]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/usb/core/hcd.c
Merge remote-tracking branches 'asoc/topic/tas571x', 'asoc/topic/tlv320aic31xx',...
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
84 */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 DEFINE_IDR (usb_bus_idr);
94 EXPORT_SYMBOL_GPL (usb_bus_idr);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS 64
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123 * Sharable chunks of root hub code.
124 */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.1 root hub device descriptor */
131 static const u8 usb31_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149 };
150
151 /* usb 3.0 root hub device descriptor */
152 static const u8 usb3_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
160 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173 static const u8 usb25_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
177
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
182
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
186
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
191 };
192
193 /* usb 2.0 root hub device descriptor */
194 static const u8 usb2_rh_dev_descriptor[18] = {
195 0x12, /* __u8 bLength; */
196 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
198
199 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
200 0x00, /* __u8 bDeviceSubClass; */
201 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
202 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
203
204 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
205 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
206 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
207
208 0x03, /* __u8 iManufacturer; */
209 0x02, /* __u8 iProduct; */
210 0x01, /* __u8 iSerialNumber; */
211 0x01 /* __u8 bNumConfigurations; */
212 };
213
214 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
215
216 /* usb 1.1 root hub device descriptor */
217 static const u8 usb11_rh_dev_descriptor[18] = {
218 0x12, /* __u8 bLength; */
219 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
221
222 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
223 0x00, /* __u8 bDeviceSubClass; */
224 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
225 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
226
227 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
228 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
229 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
230
231 0x03, /* __u8 iManufacturer; */
232 0x02, /* __u8 iProduct; */
233 0x01, /* __u8 iSerialNumber; */
234 0x01 /* __u8 bNumConfigurations; */
235 };
236
237
238 /*-------------------------------------------------------------------------*/
239
240 /* Configuration descriptors for our root hubs */
241
242 static const u8 fs_rh_config_descriptor[] = {
243
244 /* one configuration */
245 0x09, /* __u8 bLength; */
246 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247 0x19, 0x00, /* __le16 wTotalLength; */
248 0x01, /* __u8 bNumInterfaces; (1) */
249 0x01, /* __u8 bConfigurationValue; */
250 0x00, /* __u8 iConfiguration; */
251 0xc0, /* __u8 bmAttributes;
252 Bit 7: must be set,
253 6: Self-powered,
254 5: Remote wakeup,
255 4..0: resvd */
256 0x00, /* __u8 MaxPower; */
257
258 /* USB 1.1:
259 * USB 2.0, single TT organization (mandatory):
260 * one interface, protocol 0
261 *
262 * USB 2.0, multiple TT organization (optional):
263 * two interfaces, protocols 1 (like single TT)
264 * and 2 (multiple TT mode) ... config is
265 * sometimes settable
266 * NOT IMPLEMENTED
267 */
268
269 /* one interface */
270 0x09, /* __u8 if_bLength; */
271 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
272 0x00, /* __u8 if_bInterfaceNumber; */
273 0x00, /* __u8 if_bAlternateSetting; */
274 0x01, /* __u8 if_bNumEndpoints; */
275 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
276 0x00, /* __u8 if_bInterfaceSubClass; */
277 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
278 0x00, /* __u8 if_iInterface; */
279
280 /* one endpoint (status change endpoint) */
281 0x07, /* __u8 ep_bLength; */
282 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
284 0x03, /* __u8 ep_bmAttributes; Interrupt */
285 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
287 };
288
289 static const u8 hs_rh_config_descriptor[] = {
290
291 /* one configuration */
292 0x09, /* __u8 bLength; */
293 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294 0x19, 0x00, /* __le16 wTotalLength; */
295 0x01, /* __u8 bNumInterfaces; (1) */
296 0x01, /* __u8 bConfigurationValue; */
297 0x00, /* __u8 iConfiguration; */
298 0xc0, /* __u8 bmAttributes;
299 Bit 7: must be set,
300 6: Self-powered,
301 5: Remote wakeup,
302 4..0: resvd */
303 0x00, /* __u8 MaxPower; */
304
305 /* USB 1.1:
306 * USB 2.0, single TT organization (mandatory):
307 * one interface, protocol 0
308 *
309 * USB 2.0, multiple TT organization (optional):
310 * two interfaces, protocols 1 (like single TT)
311 * and 2 (multiple TT mode) ... config is
312 * sometimes settable
313 * NOT IMPLEMENTED
314 */
315
316 /* one interface */
317 0x09, /* __u8 if_bLength; */
318 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319 0x00, /* __u8 if_bInterfaceNumber; */
320 0x00, /* __u8 if_bAlternateSetting; */
321 0x01, /* __u8 if_bNumEndpoints; */
322 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
323 0x00, /* __u8 if_bInterfaceSubClass; */
324 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
325 0x00, /* __u8 if_iInterface; */
326
327 /* one endpoint (status change endpoint) */
328 0x07, /* __u8 ep_bLength; */
329 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
331 0x03, /* __u8 ep_bmAttributes; Interrupt */
332 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333 * see hub.c:hub_configure() for details. */
334 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
336 };
337
338 static const u8 ss_rh_config_descriptor[] = {
339 /* one configuration */
340 0x09, /* __u8 bLength; */
341 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342 0x1f, 0x00, /* __le16 wTotalLength; */
343 0x01, /* __u8 bNumInterfaces; (1) */
344 0x01, /* __u8 bConfigurationValue; */
345 0x00, /* __u8 iConfiguration; */
346 0xc0, /* __u8 bmAttributes;
347 Bit 7: must be set,
348 6: Self-powered,
349 5: Remote wakeup,
350 4..0: resvd */
351 0x00, /* __u8 MaxPower; */
352
353 /* one interface */
354 0x09, /* __u8 if_bLength; */
355 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356 0x00, /* __u8 if_bInterfaceNumber; */
357 0x00, /* __u8 if_bAlternateSetting; */
358 0x01, /* __u8 if_bNumEndpoints; */
359 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
360 0x00, /* __u8 if_bInterfaceSubClass; */
361 0x00, /* __u8 if_bInterfaceProtocol; */
362 0x00, /* __u8 if_iInterface; */
363
364 /* one endpoint (status change endpoint) */
365 0x07, /* __u8 ep_bLength; */
366 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
368 0x03, /* __u8 ep_bmAttributes; Interrupt */
369 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370 * see hub.c:hub_configure() for details. */
371 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
373
374 /* one SuperSpeed endpoint companion descriptor */
375 0x06, /* __u8 ss_bLength */
376 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377 /* Companion */
378 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
380 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
381 };
382
383 /* authorized_default behaviour:
384 * -1 is authorized for all devices except wireless (old behaviour)
385 * 0 is unauthorized for all devices
386 * 1 is authorized for all devices
387 */
388 static int authorized_default = -1;
389 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390 MODULE_PARM_DESC(authorized_default,
391 "Default USB device authorization: 0 is not authorized, 1 is "
392 "authorized, -1 is authorized except for wireless USB (default, "
393 "old behaviour");
394 /*-------------------------------------------------------------------------*/
395
396 /**
397 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398 * @s: Null-terminated ASCII (actually ISO-8859-1) string
399 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400 * @len: Length (in bytes; may be odd) of descriptor buffer.
401 *
402 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403 * whichever is less.
404 *
405 * Note:
406 * USB String descriptors can contain at most 126 characters; input
407 * strings longer than that are truncated.
408 */
409 static unsigned
410 ascii2desc(char const *s, u8 *buf, unsigned len)
411 {
412 unsigned n, t = 2 + 2*strlen(s);
413
414 if (t > 254)
415 t = 254; /* Longest possible UTF string descriptor */
416 if (len > t)
417 len = t;
418
419 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
420
421 n = len;
422 while (n--) {
423 *buf++ = t;
424 if (!n--)
425 break;
426 *buf++ = t >> 8;
427 t = (unsigned char)*s++;
428 }
429 return len;
430 }
431
432 /**
433 * rh_string() - provides string descriptors for root hub
434 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435 * @hcd: the host controller for this root hub
436 * @data: buffer for output packet
437 * @len: length of the provided buffer
438 *
439 * Produces either a manufacturer, product or serial number string for the
440 * virtual root hub device.
441 *
442 * Return: The number of bytes filled in: the length of the descriptor or
443 * of the provided buffer, whichever is less.
444 */
445 static unsigned
446 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
447 {
448 char buf[100];
449 char const *s;
450 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
451
452 /* language ids */
453 switch (id) {
454 case 0:
455 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457 if (len > 4)
458 len = 4;
459 memcpy(data, langids, len);
460 return len;
461 case 1:
462 /* Serial number */
463 s = hcd->self.bus_name;
464 break;
465 case 2:
466 /* Product name */
467 s = hcd->product_desc;
468 break;
469 case 3:
470 /* Manufacturer */
471 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472 init_utsname()->release, hcd->driver->description);
473 s = buf;
474 break;
475 default:
476 /* Can't happen; caller guarantees it */
477 return 0;
478 }
479
480 return ascii2desc(s, data, len);
481 }
482
483
484 /* Root hub control transfers execute synchronously */
485 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
486 {
487 struct usb_ctrlrequest *cmd;
488 u16 typeReq, wValue, wIndex, wLength;
489 u8 *ubuf = urb->transfer_buffer;
490 unsigned len = 0;
491 int status;
492 u8 patch_wakeup = 0;
493 u8 patch_protocol = 0;
494 u16 tbuf_size;
495 u8 *tbuf = NULL;
496 const u8 *bufp;
497
498 might_sleep();
499
500 spin_lock_irq(&hcd_root_hub_lock);
501 status = usb_hcd_link_urb_to_ep(hcd, urb);
502 spin_unlock_irq(&hcd_root_hub_lock);
503 if (status)
504 return status;
505 urb->hcpriv = hcd; /* Indicate it's queued */
506
507 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
509 wValue = le16_to_cpu (cmd->wValue);
510 wIndex = le16_to_cpu (cmd->wIndex);
511 wLength = le16_to_cpu (cmd->wLength);
512
513 if (wLength > urb->transfer_buffer_length)
514 goto error;
515
516 /*
517 * tbuf should be at least as big as the
518 * USB hub descriptor.
519 */
520 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522 if (!tbuf)
523 return -ENOMEM;
524
525 bufp = tbuf;
526
527
528 urb->actual_length = 0;
529 switch (typeReq) {
530
531 /* DEVICE REQUESTS */
532
533 /* The root hub's remote wakeup enable bit is implemented using
534 * driver model wakeup flags. If this system supports wakeup
535 * through USB, userspace may change the default "allow wakeup"
536 * policy through sysfs or these calls.
537 *
538 * Most root hubs support wakeup from downstream devices, for
539 * runtime power management (disabling USB clocks and reducing
540 * VBUS power usage). However, not all of them do so; silicon,
541 * board, and BIOS bugs here are not uncommon, so these can't
542 * be treated quite like external hubs.
543 *
544 * Likewise, not all root hubs will pass wakeup events upstream,
545 * to wake up the whole system. So don't assume root hub and
546 * controller capabilities are identical.
547 */
548
549 case DeviceRequest | USB_REQ_GET_STATUS:
550 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551 << USB_DEVICE_REMOTE_WAKEUP)
552 | (1 << USB_DEVICE_SELF_POWERED);
553 tbuf[1] = 0;
554 len = 2;
555 break;
556 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559 else
560 goto error;
561 break;
562 case DeviceOutRequest | USB_REQ_SET_FEATURE:
563 if (device_can_wakeup(&hcd->self.root_hub->dev)
564 && wValue == USB_DEVICE_REMOTE_WAKEUP)
565 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566 else
567 goto error;
568 break;
569 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570 tbuf[0] = 1;
571 len = 1;
572 /* FALLTHROUGH */
573 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574 break;
575 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576 switch (wValue & 0xff00) {
577 case USB_DT_DEVICE << 8:
578 switch (hcd->speed) {
579 case HCD_USB31:
580 bufp = usb31_rh_dev_descriptor;
581 break;
582 case HCD_USB3:
583 bufp = usb3_rh_dev_descriptor;
584 break;
585 case HCD_USB25:
586 bufp = usb25_rh_dev_descriptor;
587 break;
588 case HCD_USB2:
589 bufp = usb2_rh_dev_descriptor;
590 break;
591 case HCD_USB11:
592 bufp = usb11_rh_dev_descriptor;
593 break;
594 default:
595 goto error;
596 }
597 len = 18;
598 if (hcd->has_tt)
599 patch_protocol = 1;
600 break;
601 case USB_DT_CONFIG << 8:
602 switch (hcd->speed) {
603 case HCD_USB31:
604 case HCD_USB3:
605 bufp = ss_rh_config_descriptor;
606 len = sizeof ss_rh_config_descriptor;
607 break;
608 case HCD_USB25:
609 case HCD_USB2:
610 bufp = hs_rh_config_descriptor;
611 len = sizeof hs_rh_config_descriptor;
612 break;
613 case HCD_USB11:
614 bufp = fs_rh_config_descriptor;
615 len = sizeof fs_rh_config_descriptor;
616 break;
617 default:
618 goto error;
619 }
620 if (device_can_wakeup(&hcd->self.root_hub->dev))
621 patch_wakeup = 1;
622 break;
623 case USB_DT_STRING << 8:
624 if ((wValue & 0xff) < 4)
625 urb->actual_length = rh_string(wValue & 0xff,
626 hcd, ubuf, wLength);
627 else /* unsupported IDs --> "protocol stall" */
628 goto error;
629 break;
630 case USB_DT_BOS << 8:
631 goto nongeneric;
632 default:
633 goto error;
634 }
635 break;
636 case DeviceRequest | USB_REQ_GET_INTERFACE:
637 tbuf[0] = 0;
638 len = 1;
639 /* FALLTHROUGH */
640 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641 break;
642 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643 /* wValue == urb->dev->devaddr */
644 dev_dbg (hcd->self.controller, "root hub device address %d\n",
645 wValue);
646 break;
647
648 /* INTERFACE REQUESTS (no defined feature/status flags) */
649
650 /* ENDPOINT REQUESTS */
651
652 case EndpointRequest | USB_REQ_GET_STATUS:
653 /* ENDPOINT_HALT flag */
654 tbuf[0] = 0;
655 tbuf[1] = 0;
656 len = 2;
657 /* FALLTHROUGH */
658 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659 case EndpointOutRequest | USB_REQ_SET_FEATURE:
660 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661 break;
662
663 /* CLASS REQUESTS (and errors) */
664
665 default:
666 nongeneric:
667 /* non-generic request */
668 switch (typeReq) {
669 case GetHubStatus:
670 len = 4;
671 break;
672 case GetPortStatus:
673 if (wValue == HUB_PORT_STATUS)
674 len = 4;
675 else
676 /* other port status types return 8 bytes */
677 len = 8;
678 break;
679 case GetHubDescriptor:
680 len = sizeof (struct usb_hub_descriptor);
681 break;
682 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683 /* len is returned by hub_control */
684 break;
685 }
686 status = hcd->driver->hub_control (hcd,
687 typeReq, wValue, wIndex,
688 tbuf, wLength);
689
690 if (typeReq == GetHubDescriptor)
691 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692 (struct usb_hub_descriptor *)tbuf);
693 break;
694 error:
695 /* "protocol stall" on error */
696 status = -EPIPE;
697 }
698
699 if (status < 0) {
700 len = 0;
701 if (status != -EPIPE) {
702 dev_dbg (hcd->self.controller,
703 "CTRL: TypeReq=0x%x val=0x%x "
704 "idx=0x%x len=%d ==> %d\n",
705 typeReq, wValue, wIndex,
706 wLength, status);
707 }
708 } else if (status > 0) {
709 /* hub_control may return the length of data copied. */
710 len = status;
711 status = 0;
712 }
713 if (len) {
714 if (urb->transfer_buffer_length < len)
715 len = urb->transfer_buffer_length;
716 urb->actual_length = len;
717 /* always USB_DIR_IN, toward host */
718 memcpy (ubuf, bufp, len);
719
720 /* report whether RH hardware supports remote wakeup */
721 if (patch_wakeup &&
722 len > offsetof (struct usb_config_descriptor,
723 bmAttributes))
724 ((struct usb_config_descriptor *)ubuf)->bmAttributes
725 |= USB_CONFIG_ATT_WAKEUP;
726
727 /* report whether RH hardware has an integrated TT */
728 if (patch_protocol &&
729 len > offsetof(struct usb_device_descriptor,
730 bDeviceProtocol))
731 ((struct usb_device_descriptor *) ubuf)->
732 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
733 }
734
735 kfree(tbuf);
736
737 /* any errors get returned through the urb completion */
738 spin_lock_irq(&hcd_root_hub_lock);
739 usb_hcd_unlink_urb_from_ep(hcd, urb);
740 usb_hcd_giveback_urb(hcd, urb, status);
741 spin_unlock_irq(&hcd_root_hub_lock);
742 return 0;
743 }
744
745 /*-------------------------------------------------------------------------*/
746
747 /*
748 * Root Hub interrupt transfers are polled using a timer if the
749 * driver requests it; otherwise the driver is responsible for
750 * calling usb_hcd_poll_rh_status() when an event occurs.
751 *
752 * Completions are called in_interrupt(), but they may or may not
753 * be in_irq().
754 */
755 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
756 {
757 struct urb *urb;
758 int length;
759 unsigned long flags;
760 char buffer[6]; /* Any root hubs with > 31 ports? */
761
762 if (unlikely(!hcd->rh_pollable))
763 return;
764 if (!hcd->uses_new_polling && !hcd->status_urb)
765 return;
766
767 length = hcd->driver->hub_status_data(hcd, buffer);
768 if (length > 0) {
769
770 /* try to complete the status urb */
771 spin_lock_irqsave(&hcd_root_hub_lock, flags);
772 urb = hcd->status_urb;
773 if (urb) {
774 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775 hcd->status_urb = NULL;
776 urb->actual_length = length;
777 memcpy(urb->transfer_buffer, buffer, length);
778
779 usb_hcd_unlink_urb_from_ep(hcd, urb);
780 usb_hcd_giveback_urb(hcd, urb, 0);
781 } else {
782 length = 0;
783 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
784 }
785 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
786 }
787
788 /* The USB 2.0 spec says 256 ms. This is close enough and won't
789 * exceed that limit if HZ is 100. The math is more clunky than
790 * maybe expected, this is to make sure that all timers for USB devices
791 * fire at the same time to give the CPU a break in between */
792 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793 (length == 0 && hcd->status_urb != NULL))
794 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795 }
796 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
797
798 /* timer callback */
799 static void rh_timer_func (unsigned long _hcd)
800 {
801 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
802 }
803
804 /*-------------------------------------------------------------------------*/
805
806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807 {
808 int retval;
809 unsigned long flags;
810 unsigned len = 1 + (urb->dev->maxchild / 8);
811
812 spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 retval = -EINVAL;
816 goto done;
817 }
818
819 retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 if (retval)
821 goto done;
822
823 hcd->status_urb = urb;
824 urb->hcpriv = hcd; /* indicate it's queued */
825 if (!hcd->uses_new_polling)
826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828 /* If a status change has already occurred, report it ASAP */
829 else if (HCD_POLL_PENDING(hcd))
830 mod_timer(&hcd->rh_timer, jiffies);
831 retval = 0;
832 done:
833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 return retval;
835 }
836
837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838 {
839 if (usb_endpoint_xfer_int(&urb->ep->desc))
840 return rh_queue_status (hcd, urb);
841 if (usb_endpoint_xfer_control(&urb->ep->desc))
842 return rh_call_control (hcd, urb);
843 return -EINVAL;
844 }
845
846 /*-------------------------------------------------------------------------*/
847
848 /* Unlinks of root-hub control URBs are legal, but they don't do anything
849 * since these URBs always execute synchronously.
850 */
851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852 {
853 unsigned long flags;
854 int rc;
855
856 spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 if (rc)
859 goto done;
860
861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
862 ; /* Do nothing */
863
864 } else { /* Status URB */
865 if (!hcd->uses_new_polling)
866 del_timer (&hcd->rh_timer);
867 if (urb == hcd->status_urb) {
868 hcd->status_urb = NULL;
869 usb_hcd_unlink_urb_from_ep(hcd, urb);
870 usb_hcd_giveback_urb(hcd, urb, status);
871 }
872 }
873 done:
874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 return rc;
876 }
877
878
879
880 /*
881 * Show & store the current value of authorized_default
882 */
883 static ssize_t authorized_default_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885 {
886 struct usb_device *rh_usb_dev = to_usb_device(dev);
887 struct usb_bus *usb_bus = rh_usb_dev->bus;
888 struct usb_hcd *hcd;
889
890 hcd = bus_to_hcd(usb_bus);
891 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
892 }
893
894 static ssize_t authorized_default_store(struct device *dev,
895 struct device_attribute *attr,
896 const char *buf, size_t size)
897 {
898 ssize_t result;
899 unsigned val;
900 struct usb_device *rh_usb_dev = to_usb_device(dev);
901 struct usb_bus *usb_bus = rh_usb_dev->bus;
902 struct usb_hcd *hcd;
903
904 hcd = bus_to_hcd(usb_bus);
905 result = sscanf(buf, "%u\n", &val);
906 if (result == 1) {
907 if (val)
908 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909 else
910 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
911
912 result = size;
913 } else {
914 result = -EINVAL;
915 }
916 return result;
917 }
918 static DEVICE_ATTR_RW(authorized_default);
919
920 /*
921 * interface_authorized_default_show - show default authorization status
922 * for USB interfaces
923 *
924 * note: interface_authorized_default is the default value
925 * for initializing the authorized attribute of interfaces
926 */
927 static ssize_t interface_authorized_default_show(struct device *dev,
928 struct device_attribute *attr, char *buf)
929 {
930 struct usb_device *usb_dev = to_usb_device(dev);
931 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
932
933 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
934 }
935
936 /*
937 * interface_authorized_default_store - store default authorization status
938 * for USB interfaces
939 *
940 * note: interface_authorized_default is the default value
941 * for initializing the authorized attribute of interfaces
942 */
943 static ssize_t interface_authorized_default_store(struct device *dev,
944 struct device_attribute *attr, const char *buf, size_t count)
945 {
946 struct usb_device *usb_dev = to_usb_device(dev);
947 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948 int rc = count;
949 bool val;
950
951 if (strtobool(buf, &val) != 0)
952 return -EINVAL;
953
954 if (val)
955 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956 else
957 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
958
959 return rc;
960 }
961 static DEVICE_ATTR_RW(interface_authorized_default);
962
963 /* Group all the USB bus attributes */
964 static struct attribute *usb_bus_attrs[] = {
965 &dev_attr_authorized_default.attr,
966 &dev_attr_interface_authorized_default.attr,
967 NULL,
968 };
969
970 static struct attribute_group usb_bus_attr_group = {
971 .name = NULL, /* we want them in the same directory */
972 .attrs = usb_bus_attrs,
973 };
974
975
976
977 /*-------------------------------------------------------------------------*/
978
979 /**
980 * usb_bus_init - shared initialization code
981 * @bus: the bus structure being initialized
982 *
983 * This code is used to initialize a usb_bus structure, memory for which is
984 * separately managed.
985 */
986 static void usb_bus_init (struct usb_bus *bus)
987 {
988 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
989
990 bus->devnum_next = 1;
991
992 bus->root_hub = NULL;
993 bus->busnum = -1;
994 bus->bandwidth_allocated = 0;
995 bus->bandwidth_int_reqs = 0;
996 bus->bandwidth_isoc_reqs = 0;
997 mutex_init(&bus->devnum_next_mutex);
998 }
999
1000 /*-------------------------------------------------------------------------*/
1001
1002 /**
1003 * usb_register_bus - registers the USB host controller with the usb core
1004 * @bus: pointer to the bus to register
1005 * Context: !in_interrupt()
1006 *
1007 * Assigns a bus number, and links the controller into usbcore data
1008 * structures so that it can be seen by scanning the bus list.
1009 *
1010 * Return: 0 if successful. A negative error code otherwise.
1011 */
1012 static int usb_register_bus(struct usb_bus *bus)
1013 {
1014 int result = -E2BIG;
1015 int busnum;
1016
1017 mutex_lock(&usb_bus_idr_lock);
1018 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019 if (busnum < 0) {
1020 pr_err("%s: failed to get bus number\n", usbcore_name);
1021 goto error_find_busnum;
1022 }
1023 bus->busnum = busnum;
1024 mutex_unlock(&usb_bus_idr_lock);
1025
1026 usb_notify_add_bus(bus);
1027
1028 dev_info (bus->controller, "new USB bus registered, assigned bus "
1029 "number %d\n", bus->busnum);
1030 return 0;
1031
1032 error_find_busnum:
1033 mutex_unlock(&usb_bus_idr_lock);
1034 return result;
1035 }
1036
1037 /**
1038 * usb_deregister_bus - deregisters the USB host controller
1039 * @bus: pointer to the bus to deregister
1040 * Context: !in_interrupt()
1041 *
1042 * Recycles the bus number, and unlinks the controller from usbcore data
1043 * structures so that it won't be seen by scanning the bus list.
1044 */
1045 static void usb_deregister_bus (struct usb_bus *bus)
1046 {
1047 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048
1049 /*
1050 * NOTE: make sure that all the devices are removed by the
1051 * controller code, as well as having it call this when cleaning
1052 * itself up
1053 */
1054 mutex_lock(&usb_bus_idr_lock);
1055 idr_remove(&usb_bus_idr, bus->busnum);
1056 mutex_unlock(&usb_bus_idr_lock);
1057
1058 usb_notify_remove_bus(bus);
1059 }
1060
1061 /**
1062 * register_root_hub - called by usb_add_hcd() to register a root hub
1063 * @hcd: host controller for this root hub
1064 *
1065 * This function registers the root hub with the USB subsystem. It sets up
1066 * the device properly in the device tree and then calls usb_new_device()
1067 * to register the usb device. It also assigns the root hub's USB address
1068 * (always 1).
1069 *
1070 * Return: 0 if successful. A negative error code otherwise.
1071 */
1072 static int register_root_hub(struct usb_hcd *hcd)
1073 {
1074 struct device *parent_dev = hcd->self.controller;
1075 struct usb_device *usb_dev = hcd->self.root_hub;
1076 const int devnum = 1;
1077 int retval;
1078
1079 usb_dev->devnum = devnum;
1080 usb_dev->bus->devnum_next = devnum + 1;
1081 memset (&usb_dev->bus->devmap.devicemap, 0,
1082 sizeof usb_dev->bus->devmap.devicemap);
1083 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085
1086 mutex_lock(&usb_bus_idr_lock);
1087
1088 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090 if (retval != sizeof usb_dev->descriptor) {
1091 mutex_unlock(&usb_bus_idr_lock);
1092 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093 dev_name(&usb_dev->dev), retval);
1094 return (retval < 0) ? retval : -EMSGSIZE;
1095 }
1096
1097 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098 retval = usb_get_bos_descriptor(usb_dev);
1099 if (!retval) {
1100 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102 mutex_unlock(&usb_bus_idr_lock);
1103 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104 dev_name(&usb_dev->dev), retval);
1105 return retval;
1106 }
1107 }
1108
1109 retval = usb_new_device (usb_dev);
1110 if (retval) {
1111 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112 dev_name(&usb_dev->dev), retval);
1113 } else {
1114 spin_lock_irq (&hcd_root_hub_lock);
1115 hcd->rh_registered = 1;
1116 spin_unlock_irq (&hcd_root_hub_lock);
1117
1118 /* Did the HC die before the root hub was registered? */
1119 if (HCD_DEAD(hcd))
1120 usb_hc_died (hcd); /* This time clean up */
1121 usb_dev->dev.of_node = parent_dev->of_node;
1122 }
1123 mutex_unlock(&usb_bus_idr_lock);
1124
1125 return retval;
1126 }
1127
1128 /*
1129 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1130 * @bus: the bus which the root hub belongs to
1131 * @portnum: the port which is being resumed
1132 *
1133 * HCDs should call this function when they know that a resume signal is
1134 * being sent to a root-hub port. The root hub will be prevented from
1135 * going into autosuspend until usb_hcd_end_port_resume() is called.
1136 *
1137 * The bus's private lock must be held by the caller.
1138 */
1139 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1140 {
1141 unsigned bit = 1 << portnum;
1142
1143 if (!(bus->resuming_ports & bit)) {
1144 bus->resuming_ports |= bit;
1145 pm_runtime_get_noresume(&bus->root_hub->dev);
1146 }
1147 }
1148 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1149
1150 /*
1151 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1152 * @bus: the bus which the root hub belongs to
1153 * @portnum: the port which is being resumed
1154 *
1155 * HCDs should call this function when they know that a resume signal has
1156 * stopped being sent to a root-hub port. The root hub will be allowed to
1157 * autosuspend again.
1158 *
1159 * The bus's private lock must be held by the caller.
1160 */
1161 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1162 {
1163 unsigned bit = 1 << portnum;
1164
1165 if (bus->resuming_ports & bit) {
1166 bus->resuming_ports &= ~bit;
1167 pm_runtime_put_noidle(&bus->root_hub->dev);
1168 }
1169 }
1170 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1171
1172 /*-------------------------------------------------------------------------*/
1173
1174 /**
1175 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1176 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1177 * @is_input: true iff the transaction sends data to the host
1178 * @isoc: true for isochronous transactions, false for interrupt ones
1179 * @bytecount: how many bytes in the transaction.
1180 *
1181 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1182 *
1183 * Note:
1184 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1185 * scheduled in software, this function is only used for such scheduling.
1186 */
1187 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1188 {
1189 unsigned long tmp;
1190
1191 switch (speed) {
1192 case USB_SPEED_LOW: /* INTR only */
1193 if (is_input) {
1194 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1195 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1196 } else {
1197 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1198 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1199 }
1200 case USB_SPEED_FULL: /* ISOC or INTR */
1201 if (isoc) {
1202 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1203 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1204 } else {
1205 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1206 return 9107L + BW_HOST_DELAY + tmp;
1207 }
1208 case USB_SPEED_HIGH: /* ISOC or INTR */
1209 /* FIXME adjust for input vs output */
1210 if (isoc)
1211 tmp = HS_NSECS_ISO (bytecount);
1212 else
1213 tmp = HS_NSECS (bytecount);
1214 return tmp;
1215 default:
1216 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1217 return -1;
1218 }
1219 }
1220 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1221
1222
1223 /*-------------------------------------------------------------------------*/
1224
1225 /*
1226 * Generic HC operations.
1227 */
1228
1229 /*-------------------------------------------------------------------------*/
1230
1231 /**
1232 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1233 * @hcd: host controller to which @urb was submitted
1234 * @urb: URB being submitted
1235 *
1236 * Host controller drivers should call this routine in their enqueue()
1237 * method. The HCD's private spinlock must be held and interrupts must
1238 * be disabled. The actions carried out here are required for URB
1239 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1240 *
1241 * Return: 0 for no error, otherwise a negative error code (in which case
1242 * the enqueue() method must fail). If no error occurs but enqueue() fails
1243 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1244 * the private spinlock and returning.
1245 */
1246 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1247 {
1248 int rc = 0;
1249
1250 spin_lock(&hcd_urb_list_lock);
1251
1252 /* Check that the URB isn't being killed */
1253 if (unlikely(atomic_read(&urb->reject))) {
1254 rc = -EPERM;
1255 goto done;
1256 }
1257
1258 if (unlikely(!urb->ep->enabled)) {
1259 rc = -ENOENT;
1260 goto done;
1261 }
1262
1263 if (unlikely(!urb->dev->can_submit)) {
1264 rc = -EHOSTUNREACH;
1265 goto done;
1266 }
1267
1268 /*
1269 * Check the host controller's state and add the URB to the
1270 * endpoint's queue.
1271 */
1272 if (HCD_RH_RUNNING(hcd)) {
1273 urb->unlinked = 0;
1274 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1275 } else {
1276 rc = -ESHUTDOWN;
1277 goto done;
1278 }
1279 done:
1280 spin_unlock(&hcd_urb_list_lock);
1281 return rc;
1282 }
1283 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1284
1285 /**
1286 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1287 * @hcd: host controller to which @urb was submitted
1288 * @urb: URB being checked for unlinkability
1289 * @status: error code to store in @urb if the unlink succeeds
1290 *
1291 * Host controller drivers should call this routine in their dequeue()
1292 * method. The HCD's private spinlock must be held and interrupts must
1293 * be disabled. The actions carried out here are required for making
1294 * sure than an unlink is valid.
1295 *
1296 * Return: 0 for no error, otherwise a negative error code (in which case
1297 * the dequeue() method must fail). The possible error codes are:
1298 *
1299 * -EIDRM: @urb was not submitted or has already completed.
1300 * The completion function may not have been called yet.
1301 *
1302 * -EBUSY: @urb has already been unlinked.
1303 */
1304 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1305 int status)
1306 {
1307 struct list_head *tmp;
1308
1309 /* insist the urb is still queued */
1310 list_for_each(tmp, &urb->ep->urb_list) {
1311 if (tmp == &urb->urb_list)
1312 break;
1313 }
1314 if (tmp != &urb->urb_list)
1315 return -EIDRM;
1316
1317 /* Any status except -EINPROGRESS means something already started to
1318 * unlink this URB from the hardware. So there's no more work to do.
1319 */
1320 if (urb->unlinked)
1321 return -EBUSY;
1322 urb->unlinked = status;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1326
1327 /**
1328 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1329 * @hcd: host controller to which @urb was submitted
1330 * @urb: URB being unlinked
1331 *
1332 * Host controller drivers should call this routine before calling
1333 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1334 * interrupts must be disabled. The actions carried out here are required
1335 * for URB completion.
1336 */
1337 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1338 {
1339 /* clear all state linking urb to this dev (and hcd) */
1340 spin_lock(&hcd_urb_list_lock);
1341 list_del_init(&urb->urb_list);
1342 spin_unlock(&hcd_urb_list_lock);
1343 }
1344 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1345
1346 /*
1347 * Some usb host controllers can only perform dma using a small SRAM area.
1348 * The usb core itself is however optimized for host controllers that can dma
1349 * using regular system memory - like pci devices doing bus mastering.
1350 *
1351 * To support host controllers with limited dma capabilities we provide dma
1352 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1353 * For this to work properly the host controller code must first use the
1354 * function dma_declare_coherent_memory() to point out which memory area
1355 * that should be used for dma allocations.
1356 *
1357 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1358 * dma using dma_alloc_coherent() which in turn allocates from the memory
1359 * area pointed out with dma_declare_coherent_memory().
1360 *
1361 * So, to summarize...
1362 *
1363 * - We need "local" memory, canonical example being
1364 * a small SRAM on a discrete controller being the
1365 * only memory that the controller can read ...
1366 * (a) "normal" kernel memory is no good, and
1367 * (b) there's not enough to share
1368 *
1369 * - The only *portable* hook for such stuff in the
1370 * DMA framework is dma_declare_coherent_memory()
1371 *
1372 * - So we use that, even though the primary requirement
1373 * is that the memory be "local" (hence addressable
1374 * by that device), not "coherent".
1375 *
1376 */
1377
1378 static int hcd_alloc_coherent(struct usb_bus *bus,
1379 gfp_t mem_flags, dma_addr_t *dma_handle,
1380 void **vaddr_handle, size_t size,
1381 enum dma_data_direction dir)
1382 {
1383 unsigned char *vaddr;
1384
1385 if (*vaddr_handle == NULL) {
1386 WARN_ON_ONCE(1);
1387 return -EFAULT;
1388 }
1389
1390 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1391 mem_flags, dma_handle);
1392 if (!vaddr)
1393 return -ENOMEM;
1394
1395 /*
1396 * Store the virtual address of the buffer at the end
1397 * of the allocated dma buffer. The size of the buffer
1398 * may be uneven so use unaligned functions instead
1399 * of just rounding up. It makes sense to optimize for
1400 * memory footprint over access speed since the amount
1401 * of memory available for dma may be limited.
1402 */
1403 put_unaligned((unsigned long)*vaddr_handle,
1404 (unsigned long *)(vaddr + size));
1405
1406 if (dir == DMA_TO_DEVICE)
1407 memcpy(vaddr, *vaddr_handle, size);
1408
1409 *vaddr_handle = vaddr;
1410 return 0;
1411 }
1412
1413 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1414 void **vaddr_handle, size_t size,
1415 enum dma_data_direction dir)
1416 {
1417 unsigned char *vaddr = *vaddr_handle;
1418
1419 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1420
1421 if (dir == DMA_FROM_DEVICE)
1422 memcpy(vaddr, *vaddr_handle, size);
1423
1424 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1425
1426 *vaddr_handle = vaddr;
1427 *dma_handle = 0;
1428 }
1429
1430 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1431 {
1432 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1433 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1434 dma_unmap_single(hcd->self.controller,
1435 urb->setup_dma,
1436 sizeof(struct usb_ctrlrequest),
1437 DMA_TO_DEVICE);
1438 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1439 hcd_free_coherent(urb->dev->bus,
1440 &urb->setup_dma,
1441 (void **) &urb->setup_packet,
1442 sizeof(struct usb_ctrlrequest),
1443 DMA_TO_DEVICE);
1444
1445 /* Make it safe to call this routine more than once */
1446 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1447 }
1448 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1449
1450 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1451 {
1452 if (hcd->driver->unmap_urb_for_dma)
1453 hcd->driver->unmap_urb_for_dma(hcd, urb);
1454 else
1455 usb_hcd_unmap_urb_for_dma(hcd, urb);
1456 }
1457
1458 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1459 {
1460 enum dma_data_direction dir;
1461
1462 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1463
1464 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1465 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466 (urb->transfer_flags & URB_DMA_MAP_SG))
1467 dma_unmap_sg(hcd->self.controller,
1468 urb->sg,
1469 urb->num_sgs,
1470 dir);
1471 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1473 dma_unmap_page(hcd->self.controller,
1474 urb->transfer_dma,
1475 urb->transfer_buffer_length,
1476 dir);
1477 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1478 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1479 dma_unmap_single(hcd->self.controller,
1480 urb->transfer_dma,
1481 urb->transfer_buffer_length,
1482 dir);
1483 else if (urb->transfer_flags & URB_MAP_LOCAL)
1484 hcd_free_coherent(urb->dev->bus,
1485 &urb->transfer_dma,
1486 &urb->transfer_buffer,
1487 urb->transfer_buffer_length,
1488 dir);
1489
1490 /* Make it safe to call this routine more than once */
1491 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1492 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1493 }
1494 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1495
1496 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1497 gfp_t mem_flags)
1498 {
1499 if (hcd->driver->map_urb_for_dma)
1500 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1501 else
1502 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1503 }
1504
1505 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1506 gfp_t mem_flags)
1507 {
1508 enum dma_data_direction dir;
1509 int ret = 0;
1510
1511 /* Map the URB's buffers for DMA access.
1512 * Lower level HCD code should use *_dma exclusively,
1513 * unless it uses pio or talks to another transport,
1514 * or uses the provided scatter gather list for bulk.
1515 */
1516
1517 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1518 if (hcd->self.uses_pio_for_control)
1519 return ret;
1520 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1521 urb->setup_dma = dma_map_single(
1522 hcd->self.controller,
1523 urb->setup_packet,
1524 sizeof(struct usb_ctrlrequest),
1525 DMA_TO_DEVICE);
1526 if (dma_mapping_error(hcd->self.controller,
1527 urb->setup_dma))
1528 return -EAGAIN;
1529 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1530 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1531 ret = hcd_alloc_coherent(
1532 urb->dev->bus, mem_flags,
1533 &urb->setup_dma,
1534 (void **)&urb->setup_packet,
1535 sizeof(struct usb_ctrlrequest),
1536 DMA_TO_DEVICE);
1537 if (ret)
1538 return ret;
1539 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1540 }
1541 }
1542
1543 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1544 if (urb->transfer_buffer_length != 0
1545 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1546 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1547 if (urb->num_sgs) {
1548 int n;
1549
1550 /* We don't support sg for isoc transfers ! */
1551 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1552 WARN_ON(1);
1553 return -EINVAL;
1554 }
1555
1556 n = dma_map_sg(
1557 hcd->self.controller,
1558 urb->sg,
1559 urb->num_sgs,
1560 dir);
1561 if (n <= 0)
1562 ret = -EAGAIN;
1563 else
1564 urb->transfer_flags |= URB_DMA_MAP_SG;
1565 urb->num_mapped_sgs = n;
1566 if (n != urb->num_sgs)
1567 urb->transfer_flags |=
1568 URB_DMA_SG_COMBINED;
1569 } else if (urb->sg) {
1570 struct scatterlist *sg = urb->sg;
1571 urb->transfer_dma = dma_map_page(
1572 hcd->self.controller,
1573 sg_page(sg),
1574 sg->offset,
1575 urb->transfer_buffer_length,
1576 dir);
1577 if (dma_mapping_error(hcd->self.controller,
1578 urb->transfer_dma))
1579 ret = -EAGAIN;
1580 else
1581 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1582 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1583 WARN_ONCE(1, "transfer buffer not dma capable\n");
1584 ret = -EAGAIN;
1585 } else {
1586 urb->transfer_dma = dma_map_single(
1587 hcd->self.controller,
1588 urb->transfer_buffer,
1589 urb->transfer_buffer_length,
1590 dir);
1591 if (dma_mapping_error(hcd->self.controller,
1592 urb->transfer_dma))
1593 ret = -EAGAIN;
1594 else
1595 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1596 }
1597 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1598 ret = hcd_alloc_coherent(
1599 urb->dev->bus, mem_flags,
1600 &urb->transfer_dma,
1601 &urb->transfer_buffer,
1602 urb->transfer_buffer_length,
1603 dir);
1604 if (ret == 0)
1605 urb->transfer_flags |= URB_MAP_LOCAL;
1606 }
1607 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1608 URB_SETUP_MAP_LOCAL)))
1609 usb_hcd_unmap_urb_for_dma(hcd, urb);
1610 }
1611 return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1614
1615 /*-------------------------------------------------------------------------*/
1616
1617 /* may be called in any context with a valid urb->dev usecount
1618 * caller surrenders "ownership" of urb
1619 * expects usb_submit_urb() to have sanity checked and conditioned all
1620 * inputs in the urb
1621 */
1622 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1623 {
1624 int status;
1625 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1626
1627 /* increment urb's reference count as part of giving it to the HCD
1628 * (which will control it). HCD guarantees that it either returns
1629 * an error or calls giveback(), but not both.
1630 */
1631 usb_get_urb(urb);
1632 atomic_inc(&urb->use_count);
1633 atomic_inc(&urb->dev->urbnum);
1634 usbmon_urb_submit(&hcd->self, urb);
1635
1636 /* NOTE requirements on root-hub callers (usbfs and the hub
1637 * driver, for now): URBs' urb->transfer_buffer must be
1638 * valid and usb_buffer_{sync,unmap}() not be needed, since
1639 * they could clobber root hub response data. Also, control
1640 * URBs must be submitted in process context with interrupts
1641 * enabled.
1642 */
1643
1644 if (is_root_hub(urb->dev)) {
1645 status = rh_urb_enqueue(hcd, urb);
1646 } else {
1647 status = map_urb_for_dma(hcd, urb, mem_flags);
1648 if (likely(status == 0)) {
1649 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1650 if (unlikely(status))
1651 unmap_urb_for_dma(hcd, urb);
1652 }
1653 }
1654
1655 if (unlikely(status)) {
1656 usbmon_urb_submit_error(&hcd->self, urb, status);
1657 urb->hcpriv = NULL;
1658 INIT_LIST_HEAD(&urb->urb_list);
1659 atomic_dec(&urb->use_count);
1660 atomic_dec(&urb->dev->urbnum);
1661 if (atomic_read(&urb->reject))
1662 wake_up(&usb_kill_urb_queue);
1663 usb_put_urb(urb);
1664 }
1665 return status;
1666 }
1667
1668 /*-------------------------------------------------------------------------*/
1669
1670 /* this makes the hcd giveback() the urb more quickly, by kicking it
1671 * off hardware queues (which may take a while) and returning it as
1672 * soon as practical. we've already set up the urb's return status,
1673 * but we can't know if the callback completed already.
1674 */
1675 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1676 {
1677 int value;
1678
1679 if (is_root_hub(urb->dev))
1680 value = usb_rh_urb_dequeue(hcd, urb, status);
1681 else {
1682
1683 /* The only reason an HCD might fail this call is if
1684 * it has not yet fully queued the urb to begin with.
1685 * Such failures should be harmless. */
1686 value = hcd->driver->urb_dequeue(hcd, urb, status);
1687 }
1688 return value;
1689 }
1690
1691 /*
1692 * called in any context
1693 *
1694 * caller guarantees urb won't be recycled till both unlink()
1695 * and the urb's completion function return
1696 */
1697 int usb_hcd_unlink_urb (struct urb *urb, int status)
1698 {
1699 struct usb_hcd *hcd;
1700 struct usb_device *udev = urb->dev;
1701 int retval = -EIDRM;
1702 unsigned long flags;
1703
1704 /* Prevent the device and bus from going away while
1705 * the unlink is carried out. If they are already gone
1706 * then urb->use_count must be 0, since disconnected
1707 * devices can't have any active URBs.
1708 */
1709 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1710 if (atomic_read(&urb->use_count) > 0) {
1711 retval = 0;
1712 usb_get_dev(udev);
1713 }
1714 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1715 if (retval == 0) {
1716 hcd = bus_to_hcd(urb->dev->bus);
1717 retval = unlink1(hcd, urb, status);
1718 if (retval == 0)
1719 retval = -EINPROGRESS;
1720 else if (retval != -EIDRM && retval != -EBUSY)
1721 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1722 urb, retval);
1723 usb_put_dev(udev);
1724 }
1725 return retval;
1726 }
1727
1728 /*-------------------------------------------------------------------------*/
1729
1730 static void __usb_hcd_giveback_urb(struct urb *urb)
1731 {
1732 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1733 struct usb_anchor *anchor = urb->anchor;
1734 int status = urb->unlinked;
1735 unsigned long flags;
1736
1737 urb->hcpriv = NULL;
1738 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1739 urb->actual_length < urb->transfer_buffer_length &&
1740 !status))
1741 status = -EREMOTEIO;
1742
1743 unmap_urb_for_dma(hcd, urb);
1744 usbmon_urb_complete(&hcd->self, urb, status);
1745 usb_anchor_suspend_wakeups(anchor);
1746 usb_unanchor_urb(urb);
1747 if (likely(status == 0))
1748 usb_led_activity(USB_LED_EVENT_HOST);
1749
1750 /* pass ownership to the completion handler */
1751 urb->status = status;
1752
1753 /*
1754 * We disable local IRQs here avoid possible deadlock because
1755 * drivers may call spin_lock() to hold lock which might be
1756 * acquired in one hard interrupt handler.
1757 *
1758 * The local_irq_save()/local_irq_restore() around complete()
1759 * will be removed if current USB drivers have been cleaned up
1760 * and no one may trigger the above deadlock situation when
1761 * running complete() in tasklet.
1762 */
1763 local_irq_save(flags);
1764 urb->complete(urb);
1765 local_irq_restore(flags);
1766
1767 usb_anchor_resume_wakeups(anchor);
1768 atomic_dec(&urb->use_count);
1769 if (unlikely(atomic_read(&urb->reject)))
1770 wake_up(&usb_kill_urb_queue);
1771 usb_put_urb(urb);
1772 }
1773
1774 static void usb_giveback_urb_bh(unsigned long param)
1775 {
1776 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1777 struct list_head local_list;
1778
1779 spin_lock_irq(&bh->lock);
1780 bh->running = true;
1781 restart:
1782 list_replace_init(&bh->head, &local_list);
1783 spin_unlock_irq(&bh->lock);
1784
1785 while (!list_empty(&local_list)) {
1786 struct urb *urb;
1787
1788 urb = list_entry(local_list.next, struct urb, urb_list);
1789 list_del_init(&urb->urb_list);
1790 bh->completing_ep = urb->ep;
1791 __usb_hcd_giveback_urb(urb);
1792 bh->completing_ep = NULL;
1793 }
1794
1795 /* check if there are new URBs to giveback */
1796 spin_lock_irq(&bh->lock);
1797 if (!list_empty(&bh->head))
1798 goto restart;
1799 bh->running = false;
1800 spin_unlock_irq(&bh->lock);
1801 }
1802
1803 /**
1804 * usb_hcd_giveback_urb - return URB from HCD to device driver
1805 * @hcd: host controller returning the URB
1806 * @urb: urb being returned to the USB device driver.
1807 * @status: completion status code for the URB.
1808 * Context: in_interrupt()
1809 *
1810 * This hands the URB from HCD to its USB device driver, using its
1811 * completion function. The HCD has freed all per-urb resources
1812 * (and is done using urb->hcpriv). It also released all HCD locks;
1813 * the device driver won't cause problems if it frees, modifies,
1814 * or resubmits this URB.
1815 *
1816 * If @urb was unlinked, the value of @status will be overridden by
1817 * @urb->unlinked. Erroneous short transfers are detected in case
1818 * the HCD hasn't checked for them.
1819 */
1820 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1821 {
1822 struct giveback_urb_bh *bh;
1823 bool running, high_prio_bh;
1824
1825 /* pass status to tasklet via unlinked */
1826 if (likely(!urb->unlinked))
1827 urb->unlinked = status;
1828
1829 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1830 __usb_hcd_giveback_urb(urb);
1831 return;
1832 }
1833
1834 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1835 bh = &hcd->high_prio_bh;
1836 high_prio_bh = true;
1837 } else {
1838 bh = &hcd->low_prio_bh;
1839 high_prio_bh = false;
1840 }
1841
1842 spin_lock(&bh->lock);
1843 list_add_tail(&urb->urb_list, &bh->head);
1844 running = bh->running;
1845 spin_unlock(&bh->lock);
1846
1847 if (running)
1848 ;
1849 else if (high_prio_bh)
1850 tasklet_hi_schedule(&bh->bh);
1851 else
1852 tasklet_schedule(&bh->bh);
1853 }
1854 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1855
1856 /*-------------------------------------------------------------------------*/
1857
1858 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1859 * queue to drain completely. The caller must first insure that no more
1860 * URBs can be submitted for this endpoint.
1861 */
1862 void usb_hcd_flush_endpoint(struct usb_device *udev,
1863 struct usb_host_endpoint *ep)
1864 {
1865 struct usb_hcd *hcd;
1866 struct urb *urb;
1867
1868 if (!ep)
1869 return;
1870 might_sleep();
1871 hcd = bus_to_hcd(udev->bus);
1872
1873 /* No more submits can occur */
1874 spin_lock_irq(&hcd_urb_list_lock);
1875 rescan:
1876 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1877 int is_in;
1878
1879 if (urb->unlinked)
1880 continue;
1881 usb_get_urb (urb);
1882 is_in = usb_urb_dir_in(urb);
1883 spin_unlock(&hcd_urb_list_lock);
1884
1885 /* kick hcd */
1886 unlink1(hcd, urb, -ESHUTDOWN);
1887 dev_dbg (hcd->self.controller,
1888 "shutdown urb %p ep%d%s%s\n",
1889 urb, usb_endpoint_num(&ep->desc),
1890 is_in ? "in" : "out",
1891 ({ char *s;
1892
1893 switch (usb_endpoint_type(&ep->desc)) {
1894 case USB_ENDPOINT_XFER_CONTROL:
1895 s = ""; break;
1896 case USB_ENDPOINT_XFER_BULK:
1897 s = "-bulk"; break;
1898 case USB_ENDPOINT_XFER_INT:
1899 s = "-intr"; break;
1900 default:
1901 s = "-iso"; break;
1902 };
1903 s;
1904 }));
1905 usb_put_urb (urb);
1906
1907 /* list contents may have changed */
1908 spin_lock(&hcd_urb_list_lock);
1909 goto rescan;
1910 }
1911 spin_unlock_irq(&hcd_urb_list_lock);
1912
1913 /* Wait until the endpoint queue is completely empty */
1914 while (!list_empty (&ep->urb_list)) {
1915 spin_lock_irq(&hcd_urb_list_lock);
1916
1917 /* The list may have changed while we acquired the spinlock */
1918 urb = NULL;
1919 if (!list_empty (&ep->urb_list)) {
1920 urb = list_entry (ep->urb_list.prev, struct urb,
1921 urb_list);
1922 usb_get_urb (urb);
1923 }
1924 spin_unlock_irq(&hcd_urb_list_lock);
1925
1926 if (urb) {
1927 usb_kill_urb (urb);
1928 usb_put_urb (urb);
1929 }
1930 }
1931 }
1932
1933 /**
1934 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1935 * the bus bandwidth
1936 * @udev: target &usb_device
1937 * @new_config: new configuration to install
1938 * @cur_alt: the current alternate interface setting
1939 * @new_alt: alternate interface setting that is being installed
1940 *
1941 * To change configurations, pass in the new configuration in new_config,
1942 * and pass NULL for cur_alt and new_alt.
1943 *
1944 * To reset a device's configuration (put the device in the ADDRESSED state),
1945 * pass in NULL for new_config, cur_alt, and new_alt.
1946 *
1947 * To change alternate interface settings, pass in NULL for new_config,
1948 * pass in the current alternate interface setting in cur_alt,
1949 * and pass in the new alternate interface setting in new_alt.
1950 *
1951 * Return: An error if the requested bandwidth change exceeds the
1952 * bus bandwidth or host controller internal resources.
1953 */
1954 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1955 struct usb_host_config *new_config,
1956 struct usb_host_interface *cur_alt,
1957 struct usb_host_interface *new_alt)
1958 {
1959 int num_intfs, i, j;
1960 struct usb_host_interface *alt = NULL;
1961 int ret = 0;
1962 struct usb_hcd *hcd;
1963 struct usb_host_endpoint *ep;
1964
1965 hcd = bus_to_hcd(udev->bus);
1966 if (!hcd->driver->check_bandwidth)
1967 return 0;
1968
1969 /* Configuration is being removed - set configuration 0 */
1970 if (!new_config && !cur_alt) {
1971 for (i = 1; i < 16; ++i) {
1972 ep = udev->ep_out[i];
1973 if (ep)
1974 hcd->driver->drop_endpoint(hcd, udev, ep);
1975 ep = udev->ep_in[i];
1976 if (ep)
1977 hcd->driver->drop_endpoint(hcd, udev, ep);
1978 }
1979 hcd->driver->check_bandwidth(hcd, udev);
1980 return 0;
1981 }
1982 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1983 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1984 * of the bus. There will always be bandwidth for endpoint 0, so it's
1985 * ok to exclude it.
1986 */
1987 if (new_config) {
1988 num_intfs = new_config->desc.bNumInterfaces;
1989 /* Remove endpoints (except endpoint 0, which is always on the
1990 * schedule) from the old config from the schedule
1991 */
1992 for (i = 1; i < 16; ++i) {
1993 ep = udev->ep_out[i];
1994 if (ep) {
1995 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1996 if (ret < 0)
1997 goto reset;
1998 }
1999 ep = udev->ep_in[i];
2000 if (ep) {
2001 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2002 if (ret < 0)
2003 goto reset;
2004 }
2005 }
2006 for (i = 0; i < num_intfs; ++i) {
2007 struct usb_host_interface *first_alt;
2008 int iface_num;
2009
2010 first_alt = &new_config->intf_cache[i]->altsetting[0];
2011 iface_num = first_alt->desc.bInterfaceNumber;
2012 /* Set up endpoints for alternate interface setting 0 */
2013 alt = usb_find_alt_setting(new_config, iface_num, 0);
2014 if (!alt)
2015 /* No alt setting 0? Pick the first setting. */
2016 alt = first_alt;
2017
2018 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2019 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2020 if (ret < 0)
2021 goto reset;
2022 }
2023 }
2024 }
2025 if (cur_alt && new_alt) {
2026 struct usb_interface *iface = usb_ifnum_to_if(udev,
2027 cur_alt->desc.bInterfaceNumber);
2028
2029 if (!iface)
2030 return -EINVAL;
2031 if (iface->resetting_device) {
2032 /*
2033 * The USB core just reset the device, so the xHCI host
2034 * and the device will think alt setting 0 is installed.
2035 * However, the USB core will pass in the alternate
2036 * setting installed before the reset as cur_alt. Dig
2037 * out the alternate setting 0 structure, or the first
2038 * alternate setting if a broken device doesn't have alt
2039 * setting 0.
2040 */
2041 cur_alt = usb_altnum_to_altsetting(iface, 0);
2042 if (!cur_alt)
2043 cur_alt = &iface->altsetting[0];
2044 }
2045
2046 /* Drop all the endpoints in the current alt setting */
2047 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2048 ret = hcd->driver->drop_endpoint(hcd, udev,
2049 &cur_alt->endpoint[i]);
2050 if (ret < 0)
2051 goto reset;
2052 }
2053 /* Add all the endpoints in the new alt setting */
2054 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2055 ret = hcd->driver->add_endpoint(hcd, udev,
2056 &new_alt->endpoint[i]);
2057 if (ret < 0)
2058 goto reset;
2059 }
2060 }
2061 ret = hcd->driver->check_bandwidth(hcd, udev);
2062 reset:
2063 if (ret < 0)
2064 hcd->driver->reset_bandwidth(hcd, udev);
2065 return ret;
2066 }
2067
2068 /* Disables the endpoint: synchronizes with the hcd to make sure all
2069 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2070 * have been called previously. Use for set_configuration, set_interface,
2071 * driver removal, physical disconnect.
2072 *
2073 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2074 * type, maxpacket size, toggle, halt status, and scheduling.
2075 */
2076 void usb_hcd_disable_endpoint(struct usb_device *udev,
2077 struct usb_host_endpoint *ep)
2078 {
2079 struct usb_hcd *hcd;
2080
2081 might_sleep();
2082 hcd = bus_to_hcd(udev->bus);
2083 if (hcd->driver->endpoint_disable)
2084 hcd->driver->endpoint_disable(hcd, ep);
2085 }
2086
2087 /**
2088 * usb_hcd_reset_endpoint - reset host endpoint state
2089 * @udev: USB device.
2090 * @ep: the endpoint to reset.
2091 *
2092 * Resets any host endpoint state such as the toggle bit, sequence
2093 * number and current window.
2094 */
2095 void usb_hcd_reset_endpoint(struct usb_device *udev,
2096 struct usb_host_endpoint *ep)
2097 {
2098 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2099
2100 if (hcd->driver->endpoint_reset)
2101 hcd->driver->endpoint_reset(hcd, ep);
2102 else {
2103 int epnum = usb_endpoint_num(&ep->desc);
2104 int is_out = usb_endpoint_dir_out(&ep->desc);
2105 int is_control = usb_endpoint_xfer_control(&ep->desc);
2106
2107 usb_settoggle(udev, epnum, is_out, 0);
2108 if (is_control)
2109 usb_settoggle(udev, epnum, !is_out, 0);
2110 }
2111 }
2112
2113 /**
2114 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2115 * @interface: alternate setting that includes all endpoints.
2116 * @eps: array of endpoints that need streams.
2117 * @num_eps: number of endpoints in the array.
2118 * @num_streams: number of streams to allocate.
2119 * @mem_flags: flags hcd should use to allocate memory.
2120 *
2121 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2122 * Drivers may queue multiple transfers to different stream IDs, which may
2123 * complete in a different order than they were queued.
2124 *
2125 * Return: On success, the number of allocated streams. On failure, a negative
2126 * error code.
2127 */
2128 int usb_alloc_streams(struct usb_interface *interface,
2129 struct usb_host_endpoint **eps, unsigned int num_eps,
2130 unsigned int num_streams, gfp_t mem_flags)
2131 {
2132 struct usb_hcd *hcd;
2133 struct usb_device *dev;
2134 int i, ret;
2135
2136 dev = interface_to_usbdev(interface);
2137 hcd = bus_to_hcd(dev->bus);
2138 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2139 return -EINVAL;
2140 if (dev->speed < USB_SPEED_SUPER)
2141 return -EINVAL;
2142 if (dev->state < USB_STATE_CONFIGURED)
2143 return -ENODEV;
2144
2145 for (i = 0; i < num_eps; i++) {
2146 /* Streams only apply to bulk endpoints. */
2147 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2148 return -EINVAL;
2149 /* Re-alloc is not allowed */
2150 if (eps[i]->streams)
2151 return -EINVAL;
2152 }
2153
2154 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2155 num_streams, mem_flags);
2156 if (ret < 0)
2157 return ret;
2158
2159 for (i = 0; i < num_eps; i++)
2160 eps[i]->streams = ret;
2161
2162 return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2165
2166 /**
2167 * usb_free_streams - free bulk endpoint stream IDs.
2168 * @interface: alternate setting that includes all endpoints.
2169 * @eps: array of endpoints to remove streams from.
2170 * @num_eps: number of endpoints in the array.
2171 * @mem_flags: flags hcd should use to allocate memory.
2172 *
2173 * Reverts a group of bulk endpoints back to not using stream IDs.
2174 * Can fail if we are given bad arguments, or HCD is broken.
2175 *
2176 * Return: 0 on success. On failure, a negative error code.
2177 */
2178 int usb_free_streams(struct usb_interface *interface,
2179 struct usb_host_endpoint **eps, unsigned int num_eps,
2180 gfp_t mem_flags)
2181 {
2182 struct usb_hcd *hcd;
2183 struct usb_device *dev;
2184 int i, ret;
2185
2186 dev = interface_to_usbdev(interface);
2187 hcd = bus_to_hcd(dev->bus);
2188 if (dev->speed < USB_SPEED_SUPER)
2189 return -EINVAL;
2190
2191 /* Double-free is not allowed */
2192 for (i = 0; i < num_eps; i++)
2193 if (!eps[i] || !eps[i]->streams)
2194 return -EINVAL;
2195
2196 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2197 if (ret < 0)
2198 return ret;
2199
2200 for (i = 0; i < num_eps; i++)
2201 eps[i]->streams = 0;
2202
2203 return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(usb_free_streams);
2206
2207 /* Protect against drivers that try to unlink URBs after the device
2208 * is gone, by waiting until all unlinks for @udev are finished.
2209 * Since we don't currently track URBs by device, simply wait until
2210 * nothing is running in the locked region of usb_hcd_unlink_urb().
2211 */
2212 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2213 {
2214 spin_lock_irq(&hcd_urb_unlink_lock);
2215 spin_unlock_irq(&hcd_urb_unlink_lock);
2216 }
2217
2218 /*-------------------------------------------------------------------------*/
2219
2220 /* called in any context */
2221 int usb_hcd_get_frame_number (struct usb_device *udev)
2222 {
2223 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2224
2225 if (!HCD_RH_RUNNING(hcd))
2226 return -ESHUTDOWN;
2227 return hcd->driver->get_frame_number (hcd);
2228 }
2229
2230 /*-------------------------------------------------------------------------*/
2231
2232 #ifdef CONFIG_PM
2233
2234 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2235 {
2236 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2237 int status;
2238 int old_state = hcd->state;
2239
2240 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2241 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2242 rhdev->do_remote_wakeup);
2243 if (HCD_DEAD(hcd)) {
2244 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2245 return 0;
2246 }
2247
2248 if (!hcd->driver->bus_suspend) {
2249 status = -ENOENT;
2250 } else {
2251 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2252 hcd->state = HC_STATE_QUIESCING;
2253 status = hcd->driver->bus_suspend(hcd);
2254 }
2255 if (status == 0) {
2256 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2257 hcd->state = HC_STATE_SUSPENDED;
2258
2259 /* Did we race with a root-hub wakeup event? */
2260 if (rhdev->do_remote_wakeup) {
2261 char buffer[6];
2262
2263 status = hcd->driver->hub_status_data(hcd, buffer);
2264 if (status != 0) {
2265 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2266 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2267 status = -EBUSY;
2268 }
2269 }
2270 } else {
2271 spin_lock_irq(&hcd_root_hub_lock);
2272 if (!HCD_DEAD(hcd)) {
2273 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2274 hcd->state = old_state;
2275 }
2276 spin_unlock_irq(&hcd_root_hub_lock);
2277 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2278 "suspend", status);
2279 }
2280 return status;
2281 }
2282
2283 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2284 {
2285 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2286 int status;
2287 int old_state = hcd->state;
2288
2289 dev_dbg(&rhdev->dev, "usb %sresume\n",
2290 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2291 if (HCD_DEAD(hcd)) {
2292 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2293 return 0;
2294 }
2295 if (!hcd->driver->bus_resume)
2296 return -ENOENT;
2297 if (HCD_RH_RUNNING(hcd))
2298 return 0;
2299
2300 hcd->state = HC_STATE_RESUMING;
2301 status = hcd->driver->bus_resume(hcd);
2302 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2303 if (status == 0) {
2304 struct usb_device *udev;
2305 int port1;
2306
2307 spin_lock_irq(&hcd_root_hub_lock);
2308 if (!HCD_DEAD(hcd)) {
2309 usb_set_device_state(rhdev, rhdev->actconfig
2310 ? USB_STATE_CONFIGURED
2311 : USB_STATE_ADDRESS);
2312 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2313 hcd->state = HC_STATE_RUNNING;
2314 }
2315 spin_unlock_irq(&hcd_root_hub_lock);
2316
2317 /*
2318 * Check whether any of the enabled ports on the root hub are
2319 * unsuspended. If they are then a TRSMRCY delay is needed
2320 * (this is what the USB-2 spec calls a "global resume").
2321 * Otherwise we can skip the delay.
2322 */
2323 usb_hub_for_each_child(rhdev, port1, udev) {
2324 if (udev->state != USB_STATE_NOTATTACHED &&
2325 !udev->port_is_suspended) {
2326 usleep_range(10000, 11000); /* TRSMRCY */
2327 break;
2328 }
2329 }
2330 } else {
2331 hcd->state = old_state;
2332 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2333 "resume", status);
2334 if (status != -ESHUTDOWN)
2335 usb_hc_died(hcd);
2336 }
2337 return status;
2338 }
2339
2340 /* Workqueue routine for root-hub remote wakeup */
2341 static void hcd_resume_work(struct work_struct *work)
2342 {
2343 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2344 struct usb_device *udev = hcd->self.root_hub;
2345
2346 usb_remote_wakeup(udev);
2347 }
2348
2349 /**
2350 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2351 * @hcd: host controller for this root hub
2352 *
2353 * The USB host controller calls this function when its root hub is
2354 * suspended (with the remote wakeup feature enabled) and a remote
2355 * wakeup request is received. The routine submits a workqueue request
2356 * to resume the root hub (that is, manage its downstream ports again).
2357 */
2358 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2359 {
2360 unsigned long flags;
2361
2362 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2363 if (hcd->rh_registered) {
2364 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2365 queue_work(pm_wq, &hcd->wakeup_work);
2366 }
2367 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2368 }
2369 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2370
2371 #endif /* CONFIG_PM */
2372
2373 /*-------------------------------------------------------------------------*/
2374
2375 #ifdef CONFIG_USB_OTG
2376
2377 /**
2378 * usb_bus_start_enum - start immediate enumeration (for OTG)
2379 * @bus: the bus (must use hcd framework)
2380 * @port_num: 1-based number of port; usually bus->otg_port
2381 * Context: in_interrupt()
2382 *
2383 * Starts enumeration, with an immediate reset followed later by
2384 * hub_wq identifying and possibly configuring the device.
2385 * This is needed by OTG controller drivers, where it helps meet
2386 * HNP protocol timing requirements for starting a port reset.
2387 *
2388 * Return: 0 if successful.
2389 */
2390 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2391 {
2392 struct usb_hcd *hcd;
2393 int status = -EOPNOTSUPP;
2394
2395 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2396 * boards with root hubs hooked up to internal devices (instead of
2397 * just the OTG port) may need more attention to resetting...
2398 */
2399 hcd = bus_to_hcd(bus);
2400 if (port_num && hcd->driver->start_port_reset)
2401 status = hcd->driver->start_port_reset(hcd, port_num);
2402
2403 /* allocate hub_wq shortly after (first) root port reset finishes;
2404 * it may issue others, until at least 50 msecs have passed.
2405 */
2406 if (status == 0)
2407 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2408 return status;
2409 }
2410 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2411
2412 #endif
2413
2414 /*-------------------------------------------------------------------------*/
2415
2416 /**
2417 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2418 * @irq: the IRQ being raised
2419 * @__hcd: pointer to the HCD whose IRQ is being signaled
2420 *
2421 * If the controller isn't HALTed, calls the driver's irq handler.
2422 * Checks whether the controller is now dead.
2423 *
2424 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2425 */
2426 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2427 {
2428 struct usb_hcd *hcd = __hcd;
2429 irqreturn_t rc;
2430
2431 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2432 rc = IRQ_NONE;
2433 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2434 rc = IRQ_NONE;
2435 else
2436 rc = IRQ_HANDLED;
2437
2438 return rc;
2439 }
2440 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2441
2442 /*-------------------------------------------------------------------------*/
2443
2444 /**
2445 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2446 * @hcd: pointer to the HCD representing the controller
2447 *
2448 * This is called by bus glue to report a USB host controller that died
2449 * while operations may still have been pending. It's called automatically
2450 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2451 *
2452 * Only call this function with the primary HCD.
2453 */
2454 void usb_hc_died (struct usb_hcd *hcd)
2455 {
2456 unsigned long flags;
2457
2458 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2459
2460 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2461 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2462 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2463 if (hcd->rh_registered) {
2464 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2465
2466 /* make hub_wq clean up old urbs and devices */
2467 usb_set_device_state (hcd->self.root_hub,
2468 USB_STATE_NOTATTACHED);
2469 usb_kick_hub_wq(hcd->self.root_hub);
2470 }
2471 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2472 hcd = hcd->shared_hcd;
2473 if (hcd->rh_registered) {
2474 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2475
2476 /* make hub_wq clean up old urbs and devices */
2477 usb_set_device_state(hcd->self.root_hub,
2478 USB_STATE_NOTATTACHED);
2479 usb_kick_hub_wq(hcd->self.root_hub);
2480 }
2481 }
2482 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2483 /* Make sure that the other roothub is also deallocated. */
2484 }
2485 EXPORT_SYMBOL_GPL (usb_hc_died);
2486
2487 /*-------------------------------------------------------------------------*/
2488
2489 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2490 {
2491
2492 spin_lock_init(&bh->lock);
2493 INIT_LIST_HEAD(&bh->head);
2494 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2495 }
2496
2497 /**
2498 * usb_create_shared_hcd - create and initialize an HCD structure
2499 * @driver: HC driver that will use this hcd
2500 * @dev: device for this HC, stored in hcd->self.controller
2501 * @bus_name: value to store in hcd->self.bus_name
2502 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2503 * PCI device. Only allocate certain resources for the primary HCD
2504 * Context: !in_interrupt()
2505 *
2506 * Allocate a struct usb_hcd, with extra space at the end for the
2507 * HC driver's private data. Initialize the generic members of the
2508 * hcd structure.
2509 *
2510 * Return: On success, a pointer to the created and initialized HCD structure.
2511 * On failure (e.g. if memory is unavailable), %NULL.
2512 */
2513 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2514 struct device *dev, const char *bus_name,
2515 struct usb_hcd *primary_hcd)
2516 {
2517 struct usb_hcd *hcd;
2518
2519 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2520 if (!hcd) {
2521 dev_dbg (dev, "hcd alloc failed\n");
2522 return NULL;
2523 }
2524 if (primary_hcd == NULL) {
2525 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2526 GFP_KERNEL);
2527 if (!hcd->address0_mutex) {
2528 kfree(hcd);
2529 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2530 return NULL;
2531 }
2532 mutex_init(hcd->address0_mutex);
2533 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2534 GFP_KERNEL);
2535 if (!hcd->bandwidth_mutex) {
2536 kfree(hcd);
2537 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2538 return NULL;
2539 }
2540 mutex_init(hcd->bandwidth_mutex);
2541 dev_set_drvdata(dev, hcd);
2542 } else {
2543 mutex_lock(&usb_port_peer_mutex);
2544 hcd->address0_mutex = primary_hcd->address0_mutex;
2545 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2546 hcd->primary_hcd = primary_hcd;
2547 primary_hcd->primary_hcd = primary_hcd;
2548 hcd->shared_hcd = primary_hcd;
2549 primary_hcd->shared_hcd = hcd;
2550 mutex_unlock(&usb_port_peer_mutex);
2551 }
2552
2553 kref_init(&hcd->kref);
2554
2555 usb_bus_init(&hcd->self);
2556 hcd->self.controller = dev;
2557 hcd->self.bus_name = bus_name;
2558 hcd->self.uses_dma = (dev->dma_mask != NULL);
2559
2560 init_timer(&hcd->rh_timer);
2561 hcd->rh_timer.function = rh_timer_func;
2562 hcd->rh_timer.data = (unsigned long) hcd;
2563 #ifdef CONFIG_PM
2564 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2565 #endif
2566
2567 hcd->driver = driver;
2568 hcd->speed = driver->flags & HCD_MASK;
2569 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2570 "USB Host Controller";
2571 return hcd;
2572 }
2573 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2574
2575 /**
2576 * usb_create_hcd - create and initialize an HCD structure
2577 * @driver: HC driver that will use this hcd
2578 * @dev: device for this HC, stored in hcd->self.controller
2579 * @bus_name: value to store in hcd->self.bus_name
2580 * Context: !in_interrupt()
2581 *
2582 * Allocate a struct usb_hcd, with extra space at the end for the
2583 * HC driver's private data. Initialize the generic members of the
2584 * hcd structure.
2585 *
2586 * Return: On success, a pointer to the created and initialized HCD
2587 * structure. On failure (e.g. if memory is unavailable), %NULL.
2588 */
2589 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2590 struct device *dev, const char *bus_name)
2591 {
2592 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2593 }
2594 EXPORT_SYMBOL_GPL(usb_create_hcd);
2595
2596 /*
2597 * Roothubs that share one PCI device must also share the bandwidth mutex.
2598 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2599 * deallocated.
2600 *
2601 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2602 * freed. When hcd_release() is called for either hcd in a peer set,
2603 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2604 */
2605 static void hcd_release(struct kref *kref)
2606 {
2607 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2608
2609 mutex_lock(&usb_port_peer_mutex);
2610 if (hcd->shared_hcd) {
2611 struct usb_hcd *peer = hcd->shared_hcd;
2612
2613 peer->shared_hcd = NULL;
2614 peer->primary_hcd = NULL;
2615 } else {
2616 kfree(hcd->address0_mutex);
2617 kfree(hcd->bandwidth_mutex);
2618 }
2619 mutex_unlock(&usb_port_peer_mutex);
2620 kfree(hcd);
2621 }
2622
2623 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2624 {
2625 if (hcd)
2626 kref_get (&hcd->kref);
2627 return hcd;
2628 }
2629 EXPORT_SYMBOL_GPL(usb_get_hcd);
2630
2631 void usb_put_hcd (struct usb_hcd *hcd)
2632 {
2633 if (hcd)
2634 kref_put (&hcd->kref, hcd_release);
2635 }
2636 EXPORT_SYMBOL_GPL(usb_put_hcd);
2637
2638 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2639 {
2640 if (!hcd->primary_hcd)
2641 return 1;
2642 return hcd == hcd->primary_hcd;
2643 }
2644 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2645
2646 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2647 {
2648 if (!hcd->driver->find_raw_port_number)
2649 return port1;
2650
2651 return hcd->driver->find_raw_port_number(hcd, port1);
2652 }
2653
2654 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2655 unsigned int irqnum, unsigned long irqflags)
2656 {
2657 int retval;
2658
2659 if (hcd->driver->irq) {
2660
2661 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2662 hcd->driver->description, hcd->self.busnum);
2663 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2664 hcd->irq_descr, hcd);
2665 if (retval != 0) {
2666 dev_err(hcd->self.controller,
2667 "request interrupt %d failed\n",
2668 irqnum);
2669 return retval;
2670 }
2671 hcd->irq = irqnum;
2672 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2673 (hcd->driver->flags & HCD_MEMORY) ?
2674 "io mem" : "io base",
2675 (unsigned long long)hcd->rsrc_start);
2676 } else {
2677 hcd->irq = 0;
2678 if (hcd->rsrc_start)
2679 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2680 (hcd->driver->flags & HCD_MEMORY) ?
2681 "io mem" : "io base",
2682 (unsigned long long)hcd->rsrc_start);
2683 }
2684 return 0;
2685 }
2686
2687 /*
2688 * Before we free this root hub, flush in-flight peering attempts
2689 * and disable peer lookups
2690 */
2691 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2692 {
2693 struct usb_device *rhdev;
2694
2695 mutex_lock(&usb_port_peer_mutex);
2696 rhdev = hcd->self.root_hub;
2697 hcd->self.root_hub = NULL;
2698 mutex_unlock(&usb_port_peer_mutex);
2699 usb_put_dev(rhdev);
2700 }
2701
2702 /**
2703 * usb_add_hcd - finish generic HCD structure initialization and register
2704 * @hcd: the usb_hcd structure to initialize
2705 * @irqnum: Interrupt line to allocate
2706 * @irqflags: Interrupt type flags
2707 *
2708 * Finish the remaining parts of generic HCD initialization: allocate the
2709 * buffers of consistent memory, register the bus, request the IRQ line,
2710 * and call the driver's reset() and start() routines.
2711 */
2712 int usb_add_hcd(struct usb_hcd *hcd,
2713 unsigned int irqnum, unsigned long irqflags)
2714 {
2715 int retval;
2716 struct usb_device *rhdev;
2717
2718 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2719 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2720
2721 if (IS_ERR(phy)) {
2722 retval = PTR_ERR(phy);
2723 if (retval == -EPROBE_DEFER)
2724 return retval;
2725 } else {
2726 retval = usb_phy_init(phy);
2727 if (retval) {
2728 usb_put_phy(phy);
2729 return retval;
2730 }
2731 hcd->usb_phy = phy;
2732 hcd->remove_phy = 1;
2733 }
2734 }
2735
2736 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2737 struct phy *phy = phy_get(hcd->self.controller, "usb");
2738
2739 if (IS_ERR(phy)) {
2740 retval = PTR_ERR(phy);
2741 if (retval == -EPROBE_DEFER)
2742 goto err_phy;
2743 } else {
2744 retval = phy_init(phy);
2745 if (retval) {
2746 phy_put(phy);
2747 goto err_phy;
2748 }
2749 retval = phy_power_on(phy);
2750 if (retval) {
2751 phy_exit(phy);
2752 phy_put(phy);
2753 goto err_phy;
2754 }
2755 hcd->phy = phy;
2756 hcd->remove_phy = 1;
2757 }
2758 }
2759
2760 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2761
2762 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2763 if (authorized_default < 0 || authorized_default > 1) {
2764 if (hcd->wireless)
2765 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2766 else
2767 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768 } else {
2769 if (authorized_default)
2770 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2771 else
2772 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773 }
2774 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2775
2776 /* per default all interfaces are authorized */
2777 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2778
2779 /* HC is in reset state, but accessible. Now do the one-time init,
2780 * bottom up so that hcds can customize the root hubs before hub_wq
2781 * starts talking to them. (Note, bus id is assigned early too.)
2782 */
2783 retval = hcd_buffer_create(hcd);
2784 if (retval != 0) {
2785 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2786 goto err_create_buf;
2787 }
2788
2789 retval = usb_register_bus(&hcd->self);
2790 if (retval < 0)
2791 goto err_register_bus;
2792
2793 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2794 if (rhdev == NULL) {
2795 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2796 retval = -ENOMEM;
2797 goto err_allocate_root_hub;
2798 }
2799 mutex_lock(&usb_port_peer_mutex);
2800 hcd->self.root_hub = rhdev;
2801 mutex_unlock(&usb_port_peer_mutex);
2802
2803 switch (hcd->speed) {
2804 case HCD_USB11:
2805 rhdev->speed = USB_SPEED_FULL;
2806 break;
2807 case HCD_USB2:
2808 rhdev->speed = USB_SPEED_HIGH;
2809 break;
2810 case HCD_USB25:
2811 rhdev->speed = USB_SPEED_WIRELESS;
2812 break;
2813 case HCD_USB3:
2814 rhdev->speed = USB_SPEED_SUPER;
2815 break;
2816 case HCD_USB31:
2817 rhdev->speed = USB_SPEED_SUPER_PLUS;
2818 break;
2819 default:
2820 retval = -EINVAL;
2821 goto err_set_rh_speed;
2822 }
2823
2824 /* wakeup flag init defaults to "everything works" for root hubs,
2825 * but drivers can override it in reset() if needed, along with
2826 * recording the overall controller's system wakeup capability.
2827 */
2828 device_set_wakeup_capable(&rhdev->dev, 1);
2829
2830 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2831 * registered. But since the controller can die at any time,
2832 * let's initialize the flag before touching the hardware.
2833 */
2834 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2835
2836 /* "reset" is misnamed; its role is now one-time init. the controller
2837 * should already have been reset (and boot firmware kicked off etc).
2838 */
2839 if (hcd->driver->reset) {
2840 retval = hcd->driver->reset(hcd);
2841 if (retval < 0) {
2842 dev_err(hcd->self.controller, "can't setup: %d\n",
2843 retval);
2844 goto err_hcd_driver_setup;
2845 }
2846 }
2847 hcd->rh_pollable = 1;
2848
2849 /* NOTE: root hub and controller capabilities may not be the same */
2850 if (device_can_wakeup(hcd->self.controller)
2851 && device_can_wakeup(&hcd->self.root_hub->dev))
2852 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2853
2854 /* initialize tasklets */
2855 init_giveback_urb_bh(&hcd->high_prio_bh);
2856 init_giveback_urb_bh(&hcd->low_prio_bh);
2857
2858 /* enable irqs just before we start the controller,
2859 * if the BIOS provides legacy PCI irqs.
2860 */
2861 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2862 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2863 if (retval)
2864 goto err_request_irq;
2865 }
2866
2867 hcd->state = HC_STATE_RUNNING;
2868 retval = hcd->driver->start(hcd);
2869 if (retval < 0) {
2870 dev_err(hcd->self.controller, "startup error %d\n", retval);
2871 goto err_hcd_driver_start;
2872 }
2873
2874 /* starting here, usbcore will pay attention to this root hub */
2875 retval = register_root_hub(hcd);
2876 if (retval != 0)
2877 goto err_register_root_hub;
2878
2879 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2880 if (retval < 0) {
2881 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2882 retval);
2883 goto error_create_attr_group;
2884 }
2885 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2886 usb_hcd_poll_rh_status(hcd);
2887
2888 return retval;
2889
2890 error_create_attr_group:
2891 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2892 if (HC_IS_RUNNING(hcd->state))
2893 hcd->state = HC_STATE_QUIESCING;
2894 spin_lock_irq(&hcd_root_hub_lock);
2895 hcd->rh_registered = 0;
2896 spin_unlock_irq(&hcd_root_hub_lock);
2897
2898 #ifdef CONFIG_PM
2899 cancel_work_sync(&hcd->wakeup_work);
2900 #endif
2901 mutex_lock(&usb_bus_idr_lock);
2902 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2903 mutex_unlock(&usb_bus_idr_lock);
2904 err_register_root_hub:
2905 hcd->rh_pollable = 0;
2906 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2907 del_timer_sync(&hcd->rh_timer);
2908 hcd->driver->stop(hcd);
2909 hcd->state = HC_STATE_HALT;
2910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2911 del_timer_sync(&hcd->rh_timer);
2912 err_hcd_driver_start:
2913 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2914 free_irq(irqnum, hcd);
2915 err_request_irq:
2916 err_hcd_driver_setup:
2917 err_set_rh_speed:
2918 usb_put_invalidate_rhdev(hcd);
2919 err_allocate_root_hub:
2920 usb_deregister_bus(&hcd->self);
2921 err_register_bus:
2922 hcd_buffer_destroy(hcd);
2923 err_create_buf:
2924 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2925 phy_power_off(hcd->phy);
2926 phy_exit(hcd->phy);
2927 phy_put(hcd->phy);
2928 hcd->phy = NULL;
2929 }
2930 err_phy:
2931 if (hcd->remove_phy && hcd->usb_phy) {
2932 usb_phy_shutdown(hcd->usb_phy);
2933 usb_put_phy(hcd->usb_phy);
2934 hcd->usb_phy = NULL;
2935 }
2936 return retval;
2937 }
2938 EXPORT_SYMBOL_GPL(usb_add_hcd);
2939
2940 /**
2941 * usb_remove_hcd - shutdown processing for generic HCDs
2942 * @hcd: the usb_hcd structure to remove
2943 * Context: !in_interrupt()
2944 *
2945 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2946 * invoking the HCD's stop() method.
2947 */
2948 void usb_remove_hcd(struct usb_hcd *hcd)
2949 {
2950 struct usb_device *rhdev = hcd->self.root_hub;
2951
2952 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2953
2954 usb_get_dev(rhdev);
2955 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2956
2957 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2958 if (HC_IS_RUNNING (hcd->state))
2959 hcd->state = HC_STATE_QUIESCING;
2960
2961 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2962 spin_lock_irq (&hcd_root_hub_lock);
2963 hcd->rh_registered = 0;
2964 spin_unlock_irq (&hcd_root_hub_lock);
2965
2966 #ifdef CONFIG_PM
2967 cancel_work_sync(&hcd->wakeup_work);
2968 #endif
2969
2970 mutex_lock(&usb_bus_idr_lock);
2971 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2972 mutex_unlock(&usb_bus_idr_lock);
2973
2974 /*
2975 * tasklet_kill() isn't needed here because:
2976 * - driver's disconnect() called from usb_disconnect() should
2977 * make sure its URBs are completed during the disconnect()
2978 * callback
2979 *
2980 * - it is too late to run complete() here since driver may have
2981 * been removed already now
2982 */
2983
2984 /* Prevent any more root-hub status calls from the timer.
2985 * The HCD might still restart the timer (if a port status change
2986 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2987 * the hub_status_data() callback.
2988 */
2989 hcd->rh_pollable = 0;
2990 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2991 del_timer_sync(&hcd->rh_timer);
2992
2993 hcd->driver->stop(hcd);
2994 hcd->state = HC_STATE_HALT;
2995
2996 /* In case the HCD restarted the timer, stop it again. */
2997 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2998 del_timer_sync(&hcd->rh_timer);
2999
3000 if (usb_hcd_is_primary_hcd(hcd)) {
3001 if (hcd->irq > 0)
3002 free_irq(hcd->irq, hcd);
3003 }
3004
3005 usb_deregister_bus(&hcd->self);
3006 hcd_buffer_destroy(hcd);
3007
3008 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3009 phy_power_off(hcd->phy);
3010 phy_exit(hcd->phy);
3011 phy_put(hcd->phy);
3012 hcd->phy = NULL;
3013 }
3014 if (hcd->remove_phy && hcd->usb_phy) {
3015 usb_phy_shutdown(hcd->usb_phy);
3016 usb_put_phy(hcd->usb_phy);
3017 hcd->usb_phy = NULL;
3018 }
3019
3020 usb_put_invalidate_rhdev(hcd);
3021 }
3022 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3023
3024 void
3025 usb_hcd_platform_shutdown(struct platform_device *dev)
3026 {
3027 struct usb_hcd *hcd = platform_get_drvdata(dev);
3028
3029 if (hcd->driver->shutdown)
3030 hcd->driver->shutdown(hcd);
3031 }
3032 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3033
3034 /*-------------------------------------------------------------------------*/
3035
3036 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3037
3038 const struct usb_mon_operations *mon_ops;
3039
3040 /*
3041 * The registration is unlocked.
3042 * We do it this way because we do not want to lock in hot paths.
3043 *
3044 * Notice that the code is minimally error-proof. Because usbmon needs
3045 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3046 */
3047
3048 int usb_mon_register(const struct usb_mon_operations *ops)
3049 {
3050
3051 if (mon_ops)
3052 return -EBUSY;
3053
3054 mon_ops = ops;
3055 mb();
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL (usb_mon_register);
3059
3060 void usb_mon_deregister (void)
3061 {
3062
3063 if (mon_ops == NULL) {
3064 printk(KERN_ERR "USB: monitor was not registered\n");
3065 return;
3066 }
3067 mon_ops = NULL;
3068 mb();
3069 }
3070 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3071
3072 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */