]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/core/message.c
371a07d874a370bc70ad6ef1499debac8b34b6fe
[mirror_ubuntu-artful-kernel.git] / drivers / usb / core / message.c
1 /*
2 * message.c - synchronous message handling
3 *
4 * Released under the GPLv2 only.
5 * SPDX-License-Identifier: GPL-2.0
6 */
7
8 #include <linux/pci.h> /* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h> /* for usbcore internals */
21 #include <asm/byteorder.h>
22
23 #include "usb.h"
24
25 static void cancel_async_set_config(struct usb_device *udev);
26
27 struct api_context {
28 struct completion done;
29 int status;
30 };
31
32 static void usb_api_blocking_completion(struct urb *urb)
33 {
34 struct api_context *ctx = urb->context;
35
36 ctx->status = urb->status;
37 complete(&ctx->done);
38 }
39
40
41 /*
42 * Starts urb and waits for completion or timeout. Note that this call
43 * is NOT interruptible. Many device driver i/o requests should be
44 * interruptible and therefore these drivers should implement their
45 * own interruptible routines.
46 */
47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
48 {
49 struct api_context ctx;
50 unsigned long expire;
51 int retval;
52
53 init_completion(&ctx.done);
54 urb->context = &ctx;
55 urb->actual_length = 0;
56 retval = usb_submit_urb(urb, GFP_NOIO);
57 if (unlikely(retval))
58 goto out;
59
60 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 usb_kill_urb(urb);
63 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
64
65 dev_dbg(&urb->dev->dev,
66 "%s timed out on ep%d%s len=%u/%u\n",
67 current->comm,
68 usb_endpoint_num(&urb->ep->desc),
69 usb_urb_dir_in(urb) ? "in" : "out",
70 urb->actual_length,
71 urb->transfer_buffer_length);
72 } else
73 retval = ctx.status;
74 out:
75 if (actual_length)
76 *actual_length = urb->actual_length;
77
78 usb_free_urb(urb);
79 return retval;
80 }
81
82 /*-------------------------------------------------------------------*/
83 /* returns status (negative) or length (positive) */
84 static int usb_internal_control_msg(struct usb_device *usb_dev,
85 unsigned int pipe,
86 struct usb_ctrlrequest *cmd,
87 void *data, int len, int timeout)
88 {
89 struct urb *urb;
90 int retv;
91 int length;
92
93 urb = usb_alloc_urb(0, GFP_NOIO);
94 if (!urb)
95 return -ENOMEM;
96
97 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 len, usb_api_blocking_completion, NULL);
99
100 retv = usb_start_wait_urb(urb, timeout, &length);
101 if (retv < 0)
102 return retv;
103 else
104 return length;
105 }
106
107 /**
108 * usb_control_msg - Builds a control urb, sends it off and waits for completion
109 * @dev: pointer to the usb device to send the message to
110 * @pipe: endpoint "pipe" to send the message to
111 * @request: USB message request value
112 * @requesttype: USB message request type value
113 * @value: USB message value
114 * @index: USB message index value
115 * @data: pointer to the data to send
116 * @size: length in bytes of the data to send
117 * @timeout: time in msecs to wait for the message to complete before timing
118 * out (if 0 the wait is forever)
119 *
120 * Context: !in_interrupt ()
121 *
122 * This function sends a simple control message to a specified endpoint and
123 * waits for the message to complete, or timeout.
124 *
125 * Don't use this function from within an interrupt context. If you need
126 * an asynchronous message, or need to send a message from within interrupt
127 * context, use usb_submit_urb(). If a thread in your driver uses this call,
128 * make sure your disconnect() method can wait for it to complete. Since you
129 * don't have a handle on the URB used, you can't cancel the request.
130 *
131 * Return: If successful, the number of bytes transferred. Otherwise, a negative
132 * error number.
133 */
134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
135 __u8 requesttype, __u16 value, __u16 index, void *data,
136 __u16 size, int timeout)
137 {
138 struct usb_ctrlrequest *dr;
139 int ret;
140
141 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
142 if (!dr)
143 return -ENOMEM;
144
145 dr->bRequestType = requesttype;
146 dr->bRequest = request;
147 dr->wValue = cpu_to_le16(value);
148 dr->wIndex = cpu_to_le16(index);
149 dr->wLength = cpu_to_le16(size);
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 kfree(dr);
154
155 return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158
159 /**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * Don't use this function from within an interrupt context. If you need
176 * an asynchronous message, or need to send a message from within interrupt
177 * context, use usb_submit_urb() If a thread in your driver uses this call,
178 * make sure your disconnect() method can wait for it to complete. Since you
179 * don't have a handle on the URB used, you can't cancel the request.
180 *
181 * Return:
182 * If successful, 0. Otherwise a negative error number. The number of actual
183 * bytes transferred will be stored in the @actual_length parameter.
184 */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
187 {
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192 /**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * Don't use this function from within an interrupt context. If you need
209 * an asynchronous message, or need to send a message from within interrupt
210 * context, use usb_submit_urb() If a thread in your driver uses this call,
211 * make sure your disconnect() method can wait for it to complete. Since you
212 * don't have a handle on the URB used, you can't cancel the request.
213 *
214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
215 * users are forced to abuse this routine by using it to submit URBs for
216 * interrupt endpoints. We will take the liberty of creating an interrupt URB
217 * (with the default interval) if the target is an interrupt endpoint.
218 *
219 * Return:
220 * If successful, 0. Otherwise a negative error number. The number of actual
221 * bytes transferred will be stored in the @actual_length parameter.
222 *
223 */
224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
225 void *data, int len, int *actual_length, int timeout)
226 {
227 struct urb *urb;
228 struct usb_host_endpoint *ep;
229
230 ep = usb_pipe_endpoint(usb_dev, pipe);
231 if (!ep || len < 0)
232 return -EINVAL;
233
234 urb = usb_alloc_urb(0, GFP_KERNEL);
235 if (!urb)
236 return -ENOMEM;
237
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
243 ep->desc.bInterval);
244 } else
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
247
248 return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251
252 /*-------------------------------------------------------------------*/
253
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 if (io->urbs) {
257 while (io->entries--)
258 usb_free_urb(io->urbs[io->entries]);
259 kfree(io->urbs);
260 io->urbs = NULL;
261 }
262 io->dev = NULL;
263 }
264
265 static void sg_complete(struct urb *urb)
266 {
267 struct usb_sg_request *io = urb->context;
268 int status = urb->status;
269
270 spin_lock(&io->lock);
271
272 /* In 2.5 we require hcds' endpoint queues not to progress after fault
273 * reports, until the completion callback (this!) returns. That lets
274 * device driver code (like this routine) unlink queued urbs first,
275 * if it needs to, since the HC won't work on them at all. So it's
276 * not possible for page N+1 to overwrite page N, and so on.
277 *
278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 * complete before the HCD can get requests away from hardware,
280 * though never during cleanup after a hard fault.
281 */
282 if (io->status
283 && (io->status != -ECONNRESET
284 || status != -ECONNRESET)
285 && urb->actual_length) {
286 dev_err(io->dev->bus->controller,
287 "dev %s ep%d%s scatterlist error %d/%d\n",
288 io->dev->devpath,
289 usb_endpoint_num(&urb->ep->desc),
290 usb_urb_dir_in(urb) ? "in" : "out",
291 status, io->status);
292 /* BUG (); */
293 }
294
295 if (io->status == 0 && status && status != -ECONNRESET) {
296 int i, found, retval;
297
298 io->status = status;
299
300 /* the previous urbs, and this one, completed already.
301 * unlink pending urbs so they won't rx/tx bad data.
302 * careful: unlink can sometimes be synchronous...
303 */
304 spin_unlock(&io->lock);
305 for (i = 0, found = 0; i < io->entries; i++) {
306 if (!io->urbs[i])
307 continue;
308 if (found) {
309 usb_block_urb(io->urbs[i]);
310 retval = usb_unlink_urb(io->urbs[i]);
311 if (retval != -EINPROGRESS &&
312 retval != -ENODEV &&
313 retval != -EBUSY &&
314 retval != -EIDRM)
315 dev_err(&io->dev->dev,
316 "%s, unlink --> %d\n",
317 __func__, retval);
318 } else if (urb == io->urbs[i])
319 found = 1;
320 }
321 spin_lock(&io->lock);
322 }
323
324 /* on the last completion, signal usb_sg_wait() */
325 io->bytes += urb->actual_length;
326 io->count--;
327 if (!io->count)
328 complete(&io->complete);
329
330 spin_unlock(&io->lock);
331 }
332
333
334 /**
335 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
336 * @io: request block being initialized. until usb_sg_wait() returns,
337 * treat this as a pointer to an opaque block of memory,
338 * @dev: the usb device that will send or receive the data
339 * @pipe: endpoint "pipe" used to transfer the data
340 * @period: polling rate for interrupt endpoints, in frames or
341 * (for high speed endpoints) microframes; ignored for bulk
342 * @sg: scatterlist entries
343 * @nents: how many entries in the scatterlist
344 * @length: how many bytes to send from the scatterlist, or zero to
345 * send every byte identified in the list.
346 * @mem_flags: SLAB_* flags affecting memory allocations in this call
347 *
348 * This initializes a scatter/gather request, allocating resources such as
349 * I/O mappings and urb memory (except maybe memory used by USB controller
350 * drivers).
351 *
352 * The request must be issued using usb_sg_wait(), which waits for the I/O to
353 * complete (or to be canceled) and then cleans up all resources allocated by
354 * usb_sg_init().
355 *
356 * The request may be canceled with usb_sg_cancel(), either before or after
357 * usb_sg_wait() is called.
358 *
359 * Return: Zero for success, else a negative errno value.
360 */
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 unsigned pipe, unsigned period, struct scatterlist *sg,
363 int nents, size_t length, gfp_t mem_flags)
364 {
365 int i;
366 int urb_flags;
367 int use_sg;
368
369 if (!io || !dev || !sg
370 || usb_pipecontrol(pipe)
371 || usb_pipeisoc(pipe)
372 || nents <= 0)
373 return -EINVAL;
374
375 spin_lock_init(&io->lock);
376 io->dev = dev;
377 io->pipe = pipe;
378
379 if (dev->bus->sg_tablesize > 0) {
380 use_sg = true;
381 io->entries = 1;
382 } else {
383 use_sg = false;
384 io->entries = nents;
385 }
386
387 /* initialize all the urbs we'll use */
388 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
389 if (!io->urbs)
390 goto nomem;
391
392 urb_flags = URB_NO_INTERRUPT;
393 if (usb_pipein(pipe))
394 urb_flags |= URB_SHORT_NOT_OK;
395
396 for_each_sg(sg, sg, io->entries, i) {
397 struct urb *urb;
398 unsigned len;
399
400 urb = usb_alloc_urb(0, mem_flags);
401 if (!urb) {
402 io->entries = i;
403 goto nomem;
404 }
405 io->urbs[i] = urb;
406
407 urb->dev = NULL;
408 urb->pipe = pipe;
409 urb->interval = period;
410 urb->transfer_flags = urb_flags;
411 urb->complete = sg_complete;
412 urb->context = io;
413 urb->sg = sg;
414
415 if (use_sg) {
416 /* There is no single transfer buffer */
417 urb->transfer_buffer = NULL;
418 urb->num_sgs = nents;
419
420 /* A length of zero means transfer the whole sg list */
421 len = length;
422 if (len == 0) {
423 struct scatterlist *sg2;
424 int j;
425
426 for_each_sg(sg, sg2, nents, j)
427 len += sg2->length;
428 }
429 } else {
430 /*
431 * Some systems can't use DMA; they use PIO instead.
432 * For their sakes, transfer_buffer is set whenever
433 * possible.
434 */
435 if (!PageHighMem(sg_page(sg)))
436 urb->transfer_buffer = sg_virt(sg);
437 else
438 urb->transfer_buffer = NULL;
439
440 len = sg->length;
441 if (length) {
442 len = min_t(size_t, len, length);
443 length -= len;
444 if (length == 0)
445 io->entries = i + 1;
446 }
447 }
448 urb->transfer_buffer_length = len;
449 }
450 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
451
452 /* transaction state */
453 io->count = io->entries;
454 io->status = 0;
455 io->bytes = 0;
456 init_completion(&io->complete);
457 return 0;
458
459 nomem:
460 sg_clean(io);
461 return -ENOMEM;
462 }
463 EXPORT_SYMBOL_GPL(usb_sg_init);
464
465 /**
466 * usb_sg_wait - synchronously execute scatter/gather request
467 * @io: request block handle, as initialized with usb_sg_init().
468 * some fields become accessible when this call returns.
469 * Context: !in_interrupt ()
470 *
471 * This function blocks until the specified I/O operation completes. It
472 * leverages the grouping of the related I/O requests to get good transfer
473 * rates, by queueing the requests. At higher speeds, such queuing can
474 * significantly improve USB throughput.
475 *
476 * There are three kinds of completion for this function.
477 *
478 * (1) success, where io->status is zero. The number of io->bytes
479 * transferred is as requested.
480 * (2) error, where io->status is a negative errno value. The number
481 * of io->bytes transferred before the error is usually less
482 * than requested, and can be nonzero.
483 * (3) cancellation, a type of error with status -ECONNRESET that
484 * is initiated by usb_sg_cancel().
485 *
486 * When this function returns, all memory allocated through usb_sg_init() or
487 * this call will have been freed. The request block parameter may still be
488 * passed to usb_sg_cancel(), or it may be freed. It could also be
489 * reinitialized and then reused.
490 *
491 * Data Transfer Rates:
492 *
493 * Bulk transfers are valid for full or high speed endpoints.
494 * The best full speed data rate is 19 packets of 64 bytes each
495 * per frame, or 1216 bytes per millisecond.
496 * The best high speed data rate is 13 packets of 512 bytes each
497 * per microframe, or 52 KBytes per millisecond.
498 *
499 * The reason to use interrupt transfers through this API would most likely
500 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
501 * could be transferred. That capability is less useful for low or full
502 * speed interrupt endpoints, which allow at most one packet per millisecond,
503 * of at most 8 or 64 bytes (respectively).
504 *
505 * It is not necessary to call this function to reserve bandwidth for devices
506 * under an xHCI host controller, as the bandwidth is reserved when the
507 * configuration or interface alt setting is selected.
508 */
509 void usb_sg_wait(struct usb_sg_request *io)
510 {
511 int i;
512 int entries = io->entries;
513
514 /* queue the urbs. */
515 spin_lock_irq(&io->lock);
516 i = 0;
517 while (i < entries && !io->status) {
518 int retval;
519
520 io->urbs[i]->dev = io->dev;
521 spin_unlock_irq(&io->lock);
522
523 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
524
525 switch (retval) {
526 /* maybe we retrying will recover */
527 case -ENXIO: /* hc didn't queue this one */
528 case -EAGAIN:
529 case -ENOMEM:
530 retval = 0;
531 yield();
532 break;
533
534 /* no error? continue immediately.
535 *
536 * NOTE: to work better with UHCI (4K I/O buffer may
537 * need 3K of TDs) it may be good to limit how many
538 * URBs are queued at once; N milliseconds?
539 */
540 case 0:
541 ++i;
542 cpu_relax();
543 break;
544
545 /* fail any uncompleted urbs */
546 default:
547 io->urbs[i]->status = retval;
548 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
549 __func__, retval);
550 usb_sg_cancel(io);
551 }
552 spin_lock_irq(&io->lock);
553 if (retval && (io->status == 0 || io->status == -ECONNRESET))
554 io->status = retval;
555 }
556 io->count -= entries - i;
557 if (io->count == 0)
558 complete(&io->complete);
559 spin_unlock_irq(&io->lock);
560
561 /* OK, yes, this could be packaged as non-blocking.
562 * So could the submit loop above ... but it's easier to
563 * solve neither problem than to solve both!
564 */
565 wait_for_completion(&io->complete);
566
567 sg_clean(io);
568 }
569 EXPORT_SYMBOL_GPL(usb_sg_wait);
570
571 /**
572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
573 * @io: request block, initialized with usb_sg_init()
574 *
575 * This stops a request after it has been started by usb_sg_wait().
576 * It can also prevents one initialized by usb_sg_init() from starting,
577 * so that call just frees resources allocated to the request.
578 */
579 void usb_sg_cancel(struct usb_sg_request *io)
580 {
581 unsigned long flags;
582 int i, retval;
583
584 spin_lock_irqsave(&io->lock, flags);
585 if (io->status) {
586 spin_unlock_irqrestore(&io->lock, flags);
587 return;
588 }
589 /* shut everything down */
590 io->status = -ECONNRESET;
591 spin_unlock_irqrestore(&io->lock, flags);
592
593 for (i = io->entries - 1; i >= 0; --i) {
594 usb_block_urb(io->urbs[i]);
595
596 retval = usb_unlink_urb(io->urbs[i]);
597 if (retval != -EINPROGRESS
598 && retval != -ENODEV
599 && retval != -EBUSY
600 && retval != -EIDRM)
601 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
602 __func__, retval);
603 }
604 }
605 EXPORT_SYMBOL_GPL(usb_sg_cancel);
606
607 /*-------------------------------------------------------------------*/
608
609 /**
610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
611 * @dev: the device whose descriptor is being retrieved
612 * @type: the descriptor type (USB_DT_*)
613 * @index: the number of the descriptor
614 * @buf: where to put the descriptor
615 * @size: how big is "buf"?
616 * Context: !in_interrupt ()
617 *
618 * Gets a USB descriptor. Convenience functions exist to simplify
619 * getting some types of descriptors. Use
620 * usb_get_string() or usb_string() for USB_DT_STRING.
621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
622 * are part of the device structure.
623 * In addition to a number of USB-standard descriptors, some
624 * devices also use class-specific or vendor-specific descriptors.
625 *
626 * This call is synchronous, and may not be used in an interrupt context.
627 *
628 * Return: The number of bytes received on success, or else the status code
629 * returned by the underlying usb_control_msg() call.
630 */
631 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
632 unsigned char index, void *buf, int size)
633 {
634 int i;
635 int result;
636
637 memset(buf, 0, size); /* Make sure we parse really received data */
638
639 for (i = 0; i < 3; ++i) {
640 /* retry on length 0 or error; some devices are flakey */
641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 (type << 8) + index, 0, buf, size,
644 USB_CTRL_GET_TIMEOUT);
645 if (result <= 0 && result != -ETIMEDOUT)
646 continue;
647 if (result > 1 && ((u8 *)buf)[1] != type) {
648 result = -ENODATA;
649 continue;
650 }
651 break;
652 }
653 return result;
654 }
655 EXPORT_SYMBOL_GPL(usb_get_descriptor);
656
657 /**
658 * usb_get_string - gets a string descriptor
659 * @dev: the device whose string descriptor is being retrieved
660 * @langid: code for language chosen (from string descriptor zero)
661 * @index: the number of the descriptor
662 * @buf: where to put the string
663 * @size: how big is "buf"?
664 * Context: !in_interrupt ()
665 *
666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
667 * in little-endian byte order).
668 * The usb_string() function will often be a convenient way to turn
669 * these strings into kernel-printable form.
670 *
671 * Strings may be referenced in device, configuration, interface, or other
672 * descriptors, and could also be used in vendor-specific ways.
673 *
674 * This call is synchronous, and may not be used in an interrupt context.
675 *
676 * Return: The number of bytes received on success, or else the status code
677 * returned by the underlying usb_control_msg() call.
678 */
679 static int usb_get_string(struct usb_device *dev, unsigned short langid,
680 unsigned char index, void *buf, int size)
681 {
682 int i;
683 int result;
684
685 for (i = 0; i < 3; ++i) {
686 /* retry on length 0 or stall; some devices are flakey */
687 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
688 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
689 (USB_DT_STRING << 8) + index, langid, buf, size,
690 USB_CTRL_GET_TIMEOUT);
691 if (result == 0 || result == -EPIPE)
692 continue;
693 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
694 result = -ENODATA;
695 continue;
696 }
697 break;
698 }
699 return result;
700 }
701
702 static void usb_try_string_workarounds(unsigned char *buf, int *length)
703 {
704 int newlength, oldlength = *length;
705
706 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
707 if (!isprint(buf[newlength]) || buf[newlength + 1])
708 break;
709
710 if (newlength > 2) {
711 buf[0] = newlength;
712 *length = newlength;
713 }
714 }
715
716 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
717 unsigned int index, unsigned char *buf)
718 {
719 int rc;
720
721 /* Try to read the string descriptor by asking for the maximum
722 * possible number of bytes */
723 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
724 rc = -EIO;
725 else
726 rc = usb_get_string(dev, langid, index, buf, 255);
727
728 /* If that failed try to read the descriptor length, then
729 * ask for just that many bytes */
730 if (rc < 2) {
731 rc = usb_get_string(dev, langid, index, buf, 2);
732 if (rc == 2)
733 rc = usb_get_string(dev, langid, index, buf, buf[0]);
734 }
735
736 if (rc >= 2) {
737 if (!buf[0] && !buf[1])
738 usb_try_string_workarounds(buf, &rc);
739
740 /* There might be extra junk at the end of the descriptor */
741 if (buf[0] < rc)
742 rc = buf[0];
743
744 rc = rc - (rc & 1); /* force a multiple of two */
745 }
746
747 if (rc < 2)
748 rc = (rc < 0 ? rc : -EINVAL);
749
750 return rc;
751 }
752
753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
754 {
755 int err;
756
757 if (dev->have_langid)
758 return 0;
759
760 if (dev->string_langid < 0)
761 return -EPIPE;
762
763 err = usb_string_sub(dev, 0, 0, tbuf);
764
765 /* If the string was reported but is malformed, default to english
766 * (0x0409) */
767 if (err == -ENODATA || (err > 0 && err < 4)) {
768 dev->string_langid = 0x0409;
769 dev->have_langid = 1;
770 dev_err(&dev->dev,
771 "language id specifier not provided by device, defaulting to English\n");
772 return 0;
773 }
774
775 /* In case of all other errors, we assume the device is not able to
776 * deal with strings at all. Set string_langid to -1 in order to
777 * prevent any string to be retrieved from the device */
778 if (err < 0) {
779 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
780 err);
781 dev->string_langid = -1;
782 return -EPIPE;
783 }
784
785 /* always use the first langid listed */
786 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
787 dev->have_langid = 1;
788 dev_dbg(&dev->dev, "default language 0x%04x\n",
789 dev->string_langid);
790 return 0;
791 }
792
793 /**
794 * usb_string - returns UTF-8 version of a string descriptor
795 * @dev: the device whose string descriptor is being retrieved
796 * @index: the number of the descriptor
797 * @buf: where to put the string
798 * @size: how big is "buf"?
799 * Context: !in_interrupt ()
800 *
801 * This converts the UTF-16LE encoded strings returned by devices, from
802 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
803 * that are more usable in most kernel contexts. Note that this function
804 * chooses strings in the first language supported by the device.
805 *
806 * This call is synchronous, and may not be used in an interrupt context.
807 *
808 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
809 */
810 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
811 {
812 unsigned char *tbuf;
813 int err;
814
815 if (dev->state == USB_STATE_SUSPENDED)
816 return -EHOSTUNREACH;
817 if (size <= 0 || !buf || !index)
818 return -EINVAL;
819 buf[0] = 0;
820 tbuf = kmalloc(256, GFP_NOIO);
821 if (!tbuf)
822 return -ENOMEM;
823
824 err = usb_get_langid(dev, tbuf);
825 if (err < 0)
826 goto errout;
827
828 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
829 if (err < 0)
830 goto errout;
831
832 size--; /* leave room for trailing NULL char in output buffer */
833 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
834 UTF16_LITTLE_ENDIAN, buf, size);
835 buf[err] = 0;
836
837 if (tbuf[1] != USB_DT_STRING)
838 dev_dbg(&dev->dev,
839 "wrong descriptor type %02x for string %d (\"%s\")\n",
840 tbuf[1], index, buf);
841
842 errout:
843 kfree(tbuf);
844 return err;
845 }
846 EXPORT_SYMBOL_GPL(usb_string);
847
848 /* one UTF-8-encoded 16-bit character has at most three bytes */
849 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
850
851 /**
852 * usb_cache_string - read a string descriptor and cache it for later use
853 * @udev: the device whose string descriptor is being read
854 * @index: the descriptor index
855 *
856 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
857 * or %NULL if the index is 0 or the string could not be read.
858 */
859 char *usb_cache_string(struct usb_device *udev, int index)
860 {
861 char *buf;
862 char *smallbuf = NULL;
863 int len;
864
865 if (index <= 0)
866 return NULL;
867
868 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
869 if (buf) {
870 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
871 if (len > 0) {
872 smallbuf = kmalloc(++len, GFP_NOIO);
873 if (!smallbuf)
874 return buf;
875 memcpy(smallbuf, buf, len);
876 }
877 kfree(buf);
878 }
879 return smallbuf;
880 }
881
882 /*
883 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
884 * @dev: the device whose device descriptor is being updated
885 * @size: how much of the descriptor to read
886 * Context: !in_interrupt ()
887 *
888 * Updates the copy of the device descriptor stored in the device structure,
889 * which dedicates space for this purpose.
890 *
891 * Not exported, only for use by the core. If drivers really want to read
892 * the device descriptor directly, they can call usb_get_descriptor() with
893 * type = USB_DT_DEVICE and index = 0.
894 *
895 * This call is synchronous, and may not be used in an interrupt context.
896 *
897 * Return: The number of bytes received on success, or else the status code
898 * returned by the underlying usb_control_msg() call.
899 */
900 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
901 {
902 struct usb_device_descriptor *desc;
903 int ret;
904
905 if (size > sizeof(*desc))
906 return -EINVAL;
907 desc = kmalloc(sizeof(*desc), GFP_NOIO);
908 if (!desc)
909 return -ENOMEM;
910
911 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
912 if (ret >= 0)
913 memcpy(&dev->descriptor, desc, size);
914 kfree(desc);
915 return ret;
916 }
917
918 /**
919 * usb_get_status - issues a GET_STATUS call
920 * @dev: the device whose status is being checked
921 * @type: USB_RECIP_*; for device, interface, or endpoint
922 * @target: zero (for device), else interface or endpoint number
923 * @data: pointer to two bytes of bitmap data
924 * Context: !in_interrupt ()
925 *
926 * Returns device, interface, or endpoint status. Normally only of
927 * interest to see if the device is self powered, or has enabled the
928 * remote wakeup facility; or whether a bulk or interrupt endpoint
929 * is halted ("stalled").
930 *
931 * Bits in these status bitmaps are set using the SET_FEATURE request,
932 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
933 * function should be used to clear halt ("stall") status.
934 *
935 * This call is synchronous, and may not be used in an interrupt context.
936 *
937 * Returns 0 and the status value in *@data (in host byte order) on success,
938 * or else the status code from the underlying usb_control_msg() call.
939 */
940 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
941 {
942 int ret;
943 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
944
945 if (!status)
946 return -ENOMEM;
947
948 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
949 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
950 sizeof(*status), USB_CTRL_GET_TIMEOUT);
951
952 if (ret == 2) {
953 *(u16 *) data = le16_to_cpu(*status);
954 ret = 0;
955 } else if (ret >= 0) {
956 ret = -EIO;
957 }
958 kfree(status);
959 return ret;
960 }
961 EXPORT_SYMBOL_GPL(usb_get_status);
962
963 /**
964 * usb_clear_halt - tells device to clear endpoint halt/stall condition
965 * @dev: device whose endpoint is halted
966 * @pipe: endpoint "pipe" being cleared
967 * Context: !in_interrupt ()
968 *
969 * This is used to clear halt conditions for bulk and interrupt endpoints,
970 * as reported by URB completion status. Endpoints that are halted are
971 * sometimes referred to as being "stalled". Such endpoints are unable
972 * to transmit or receive data until the halt status is cleared. Any URBs
973 * queued for such an endpoint should normally be unlinked by the driver
974 * before clearing the halt condition, as described in sections 5.7.5
975 * and 5.8.5 of the USB 2.0 spec.
976 *
977 * Note that control and isochronous endpoints don't halt, although control
978 * endpoints report "protocol stall" (for unsupported requests) using the
979 * same status code used to report a true stall.
980 *
981 * This call is synchronous, and may not be used in an interrupt context.
982 *
983 * Return: Zero on success, or else the status code returned by the
984 * underlying usb_control_msg() call.
985 */
986 int usb_clear_halt(struct usb_device *dev, int pipe)
987 {
988 int result;
989 int endp = usb_pipeendpoint(pipe);
990
991 if (usb_pipein(pipe))
992 endp |= USB_DIR_IN;
993
994 /* we don't care if it wasn't halted first. in fact some devices
995 * (like some ibmcam model 1 units) seem to expect hosts to make
996 * this request for iso endpoints, which can't halt!
997 */
998 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
999 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1000 USB_ENDPOINT_HALT, endp, NULL, 0,
1001 USB_CTRL_SET_TIMEOUT);
1002
1003 /* don't un-halt or force to DATA0 except on success */
1004 if (result < 0)
1005 return result;
1006
1007 /* NOTE: seems like Microsoft and Apple don't bother verifying
1008 * the clear "took", so some devices could lock up if you check...
1009 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1010 *
1011 * NOTE: make sure the logic here doesn't diverge much from
1012 * the copy in usb-storage, for as long as we need two copies.
1013 */
1014
1015 usb_reset_endpoint(dev, endp);
1016
1017 return 0;
1018 }
1019 EXPORT_SYMBOL_GPL(usb_clear_halt);
1020
1021 static int create_intf_ep_devs(struct usb_interface *intf)
1022 {
1023 struct usb_device *udev = interface_to_usbdev(intf);
1024 struct usb_host_interface *alt = intf->cur_altsetting;
1025 int i;
1026
1027 if (intf->ep_devs_created || intf->unregistering)
1028 return 0;
1029
1030 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1031 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1032 intf->ep_devs_created = 1;
1033 return 0;
1034 }
1035
1036 static void remove_intf_ep_devs(struct usb_interface *intf)
1037 {
1038 struct usb_host_interface *alt = intf->cur_altsetting;
1039 int i;
1040
1041 if (!intf->ep_devs_created)
1042 return;
1043
1044 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1045 usb_remove_ep_devs(&alt->endpoint[i]);
1046 intf->ep_devs_created = 0;
1047 }
1048
1049 /**
1050 * usb_disable_endpoint -- Disable an endpoint by address
1051 * @dev: the device whose endpoint is being disabled
1052 * @epaddr: the endpoint's address. Endpoint number for output,
1053 * endpoint number + USB_DIR_IN for input
1054 * @reset_hardware: flag to erase any endpoint state stored in the
1055 * controller hardware
1056 *
1057 * Disables the endpoint for URB submission and nukes all pending URBs.
1058 * If @reset_hardware is set then also deallocates hcd/hardware state
1059 * for the endpoint.
1060 */
1061 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1062 bool reset_hardware)
1063 {
1064 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1065 struct usb_host_endpoint *ep;
1066
1067 if (!dev)
1068 return;
1069
1070 if (usb_endpoint_out(epaddr)) {
1071 ep = dev->ep_out[epnum];
1072 if (reset_hardware)
1073 dev->ep_out[epnum] = NULL;
1074 } else {
1075 ep = dev->ep_in[epnum];
1076 if (reset_hardware)
1077 dev->ep_in[epnum] = NULL;
1078 }
1079 if (ep) {
1080 ep->enabled = 0;
1081 usb_hcd_flush_endpoint(dev, ep);
1082 if (reset_hardware)
1083 usb_hcd_disable_endpoint(dev, ep);
1084 }
1085 }
1086
1087 /**
1088 * usb_reset_endpoint - Reset an endpoint's state.
1089 * @dev: the device whose endpoint is to be reset
1090 * @epaddr: the endpoint's address. Endpoint number for output,
1091 * endpoint number + USB_DIR_IN for input
1092 *
1093 * Resets any host-side endpoint state such as the toggle bit,
1094 * sequence number or current window.
1095 */
1096 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1097 {
1098 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1099 struct usb_host_endpoint *ep;
1100
1101 if (usb_endpoint_out(epaddr))
1102 ep = dev->ep_out[epnum];
1103 else
1104 ep = dev->ep_in[epnum];
1105 if (ep)
1106 usb_hcd_reset_endpoint(dev, ep);
1107 }
1108 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1109
1110
1111 /**
1112 * usb_disable_interface -- Disable all endpoints for an interface
1113 * @dev: the device whose interface is being disabled
1114 * @intf: pointer to the interface descriptor
1115 * @reset_hardware: flag to erase any endpoint state stored in the
1116 * controller hardware
1117 *
1118 * Disables all the endpoints for the interface's current altsetting.
1119 */
1120 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1121 bool reset_hardware)
1122 {
1123 struct usb_host_interface *alt = intf->cur_altsetting;
1124 int i;
1125
1126 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1127 usb_disable_endpoint(dev,
1128 alt->endpoint[i].desc.bEndpointAddress,
1129 reset_hardware);
1130 }
1131 }
1132
1133 /**
1134 * usb_disable_device - Disable all the endpoints for a USB device
1135 * @dev: the device whose endpoints are being disabled
1136 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1137 *
1138 * Disables all the device's endpoints, potentially including endpoint 0.
1139 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1140 * pending urbs) and usbcore state for the interfaces, so that usbcore
1141 * must usb_set_configuration() before any interfaces could be used.
1142 */
1143 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1144 {
1145 int i;
1146 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1147
1148 /* getting rid of interfaces will disconnect
1149 * any drivers bound to them (a key side effect)
1150 */
1151 if (dev->actconfig) {
1152 /*
1153 * FIXME: In order to avoid self-deadlock involving the
1154 * bandwidth_mutex, we have to mark all the interfaces
1155 * before unregistering any of them.
1156 */
1157 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1158 dev->actconfig->interface[i]->unregistering = 1;
1159
1160 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1161 struct usb_interface *interface;
1162
1163 /* remove this interface if it has been registered */
1164 interface = dev->actconfig->interface[i];
1165 if (!device_is_registered(&interface->dev))
1166 continue;
1167 dev_dbg(&dev->dev, "unregistering interface %s\n",
1168 dev_name(&interface->dev));
1169 remove_intf_ep_devs(interface);
1170 device_del(&interface->dev);
1171 }
1172
1173 /* Now that the interfaces are unbound, nobody should
1174 * try to access them.
1175 */
1176 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1177 put_device(&dev->actconfig->interface[i]->dev);
1178 dev->actconfig->interface[i] = NULL;
1179 }
1180
1181 if (dev->usb2_hw_lpm_enabled == 1)
1182 usb_set_usb2_hardware_lpm(dev, 0);
1183 usb_unlocked_disable_lpm(dev);
1184 usb_disable_ltm(dev);
1185
1186 dev->actconfig = NULL;
1187 if (dev->state == USB_STATE_CONFIGURED)
1188 usb_set_device_state(dev, USB_STATE_ADDRESS);
1189 }
1190
1191 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1192 skip_ep0 ? "non-ep0" : "all");
1193 if (hcd->driver->check_bandwidth) {
1194 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1195 for (i = skip_ep0; i < 16; ++i) {
1196 usb_disable_endpoint(dev, i, false);
1197 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1198 }
1199 /* Remove endpoints from the host controller internal state */
1200 mutex_lock(hcd->bandwidth_mutex);
1201 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1202 mutex_unlock(hcd->bandwidth_mutex);
1203 /* Second pass: remove endpoint pointers */
1204 }
1205 for (i = skip_ep0; i < 16; ++i) {
1206 usb_disable_endpoint(dev, i, true);
1207 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1208 }
1209 }
1210
1211 /**
1212 * usb_enable_endpoint - Enable an endpoint for USB communications
1213 * @dev: the device whose interface is being enabled
1214 * @ep: the endpoint
1215 * @reset_ep: flag to reset the endpoint state
1216 *
1217 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1218 * For control endpoints, both the input and output sides are handled.
1219 */
1220 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1221 bool reset_ep)
1222 {
1223 int epnum = usb_endpoint_num(&ep->desc);
1224 int is_out = usb_endpoint_dir_out(&ep->desc);
1225 int is_control = usb_endpoint_xfer_control(&ep->desc);
1226
1227 if (reset_ep)
1228 usb_hcd_reset_endpoint(dev, ep);
1229 if (is_out || is_control)
1230 dev->ep_out[epnum] = ep;
1231 if (!is_out || is_control)
1232 dev->ep_in[epnum] = ep;
1233 ep->enabled = 1;
1234 }
1235
1236 /**
1237 * usb_enable_interface - Enable all the endpoints for an interface
1238 * @dev: the device whose interface is being enabled
1239 * @intf: pointer to the interface descriptor
1240 * @reset_eps: flag to reset the endpoints' state
1241 *
1242 * Enables all the endpoints for the interface's current altsetting.
1243 */
1244 void usb_enable_interface(struct usb_device *dev,
1245 struct usb_interface *intf, bool reset_eps)
1246 {
1247 struct usb_host_interface *alt = intf->cur_altsetting;
1248 int i;
1249
1250 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1251 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1252 }
1253
1254 /**
1255 * usb_set_interface - Makes a particular alternate setting be current
1256 * @dev: the device whose interface is being updated
1257 * @interface: the interface being updated
1258 * @alternate: the setting being chosen.
1259 * Context: !in_interrupt ()
1260 *
1261 * This is used to enable data transfers on interfaces that may not
1262 * be enabled by default. Not all devices support such configurability.
1263 * Only the driver bound to an interface may change its setting.
1264 *
1265 * Within any given configuration, each interface may have several
1266 * alternative settings. These are often used to control levels of
1267 * bandwidth consumption. For example, the default setting for a high
1268 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1269 * while interrupt transfers of up to 3KBytes per microframe are legal.
1270 * Also, isochronous endpoints may never be part of an
1271 * interface's default setting. To access such bandwidth, alternate
1272 * interface settings must be made current.
1273 *
1274 * Note that in the Linux USB subsystem, bandwidth associated with
1275 * an endpoint in a given alternate setting is not reserved until an URB
1276 * is submitted that needs that bandwidth. Some other operating systems
1277 * allocate bandwidth early, when a configuration is chosen.
1278 *
1279 * This call is synchronous, and may not be used in an interrupt context.
1280 * Also, drivers must not change altsettings while urbs are scheduled for
1281 * endpoints in that interface; all such urbs must first be completed
1282 * (perhaps forced by unlinking).
1283 *
1284 * Return: Zero on success, or else the status code returned by the
1285 * underlying usb_control_msg() call.
1286 */
1287 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1288 {
1289 struct usb_interface *iface;
1290 struct usb_host_interface *alt;
1291 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1292 int i, ret, manual = 0;
1293 unsigned int epaddr;
1294 unsigned int pipe;
1295
1296 if (dev->state == USB_STATE_SUSPENDED)
1297 return -EHOSTUNREACH;
1298
1299 iface = usb_ifnum_to_if(dev, interface);
1300 if (!iface) {
1301 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1302 interface);
1303 return -EINVAL;
1304 }
1305 if (iface->unregistering)
1306 return -ENODEV;
1307
1308 alt = usb_altnum_to_altsetting(iface, alternate);
1309 if (!alt) {
1310 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1311 alternate);
1312 return -EINVAL;
1313 }
1314
1315 /* Make sure we have enough bandwidth for this alternate interface.
1316 * Remove the current alt setting and add the new alt setting.
1317 */
1318 mutex_lock(hcd->bandwidth_mutex);
1319 /* Disable LPM, and re-enable it once the new alt setting is installed,
1320 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1321 */
1322 if (usb_disable_lpm(dev)) {
1323 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1324 mutex_unlock(hcd->bandwidth_mutex);
1325 return -ENOMEM;
1326 }
1327 /* Changing alt-setting also frees any allocated streams */
1328 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1329 iface->cur_altsetting->endpoint[i].streams = 0;
1330
1331 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1332 if (ret < 0) {
1333 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1334 alternate);
1335 usb_enable_lpm(dev);
1336 mutex_unlock(hcd->bandwidth_mutex);
1337 return ret;
1338 }
1339
1340 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1341 ret = -EPIPE;
1342 else
1343 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1344 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1345 alternate, interface, NULL, 0, 5000);
1346
1347 /* 9.4.10 says devices don't need this and are free to STALL the
1348 * request if the interface only has one alternate setting.
1349 */
1350 if (ret == -EPIPE && iface->num_altsetting == 1) {
1351 dev_dbg(&dev->dev,
1352 "manual set_interface for iface %d, alt %d\n",
1353 interface, alternate);
1354 manual = 1;
1355 } else if (ret < 0) {
1356 /* Re-instate the old alt setting */
1357 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1358 usb_enable_lpm(dev);
1359 mutex_unlock(hcd->bandwidth_mutex);
1360 return ret;
1361 }
1362 mutex_unlock(hcd->bandwidth_mutex);
1363
1364 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1365 * when they implement async or easily-killable versions of this or
1366 * other "should-be-internal" functions (like clear_halt).
1367 * should hcd+usbcore postprocess control requests?
1368 */
1369
1370 /* prevent submissions using previous endpoint settings */
1371 if (iface->cur_altsetting != alt) {
1372 remove_intf_ep_devs(iface);
1373 usb_remove_sysfs_intf_files(iface);
1374 }
1375 usb_disable_interface(dev, iface, true);
1376
1377 iface->cur_altsetting = alt;
1378
1379 /* Now that the interface is installed, re-enable LPM. */
1380 usb_unlocked_enable_lpm(dev);
1381
1382 /* If the interface only has one altsetting and the device didn't
1383 * accept the request, we attempt to carry out the equivalent action
1384 * by manually clearing the HALT feature for each endpoint in the
1385 * new altsetting.
1386 */
1387 if (manual) {
1388 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1389 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1390 pipe = __create_pipe(dev,
1391 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1392 (usb_endpoint_out(epaddr) ?
1393 USB_DIR_OUT : USB_DIR_IN);
1394
1395 usb_clear_halt(dev, pipe);
1396 }
1397 }
1398
1399 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1400 *
1401 * Note:
1402 * Despite EP0 is always present in all interfaces/AS, the list of
1403 * endpoints from the descriptor does not contain EP0. Due to its
1404 * omnipresence one might expect EP0 being considered "affected" by
1405 * any SetInterface request and hence assume toggles need to be reset.
1406 * However, EP0 toggles are re-synced for every individual transfer
1407 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1408 * (Likewise, EP0 never "halts" on well designed devices.)
1409 */
1410 usb_enable_interface(dev, iface, true);
1411 if (device_is_registered(&iface->dev)) {
1412 usb_create_sysfs_intf_files(iface);
1413 create_intf_ep_devs(iface);
1414 }
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(usb_set_interface);
1418
1419 /**
1420 * usb_reset_configuration - lightweight device reset
1421 * @dev: the device whose configuration is being reset
1422 *
1423 * This issues a standard SET_CONFIGURATION request to the device using
1424 * the current configuration. The effect is to reset most USB-related
1425 * state in the device, including interface altsettings (reset to zero),
1426 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1427 * endpoints). Other usbcore state is unchanged, including bindings of
1428 * usb device drivers to interfaces.
1429 *
1430 * Because this affects multiple interfaces, avoid using this with composite
1431 * (multi-interface) devices. Instead, the driver for each interface may
1432 * use usb_set_interface() on the interfaces it claims. Be careful though;
1433 * some devices don't support the SET_INTERFACE request, and others won't
1434 * reset all the interface state (notably endpoint state). Resetting the whole
1435 * configuration would affect other drivers' interfaces.
1436 *
1437 * The caller must own the device lock.
1438 *
1439 * Return: Zero on success, else a negative error code.
1440 */
1441 int usb_reset_configuration(struct usb_device *dev)
1442 {
1443 int i, retval;
1444 struct usb_host_config *config;
1445 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1446
1447 if (dev->state == USB_STATE_SUSPENDED)
1448 return -EHOSTUNREACH;
1449
1450 /* caller must have locked the device and must own
1451 * the usb bus readlock (so driver bindings are stable);
1452 * calls during probe() are fine
1453 */
1454
1455 for (i = 1; i < 16; ++i) {
1456 usb_disable_endpoint(dev, i, true);
1457 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1458 }
1459
1460 config = dev->actconfig;
1461 retval = 0;
1462 mutex_lock(hcd->bandwidth_mutex);
1463 /* Disable LPM, and re-enable it once the configuration is reset, so
1464 * that the xHCI driver can recalculate the U1/U2 timeouts.
1465 */
1466 if (usb_disable_lpm(dev)) {
1467 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1468 mutex_unlock(hcd->bandwidth_mutex);
1469 return -ENOMEM;
1470 }
1471 /* Make sure we have enough bandwidth for each alternate setting 0 */
1472 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1473 struct usb_interface *intf = config->interface[i];
1474 struct usb_host_interface *alt;
1475
1476 alt = usb_altnum_to_altsetting(intf, 0);
1477 if (!alt)
1478 alt = &intf->altsetting[0];
1479 if (alt != intf->cur_altsetting)
1480 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1481 intf->cur_altsetting, alt);
1482 if (retval < 0)
1483 break;
1484 }
1485 /* If not, reinstate the old alternate settings */
1486 if (retval < 0) {
1487 reset_old_alts:
1488 for (i--; i >= 0; i--) {
1489 struct usb_interface *intf = config->interface[i];
1490 struct usb_host_interface *alt;
1491
1492 alt = usb_altnum_to_altsetting(intf, 0);
1493 if (!alt)
1494 alt = &intf->altsetting[0];
1495 if (alt != intf->cur_altsetting)
1496 usb_hcd_alloc_bandwidth(dev, NULL,
1497 alt, intf->cur_altsetting);
1498 }
1499 usb_enable_lpm(dev);
1500 mutex_unlock(hcd->bandwidth_mutex);
1501 return retval;
1502 }
1503 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1504 USB_REQ_SET_CONFIGURATION, 0,
1505 config->desc.bConfigurationValue, 0,
1506 NULL, 0, USB_CTRL_SET_TIMEOUT);
1507 if (retval < 0)
1508 goto reset_old_alts;
1509 mutex_unlock(hcd->bandwidth_mutex);
1510
1511 /* re-init hc/hcd interface/endpoint state */
1512 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1513 struct usb_interface *intf = config->interface[i];
1514 struct usb_host_interface *alt;
1515
1516 alt = usb_altnum_to_altsetting(intf, 0);
1517
1518 /* No altsetting 0? We'll assume the first altsetting.
1519 * We could use a GetInterface call, but if a device is
1520 * so non-compliant that it doesn't have altsetting 0
1521 * then I wouldn't trust its reply anyway.
1522 */
1523 if (!alt)
1524 alt = &intf->altsetting[0];
1525
1526 if (alt != intf->cur_altsetting) {
1527 remove_intf_ep_devs(intf);
1528 usb_remove_sysfs_intf_files(intf);
1529 }
1530 intf->cur_altsetting = alt;
1531 usb_enable_interface(dev, intf, true);
1532 if (device_is_registered(&intf->dev)) {
1533 usb_create_sysfs_intf_files(intf);
1534 create_intf_ep_devs(intf);
1535 }
1536 }
1537 /* Now that the interfaces are installed, re-enable LPM. */
1538 usb_unlocked_enable_lpm(dev);
1539 return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1542
1543 static void usb_release_interface(struct device *dev)
1544 {
1545 struct usb_interface *intf = to_usb_interface(dev);
1546 struct usb_interface_cache *intfc =
1547 altsetting_to_usb_interface_cache(intf->altsetting);
1548
1549 kref_put(&intfc->ref, usb_release_interface_cache);
1550 usb_put_dev(interface_to_usbdev(intf));
1551 kfree(intf);
1552 }
1553
1554 /*
1555 * usb_deauthorize_interface - deauthorize an USB interface
1556 *
1557 * @intf: USB interface structure
1558 */
1559 void usb_deauthorize_interface(struct usb_interface *intf)
1560 {
1561 struct device *dev = &intf->dev;
1562
1563 device_lock(dev->parent);
1564
1565 if (intf->authorized) {
1566 device_lock(dev);
1567 intf->authorized = 0;
1568 device_unlock(dev);
1569
1570 usb_forced_unbind_intf(intf);
1571 }
1572
1573 device_unlock(dev->parent);
1574 }
1575
1576 /*
1577 * usb_authorize_interface - authorize an USB interface
1578 *
1579 * @intf: USB interface structure
1580 */
1581 void usb_authorize_interface(struct usb_interface *intf)
1582 {
1583 struct device *dev = &intf->dev;
1584
1585 if (!intf->authorized) {
1586 device_lock(dev);
1587 intf->authorized = 1; /* authorize interface */
1588 device_unlock(dev);
1589 }
1590 }
1591
1592 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1593 {
1594 struct usb_device *usb_dev;
1595 struct usb_interface *intf;
1596 struct usb_host_interface *alt;
1597
1598 intf = to_usb_interface(dev);
1599 usb_dev = interface_to_usbdev(intf);
1600 alt = intf->cur_altsetting;
1601
1602 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1603 alt->desc.bInterfaceClass,
1604 alt->desc.bInterfaceSubClass,
1605 alt->desc.bInterfaceProtocol))
1606 return -ENOMEM;
1607
1608 if (add_uevent_var(env,
1609 "MODALIAS=usb:"
1610 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1611 le16_to_cpu(usb_dev->descriptor.idVendor),
1612 le16_to_cpu(usb_dev->descriptor.idProduct),
1613 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1614 usb_dev->descriptor.bDeviceClass,
1615 usb_dev->descriptor.bDeviceSubClass,
1616 usb_dev->descriptor.bDeviceProtocol,
1617 alt->desc.bInterfaceClass,
1618 alt->desc.bInterfaceSubClass,
1619 alt->desc.bInterfaceProtocol,
1620 alt->desc.bInterfaceNumber))
1621 return -ENOMEM;
1622
1623 return 0;
1624 }
1625
1626 struct device_type usb_if_device_type = {
1627 .name = "usb_interface",
1628 .release = usb_release_interface,
1629 .uevent = usb_if_uevent,
1630 };
1631
1632 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1633 struct usb_host_config *config,
1634 u8 inum)
1635 {
1636 struct usb_interface_assoc_descriptor *retval = NULL;
1637 struct usb_interface_assoc_descriptor *intf_assoc;
1638 int first_intf;
1639 int last_intf;
1640 int i;
1641
1642 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1643 intf_assoc = config->intf_assoc[i];
1644 if (intf_assoc->bInterfaceCount == 0)
1645 continue;
1646
1647 first_intf = intf_assoc->bFirstInterface;
1648 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1649 if (inum >= first_intf && inum <= last_intf) {
1650 if (!retval)
1651 retval = intf_assoc;
1652 else
1653 dev_err(&dev->dev, "Interface #%d referenced"
1654 " by multiple IADs\n", inum);
1655 }
1656 }
1657
1658 return retval;
1659 }
1660
1661
1662 /*
1663 * Internal function to queue a device reset
1664 * See usb_queue_reset_device() for more details
1665 */
1666 static void __usb_queue_reset_device(struct work_struct *ws)
1667 {
1668 int rc;
1669 struct usb_interface *iface =
1670 container_of(ws, struct usb_interface, reset_ws);
1671 struct usb_device *udev = interface_to_usbdev(iface);
1672
1673 rc = usb_lock_device_for_reset(udev, iface);
1674 if (rc >= 0) {
1675 usb_reset_device(udev);
1676 usb_unlock_device(udev);
1677 }
1678 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1679 }
1680
1681
1682 /*
1683 * usb_set_configuration - Makes a particular device setting be current
1684 * @dev: the device whose configuration is being updated
1685 * @configuration: the configuration being chosen.
1686 * Context: !in_interrupt(), caller owns the device lock
1687 *
1688 * This is used to enable non-default device modes. Not all devices
1689 * use this kind of configurability; many devices only have one
1690 * configuration.
1691 *
1692 * @configuration is the value of the configuration to be installed.
1693 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1694 * must be non-zero; a value of zero indicates that the device in
1695 * unconfigured. However some devices erroneously use 0 as one of their
1696 * configuration values. To help manage such devices, this routine will
1697 * accept @configuration = -1 as indicating the device should be put in
1698 * an unconfigured state.
1699 *
1700 * USB device configurations may affect Linux interoperability,
1701 * power consumption and the functionality available. For example,
1702 * the default configuration is limited to using 100mA of bus power,
1703 * so that when certain device functionality requires more power,
1704 * and the device is bus powered, that functionality should be in some
1705 * non-default device configuration. Other device modes may also be
1706 * reflected as configuration options, such as whether two ISDN
1707 * channels are available independently; and choosing between open
1708 * standard device protocols (like CDC) or proprietary ones.
1709 *
1710 * Note that a non-authorized device (dev->authorized == 0) will only
1711 * be put in unconfigured mode.
1712 *
1713 * Note that USB has an additional level of device configurability,
1714 * associated with interfaces. That configurability is accessed using
1715 * usb_set_interface().
1716 *
1717 * This call is synchronous. The calling context must be able to sleep,
1718 * must own the device lock, and must not hold the driver model's USB
1719 * bus mutex; usb interface driver probe() methods cannot use this routine.
1720 *
1721 * Returns zero on success, or else the status code returned by the
1722 * underlying call that failed. On successful completion, each interface
1723 * in the original device configuration has been destroyed, and each one
1724 * in the new configuration has been probed by all relevant usb device
1725 * drivers currently known to the kernel.
1726 */
1727 int usb_set_configuration(struct usb_device *dev, int configuration)
1728 {
1729 int i, ret;
1730 struct usb_host_config *cp = NULL;
1731 struct usb_interface **new_interfaces = NULL;
1732 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1733 int n, nintf;
1734
1735 if (dev->authorized == 0 || configuration == -1)
1736 configuration = 0;
1737 else {
1738 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1739 if (dev->config[i].desc.bConfigurationValue ==
1740 configuration) {
1741 cp = &dev->config[i];
1742 break;
1743 }
1744 }
1745 }
1746 if ((!cp && configuration != 0))
1747 return -EINVAL;
1748
1749 /* The USB spec says configuration 0 means unconfigured.
1750 * But if a device includes a configuration numbered 0,
1751 * we will accept it as a correctly configured state.
1752 * Use -1 if you really want to unconfigure the device.
1753 */
1754 if (cp && configuration == 0)
1755 dev_warn(&dev->dev, "config 0 descriptor??\n");
1756
1757 /* Allocate memory for new interfaces before doing anything else,
1758 * so that if we run out then nothing will have changed. */
1759 n = nintf = 0;
1760 if (cp) {
1761 nintf = cp->desc.bNumInterfaces;
1762 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1763 GFP_NOIO);
1764 if (!new_interfaces)
1765 return -ENOMEM;
1766
1767 for (; n < nintf; ++n) {
1768 new_interfaces[n] = kzalloc(
1769 sizeof(struct usb_interface),
1770 GFP_NOIO);
1771 if (!new_interfaces[n]) {
1772 ret = -ENOMEM;
1773 free_interfaces:
1774 while (--n >= 0)
1775 kfree(new_interfaces[n]);
1776 kfree(new_interfaces);
1777 return ret;
1778 }
1779 }
1780
1781 i = dev->bus_mA - usb_get_max_power(dev, cp);
1782 if (i < 0)
1783 dev_warn(&dev->dev, "new config #%d exceeds power "
1784 "limit by %dmA\n",
1785 configuration, -i);
1786 }
1787
1788 /* Wake up the device so we can send it the Set-Config request */
1789 ret = usb_autoresume_device(dev);
1790 if (ret)
1791 goto free_interfaces;
1792
1793 /* if it's already configured, clear out old state first.
1794 * getting rid of old interfaces means unbinding their drivers.
1795 */
1796 if (dev->state != USB_STATE_ADDRESS)
1797 usb_disable_device(dev, 1); /* Skip ep0 */
1798
1799 /* Get rid of pending async Set-Config requests for this device */
1800 cancel_async_set_config(dev);
1801
1802 /* Make sure we have bandwidth (and available HCD resources) for this
1803 * configuration. Remove endpoints from the schedule if we're dropping
1804 * this configuration to set configuration 0. After this point, the
1805 * host controller will not allow submissions to dropped endpoints. If
1806 * this call fails, the device state is unchanged.
1807 */
1808 mutex_lock(hcd->bandwidth_mutex);
1809 /* Disable LPM, and re-enable it once the new configuration is
1810 * installed, so that the xHCI driver can recalculate the U1/U2
1811 * timeouts.
1812 */
1813 if (dev->actconfig && usb_disable_lpm(dev)) {
1814 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1815 mutex_unlock(hcd->bandwidth_mutex);
1816 ret = -ENOMEM;
1817 goto free_interfaces;
1818 }
1819 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1820 if (ret < 0) {
1821 if (dev->actconfig)
1822 usb_enable_lpm(dev);
1823 mutex_unlock(hcd->bandwidth_mutex);
1824 usb_autosuspend_device(dev);
1825 goto free_interfaces;
1826 }
1827
1828 /*
1829 * Initialize the new interface structures and the
1830 * hc/hcd/usbcore interface/endpoint state.
1831 */
1832 for (i = 0; i < nintf; ++i) {
1833 struct usb_interface_cache *intfc;
1834 struct usb_interface *intf;
1835 struct usb_host_interface *alt;
1836
1837 cp->interface[i] = intf = new_interfaces[i];
1838 intfc = cp->intf_cache[i];
1839 intf->altsetting = intfc->altsetting;
1840 intf->num_altsetting = intfc->num_altsetting;
1841 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1842 kref_get(&intfc->ref);
1843
1844 alt = usb_altnum_to_altsetting(intf, 0);
1845
1846 /* No altsetting 0? We'll assume the first altsetting.
1847 * We could use a GetInterface call, but if a device is
1848 * so non-compliant that it doesn't have altsetting 0
1849 * then I wouldn't trust its reply anyway.
1850 */
1851 if (!alt)
1852 alt = &intf->altsetting[0];
1853
1854 intf->intf_assoc =
1855 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1856 intf->cur_altsetting = alt;
1857 usb_enable_interface(dev, intf, true);
1858 intf->dev.parent = &dev->dev;
1859 intf->dev.driver = NULL;
1860 intf->dev.bus = &usb_bus_type;
1861 intf->dev.type = &usb_if_device_type;
1862 intf->dev.groups = usb_interface_groups;
1863 /*
1864 * Please refer to usb_alloc_dev() to see why we set
1865 * dma_mask and dma_pfn_offset.
1866 */
1867 intf->dev.dma_mask = dev->dev.dma_mask;
1868 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1869 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1870 intf->minor = -1;
1871 device_initialize(&intf->dev);
1872 pm_runtime_no_callbacks(&intf->dev);
1873 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1874 dev->bus->busnum, dev->devpath,
1875 configuration, alt->desc.bInterfaceNumber);
1876 usb_get_dev(dev);
1877 }
1878 kfree(new_interfaces);
1879
1880 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1881 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1882 NULL, 0, USB_CTRL_SET_TIMEOUT);
1883 if (ret < 0 && cp) {
1884 /*
1885 * All the old state is gone, so what else can we do?
1886 * The device is probably useless now anyway.
1887 */
1888 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1889 for (i = 0; i < nintf; ++i) {
1890 usb_disable_interface(dev, cp->interface[i], true);
1891 put_device(&cp->interface[i]->dev);
1892 cp->interface[i] = NULL;
1893 }
1894 cp = NULL;
1895 }
1896
1897 dev->actconfig = cp;
1898 mutex_unlock(hcd->bandwidth_mutex);
1899
1900 if (!cp) {
1901 usb_set_device_state(dev, USB_STATE_ADDRESS);
1902
1903 /* Leave LPM disabled while the device is unconfigured. */
1904 usb_autosuspend_device(dev);
1905 return ret;
1906 }
1907 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1908
1909 if (cp->string == NULL &&
1910 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1911 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1912
1913 /* Now that the interfaces are installed, re-enable LPM. */
1914 usb_unlocked_enable_lpm(dev);
1915 /* Enable LTM if it was turned off by usb_disable_device. */
1916 usb_enable_ltm(dev);
1917
1918 /* Now that all the interfaces are set up, register them
1919 * to trigger binding of drivers to interfaces. probe()
1920 * routines may install different altsettings and may
1921 * claim() any interfaces not yet bound. Many class drivers
1922 * need that: CDC, audio, video, etc.
1923 */
1924 for (i = 0; i < nintf; ++i) {
1925 struct usb_interface *intf = cp->interface[i];
1926
1927 dev_dbg(&dev->dev,
1928 "adding %s (config #%d, interface %d)\n",
1929 dev_name(&intf->dev), configuration,
1930 intf->cur_altsetting->desc.bInterfaceNumber);
1931 device_enable_async_suspend(&intf->dev);
1932 ret = device_add(&intf->dev);
1933 if (ret != 0) {
1934 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1935 dev_name(&intf->dev), ret);
1936 continue;
1937 }
1938 create_intf_ep_devs(intf);
1939 }
1940
1941 usb_autosuspend_device(dev);
1942 return 0;
1943 }
1944 EXPORT_SYMBOL_GPL(usb_set_configuration);
1945
1946 static LIST_HEAD(set_config_list);
1947 static DEFINE_SPINLOCK(set_config_lock);
1948
1949 struct set_config_request {
1950 struct usb_device *udev;
1951 int config;
1952 struct work_struct work;
1953 struct list_head node;
1954 };
1955
1956 /* Worker routine for usb_driver_set_configuration() */
1957 static void driver_set_config_work(struct work_struct *work)
1958 {
1959 struct set_config_request *req =
1960 container_of(work, struct set_config_request, work);
1961 struct usb_device *udev = req->udev;
1962
1963 usb_lock_device(udev);
1964 spin_lock(&set_config_lock);
1965 list_del(&req->node);
1966 spin_unlock(&set_config_lock);
1967
1968 if (req->config >= -1) /* Is req still valid? */
1969 usb_set_configuration(udev, req->config);
1970 usb_unlock_device(udev);
1971 usb_put_dev(udev);
1972 kfree(req);
1973 }
1974
1975 /* Cancel pending Set-Config requests for a device whose configuration
1976 * was just changed
1977 */
1978 static void cancel_async_set_config(struct usb_device *udev)
1979 {
1980 struct set_config_request *req;
1981
1982 spin_lock(&set_config_lock);
1983 list_for_each_entry(req, &set_config_list, node) {
1984 if (req->udev == udev)
1985 req->config = -999; /* Mark as cancelled */
1986 }
1987 spin_unlock(&set_config_lock);
1988 }
1989
1990 /**
1991 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1992 * @udev: the device whose configuration is being updated
1993 * @config: the configuration being chosen.
1994 * Context: In process context, must be able to sleep
1995 *
1996 * Device interface drivers are not allowed to change device configurations.
1997 * This is because changing configurations will destroy the interface the
1998 * driver is bound to and create new ones; it would be like a floppy-disk
1999 * driver telling the computer to replace the floppy-disk drive with a
2000 * tape drive!
2001 *
2002 * Still, in certain specialized circumstances the need may arise. This
2003 * routine gets around the normal restrictions by using a work thread to
2004 * submit the change-config request.
2005 *
2006 * Return: 0 if the request was successfully queued, error code otherwise.
2007 * The caller has no way to know whether the queued request will eventually
2008 * succeed.
2009 */
2010 int usb_driver_set_configuration(struct usb_device *udev, int config)
2011 {
2012 struct set_config_request *req;
2013
2014 req = kmalloc(sizeof(*req), GFP_KERNEL);
2015 if (!req)
2016 return -ENOMEM;
2017 req->udev = udev;
2018 req->config = config;
2019 INIT_WORK(&req->work, driver_set_config_work);
2020
2021 spin_lock(&set_config_lock);
2022 list_add(&req->node, &set_config_list);
2023 spin_unlock(&set_config_lock);
2024
2025 usb_get_dev(udev);
2026 schedule_work(&req->work);
2027 return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2030
2031 /**
2032 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2033 * @hdr: the place to put the results of the parsing
2034 * @intf: the interface for which parsing is requested
2035 * @buffer: pointer to the extra headers to be parsed
2036 * @buflen: length of the extra headers
2037 *
2038 * This evaluates the extra headers present in CDC devices which
2039 * bind the interfaces for data and control and provide details
2040 * about the capabilities of the device.
2041 *
2042 * Return: number of descriptors parsed or -EINVAL
2043 * if the header is contradictory beyond salvage
2044 */
2045
2046 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2047 struct usb_interface *intf,
2048 u8 *buffer,
2049 int buflen)
2050 {
2051 /* duplicates are ignored */
2052 struct usb_cdc_union_desc *union_header = NULL;
2053
2054 /* duplicates are not tolerated */
2055 struct usb_cdc_header_desc *header = NULL;
2056 struct usb_cdc_ether_desc *ether = NULL;
2057 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2058 struct usb_cdc_mdlm_desc *desc = NULL;
2059
2060 unsigned int elength;
2061 int cnt = 0;
2062
2063 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2064 hdr->phonet_magic_present = false;
2065 while (buflen > 0) {
2066 elength = buffer[0];
2067 if (!elength) {
2068 dev_err(&intf->dev, "skipping garbage byte\n");
2069 elength = 1;
2070 goto next_desc;
2071 }
2072 if ((buflen < elength) || (elength < 3)) {
2073 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2074 break;
2075 }
2076 if (buffer[1] != USB_DT_CS_INTERFACE) {
2077 dev_err(&intf->dev, "skipping garbage\n");
2078 goto next_desc;
2079 }
2080
2081 switch (buffer[2]) {
2082 case USB_CDC_UNION_TYPE: /* we've found it */
2083 if (elength < sizeof(struct usb_cdc_union_desc))
2084 goto next_desc;
2085 if (union_header) {
2086 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2087 goto next_desc;
2088 }
2089 union_header = (struct usb_cdc_union_desc *)buffer;
2090 break;
2091 case USB_CDC_COUNTRY_TYPE:
2092 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2093 goto next_desc;
2094 hdr->usb_cdc_country_functional_desc =
2095 (struct usb_cdc_country_functional_desc *)buffer;
2096 break;
2097 case USB_CDC_HEADER_TYPE:
2098 if (elength != sizeof(struct usb_cdc_header_desc))
2099 goto next_desc;
2100 if (header)
2101 return -EINVAL;
2102 header = (struct usb_cdc_header_desc *)buffer;
2103 break;
2104 case USB_CDC_ACM_TYPE:
2105 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2106 goto next_desc;
2107 hdr->usb_cdc_acm_descriptor =
2108 (struct usb_cdc_acm_descriptor *)buffer;
2109 break;
2110 case USB_CDC_ETHERNET_TYPE:
2111 if (elength != sizeof(struct usb_cdc_ether_desc))
2112 goto next_desc;
2113 if (ether)
2114 return -EINVAL;
2115 ether = (struct usb_cdc_ether_desc *)buffer;
2116 break;
2117 case USB_CDC_CALL_MANAGEMENT_TYPE:
2118 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2119 goto next_desc;
2120 hdr->usb_cdc_call_mgmt_descriptor =
2121 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2122 break;
2123 case USB_CDC_DMM_TYPE:
2124 if (elength < sizeof(struct usb_cdc_dmm_desc))
2125 goto next_desc;
2126 hdr->usb_cdc_dmm_desc =
2127 (struct usb_cdc_dmm_desc *)buffer;
2128 break;
2129 case USB_CDC_MDLM_TYPE:
2130 if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2131 goto next_desc;
2132 if (desc)
2133 return -EINVAL;
2134 desc = (struct usb_cdc_mdlm_desc *)buffer;
2135 break;
2136 case USB_CDC_MDLM_DETAIL_TYPE:
2137 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2138 goto next_desc;
2139 if (detail)
2140 return -EINVAL;
2141 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2142 break;
2143 case USB_CDC_NCM_TYPE:
2144 if (elength < sizeof(struct usb_cdc_ncm_desc))
2145 goto next_desc;
2146 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2147 break;
2148 case USB_CDC_MBIM_TYPE:
2149 if (elength < sizeof(struct usb_cdc_mbim_desc))
2150 goto next_desc;
2151
2152 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2153 break;
2154 case USB_CDC_MBIM_EXTENDED_TYPE:
2155 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2156 break;
2157 hdr->usb_cdc_mbim_extended_desc =
2158 (struct usb_cdc_mbim_extended_desc *)buffer;
2159 break;
2160 case CDC_PHONET_MAGIC_NUMBER:
2161 hdr->phonet_magic_present = true;
2162 break;
2163 default:
2164 /*
2165 * there are LOTS more CDC descriptors that
2166 * could legitimately be found here.
2167 */
2168 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2169 buffer[2], elength);
2170 goto next_desc;
2171 }
2172 cnt++;
2173 next_desc:
2174 buflen -= elength;
2175 buffer += elength;
2176 }
2177 hdr->usb_cdc_union_desc = union_header;
2178 hdr->usb_cdc_header_desc = header;
2179 hdr->usb_cdc_mdlm_detail_desc = detail;
2180 hdr->usb_cdc_mdlm_desc = desc;
2181 hdr->usb_cdc_ether_desc = ether;
2182 return cnt;
2183 }
2184
2185 EXPORT_SYMBOL(cdc_parse_cdc_header);