and links the controller into usbcore data
1013 * structures so that it can be seen by scanning the bus list.
1014 *
1015 * Return: 0 if successful. A negative error code otherwise.
1016 */
1017 static int usb_register_bus(struct usb_bus *bus)
1018 {
1019 int result = -E2BIG;
1020 int busnum;
1021
1022 mutex_lock(&usb_bus_idr_lock);
1023 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1024 if (busnum < 0) {
1025 pr_err("%s: failed to get bus number\n", usbcore_name);
1026 goto error_find_busnum;
1027 }
1028 bus->busnum = busnum;
1029 mutex_unlock(&usb_bus_idr_lock);
1030
1031 usb_notify_add_bus(bus);
1032
1033 dev_info (bus->controller, "new USB bus registered, assigned bus "
1034 "number %d\n", bus->busnum);
1035 return 0;
1036
1037 error_find_busnum:
1038 mutex_unlock(&usb_bus_idr_lock);
1039 return result;
1040 }
1041
1042 /**
1043 * usb_deregister_bus - deregisters the USB host controller
1044 * @bus: pointer to the bus to deregister
1045 * Context: !in_interrupt()
1046 *
1047 * Recycles the bus number, and unlinks the controller from usbcore data
1048 * structures so that it won't be seen by scanning the bus list.
1049 */
1050 static void usb_deregister_bus (struct usb_bus *bus)
1051 {
1052 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1053
1054 /*
1055 * NOTE: make sure that all the devices are removed by the
1056 * controller code, as well as having it call this when cleaning
1057 * itself up
1058 */
1059 mutex_lock(&usb_bus_idr_lock);
1060 idr_remove(&usb_bus_idr, bus->busnum);
1061 mutex_unlock(&usb_bus_idr_lock);
1062
1063 usb_notify_remove_bus(bus);
1064 }
1065
1066 /**
1067 * register_root_hub - called by usb_add_hcd() to register a root hub
1068 * @hcd: host controller for this root hub
1069 *
1070 * This function registers the root hub with the USB subsystem. It sets up
1071 * the device properly in the device tree and then calls usb_new_device()
1072 * to register the usb device. It also assigns the root hub's USB address
1073 * (always 1).
1074 *
1075 * Return: 0 if successful. A negative error code otherwise.
1076 */
1077 static int register_root_hub(struct usb_hcd *hcd)
1078 {
1079 struct device *parent_dev = hcd->self.controller;
1080 struct usb_device *usb_dev = hcd->self.root_hub;
1081 const int devnum = 1;
1082 int retval;
1083
1084 usb_dev->devnum = devnum;
1085 usb_dev->bus->devnum_next = devnum + 1;
1086 memset (&usb_dev->bus->devmap.devicemap, 0,
1087 sizeof usb_dev->bus->devmap.devicemap);
1088 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1089 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1090
1091 mutex_lock(&usb_bus_idr_lock);
1092
1093 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1094 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1095 if (retval != sizeof usb_dev->descriptor) {
1096 mutex_unlock(&usb_bus_idr_lock);
1097 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1098 dev_name(&usb_dev->dev), retval);
1099 return (retval < 0) ? retval : -EMSGSIZE;
1100 }
1101
1102 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1103 retval = usb_get_bos_descriptor(usb_dev);
1104 if (!retval) {
1105 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1106 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1107 mutex_unlock(&usb_bus_idr_lock);
1108 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1109 dev_name(&usb_dev->dev), retval);
1110 return retval;
1111 }
1112 }
1113
1114 retval = usb_new_device (usb_dev);
1115 if (retval) {
1116 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1117 dev_name(&usb_dev->dev), retval);
1118 } else {
1119 spin_lock_irq (&hcd_root_hub_lock);
1120 hcd->rh_registered = 1;
1121 spin_unlock_irq (&hcd_root_hub_lock);
1122
1123 /* Did the HC die before the root hub was registered? */
1124 if (HCD_DEAD(hcd))
1125 usb_hc_died (hcd); /* This time clean up */
1126 }
1127 mutex_unlock(&usb_bus_idr_lock);
1128
1129 return retval;
1130 }
1131
1132 /*
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1136 *
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port. The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1140 *
1141 * The bus's private lock must be held by the caller.
1142 */
1143 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144 {
1145 unsigned bit = 1 << portnum;
1146
1147 if (!(bus->resuming_ports & bit)) {
1148 bus->resuming_ports |= bit;
1149 pm_runtime_get_noresume(&bus->root_hub->dev);
1150 }
1151 }
1152 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153
1154 /*
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1158 *
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port. The root hub will be allowed to
1161 * autosuspend again.
1162 *
1163 * The bus's private lock must be held by the caller.
1164 */
1165 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166 {
1167 unsigned bit = 1 << portnum;
1168
1169 if (bus->resuming_ports & bit) {
1170 bus->resuming_ports &= ~bit;
1171 pm_runtime_put_noidle(&bus->root_hub->dev);
1172 }
1173 }
1174 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175
1176 /*-------------------------------------------------------------------------*/
1177
1178 /**
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1184 *
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 *
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1190 */
1191 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192 {
1193 unsigned long tmp;
1194
1195 switch (speed) {
1196 case USB_SPEED_LOW: /* INTR only */
1197 if (is_input) {
1198 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 } else {
1201 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203 }
1204 case USB_SPEED_FULL: /* ISOC or INTR */
1205 if (isoc) {
1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 } else {
1209 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 return 9107L + BW_HOST_DELAY + tmp;
1211 }
1212 case USB_SPEED_HIGH: /* ISOC or INTR */
1213 /* FIXME adjust for input vs output */
1214 if (isoc)
1215 tmp = HS_NSECS_ISO (bytecount);
1216 else
1217 tmp = HS_NSECS (bytecount);
1218 return tmp;
1219 default:
1220 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 return -1;
1222 }
1223 }
1224 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225
1226
1227 /*-------------------------------------------------------------------------*/
1228
1229 /*
1230 * Generic HC operations.
1231 */
1232
1233 /*-------------------------------------------------------------------------*/
1234
1235 /**
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1239 *
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method. The HCD's private spinlock must be held and interrupts must
1242 * be disabled. The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244 *
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail). If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1249 */
1250 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251 {
1252 int rc = 0;
1253
1254 spin_lock(&hcd_urb_list_lock);
1255
1256 /* Check that the URB isn't being killed */
1257 if (unlikely(atomic_read(&urb->reject))) {
1258 rc = -EPERM;
1259 goto done;
1260 }
1261
1262 if (unlikely(!urb->ep->enabled)) {
1263 rc = -ENOENT;
1264 goto done;
1265 }
1266
1267 if (unlikely(!urb->dev->can_submit)) {
1268 rc = -EHOSTUNREACH;
1269 goto done;
1270 }
1271
1272 /*
1273 * Check the host controller's state and add the URB to the
1274 * endpoint's queue.
1275 */
1276 if (HCD_RH_RUNNING(hcd)) {
1277 urb->unlinked = 0;
1278 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 } else {
1280 rc = -ESHUTDOWN;
1281 goto done;
1282 }
1283 done:
1284 spin_unlock(&hcd_urb_list_lock);
1285 return rc;
1286 }
1287 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288
1289 /**
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1294 *
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method. The HCD's private spinlock must be held and interrupts must
1297 * be disabled. The actions carried out here are required for making
1298 * sure than an unlink is valid.
1299 *
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail). The possible error codes are:
1302 *
1303 * -EIDRM: @urb was not submitted or has already completed.
1304 * The completion function may not have been called yet.
1305 *
1306 * -EBUSY: @urb has already been unlinked.
1307 */
1308 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 int status)
1310 {
1311 struct list_head *tmp;
1312
1313 /* insist the urb is still queued */
1314 list_for_each(tmp, &urb->ep->urb_list) {
1315 if (tmp == &urb->urb_list)
1316 break;
1317 }
1318 if (tmp != &urb->urb_list)
1319 return -EIDRM;
1320
1321 /* Any status except -EINPROGRESS means something already started to
1322 * unlink this URB from the hardware. So there's no more work to do.
1323 */
1324 if (urb->unlinked)
1325 return -EBUSY;
1326 urb->unlinked = status;
1327 return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330
1331 /**
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1335 *
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1338 * interrupts must be disabled. The actions carried out here are required
1339 * for URB completion.
1340 */
1341 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342 {
1343 /* clear all state linking urb to this dev (and hcd) */
1344 spin_lock(&hcd_urb_list_lock);
1345 list_del_init(&urb->urb_list);
1346 spin_unlock(&hcd_urb_list_lock);
1347 }
1348 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349
1350 /*
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1354 *
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1360 *
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1364 *
1365 * So, to summarize...
1366 *
1367 * - We need "local" memory, canonical example being
1368 * a small SRAM on a discrete controller being the
1369 * only memory that the controller can read ...
1370 * (a) "normal" kernel memory is no good, and
1371 * (b) there's not enough to share
1372 *
1373 * - The only *portable* hook for such stuff in the
1374 * DMA framework is dma_declare_coherent_memory()
1375 *
1376 * - So we use that, even though the primary requirement
1377 * is that the memory be "local" (hence addressable
1378 * by that device), not "coherent".
1379 *
1380 */
1381
1382 static int hcd_alloc_coherent(struct usb_bus *bus,
1383 gfp_t mem_flags, dma_addr_t *dma_handle,
1384 void **vaddr_handle, size_t size,
1385 enum dma_data_direction dir)
1386 {
1387 unsigned char *vaddr;
1388
1389 if (*vaddr_handle == NULL) {
1390 WARN_ON_ONCE(1);
1391 return -EFAULT;
1392 }
1393
1394 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 mem_flags, dma_handle);
1396 if (!vaddr)
1397 return -ENOMEM;
1398
1399 /*
1400 * Store the virtual address of the buffer at the end
1401 * of the allocated dma buffer. The size of the buffer
1402 * may be uneven so use unaligned functions instead
1403 * of just rounding up. It makes sense to optimize for
1404 * memory footprint over access speed since the amount
1405 * of memory available for dma may be limited.
1406 */
1407 put_unaligned((unsigned long)*vaddr_handle,
1408 (unsigned long *)(vaddr + size));
1409
1410 if (dir == DMA_TO_DEVICE)
1411 memcpy(vaddr, *vaddr_handle, size);
1412
1413 *vaddr_handle = vaddr;
1414 return 0;
1415 }
1416
1417 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 void **vaddr_handle, size_t size,
1419 enum dma_data_direction dir)
1420 {
1421 unsigned char *vaddr = *vaddr_handle;
1422
1423 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424
1425 if (dir == DMA_FROM_DEVICE)
1426 memcpy(vaddr, *vaddr_handle, size);
1427
1428 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429
1430 *vaddr_handle = vaddr;
1431 *dma_handle = 0;
1432 }
1433
1434 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435 {
1436 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 dma_unmap_single(hcd->self.sysdev,
1439 urb->setup_dma,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 hcd_free_coherent(urb->dev->bus,
1444 &urb->setup_dma,
1445 (void **) &urb->setup_packet,
1446 sizeof(struct usb_ctrlrequest),
1447 DMA_TO_DEVICE);
1448
1449 /* Make it safe to call this routine more than once */
1450 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451 }
1452 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453
1454 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455 {
1456 if (hcd->driver->unmap_urb_for_dma)
1457 hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 else
1459 usb_hcd_unmap_urb_for_dma(hcd, urb);
1460 }
1461
1462 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463 {
1464 enum dma_data_direction dir;
1465
1466 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467
1468 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 (urb->transfer_flags & URB_DMA_MAP_SG))
1471 dma_unmap_sg(hcd->self.sysdev,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 dma_unmap_page(hcd->self.sysdev,
1478 urb->transfer_dma,
1479 urb->transfer_buffer_length,
1480 dir);
1481 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 dma_unmap_single(hcd->self.sysdev,
1484 urb->transfer_dma,
1485 urb->transfer_buffer_length,
1486 dir);
1487 else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 hcd_free_coherent(urb->dev->bus,
1489 &urb->transfer_dma,
1490 &urb->transfer_buffer,
1491 urb->transfer_buffer_length,
1492 dir);
1493
1494 /* Make it safe to call this routine more than once */
1495 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497 }
1498 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499
1500 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 gfp_t mem_flags)
1502 {
1503 if (hcd->driver->map_urb_for_dma)
1504 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 else
1506 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507 }
1508
1509 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 gfp_t mem_flags)
1511 {
1512 enum dma_data_direction dir;
1513 int ret = 0;
1514
1515 /* Map the URB's buffers for DMA access.
1516 * Lower level HCD code should use *_dma exclusively,
1517 * unless it uses pio or talks to another transport,
1518 * or uses the provided scatter gather list for bulk.
1519 */
1520
1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 if (hcd->self.uses_pio_for_control)
1523 return ret;
1524 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 if (is_vmalloc_addr(urb->setup_packet)) {
1526 WARN_ONCE(1, "setup packet is not dma capable\n");
1527 return -EAGAIN;
1528 } else if (object_is_on_stack(urb->setup_packet)) {
1529 WARN_ONCE(1, "setup packet is on stack\n");
1530 return -EAGAIN;
1531 }
1532
1533 urb->setup_dma = dma_map_single(
1534 hcd->self.sysdev,
1535 urb->setup_packet,
1536 sizeof(struct usb_ctrlrequest),
1537 DMA_TO_DEVICE);
1538 if (dma_mapping_error(hcd->self.sysdev,
1539 urb->setup_dma))
1540 return -EAGAIN;
1541 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1542 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1543 ret = hcd_alloc_coherent(
1544 urb->dev->bus, mem_flags,
1545 &urb->setup_dma,
1546 (void **)&urb->setup_packet,
1547 sizeof(struct usb_ctrlrequest),
1548 DMA_TO_DEVICE);
1549 if (ret)
1550 return ret;
1551 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1552 }
1553 }
1554
1555 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1556 if (urb->transfer_buffer_length != 0
1557 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1558 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1559 if (urb->num_sgs) {
1560 int n;
1561
1562 /* We don't support sg for isoc transfers ! */
1563 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1564 WARN_ON(1);
1565 return -EINVAL;
1566 }
1567
1568 n = dma_map_sg(
1569 hcd->self.sysdev,
1570 urb->sg,
1571 urb->num_sgs,
1572 dir);
1573 if (n <= 0)
1574 ret = -EAGAIN;
1575 else
1576 urb->transfer_flags |= URB_DMA_MAP_SG;
1577 urb->num_mapped_sgs = n;
1578 if (n != urb->num_sgs)
1579 urb->transfer_flags |=
1580 URB_DMA_SG_COMBINED;
1581 } else if (urb->sg) {
1582 struct scatterlist *sg = urb->sg;
1583 urb->transfer_dma = dma_map_page(
1584 hcd->self.sysdev,
1585 sg_page(sg),
1586 sg->offset,
1587 urb->transfer_buffer_length,
1588 dir);
1589 if (dma_mapping_error(hcd->self.sysdev,
1590 urb->transfer_dma))
1591 ret = -EAGAIN;
1592 else
1593 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1594 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1595 WARN_ONCE(1, "transfer buffer not dma capable\n");
1596 ret = -EAGAIN;
1597 } else if (object_is_on_stack(urb->transfer_buffer)) {
1598 WARN_ONCE(1, "transfer buffer is on stack\n");
1599 ret = -EAGAIN;
1600 } else {
1601 urb->transfer_dma = dma_map_single(
1602 hcd->self.sysdev,
1603 urb->transfer_buffer,
1604 urb->transfer_buffer_length,
1605 dir);
1606 if (dma_mapping_error(hcd->self.sysdev,
1607 urb->transfer_dma))
1608 ret = -EAGAIN;
1609 else
1610 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1611 }
1612 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1613 ret = hcd_alloc_coherent(
1614 urb->dev->bus, mem_flags,
1615 &urb->transfer_dma,
1616 &urb->transfer_buffer,
1617 urb->transfer_buffer_length,
1618 dir);
1619 if (ret == 0)
1620 urb->transfer_flags |= URB_MAP_LOCAL;
1621 }
1622 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1623 URB_SETUP_MAP_LOCAL)))
1624 usb_hcd_unmap_urb_for_dma(hcd, urb);
1625 }
1626 return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1629
1630 /*-------------------------------------------------------------------------*/
1631
1632 /* may be called in any context with a valid urb->dev usecount
1633 * caller surrenders "ownership" of urb
1634 * expects usb_submit_urb() to have sanity checked and conditioned all
1635 * inputs in the urb
1636 */
1637 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1638 {
1639 int status;
1640 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1641
1642 /* increment urb's reference count as part of giving it to the HCD
1643 * (which will control it). HCD guarantees that it either returns
1644 * an error or calls giveback(), but not both.
1645 */
1646 usb_get_urb(urb);
1647 atomic_inc(&urb->use_count);
1648 atomic_inc(&urb->dev->urbnum);
1649 usbmon_urb_submit(&hcd->self, urb);
1650
1651 /* NOTE requirements on root-hub callers (usbfs and the hub
1652 * driver, for now): URBs' urb->transfer_buffer must be
1653 * valid and usb_buffer_{sync,unmap}() not be needed, since
1654 * they could clobber root hub response data. Also, control
1655 * URBs must be submitted in process context with interrupts
1656 * enabled.
1657 */
1658
1659 if (is_root_hub(urb->dev)) {
1660 status = rh_urb_enqueue(hcd, urb);
1661 } else {
1662 status = map_urb_for_dma(hcd, urb, mem_flags);
1663 if (likely(status == 0)) {
1664 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1665 if (unlikely(status))
1666 unmap_urb_for_dma(hcd, urb);
1667 }
1668 }
1669
1670 if (unlikely(status)) {
1671 usbmon_urb_submit_error(&hcd->self, urb, status);
1672 urb->hcpriv = NULL;
1673 INIT_LIST_HEAD(&urb->urb_list);
1674 atomic_dec(&urb->use_count);
1675 atomic_dec(&urb->dev->urbnum);
1676 if (atomic_read(&urb->reject))
1677 wake_up(&usb_kill_urb_queue);
1678 usb_put_urb(urb);
1679 }
1680 return status;
1681 }
1682
1683 /*-------------------------------------------------------------------------*/
1684
1685 /* this makes the hcd giveback() the urb more quickly, by kicking it
1686 * off hardware queues (which may take a while) and returning it as
1687 * soon as practical. we've already set up the urb's return status,
1688 * but we can't know if the callback completed already.
1689 */
1690 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1691 {
1692 int value;
1693
1694 if (is_root_hub(urb->dev))
1695 value = usb_rh_urb_dequeue(hcd, urb, status);
1696 else {
1697
1698 /* The only reason an HCD might fail this call is if
1699 * it has not yet fully queued the urb to begin with.
1700 * Such failures should be harmless. */
1701 value = hcd->driver->urb_dequeue(hcd, urb, status);
1702 }
1703 return value;
1704 }
1705
1706 /*
1707 * called in any context
1708 *
1709 * caller guarantees urb won't be recycled till both unlink()
1710 * and the urb's completion function return
1711 */
1712 int usb_hcd_unlink_urb (struct urb *urb, int status)
1713 {
1714 struct usb_hcd *hcd;
1715 struct usb_device *udev = urb->dev;
1716 int retval = -EIDRM;
1717 unsigned long flags;
1718
1719 /* Prevent the device and bus from going away while
1720 * the unlink is carried out. If they are already gone
1721 * then urb->use_count must be 0, since disconnected
1722 * devices can't have any active URBs.
1723 */
1724 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1725 if (atomic_read(&urb->use_count) > 0) {
1726 retval = 0;
1727 usb_get_dev(udev);
1728 }
1729 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1730 if (retval == 0) {
1731 hcd = bus_to_hcd(urb->dev->bus);
1732 retval = unlink1(hcd, urb, status);
1733 if (retval == 0)
1734 retval = -EINPROGRESS;
1735 else if (retval != -EIDRM && retval != -EBUSY)
1736 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1737 urb, retval);
1738 usb_put_dev(udev);
1739 }
1740 return retval;
1741 }
1742
1743 /*-------------------------------------------------------------------------*/
1744
1745 static void __usb_hcd_giveback_urb(struct urb *urb)
1746 {
1747 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1748 struct usb_anchor *anchor = urb->anchor;
1749 int status = urb->unlinked;
1750 unsigned long flags;
1751
1752 urb->hcpriv = NULL;
1753 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1754 urb->actual_length < urb->transfer_buffer_length &&
1755 !status))
1756 status = -EREMOTEIO;
1757
1758 unmap_urb_for_dma(hcd, urb);
1759 usbmon_urb_complete(&hcd->self, urb, status);
1760 usb_anchor_suspend_wakeups(anchor);
1761 usb_unanchor_urb(urb);
1762 if (likely(status == 0))
1763 usb_led_activity(USB_LED_EVENT_HOST);
1764
1765 /* pass ownership to the completion handler */
1766 urb->status = status;
1767
1768 /*
1769 * We disable local IRQs here avoid possible deadlock because
1770 * drivers may call spin_lock() to hold lock which might be
1771 * acquired in one hard interrupt handler.
1772 *
1773 * The local_irq_save()/local_irq_restore() around complete()
1774 * will be removed if current USB drivers have been cleaned up
1775 * and no one may trigger the above deadlock situation when
1776 * running complete() in tasklet.
1777 */
1778 local_irq_save(flags);
1779 urb->complete(urb);
1780 local_irq_restore(flags);
1781
1782 usb_anchor_resume_wakeups(anchor);
1783 atomic_dec(&urb->use_count);
1784 if (unlikely(atomic_read(&urb->reject)))
1785 wake_up(&usb_kill_urb_queue);
1786 usb_put_urb(urb);
1787 }
1788
1789 static void usb_giveback_urb_bh(unsigned long param)
1790 {
1791 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1792 struct list_head local_list;
1793
1794 spin_lock_irq(&bh->lock);
1795 bh->running = true;
1796 restart:
1797 list_replace_init(&bh->head, &local_list);
1798 spin_unlock_irq(&bh->lock);
1799
1800 while (!list_empty(&local_list)) {
1801 struct urb *urb;
1802
1803 urb = list_entry(local_list.next, struct urb, urb_list);
1804 list_del_init(&urb->urb_list);
1805 bh->completing_ep = urb->ep;
1806 __usb_hcd_giveback_urb(urb);
1807 bh->completing_ep = NULL;
1808 }
1809
1810 /* check if there are new URBs to giveback */
1811 spin_lock_irq(&bh->lock);
1812 if (!list_empty(&bh->head))
1813 goto restart;
1814 bh->running = false;
1815 spin_unlock_irq(&bh->lock);
1816 }
1817
1818 /**
1819 * usb_hcd_giveback_urb - return URB from HCD to device driver
1820 * @hcd: host controller returning the URB
1821 * @urb: urb being returned to the USB device driver.
1822 * @status: completion status code for the URB.
1823 * Context: in_interrupt()
1824 *
1825 * This hands the URB from HCD to its USB device driver, using its
1826 * completion function. The HCD has freed all per-urb resources
1827 * (and is done using urb->hcpriv). It also released all HCD locks;
1828 * the device driver won't cause problems if it frees, modifies,
1829 * or resubmits this URB.
1830 *
1831 * If @urb was unlinked, the value of @status will be overridden by
1832 * @urb->unlinked. Erroneous short transfers are detected in case
1833 * the HCD hasn't checked for them.
1834 */
1835 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1836 {
1837 struct giveback_urb_bh *bh;
1838 bool running, high_prio_bh;
1839
1840 /* pass status to tasklet via unlinked */
1841 if (likely(!urb->unlinked))
1842 urb->unlinked = status;
1843
1844 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1845 __usb_hcd_giveback_urb(urb);
1846 return;
1847 }
1848
1849 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1850 bh = &hcd->high_prio_bh;
1851 high_prio_bh = true;
1852 } else {
1853 bh = &hcd->low_prio_bh;
1854 high_prio_bh = false;
1855 }
1856
1857 spin_lock(&bh->lock);
1858 list_add_tail(&urb->urb_list, &bh->head);
1859 running = bh->running;
1860 spin_unlock(&bh->lock);
1861
1862 if (running)
1863 ;
1864 else if (high_prio_bh)
1865 tasklet_hi_schedule(&bh->bh);
1866 else
1867 tasklet_schedule(&bh->bh);
1868 }
1869 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1870
1871 /*-------------------------------------------------------------------------*/
1872
1873 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1874 * queue to drain completely. The caller must first insure that no more
1875 * URBs can be submitted for this endpoint.
1876 */
1877 void usb_hcd_flush_endpoint(struct usb_device *udev,
1878 struct usb_host_endpoint *ep)
1879 {
1880 struct usb_hcd *hcd;
1881 struct urb *urb;
1882
1883 if (!ep)
1884 return;
1885 might_sleep();
1886 hcd = bus_to_hcd(udev->bus);
1887
1888 /* No more submits can occur */
1889 spin_lock_irq(&hcd_urb_list_lock);
1890 rescan:
1891 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1892 int is_in;
1893
1894 if (urb->unlinked)
1895 continue;
1896 usb_get_urb (urb);
1897 is_in = usb_urb_dir_in(urb);
1898 spin_unlock(&hcd_urb_list_lock);
1899
1900 /* kick hcd */
1901 unlink1(hcd, urb, -ESHUTDOWN);
1902 dev_dbg (hcd->self.controller,
1903 "shutdown urb %pK ep%d%s%s\n",
1904 urb, usb_endpoint_num(&ep->desc),
1905 is_in ? "in" : "out",
1906 ({ char *s;
1907
1908 switch (usb_endpoint_type(&ep->desc)) {
1909 case USB_ENDPOINT_XFER_CONTROL:
1910 s = ""; break;
1911 case USB_ENDPOINT_XFER_BULK:
1912 s = "-bulk"; break;
1913 case USB_ENDPOINT_XFER_INT:
1914 s = "-intr"; break;
1915 default:
1916 s = "-iso"; break;
1917 };
1918 s;
1919 }));
1920 usb_put_urb (urb);
1921
1922 /* list contents may have changed */
1923 spin_lock(&hcd_urb_list_lock);
1924 goto rescan;
1925 }
1926 spin_unlock_irq(&hcd_urb_list_lock);
1927
1928 /* Wait until the endpoint queue is completely empty */
1929 while (!list_empty (&ep->urb_list)) {
1930 spin_lock_irq(&hcd_urb_list_lock);
1931
1932 /* The list may have changed while we acquired the spinlock */
1933 urb = NULL;
1934 if (!list_empty (&ep->urb_list)) {
1935 urb = list_entry (ep->urb_list.prev, struct urb,
1936 urb_list);
1937 usb_get_urb (urb);
1938 }
1939 spin_unlock_irq(&hcd_urb_list_lock);
1940
1941 if (urb) {
1942 usb_kill_urb (urb);
1943 usb_put_urb (urb);
1944 }
1945 }
1946 }
1947
1948 /**
1949 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1950 * the bus bandwidth
1951 * @udev: target &usb_device
1952 * @new_config: new configuration to install
1953 * @cur_alt: the current alternate interface setting
1954 * @new_alt: alternate interface setting that is being installed
1955 *
1956 * To change configurations, pass in the new configuration in new_config,
1957 * and pass NULL for cur_alt and new_alt.
1958 *
1959 * To reset a device's configuration (put the device in the ADDRESSED state),
1960 * pass in NULL for new_config, cur_alt, and new_alt.
1961 *
1962 * To change alternate interface settings, pass in NULL for new_config,
1963 * pass in the current alternate interface setting in cur_alt,
1964 * and pass in the new alternate interface setting in new_alt.
1965 *
1966 * Return: An error if the requested bandwidth change exceeds the
1967 * bus bandwidth or host controller internal resources.
1968 */
1969 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1970 struct usb_host_config *new_config,
1971 struct usb_host_interface *cur_alt,
1972 struct usb_host_interface *new_alt)
1973 {
1974 int num_intfs, i, j;
1975 struct usb_host_interface *alt = NULL;
1976 int ret = 0;
1977 struct usb_hcd *hcd;
1978 struct usb_host_endpoint *ep;
1979
1980 hcd = bus_to_hcd(udev->bus);
1981 if (!hcd->driver->check_bandwidth)
1982 return 0;
1983
1984 /* Configuration is being removed - set configuration 0 */
1985 if (!new_config && !cur_alt) {
1986 for (i = 1; i < 16; ++i) {
1987 ep = udev->ep_out[i];
1988 if (ep)
1989 hcd->driver->drop_endpoint(hcd, udev, ep);
1990 ep = udev->ep_in[i];
1991 if (ep)
1992 hcd->driver->drop_endpoint(hcd, udev, ep);
1993 }
1994 hcd->driver->check_bandwidth(hcd, udev);
1995 return 0;
1996 }
1997 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1998 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1999 * of the bus. There will always be bandwidth for endpoint 0, so it's
2000 * ok to exclude it.
2001 */
2002 if (new_config) {
2003 num_intfs = new_config->desc.bNumInterfaces;
2004 /* Remove endpoints (except endpoint 0, which is always on the
2005 * schedule) from the old config from the schedule
2006 */
2007 for (i = 1; i < 16; ++i) {
2008 ep = udev->ep_out[i];
2009 if (ep) {
2010 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2011 if (ret < 0)
2012 goto reset;
2013 }
2014 ep = udev->ep_in[i];
2015 if (ep) {
2016 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2017 if (ret < 0)
2018 goto reset;
2019 }
2020 }
2021 for (i = 0; i < num_intfs; ++i) {
2022 struct usb_host_interface *first_alt;
2023 int iface_num;
2024
2025 first_alt = &new_config->intf_cache[i]->altsetting[0];
2026 iface_num = first_alt->desc.bInterfaceNumber;
2027 /* Set up endpoints for alternate interface setting 0 */
2028 alt = usb_find_alt_setting(new_config, iface_num, 0);
2029 if (!alt)
2030 /* No alt setting 0? Pick the first setting. */
2031 alt = first_alt;
2032
2033 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2034 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2035 if (ret < 0)
2036 goto reset;
2037 }
2038 }
2039 }
2040 if (cur_alt && new_alt) {
2041 struct usb_interface *iface = usb_ifnum_to_if(udev,
2042 cur_alt->desc.bInterfaceNumber);
2043
2044 if (!iface)
2045 return -EINVAL;
2046 if (iface->resetting_device) {
2047 /*
2048 * The USB core just reset the device, so the xHCI host
2049 * and the device will think alt setting 0 is installed.
2050 * However, the USB core will pass in the alternate
2051 * setting installed before the reset as cur_alt. Dig
2052 * out the alternate setting 0 structure, or the first
2053 * alternate setting if a broken device doesn't have alt
2054 * setting 0.
2055 */
2056 cur_alt = usb_altnum_to_altsetting(iface, 0);
2057 if (!cur_alt)
2058 cur_alt = &iface->altsetting[0];
2059 }
2060
2061 /* Drop all the endpoints in the current alt setting */
2062 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2063 ret = hcd->driver->drop_endpoint(hcd, udev,
2064 &cur_alt->endpoint[i]);
2065 if (ret < 0)
2066 goto reset;
2067 }
2068 /* Add all the endpoints in the new alt setting */
2069 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2070 ret = hcd->driver->add_endpoint(hcd, udev,
2071 &new_alt->endpoint[i]);
2072 if (ret < 0)
2073 goto reset;
2074 }
2075 }
2076 ret = hcd->driver->check_bandwidth(hcd, udev);
2077 reset:
2078 if (ret < 0)
2079 hcd->driver->reset_bandwidth(hcd, udev);
2080 return ret;
2081 }
2082
2083 /* Disables the endpoint: synchronizes with the hcd to make sure all
2084 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2085 * have been called previously. Use for set_configuration, set_interface,
2086 * driver removal, physical disconnect.
2087 *
2088 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2089 * type, maxpacket size, toggle, halt status, and scheduling.
2090 */
2091 void usb_hcd_disable_endpoint(struct usb_device *udev,
2092 struct usb_host_endpoint *ep)
2093 {
2094 struct usb_hcd *hcd;
2095
2096 might_sleep();
2097 hcd = bus_to_hcd(udev->bus);
2098 if (hcd->driver->endpoint_disable)
2099 hcd->driver->endpoint_disable(hcd, ep);
2100 }
2101
2102 /**
2103 * usb_hcd_reset_endpoint - reset host endpoint state
2104 * @udev: USB device.
2105 * @ep: the endpoint to reset.
2106 *
2107 * Resets any host endpoint state such as the toggle bit, sequence
2108 * number and current window.
2109 */
2110 void usb_hcd_reset_endpoint(struct usb_device *udev,
2111 struct usb_host_endpoint *ep)
2112 {
2113 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2114
2115 if (hcd->driver->endpoint_reset)
2116 hcd->driver->endpoint_reset(hcd, ep);
2117 else {
2118 int epnum = usb_endpoint_num(&ep->desc);
2119 int is_out = usb_endpoint_dir_out(&ep->desc);
2120 int is_control = usb_endpoint_xfer_control(&ep->desc);
2121
2122 usb_settoggle(udev, epnum, is_out, 0);
2123 if (is_control)
2124 usb_settoggle(udev, epnum, !is_out, 0);
2125 }
2126 }
2127
2128 /**
2129 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2130 * @interface: alternate setting that includes all endpoints.
2131 * @eps: array of endpoints that need streams.
2132 * @num_eps: number of endpoints in the array.
2133 * @num_streams: number of streams to allocate.
2134 * @mem_flags: flags hcd should use to allocate memory.
2135 *
2136 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2137 * Drivers may queue multiple transfers to different stream IDs, which may
2138 * complete in a different order than they were queued.
2139 *
2140 * Return: On success, the number of allocated streams. On failure, a negative
2141 * error code.
2142 */
2143 int usb_alloc_streams(struct usb_interface *interface,
2144 struct usb_host_endpoint **eps, unsigned int num_eps,
2145 unsigned int num_streams, gfp_t mem_flags)
2146 {
2147 struct usb_hcd *hcd;
2148 struct usb_device *dev;
2149 int i, ret;
2150
2151 dev = interface_to_usbdev(interface);
2152 hcd = bus_to_hcd(dev->bus);
2153 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2154 return -EINVAL;
2155 if (dev->speed < USB_SPEED_SUPER)
2156 return -EINVAL;
2157 if (dev->state < USB_STATE_CONFIGURED)
2158 return -ENODEV;
2159
2160 for (i = 0; i < num_eps; i++) {
2161 /* Streams only apply to bulk endpoints. */
2162 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2163 return -EINVAL;
2164 /* Re-alloc is not allowed */
2165 if (eps[i]->streams)
2166 return -EINVAL;
2167 }
2168
2169 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2170 num_streams, mem_flags);
2171 if (ret < 0)
2172 return ret;
2173
2174 for (i = 0; i < num_eps; i++)
2175 eps[i]->streams = ret;
2176
2177 return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2180
2181 /**
2182 * usb_free_streams - free bulk endpoint stream IDs.
2183 * @interface: alternate setting that includes all endpoints.
2184 * @eps: array of endpoints to remove streams from.
2185 * @num_eps: number of endpoints in the array.
2186 * @mem_flags: flags hcd should use to allocate memory.
2187 *
2188 * Reverts a group of bulk endpoints back to not using stream IDs.
2189 * Can fail if we are given bad arguments, or HCD is broken.
2190 *
2191 * Return: 0 on success. On failure, a negative error code.
2192 */
2193 int usb_free_streams(struct usb_interface *interface,
2194 struct usb_host_endpoint **eps, unsigned int num_eps,
2195 gfp_t mem_flags)
2196 {
2197 struct usb_hcd *hcd;
2198 struct usb_device *dev;
2199 int i, ret;
2200
2201 dev = interface_to_usbdev(interface);
2202 hcd = bus_to_hcd(dev->bus);
2203 if (dev->speed < USB_SPEED_SUPER)
2204 return -EINVAL;
2205
2206 /* Double-free is not allowed */
2207 for (i = 0; i < num_eps; i++)
2208 if (!eps[i] || !eps[i]->streams)
2209 return -EINVAL;
2210
2211 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2212 if (ret < 0)
2213 return ret;
2214
2215 for (i = 0; i < num_eps; i++)
2216 eps[i]->streams = 0;
2217
2218 return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(usb_free_streams);
2221
2222 /* Protect against drivers that try to unlink URBs after the device
2223 * is gone, by waiting until all unlinks for @udev are finished.
2224 * Since we don't currently track URBs by device, simply wait until
2225 * nothing is running in the locked region of usb_hcd_unlink_urb().
2226 */
2227 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2228 {
2229 spin_lock_irq(&hcd_urb_unlink_lock);
2230 spin_unlock_irq(&hcd_urb_unlink_lock);
2231 }
2232
2233 /*-------------------------------------------------------------------------*/
2234
2235 /* called in any context */
2236 int usb_hcd_get_frame_number (struct usb_device *udev)
2237 {
2238 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2239
2240 if (!HCD_RH_RUNNING(hcd))
2241 return -ESHUTDOWN;
2242 return hcd->driver->get_frame_number (hcd);
2243 }
2244
2245 /*-------------------------------------------------------------------------*/
2246
2247 #ifdef CONFIG_PM
2248
2249 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2250 {
2251 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2252 int status;
2253 int old_state = hcd->state;
2254
2255 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2256 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2257 rhdev->do_remote_wakeup);
2258 if (HCD_DEAD(hcd)) {
2259 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2260 return 0;
2261 }
2262
2263 if (!hcd->driver->bus_suspend) {
2264 status = -ENOENT;
2265 } else {
2266 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2267 hcd->state = HC_STATE_QUIESCING;
2268 status = hcd->driver->bus_suspend(hcd);
2269 }
2270 if (status == 0) {
2271 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2272 hcd->state = HC_STATE_SUSPENDED;
2273
2274 /* Did we race with a root-hub wakeup event? */
2275 if (rhdev->do_remote_wakeup) {
2276 char buffer[6];
2277
2278 status = hcd->driver->hub_status_data(hcd, buffer);
2279 if (status != 0) {
2280 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2281 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2282 status = -EBUSY;
2283 }
2284 }
2285 } else {
2286 spin_lock_irq(&hcd_root_hub_lock);
2287 if (!HCD_DEAD(hcd)) {
2288 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289 hcd->state = old_state;
2290 }
2291 spin_unlock_irq(&hcd_root_hub_lock);
2292 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2293 "suspend", status);
2294 }
2295 return status;
2296 }
2297
2298 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2299 {
2300 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2301 int status;
2302 int old_state = hcd->state;
2303
2304 dev_dbg(&rhdev->dev, "usb %sresume\n",
2305 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2306 if (HCD_DEAD(hcd)) {
2307 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2308 return 0;
2309 }
2310 if (!hcd->driver->bus_resume)
2311 return -ENOENT;
2312 if (HCD_RH_RUNNING(hcd))
2313 return 0;
2314
2315 hcd->state = HC_STATE_RESUMING;
2316 status = hcd->driver->bus_resume(hcd);
2317 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2318 if (status == 0) {
2319 struct usb_device *udev;
2320 int port1;
2321
2322 spin_lock_irq(&hcd_root_hub_lock);
2323 if (!HCD_DEAD(hcd)) {
2324 usb_set_device_state(rhdev, rhdev->actconfig
2325 ? USB_STATE_CONFIGURED
2326 : USB_STATE_ADDRESS);
2327 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2328 hcd->state = HC_STATE_RUNNING;
2329 }
2330 spin_unlock_irq(&hcd_root_hub_lock);
2331
2332 /*
2333 * Check whether any of the enabled ports on the root hub are
2334 * unsuspended. If they are then a TRSMRCY delay is needed
2335 * (this is what the USB-2 spec calls a "global resume").
2336 * Otherwise we can skip the delay.
2337 */
2338 usb_hub_for_each_child(rhdev, port1, udev) {
2339 if (udev->state != USB_STATE_NOTATTACHED &&
2340 !udev->port_is_suspended) {
2341 usleep_range(10000, 11000); /* TRSMRCY */
2342 break;
2343 }
2344 }
2345 } else {
2346 hcd->state = old_state;
2347 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2348 "resume", status);
2349 if (status != -ESHUTDOWN)
2350 usb_hc_died(hcd);
2351 }
2352 return status;
2353 }
2354
2355 /* Workqueue routine for root-hub remote wakeup */
2356 static void hcd_resume_work(struct work_struct *work)
2357 {
2358 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2359 struct usb_device *udev = hcd->self.root_hub;
2360
2361 usb_remote_wakeup(udev);
2362 }
2363
2364 /**
2365 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2366 * @hcd: host controller for this root hub
2367 *
2368 * The USB host controller calls this function when its root hub is
2369 * suspended (with the remote wakeup feature enabled) and a remote
2370 * wakeup request is received. The routine submits a workqueue request
2371 * to resume the root hub (that is, manage its downstream ports again).
2372 */
2373 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2374 {
2375 unsigned long flags;
2376
2377 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2378 if (hcd->rh_registered) {
2379 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2380 queue_work(pm_wq, &hcd->wakeup_work);
2381 }
2382 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2383 }
2384 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2385
2386 #endif /* CONFIG_PM */
2387
2388 /*-------------------------------------------------------------------------*/
2389
2390 #ifdef CONFIG_USB_OTG
2391
2392 /**
2393 * usb_bus_start_enum - start immediate enumeration (for OTG)
2394 * @bus: the bus (must use hcd framework)
2395 * @port_num: 1-based number of port; usually bus->otg_port
2396 * Context: in_interrupt()
2397 *
2398 * Starts enumeration, with an immediate reset followed later by
2399 * hub_wq identifying and possibly configuring the device.
2400 * This is needed by OTG controller drivers, where it helps meet
2401 * HNP protocol timing requirements for starting a port reset.
2402 *
2403 * Return: 0 if successful.
2404 */
2405 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2406 {
2407 struct usb_hcd *hcd;
2408 int status = -EOPNOTSUPP;
2409
2410 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2411 * boards with root hubs hooked up to internal devices (instead of
2412 * just the OTG port) may need more attention to resetting...
2413 */
2414 hcd = bus_to_hcd(bus);
2415 if (port_num && hcd->driver->start_port_reset)
2416 status = hcd->driver->start_port_reset(hcd, port_num);
2417
2418 /* allocate hub_wq shortly after (first) root port reset finishes;
2419 * it may issue others, until at least 50 msecs have passed.
2420 */
2421 if (status == 0)
2422 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2423 return status;
2424 }
2425 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2426
2427 #endif
2428
2429 /*-------------------------------------------------------------------------*/
2430
2431 /**
2432 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2433 * @irq: the IRQ being raised
2434 * @__hcd: pointer to the HCD whose IRQ is being signaled
2435 *
2436 * If the controller isn't HALTed, calls the driver's irq handler.
2437 * Checks whether the controller is now dead.
2438 *
2439 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2440 */
2441 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2442 {
2443 struct usb_hcd *hcd = __hcd;
2444 irqreturn_t rc;
2445
2446 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2447 rc = IRQ_NONE;
2448 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2449 rc = IRQ_NONE;
2450 else
2451 rc = IRQ_HANDLED;
2452
2453 return rc;
2454 }
2455 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2456
2457 /*-------------------------------------------------------------------------*/
2458
2459 /**
2460 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2461 * @hcd: pointer to the HCD representing the controller
2462 *
2463 * This is called by bus glue to report a USB host controller that died
2464 * while operations may still have been pending. It's called automatically
2465 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2466 *
2467 * Only call this function with the primary HCD.
2468 */
2469 void usb_hc_died (struct usb_hcd *hcd)
2470 {
2471 unsigned long flags;
2472
2473 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2474
2475 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2476 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2477 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2478 if (hcd->rh_registered) {
2479 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2480
2481 /* make hub_wq clean up old urbs and devices */
2482 usb_set_device_state (hcd->self.root_hub,
2483 USB_STATE_NOTATTACHED);
2484 usb_kick_hub_wq(hcd->self.root_hub);
2485 }
2486 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2487 hcd = hcd->shared_hcd;
2488 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2489 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2490 if (hcd->rh_registered) {
2491 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2492
2493 /* make hub_wq clean up old urbs and devices */
2494 usb_set_device_state(hcd->self.root_hub,
2495 USB_STATE_NOTATTACHED);
2496 usb_kick_hub_wq(hcd->self.root_hub);
2497 }
2498 }
2499 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2500 /* Make sure that the other roothub is also deallocated. */
2501 }
2502 EXPORT_SYMBOL_GPL (usb_hc_died);
2503
2504 /*-------------------------------------------------------------------------*/
2505
2506 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2507 {
2508
2509 spin_lock_init(&bh->lock);
2510 INIT_LIST_HEAD(&bh->head);
2511 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2512 }
2513
2514 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2515 struct device *sysdev, struct device *dev, const char *bus_name,
2516 struct usb_hcd *primary_hcd)
2517 {
2518 struct usb_hcd *hcd;
2519
2520 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2521 if (!hcd)
2522 return NULL;
2523 if (primary_hcd == NULL) {
2524 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2525 GFP_KERNEL);
2526 if (!hcd->address0_mutex) {
2527 kfree(hcd);
2528 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2529 return NULL;
2530 }
2531 mutex_init(hcd->address0_mutex);
2532 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2533 GFP_KERNEL);
2534 if (!hcd->bandwidth_mutex) {
2535 kfree(hcd->address0_mutex);
2536 kfree(hcd);
2537 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2538 return NULL;
2539 }
2540 mutex_init(hcd->bandwidth_mutex);
2541 dev_set_drvdata(dev, hcd);
2542 } else {
2543 mutex_lock(&usb_port_peer_mutex);
2544 hcd->address0_mutex = primary_hcd->address0_mutex;
2545 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2546 hcd->primary_hcd = primary_hcd;
2547 primary_hcd->primary_hcd = primary_hcd;
2548 hcd->shared_hcd = primary_hcd;
2549 primary_hcd->shared_hcd = hcd;
2550 mutex_unlock(&usb_port_peer_mutex);
2551 }
2552
2553 kref_init(&hcd->kref);
2554
2555 usb_bus_init(&hcd->self);
2556 hcd->self.controller = dev;
2557 hcd->self.sysdev = sysdev;
2558 hcd->self.bus_name = bus_name;
2559 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2560
2561 init_timer(&hcd->rh_timer);
2562 hcd->rh_timer.function = rh_timer_func;
2563 hcd->rh_timer.data = (unsigned long) hcd;
2564 #ifdef CONFIG_PM
2565 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2566 #endif
2567
2568 hcd->driver = driver;
2569 hcd->speed = driver->flags & HCD_MASK;
2570 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2571 "USB Host Controller";
2572 return hcd;
2573 }
2574 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2575
2576 /**
2577 * usb_create_shared_hcd - create and initialize an HCD structure
2578 * @driver: HC driver that will use this hcd
2579 * @dev: device for this HC, stored in hcd->self.controller
2580 * @bus_name: value to store in hcd->self.bus_name
2581 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2582 * PCI device. Only allocate certain resources for the primary HCD
2583 * Context: !in_interrupt()
2584 *
2585 * Allocate a struct usb_hcd, with extra space at the end for the
2586 * HC driver's private data. Initialize the generic members of the
2587 * hcd structure.
2588 *
2589 * Return: On success, a pointer to the created and initialized HCD structure.
2590 * On failure (e.g. if memory is unavailable), %NULL.
2591 */
2592 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2593 struct device *dev, const char *bus_name,
2594 struct usb_hcd *primary_hcd)
2595 {
2596 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2597 }
2598 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2599
2600 /**
2601 * usb_create_hcd - create and initialize an HCD structure
2602 * @driver: HC driver that will use this hcd
2603 * @dev: device for this HC, stored in hcd->self.controller
2604 * @bus_name: value to store in hcd->self.bus_name
2605 * Context: !in_interrupt()
2606 *
2607 * Allocate a struct usb_hcd, with extra space at the end for the
2608 * HC driver's private data. Initialize the generic members of the
2609 * hcd structure.
2610 *
2611 * Return: On success, a pointer to the created and initialized HCD
2612 * structure. On failure (e.g. if memory is unavailable), %NULL.
2613 */
2614 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2615 struct device *dev, const char *bus_name)
2616 {
2617 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2618 }
2619 EXPORT_SYMBOL_GPL(usb_create_hcd);
2620
2621 /*
2622 * Roothubs that share one PCI device must also share the bandwidth mutex.
2623 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2624 * deallocated.
2625 *
2626 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2627 * freed. When hcd_release() is called for either hcd in a peer set,
2628 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2629 */
2630 static void hcd_release(struct kref *kref)
2631 {
2632 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2633
2634 mutex_lock(&usb_port_peer_mutex);
2635 if (hcd->shared_hcd) {
2636 struct usb_hcd *peer = hcd->shared_hcd;
2637
2638 peer->shared_hcd = NULL;
2639 peer->primary_hcd = NULL;
2640 } else {
2641 kfree(hcd->address0_mutex);
2642 kfree(hcd->bandwidth_mutex);
2643 }
2644 mutex_unlock(&usb_port_peer_mutex);
2645 kfree(hcd);
2646 }
2647
2648 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2649 {
2650 if (hcd)
2651 kref_get (&hcd->kref);
2652 return hcd;
2653 }
2654 EXPORT_SYMBOL_GPL(usb_get_hcd);
2655
2656 void usb_put_hcd (struct usb_hcd *hcd)
2657 {
2658 if (hcd)
2659 kref_put (&hcd->kref, hcd_release);
2660 }
2661 EXPORT_SYMBOL_GPL(usb_put_hcd);
2662
2663 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2664 {
2665 if (!hcd->primary_hcd)
2666 return 1;
2667 return hcd == hcd->primary_hcd;
2668 }
2669 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2670
2671 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2672 {
2673 if (!hcd->driver->find_raw_port_number)
2674 return port1;
2675
2676 return hcd->driver->find_raw_port_number(hcd, port1);
2677 }
2678
2679 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2680 unsigned int irqnum, unsigned long irqflags)
2681 {
2682 int retval;
2683
2684 if (hcd->driver->irq) {
2685
2686 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2687 hcd->driver->description, hcd->self.busnum);
2688 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2689 hcd->irq_descr, hcd);
2690 if (retval != 0) {
2691 dev_err(hcd->self.controller,
2692 "request interrupt %d failed\n",
2693 irqnum);
2694 return retval;
2695 }
2696 hcd->irq = irqnum;
2697 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2698 (hcd->driver->flags & HCD_MEMORY) ?
2699 "io mem" : "io base",
2700 (unsigned long long)hcd->rsrc_start);
2701 } else {
2702 hcd->irq = 0;
2703 if (hcd->rsrc_start)
2704 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2705 (hcd->driver->flags & HCD_MEMORY) ?
2706 "io mem" : "io base",
2707 (unsigned long long)hcd->rsrc_start);
2708 }
2709 return 0;
2710 }
2711
2712 /*
2713 * Before we free this root hub, flush in-flight peering attempts
2714 * and disable peer lookups
2715 */
2716 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2717 {
2718 struct usb_device *rhdev;
2719
2720 mutex_lock(&usb_port_peer_mutex);
2721 rhdev = hcd->self.root_hub;
2722 hcd->self.root_hub = NULL;
2723 mutex_unlock(&usb_port_peer_mutex);
2724 usb_put_dev(rhdev);
2725 }
2726
2727 /**
2728 * usb_add_hcd - finish generic HCD structure initialization and register
2729 * @hcd: the usb_hcd structure to initialize
2730 * @irqnum: Interrupt line to allocate
2731 * @irqflags: Interrupt type flags
2732 *
2733 * Finish the remaining parts of generic HCD initialization: allocate the
2734 * buffers of consistent memory, register the bus, request the IRQ line,
2735 * and call the driver's reset() and start() routines.
2736 */
2737 int usb_add_hcd(struct usb_hcd *hcd,
2738 unsigned int irqnum, unsigned long irqflags)
2739 {
2740 int retval;
2741 struct usb_device *rhdev;
2742
2743 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2744 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2745
2746 if (IS_ERR(phy)) {
2747 retval = PTR_ERR(phy);
2748 if (retval == -EPROBE_DEFER)
2749 return retval;
2750 } else {
2751 retval = usb_phy_init(phy);
2752 if (retval) {
2753 usb_put_phy(phy);
2754 return retval;
2755 }
2756 hcd->usb_phy = phy;
2757 hcd->remove_phy = 1;
2758 }
2759 }
2760
2761 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2762 struct phy *phy = phy_get(hcd->self.sysdev, "usb");
2763
2764 if (IS_ERR(phy)) {
2765 retval = PTR_ERR(phy);
2766 if (retval == -EPROBE_DEFER)
2767 goto err_phy;
2768 } else {
2769 retval = phy_init(phy);
2770 if (retval) {
2771 phy_put(phy);
2772 goto err_phy;
2773 }
2774 retval = phy_power_on(phy);
2775 if (retval) {
2776 phy_exit(phy);
2777 phy_put(phy);
2778 goto err_phy;
2779 }
2780 hcd->phy = phy;
2781 hcd->remove_phy = 1;
2782 }
2783 }
2784
2785 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2786
2787 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2788 if (authorized_default < 0 || authorized_default > 1) {
2789 if (hcd->wireless)
2790 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2791 else
2792 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2793 } else {
2794 if (authorized_default)
2795 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2796 else
2797 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2798 }
2799 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2800
2801 /* per default all interfaces are authorized */
2802 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2803
2804 /* HC is in reset state, but accessible. Now do the one-time init,
2805 * bottom up so that hcds can customize the root hubs before hub_wq
2806 * starts talking to them. (Note, bus id is assigned early too.)
2807 */
2808 retval = hcd_buffer_create(hcd);
2809 if (retval != 0) {
2810 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2811 goto err_create_buf;
2812 }
2813
2814 retval = usb_register_bus(&hcd->self);
2815 if (retval < 0)
2816 goto err_register_bus;
2817
2818 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2819 if (rhdev == NULL) {
2820 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2821 retval = -ENOMEM;
2822 goto err_allocate_root_hub;
2823 }
2824 mutex_lock(&usb_port_peer_mutex);
2825 hcd->self.root_hub = rhdev;
2826 mutex_unlock(&usb_port_peer_mutex);
2827
2828 switch (hcd->speed) {
2829 case HCD_USB11:
2830 rhdev->speed = USB_SPEED_FULL;
2831 break;
2832 case HCD_USB2:
2833 rhdev->speed = USB_SPEED_HIGH;
2834 break;
2835 case HCD_USB25:
2836 rhdev->speed = USB_SPEED_WIRELESS;
2837 break;
2838 case HCD_USB3:
2839 rhdev->speed = USB_SPEED_SUPER;
2840 break;
2841 case HCD_USB31:
2842 rhdev->speed = USB_SPEED_SUPER_PLUS;
2843 break;
2844 default:
2845 retval = -EINVAL;
2846 goto err_set_rh_speed;
2847 }
2848
2849 /* wakeup flag init defaults to "everything works" for root hubs,
2850 * but drivers can override it in reset() if needed, along with
2851 * recording the overall controller's system wakeup capability.
2852 */
2853 device_set_wakeup_capable(&rhdev->dev, 1);
2854
2855 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2856 * registered. But since the controller can die at any time,
2857 * let's initialize the flag before touching the hardware.
2858 */
2859 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2860
2861 /* "reset" is misnamed; its role is now one-time init. the controller
2862 * should already have been reset (and boot firmware kicked off etc).
2863 */
2864 if (hcd->driver->reset) {
2865 retval = hcd->driver->reset(hcd);
2866 if (retval < 0) {
2867 dev_err(hcd->self.controller, "can't setup: %d\n",
2868 retval);
2869 goto err_hcd_driver_setup;
2870 }
2871 }
2872 hcd->rh_pollable = 1;
2873
2874 /* NOTE: root hub and controller capabilities may not be the same */
2875 if (device_can_wakeup(hcd->self.controller)
2876 && device_can_wakeup(&hcd->self.root_hub->dev))
2877 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2878
2879 /* initialize tasklets */
2880 init_giveback_urb_bh(&hcd->high_prio_bh);
2881 init_giveback_urb_bh(&hcd->low_prio_bh);
2882
2883 /* enable irqs just before we start the controller,
2884 * if the BIOS provides legacy PCI irqs.
2885 */
2886 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2887 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2888 if (retval)
2889 goto err_request_irq;
2890 }
2891
2892 hcd->state = HC_STATE_RUNNING;
2893 retval = hcd->driver->start(hcd);
2894 if (retval < 0) {
2895 dev_err(hcd->self.controller, "startup error %d\n", retval);
2896 goto err_hcd_driver_start;
2897 }
2898
2899 /* starting here, usbcore will pay attention to this root hub */
2900 retval = register_root_hub(hcd);
2901 if (retval != 0)
2902 goto err_register_root_hub;
2903
2904 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2905 if (retval < 0) {
2906 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2907 retval);
2908 goto error_create_attr_group;
2909 }
2910 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2911 usb_hcd_poll_rh_status(hcd);
2912
2913 return retval;
2914
2915 error_create_attr_group:
2916 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2917 if (HC_IS_RUNNING(hcd->state))
2918 hcd->state = HC_STATE_QUIESCING;
2919 spin_lock_irq(&hcd_root_hub_lock);
2920 hcd->rh_registered = 0;
2921 spin_unlock_irq(&hcd_root_hub_lock);
2922
2923 #ifdef CONFIG_PM
2924 cancel_work_sync(&hcd->wakeup_work);
2925 #endif
2926 mutex_lock(&usb_bus_idr_lock);
2927 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2928 mutex_unlock(&usb_bus_idr_lock);
2929 err_register_root_hub:
2930 hcd->rh_pollable = 0;
2931 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2932 del_timer_sync(&hcd->rh_timer);
2933 hcd->driver->stop(hcd);
2934 hcd->state = HC_STATE_HALT;
2935 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2936 del_timer_sync(&hcd->rh_timer);
2937 err_hcd_driver_start:
2938 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2939 free_irq(irqnum, hcd);
2940 err_request_irq:
2941 err_hcd_driver_setup:
2942 err_set_rh_speed:
2943 usb_put_invalidate_rhdev(hcd);
2944 err_allocate_root_hub:
2945 usb_deregister_bus(&hcd->self);
2946 err_register_bus:
2947 hcd_buffer_destroy(hcd);
2948 err_create_buf:
2949 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2950 phy_power_off(hcd->phy);
2951 phy_exit(hcd->phy);
2952 phy_put(hcd->phy);
2953 hcd->phy = NULL;
2954 }
2955 err_phy:
2956 if (hcd->remove_phy && hcd->usb_phy) {
2957 usb_phy_shutdown(hcd->usb_phy);
2958 usb_put_phy(hcd->usb_phy);
2959 hcd->usb_phy = NULL;
2960 }
2961 return retval;
2962 }
2963 EXPORT_SYMBOL_GPL(usb_add_hcd);
2964
2965 /**
2966 * usb_remove_hcd - shutdown processing for generic HCDs
2967 * @hcd: the usb_hcd structure to remove
2968 * Context: !in_interrupt()
2969 *
2970 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2971 * invoking the HCD's stop() method.
2972 */
2973 void usb_remove_hcd(struct usb_hcd *hcd)
2974 {
2975 struct usb_device *rhdev = hcd->self.root_hub;
2976
2977 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2978
2979 usb_get_dev(rhdev);
2980 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2981
2982 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2983 if (HC_IS_RUNNING (hcd->state))
2984 hcd->state = HC_STATE_QUIESCING;
2985
2986 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2987 spin_lock_irq (&hcd_root_hub_lock);
2988 hcd->rh_registered = 0;
2989 spin_unlock_irq (&hcd_root_hub_lock);
2990
2991 #ifdef CONFIG_PM
2992 cancel_work_sync(&hcd->wakeup_work);
2993 #endif
2994
2995 mutex_lock(&usb_bus_idr_lock);
2996 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2997 mutex_unlock(&usb_bus_idr_lock);
2998
2999 /*
3000 * tasklet_kill() isn't needed here because:
3001 * - driver's disconnect() called from usb_disconnect() should
3002 * make sure its URBs are completed during the disconnect()
3003 * callback
3004 *
3005 * - it is too late to run complete() here since driver may have
3006 * been removed already now
3007 */
3008
3009 /* Prevent any more root-hub status calls from the timer.
3010 * The HCD might still restart the timer (if a port status change
3011 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3012 * the hub_status_data() callback.
3013 */
3014 hcd->rh_pollable = 0;
3015 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3016 del_timer_sync(&hcd->rh_timer);
3017
3018 hcd->driver->stop(hcd);
3019 hcd->state = HC_STATE_HALT;
3020
3021 /* In case the HCD restarted the timer, stop it again. */
3022 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3023 del_timer_sync(&hcd->rh_timer);
3024
3025 if (usb_hcd_is_primary_hcd(hcd)) {
3026 if (hcd->irq > 0)
3027 free_irq(hcd->irq, hcd);
3028 }
3029
3030 usb_deregister_bus(&hcd->self);
3031 hcd_buffer_destroy(hcd);
3032
3033 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3034 phy_power_off(hcd->phy);
3035 phy_exit(hcd->phy);
3036 phy_put(hcd->phy);
3037 hcd->phy = NULL;
3038 }
3039 if (hcd->remove_phy && hcd->usb_phy) {
3040 usb_phy_shutdown(hcd->usb_phy);
3041 usb_put_phy(hcd->usb_phy);
3042 hcd->usb_phy = NULL;
3043 }
3044
3045 usb_put_invalidate_rhdev(hcd);
3046 hcd->flags = 0;
3047 }
3048 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3049
3050 void
3051 usb_hcd_platform_shutdown(struct platform_device *dev)
3052 {
3053 struct usb_hcd *hcd = platform_get_drvdata(dev);
3054
3055 if (hcd->driver->shutdown)
3056 hcd->driver->shutdown(hcd);
3057 }
3058 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3059
3060 /*-------------------------------------------------------------------------*/
3061
3062 #if IS_ENABLED(CONFIG_USB_MON)
3063
3064 const struct usb_mon_operations *mon_ops;
3065
3066 /*
3067 * The registration is unlocked.
3068 * We do it this way because we do not want to lock in hot paths.
3069 *
3070 * Notice that the code is minimally error-proof. Because usbmon needs
3071 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3072 */
3073
3074 int usb_mon_register(const struct usb_mon_operations *ops)
3075 {
3076
3077 if (mon_ops)
3078 return -EBUSY;
3079
3080 mon_ops = ops;
3081 mb();
3082 return 0;
3083 }
3084 EXPORT_SYMBOL_GPL (usb_mon_register);
3085
3086 void usb_mon_deregister (void)
3087 {
3088
3089 if (mon_ops == NULL) {
3090 printk(KERN_ERR "USB: monitor was not registered\n");
3091 return;
3092 }
3093 mon_ops = NULL;
3094 mb();
3095 }
3096 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3097
3098 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */