]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/usb/core/message.c
USB: fix usbmon and DMA mapping for scatter-gather URBs
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / core / message.c
1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h> /* for usbcore internals */
18 #include <asm/byteorder.h>
19
20 #include "usb.h"
21
22 static void cancel_async_set_config(struct usb_device *udev);
23
24 struct api_context {
25 struct completion done;
26 int status;
27 };
28
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35 }
36
37
38 /*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77 }
78
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85 {
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102 }
103
104 /**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135 {
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 /* dbg("usb_control_msg"); */
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 kfree(dr);
154
155 return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158
159 /**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
187 {
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192 /**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225 {
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 [usb_pipeendpoint(pipe)];
231 if (!ep || len < 0)
232 return -EINVAL;
233
234 urb = usb_alloc_urb(0, GFP_KERNEL);
235 if (!urb)
236 return -ENOMEM;
237
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
243 ep->desc.bInterval);
244 } else
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
247
248 return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251
252 /*-------------------------------------------------------------------*/
253
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 if (io->urbs) {
257 while (io->entries--)
258 usb_free_urb(io->urbs [io->entries]);
259 kfree(io->urbs);
260 io->urbs = NULL;
261 }
262 io->dev = NULL;
263 }
264
265 static void sg_complete(struct urb *urb)
266 {
267 struct usb_sg_request *io = urb->context;
268 int status = urb->status;
269
270 spin_lock(&io->lock);
271
272 /* In 2.5 we require hcds' endpoint queues not to progress after fault
273 * reports, until the completion callback (this!) returns. That lets
274 * device driver code (like this routine) unlink queued urbs first,
275 * if it needs to, since the HC won't work on them at all. So it's
276 * not possible for page N+1 to overwrite page N, and so on.
277 *
278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 * complete before the HCD can get requests away from hardware,
280 * though never during cleanup after a hard fault.
281 */
282 if (io->status
283 && (io->status != -ECONNRESET
284 || status != -ECONNRESET)
285 && urb->actual_length) {
286 dev_err(io->dev->bus->controller,
287 "dev %s ep%d%s scatterlist error %d/%d\n",
288 io->dev->devpath,
289 usb_endpoint_num(&urb->ep->desc),
290 usb_urb_dir_in(urb) ? "in" : "out",
291 status, io->status);
292 /* BUG (); */
293 }
294
295 if (io->status == 0 && status && status != -ECONNRESET) {
296 int i, found, retval;
297
298 io->status = status;
299
300 /* the previous urbs, and this one, completed already.
301 * unlink pending urbs so they won't rx/tx bad data.
302 * careful: unlink can sometimes be synchronous...
303 */
304 spin_unlock(&io->lock);
305 for (i = 0, found = 0; i < io->entries; i++) {
306 if (!io->urbs [i] || !io->urbs [i]->dev)
307 continue;
308 if (found) {
309 retval = usb_unlink_urb(io->urbs [i]);
310 if (retval != -EINPROGRESS &&
311 retval != -ENODEV &&
312 retval != -EBUSY)
313 dev_err(&io->dev->dev,
314 "%s, unlink --> %d\n",
315 __func__, retval);
316 } else if (urb == io->urbs [i])
317 found = 1;
318 }
319 spin_lock(&io->lock);
320 }
321 urb->dev = NULL;
322
323 /* on the last completion, signal usb_sg_wait() */
324 io->bytes += urb->actual_length;
325 io->count--;
326 if (!io->count)
327 complete(&io->complete);
328
329 spin_unlock(&io->lock);
330 }
331
332
333 /**
334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335 * @io: request block being initialized. until usb_sg_wait() returns,
336 * treat this as a pointer to an opaque block of memory,
337 * @dev: the usb device that will send or receive the data
338 * @pipe: endpoint "pipe" used to transfer the data
339 * @period: polling rate for interrupt endpoints, in frames or
340 * (for high speed endpoints) microframes; ignored for bulk
341 * @sg: scatterlist entries
342 * @nents: how many entries in the scatterlist
343 * @length: how many bytes to send from the scatterlist, or zero to
344 * send every byte identified in the list.
345 * @mem_flags: SLAB_* flags affecting memory allocations in this call
346 *
347 * Returns zero for success, else a negative errno value. This initializes a
348 * scatter/gather request, allocating resources such as I/O mappings and urb
349 * memory (except maybe memory used by USB controller drivers).
350 *
351 * The request must be issued using usb_sg_wait(), which waits for the I/O to
352 * complete (or to be canceled) and then cleans up all resources allocated by
353 * usb_sg_init().
354 *
355 * The request may be canceled with usb_sg_cancel(), either before or after
356 * usb_sg_wait() is called.
357 */
358 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
359 unsigned pipe, unsigned period, struct scatterlist *sg,
360 int nents, size_t length, gfp_t mem_flags)
361 {
362 int i;
363 int urb_flags;
364 int use_sg;
365
366 if (!io || !dev || !sg
367 || usb_pipecontrol(pipe)
368 || usb_pipeisoc(pipe)
369 || nents <= 0)
370 return -EINVAL;
371
372 spin_lock_init(&io->lock);
373 io->dev = dev;
374 io->pipe = pipe;
375 io->sg = sg;
376 io->nents = nents;
377 io->entries = nents;
378
379 /* initialize all the urbs we'll use */
380 if (dev->bus->sg_tablesize > 0) {
381 io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
382 use_sg = true;
383 } else {
384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 use_sg = false;
386 }
387 if (!io->urbs)
388 goto nomem;
389
390 urb_flags = 0;
391 if (usb_pipein(pipe))
392 urb_flags |= URB_SHORT_NOT_OK;
393
394 if (use_sg) {
395 io->urbs[0] = usb_alloc_urb(0, mem_flags);
396 if (!io->urbs[0]) {
397 io->entries = 0;
398 goto nomem;
399 }
400
401 io->urbs[0]->dev = NULL;
402 io->urbs[0]->pipe = pipe;
403 io->urbs[0]->interval = period;
404 io->urbs[0]->transfer_flags = urb_flags;
405
406 io->urbs[0]->complete = sg_complete;
407 io->urbs[0]->context = io;
408
409 /* A length of zero means transfer the whole sg list */
410 io->urbs[0]->transfer_buffer_length = length;
411 if (length == 0) {
412 for_each_sg(sg, sg, io->entries, i) {
413 io->urbs[0]->transfer_buffer_length +=
414 sg->length;
415 }
416 }
417 io->urbs[0]->sg = io;
418 io->urbs[0]->num_sgs = io->entries;
419 io->entries = 1;
420 } else {
421 urb_flags |= URB_NO_INTERRUPT;
422 for_each_sg(sg, sg, io->entries, i) {
423 unsigned len;
424
425 io->urbs[i] = usb_alloc_urb(0, mem_flags);
426 if (!io->urbs[i]) {
427 io->entries = i;
428 goto nomem;
429 }
430
431 io->urbs[i]->dev = NULL;
432 io->urbs[i]->pipe = pipe;
433 io->urbs[i]->interval = period;
434 io->urbs[i]->transfer_flags = urb_flags;
435
436 io->urbs[i]->complete = sg_complete;
437 io->urbs[i]->context = io;
438
439 /*
440 * Some systems can't use DMA; they use PIO instead.
441 * For their sakes, transfer_buffer is set whenever
442 * possible.
443 */
444 if (!PageHighMem(sg_page(sg)))
445 io->urbs[i]->transfer_buffer = sg_virt(sg);
446 else
447 io->urbs[i]->transfer_buffer = NULL;
448
449 len = sg->length;
450 if (length) {
451 len = min_t(unsigned, len, length);
452 length -= len;
453 if (length == 0)
454 io->entries = i + 1;
455 }
456 io->urbs[i]->transfer_buffer_length = len;
457
458 io->urbs[i]->sg = (struct usb_sg_request *) sg;
459 }
460 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
461 }
462
463 /* transaction state */
464 io->count = io->entries;
465 io->status = 0;
466 io->bytes = 0;
467 init_completion(&io->complete);
468 return 0;
469
470 nomem:
471 sg_clean(io);
472 return -ENOMEM;
473 }
474 EXPORT_SYMBOL_GPL(usb_sg_init);
475
476 /**
477 * usb_sg_wait - synchronously execute scatter/gather request
478 * @io: request block handle, as initialized with usb_sg_init().
479 * some fields become accessible when this call returns.
480 * Context: !in_interrupt ()
481 *
482 * This function blocks until the specified I/O operation completes. It
483 * leverages the grouping of the related I/O requests to get good transfer
484 * rates, by queueing the requests. At higher speeds, such queuing can
485 * significantly improve USB throughput.
486 *
487 * There are three kinds of completion for this function.
488 * (1) success, where io->status is zero. The number of io->bytes
489 * transferred is as requested.
490 * (2) error, where io->status is a negative errno value. The number
491 * of io->bytes transferred before the error is usually less
492 * than requested, and can be nonzero.
493 * (3) cancellation, a type of error with status -ECONNRESET that
494 * is initiated by usb_sg_cancel().
495 *
496 * When this function returns, all memory allocated through usb_sg_init() or
497 * this call will have been freed. The request block parameter may still be
498 * passed to usb_sg_cancel(), or it may be freed. It could also be
499 * reinitialized and then reused.
500 *
501 * Data Transfer Rates:
502 *
503 * Bulk transfers are valid for full or high speed endpoints.
504 * The best full speed data rate is 19 packets of 64 bytes each
505 * per frame, or 1216 bytes per millisecond.
506 * The best high speed data rate is 13 packets of 512 bytes each
507 * per microframe, or 52 KBytes per millisecond.
508 *
509 * The reason to use interrupt transfers through this API would most likely
510 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
511 * could be transferred. That capability is less useful for low or full
512 * speed interrupt endpoints, which allow at most one packet per millisecond,
513 * of at most 8 or 64 bytes (respectively).
514 *
515 * It is not necessary to call this function to reserve bandwidth for devices
516 * under an xHCI host controller, as the bandwidth is reserved when the
517 * configuration or interface alt setting is selected.
518 */
519 void usb_sg_wait(struct usb_sg_request *io)
520 {
521 int i;
522 int entries = io->entries;
523
524 /* queue the urbs. */
525 spin_lock_irq(&io->lock);
526 i = 0;
527 while (i < entries && !io->status) {
528 int retval;
529
530 io->urbs[i]->dev = io->dev;
531 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
532
533 /* after we submit, let completions or cancelations fire;
534 * we handshake using io->status.
535 */
536 spin_unlock_irq(&io->lock);
537 switch (retval) {
538 /* maybe we retrying will recover */
539 case -ENXIO: /* hc didn't queue this one */
540 case -EAGAIN:
541 case -ENOMEM:
542 io->urbs[i]->dev = NULL;
543 retval = 0;
544 yield();
545 break;
546
547 /* no error? continue immediately.
548 *
549 * NOTE: to work better with UHCI (4K I/O buffer may
550 * need 3K of TDs) it may be good to limit how many
551 * URBs are queued at once; N milliseconds?
552 */
553 case 0:
554 ++i;
555 cpu_relax();
556 break;
557
558 /* fail any uncompleted urbs */
559 default:
560 io->urbs[i]->dev = NULL;
561 io->urbs[i]->status = retval;
562 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
563 __func__, retval);
564 usb_sg_cancel(io);
565 }
566 spin_lock_irq(&io->lock);
567 if (retval && (io->status == 0 || io->status == -ECONNRESET))
568 io->status = retval;
569 }
570 io->count -= entries - i;
571 if (io->count == 0)
572 complete(&io->complete);
573 spin_unlock_irq(&io->lock);
574
575 /* OK, yes, this could be packaged as non-blocking.
576 * So could the submit loop above ... but it's easier to
577 * solve neither problem than to solve both!
578 */
579 wait_for_completion(&io->complete);
580
581 sg_clean(io);
582 }
583 EXPORT_SYMBOL_GPL(usb_sg_wait);
584
585 /**
586 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
587 * @io: request block, initialized with usb_sg_init()
588 *
589 * This stops a request after it has been started by usb_sg_wait().
590 * It can also prevents one initialized by usb_sg_init() from starting,
591 * so that call just frees resources allocated to the request.
592 */
593 void usb_sg_cancel(struct usb_sg_request *io)
594 {
595 unsigned long flags;
596
597 spin_lock_irqsave(&io->lock, flags);
598
599 /* shut everything down, if it didn't already */
600 if (!io->status) {
601 int i;
602
603 io->status = -ECONNRESET;
604 spin_unlock(&io->lock);
605 for (i = 0; i < io->entries; i++) {
606 int retval;
607
608 if (!io->urbs [i]->dev)
609 continue;
610 retval = usb_unlink_urb(io->urbs [i]);
611 if (retval != -EINPROGRESS && retval != -EBUSY)
612 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
613 __func__, retval);
614 }
615 spin_lock(&io->lock);
616 }
617 spin_unlock_irqrestore(&io->lock, flags);
618 }
619 EXPORT_SYMBOL_GPL(usb_sg_cancel);
620
621 /*-------------------------------------------------------------------*/
622
623 /**
624 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
625 * @dev: the device whose descriptor is being retrieved
626 * @type: the descriptor type (USB_DT_*)
627 * @index: the number of the descriptor
628 * @buf: where to put the descriptor
629 * @size: how big is "buf"?
630 * Context: !in_interrupt ()
631 *
632 * Gets a USB descriptor. Convenience functions exist to simplify
633 * getting some types of descriptors. Use
634 * usb_get_string() or usb_string() for USB_DT_STRING.
635 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
636 * are part of the device structure.
637 * In addition to a number of USB-standard descriptors, some
638 * devices also use class-specific or vendor-specific descriptors.
639 *
640 * This call is synchronous, and may not be used in an interrupt context.
641 *
642 * Returns the number of bytes received on success, or else the status code
643 * returned by the underlying usb_control_msg() call.
644 */
645 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
646 unsigned char index, void *buf, int size)
647 {
648 int i;
649 int result;
650
651 memset(buf, 0, size); /* Make sure we parse really received data */
652
653 for (i = 0; i < 3; ++i) {
654 /* retry on length 0 or error; some devices are flakey */
655 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
656 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
657 (type << 8) + index, 0, buf, size,
658 USB_CTRL_GET_TIMEOUT);
659 if (result <= 0 && result != -ETIMEDOUT)
660 continue;
661 if (result > 1 && ((u8 *)buf)[1] != type) {
662 result = -ENODATA;
663 continue;
664 }
665 break;
666 }
667 return result;
668 }
669 EXPORT_SYMBOL_GPL(usb_get_descriptor);
670
671 /**
672 * usb_get_string - gets a string descriptor
673 * @dev: the device whose string descriptor is being retrieved
674 * @langid: code for language chosen (from string descriptor zero)
675 * @index: the number of the descriptor
676 * @buf: where to put the string
677 * @size: how big is "buf"?
678 * Context: !in_interrupt ()
679 *
680 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
681 * in little-endian byte order).
682 * The usb_string() function will often be a convenient way to turn
683 * these strings into kernel-printable form.
684 *
685 * Strings may be referenced in device, configuration, interface, or other
686 * descriptors, and could also be used in vendor-specific ways.
687 *
688 * This call is synchronous, and may not be used in an interrupt context.
689 *
690 * Returns the number of bytes received on success, or else the status code
691 * returned by the underlying usb_control_msg() call.
692 */
693 static int usb_get_string(struct usb_device *dev, unsigned short langid,
694 unsigned char index, void *buf, int size)
695 {
696 int i;
697 int result;
698
699 for (i = 0; i < 3; ++i) {
700 /* retry on length 0 or stall; some devices are flakey */
701 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
702 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
703 (USB_DT_STRING << 8) + index, langid, buf, size,
704 USB_CTRL_GET_TIMEOUT);
705 if (result == 0 || result == -EPIPE)
706 continue;
707 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
708 result = -ENODATA;
709 continue;
710 }
711 break;
712 }
713 return result;
714 }
715
716 static void usb_try_string_workarounds(unsigned char *buf, int *length)
717 {
718 int newlength, oldlength = *length;
719
720 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
721 if (!isprint(buf[newlength]) || buf[newlength + 1])
722 break;
723
724 if (newlength > 2) {
725 buf[0] = newlength;
726 *length = newlength;
727 }
728 }
729
730 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
731 unsigned int index, unsigned char *buf)
732 {
733 int rc;
734
735 /* Try to read the string descriptor by asking for the maximum
736 * possible number of bytes */
737 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
738 rc = -EIO;
739 else
740 rc = usb_get_string(dev, langid, index, buf, 255);
741
742 /* If that failed try to read the descriptor length, then
743 * ask for just that many bytes */
744 if (rc < 2) {
745 rc = usb_get_string(dev, langid, index, buf, 2);
746 if (rc == 2)
747 rc = usb_get_string(dev, langid, index, buf, buf[0]);
748 }
749
750 if (rc >= 2) {
751 if (!buf[0] && !buf[1])
752 usb_try_string_workarounds(buf, &rc);
753
754 /* There might be extra junk at the end of the descriptor */
755 if (buf[0] < rc)
756 rc = buf[0];
757
758 rc = rc - (rc & 1); /* force a multiple of two */
759 }
760
761 if (rc < 2)
762 rc = (rc < 0 ? rc : -EINVAL);
763
764 return rc;
765 }
766
767 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
768 {
769 int err;
770
771 if (dev->have_langid)
772 return 0;
773
774 if (dev->string_langid < 0)
775 return -EPIPE;
776
777 err = usb_string_sub(dev, 0, 0, tbuf);
778
779 /* If the string was reported but is malformed, default to english
780 * (0x0409) */
781 if (err == -ENODATA || (err > 0 && err < 4)) {
782 dev->string_langid = 0x0409;
783 dev->have_langid = 1;
784 dev_err(&dev->dev,
785 "string descriptor 0 malformed (err = %d), "
786 "defaulting to 0x%04x\n",
787 err, dev->string_langid);
788 return 0;
789 }
790
791 /* In case of all other errors, we assume the device is not able to
792 * deal with strings at all. Set string_langid to -1 in order to
793 * prevent any string to be retrieved from the device */
794 if (err < 0) {
795 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
796 err);
797 dev->string_langid = -1;
798 return -EPIPE;
799 }
800
801 /* always use the first langid listed */
802 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
803 dev->have_langid = 1;
804 dev_dbg(&dev->dev, "default language 0x%04x\n",
805 dev->string_langid);
806 return 0;
807 }
808
809 /**
810 * usb_string - returns UTF-8 version of a string descriptor
811 * @dev: the device whose string descriptor is being retrieved
812 * @index: the number of the descriptor
813 * @buf: where to put the string
814 * @size: how big is "buf"?
815 * Context: !in_interrupt ()
816 *
817 * This converts the UTF-16LE encoded strings returned by devices, from
818 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
819 * that are more usable in most kernel contexts. Note that this function
820 * chooses strings in the first language supported by the device.
821 *
822 * This call is synchronous, and may not be used in an interrupt context.
823 *
824 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
825 */
826 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
827 {
828 unsigned char *tbuf;
829 int err;
830
831 if (dev->state == USB_STATE_SUSPENDED)
832 return -EHOSTUNREACH;
833 if (size <= 0 || !buf || !index)
834 return -EINVAL;
835 buf[0] = 0;
836 tbuf = kmalloc(256, GFP_NOIO);
837 if (!tbuf)
838 return -ENOMEM;
839
840 err = usb_get_langid(dev, tbuf);
841 if (err < 0)
842 goto errout;
843
844 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
845 if (err < 0)
846 goto errout;
847
848 size--; /* leave room for trailing NULL char in output buffer */
849 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
850 UTF16_LITTLE_ENDIAN, buf, size);
851 buf[err] = 0;
852
853 if (tbuf[1] != USB_DT_STRING)
854 dev_dbg(&dev->dev,
855 "wrong descriptor type %02x for string %d (\"%s\")\n",
856 tbuf[1], index, buf);
857
858 errout:
859 kfree(tbuf);
860 return err;
861 }
862 EXPORT_SYMBOL_GPL(usb_string);
863
864 /* one UTF-8-encoded 16-bit character has at most three bytes */
865 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
866
867 /**
868 * usb_cache_string - read a string descriptor and cache it for later use
869 * @udev: the device whose string descriptor is being read
870 * @index: the descriptor index
871 *
872 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
873 * or NULL if the index is 0 or the string could not be read.
874 */
875 char *usb_cache_string(struct usb_device *udev, int index)
876 {
877 char *buf;
878 char *smallbuf = NULL;
879 int len;
880
881 if (index <= 0)
882 return NULL;
883
884 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
885 if (buf) {
886 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
887 if (len > 0) {
888 smallbuf = kmalloc(++len, GFP_NOIO);
889 if (!smallbuf)
890 return buf;
891 memcpy(smallbuf, buf, len);
892 }
893 kfree(buf);
894 }
895 return smallbuf;
896 }
897
898 /*
899 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
900 * @dev: the device whose device descriptor is being updated
901 * @size: how much of the descriptor to read
902 * Context: !in_interrupt ()
903 *
904 * Updates the copy of the device descriptor stored in the device structure,
905 * which dedicates space for this purpose.
906 *
907 * Not exported, only for use by the core. If drivers really want to read
908 * the device descriptor directly, they can call usb_get_descriptor() with
909 * type = USB_DT_DEVICE and index = 0.
910 *
911 * This call is synchronous, and may not be used in an interrupt context.
912 *
913 * Returns the number of bytes received on success, or else the status code
914 * returned by the underlying usb_control_msg() call.
915 */
916 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
917 {
918 struct usb_device_descriptor *desc;
919 int ret;
920
921 if (size > sizeof(*desc))
922 return -EINVAL;
923 desc = kmalloc(sizeof(*desc), GFP_NOIO);
924 if (!desc)
925 return -ENOMEM;
926
927 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
928 if (ret >= 0)
929 memcpy(&dev->descriptor, desc, size);
930 kfree(desc);
931 return ret;
932 }
933
934 /**
935 * usb_get_status - issues a GET_STATUS call
936 * @dev: the device whose status is being checked
937 * @type: USB_RECIP_*; for device, interface, or endpoint
938 * @target: zero (for device), else interface or endpoint number
939 * @data: pointer to two bytes of bitmap data
940 * Context: !in_interrupt ()
941 *
942 * Returns device, interface, or endpoint status. Normally only of
943 * interest to see if the device is self powered, or has enabled the
944 * remote wakeup facility; or whether a bulk or interrupt endpoint
945 * is halted ("stalled").
946 *
947 * Bits in these status bitmaps are set using the SET_FEATURE request,
948 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
949 * function should be used to clear halt ("stall") status.
950 *
951 * This call is synchronous, and may not be used in an interrupt context.
952 *
953 * Returns the number of bytes received on success, or else the status code
954 * returned by the underlying usb_control_msg() call.
955 */
956 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
957 {
958 int ret;
959 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
960
961 if (!status)
962 return -ENOMEM;
963
964 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
965 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
966 sizeof(*status), USB_CTRL_GET_TIMEOUT);
967
968 *(u16 *)data = *status;
969 kfree(status);
970 return ret;
971 }
972 EXPORT_SYMBOL_GPL(usb_get_status);
973
974 /**
975 * usb_clear_halt - tells device to clear endpoint halt/stall condition
976 * @dev: device whose endpoint is halted
977 * @pipe: endpoint "pipe" being cleared
978 * Context: !in_interrupt ()
979 *
980 * This is used to clear halt conditions for bulk and interrupt endpoints,
981 * as reported by URB completion status. Endpoints that are halted are
982 * sometimes referred to as being "stalled". Such endpoints are unable
983 * to transmit or receive data until the halt status is cleared. Any URBs
984 * queued for such an endpoint should normally be unlinked by the driver
985 * before clearing the halt condition, as described in sections 5.7.5
986 * and 5.8.5 of the USB 2.0 spec.
987 *
988 * Note that control and isochronous endpoints don't halt, although control
989 * endpoints report "protocol stall" (for unsupported requests) using the
990 * same status code used to report a true stall.
991 *
992 * This call is synchronous, and may not be used in an interrupt context.
993 *
994 * Returns zero on success, or else the status code returned by the
995 * underlying usb_control_msg() call.
996 */
997 int usb_clear_halt(struct usb_device *dev, int pipe)
998 {
999 int result;
1000 int endp = usb_pipeendpoint(pipe);
1001
1002 if (usb_pipein(pipe))
1003 endp |= USB_DIR_IN;
1004
1005 /* we don't care if it wasn't halted first. in fact some devices
1006 * (like some ibmcam model 1 units) seem to expect hosts to make
1007 * this request for iso endpoints, which can't halt!
1008 */
1009 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1010 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1011 USB_ENDPOINT_HALT, endp, NULL, 0,
1012 USB_CTRL_SET_TIMEOUT);
1013
1014 /* don't un-halt or force to DATA0 except on success */
1015 if (result < 0)
1016 return result;
1017
1018 /* NOTE: seems like Microsoft and Apple don't bother verifying
1019 * the clear "took", so some devices could lock up if you check...
1020 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1021 *
1022 * NOTE: make sure the logic here doesn't diverge much from
1023 * the copy in usb-storage, for as long as we need two copies.
1024 */
1025
1026 usb_reset_endpoint(dev, endp);
1027
1028 return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(usb_clear_halt);
1031
1032 static int create_intf_ep_devs(struct usb_interface *intf)
1033 {
1034 struct usb_device *udev = interface_to_usbdev(intf);
1035 struct usb_host_interface *alt = intf->cur_altsetting;
1036 int i;
1037
1038 if (intf->ep_devs_created || intf->unregistering)
1039 return 0;
1040
1041 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1043 intf->ep_devs_created = 1;
1044 return 0;
1045 }
1046
1047 static void remove_intf_ep_devs(struct usb_interface *intf)
1048 {
1049 struct usb_host_interface *alt = intf->cur_altsetting;
1050 int i;
1051
1052 if (!intf->ep_devs_created)
1053 return;
1054
1055 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1056 usb_remove_ep_devs(&alt->endpoint[i]);
1057 intf->ep_devs_created = 0;
1058 }
1059
1060 /**
1061 * usb_disable_endpoint -- Disable an endpoint by address
1062 * @dev: the device whose endpoint is being disabled
1063 * @epaddr: the endpoint's address. Endpoint number for output,
1064 * endpoint number + USB_DIR_IN for input
1065 * @reset_hardware: flag to erase any endpoint state stored in the
1066 * controller hardware
1067 *
1068 * Disables the endpoint for URB submission and nukes all pending URBs.
1069 * If @reset_hardware is set then also deallocates hcd/hardware state
1070 * for the endpoint.
1071 */
1072 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1073 bool reset_hardware)
1074 {
1075 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1076 struct usb_host_endpoint *ep;
1077
1078 if (!dev)
1079 return;
1080
1081 if (usb_endpoint_out(epaddr)) {
1082 ep = dev->ep_out[epnum];
1083 if (reset_hardware)
1084 dev->ep_out[epnum] = NULL;
1085 } else {
1086 ep = dev->ep_in[epnum];
1087 if (reset_hardware)
1088 dev->ep_in[epnum] = NULL;
1089 }
1090 if (ep) {
1091 ep->enabled = 0;
1092 usb_hcd_flush_endpoint(dev, ep);
1093 if (reset_hardware)
1094 usb_hcd_disable_endpoint(dev, ep);
1095 }
1096 }
1097
1098 /**
1099 * usb_reset_endpoint - Reset an endpoint's state.
1100 * @dev: the device whose endpoint is to be reset
1101 * @epaddr: the endpoint's address. Endpoint number for output,
1102 * endpoint number + USB_DIR_IN for input
1103 *
1104 * Resets any host-side endpoint state such as the toggle bit,
1105 * sequence number or current window.
1106 */
1107 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1108 {
1109 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1110 struct usb_host_endpoint *ep;
1111
1112 if (usb_endpoint_out(epaddr))
1113 ep = dev->ep_out[epnum];
1114 else
1115 ep = dev->ep_in[epnum];
1116 if (ep)
1117 usb_hcd_reset_endpoint(dev, ep);
1118 }
1119 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1120
1121
1122 /**
1123 * usb_disable_interface -- Disable all endpoints for an interface
1124 * @dev: the device whose interface is being disabled
1125 * @intf: pointer to the interface descriptor
1126 * @reset_hardware: flag to erase any endpoint state stored in the
1127 * controller hardware
1128 *
1129 * Disables all the endpoints for the interface's current altsetting.
1130 */
1131 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1132 bool reset_hardware)
1133 {
1134 struct usb_host_interface *alt = intf->cur_altsetting;
1135 int i;
1136
1137 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1138 usb_disable_endpoint(dev,
1139 alt->endpoint[i].desc.bEndpointAddress,
1140 reset_hardware);
1141 }
1142 }
1143
1144 /**
1145 * usb_disable_device - Disable all the endpoints for a USB device
1146 * @dev: the device whose endpoints are being disabled
1147 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1148 *
1149 * Disables all the device's endpoints, potentially including endpoint 0.
1150 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1151 * pending urbs) and usbcore state for the interfaces, so that usbcore
1152 * must usb_set_configuration() before any interfaces could be used.
1153 */
1154 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1155 {
1156 int i;
1157
1158 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1159 skip_ep0 ? "non-ep0" : "all");
1160 for (i = skip_ep0; i < 16; ++i) {
1161 usb_disable_endpoint(dev, i, true);
1162 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1163 }
1164
1165 /* getting rid of interfaces will disconnect
1166 * any drivers bound to them (a key side effect)
1167 */
1168 if (dev->actconfig) {
1169 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1170 struct usb_interface *interface;
1171
1172 /* remove this interface if it has been registered */
1173 interface = dev->actconfig->interface[i];
1174 if (!device_is_registered(&interface->dev))
1175 continue;
1176 dev_dbg(&dev->dev, "unregistering interface %s\n",
1177 dev_name(&interface->dev));
1178 interface->unregistering = 1;
1179 remove_intf_ep_devs(interface);
1180 device_del(&interface->dev);
1181 }
1182
1183 /* Now that the interfaces are unbound, nobody should
1184 * try to access them.
1185 */
1186 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1187 put_device(&dev->actconfig->interface[i]->dev);
1188 dev->actconfig->interface[i] = NULL;
1189 }
1190 dev->actconfig = NULL;
1191 if (dev->state == USB_STATE_CONFIGURED)
1192 usb_set_device_state(dev, USB_STATE_ADDRESS);
1193 }
1194 }
1195
1196 /**
1197 * usb_enable_endpoint - Enable an endpoint for USB communications
1198 * @dev: the device whose interface is being enabled
1199 * @ep: the endpoint
1200 * @reset_ep: flag to reset the endpoint state
1201 *
1202 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1203 * For control endpoints, both the input and output sides are handled.
1204 */
1205 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1206 bool reset_ep)
1207 {
1208 int epnum = usb_endpoint_num(&ep->desc);
1209 int is_out = usb_endpoint_dir_out(&ep->desc);
1210 int is_control = usb_endpoint_xfer_control(&ep->desc);
1211
1212 if (reset_ep)
1213 usb_hcd_reset_endpoint(dev, ep);
1214 if (is_out || is_control)
1215 dev->ep_out[epnum] = ep;
1216 if (!is_out || is_control)
1217 dev->ep_in[epnum] = ep;
1218 ep->enabled = 1;
1219 }
1220
1221 /**
1222 * usb_enable_interface - Enable all the endpoints for an interface
1223 * @dev: the device whose interface is being enabled
1224 * @intf: pointer to the interface descriptor
1225 * @reset_eps: flag to reset the endpoints' state
1226 *
1227 * Enables all the endpoints for the interface's current altsetting.
1228 */
1229 void usb_enable_interface(struct usb_device *dev,
1230 struct usb_interface *intf, bool reset_eps)
1231 {
1232 struct usb_host_interface *alt = intf->cur_altsetting;
1233 int i;
1234
1235 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1236 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1237 }
1238
1239 /**
1240 * usb_set_interface - Makes a particular alternate setting be current
1241 * @dev: the device whose interface is being updated
1242 * @interface: the interface being updated
1243 * @alternate: the setting being chosen.
1244 * Context: !in_interrupt ()
1245 *
1246 * This is used to enable data transfers on interfaces that may not
1247 * be enabled by default. Not all devices support such configurability.
1248 * Only the driver bound to an interface may change its setting.
1249 *
1250 * Within any given configuration, each interface may have several
1251 * alternative settings. These are often used to control levels of
1252 * bandwidth consumption. For example, the default setting for a high
1253 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1254 * while interrupt transfers of up to 3KBytes per microframe are legal.
1255 * Also, isochronous endpoints may never be part of an
1256 * interface's default setting. To access such bandwidth, alternate
1257 * interface settings must be made current.
1258 *
1259 * Note that in the Linux USB subsystem, bandwidth associated with
1260 * an endpoint in a given alternate setting is not reserved until an URB
1261 * is submitted that needs that bandwidth. Some other operating systems
1262 * allocate bandwidth early, when a configuration is chosen.
1263 *
1264 * This call is synchronous, and may not be used in an interrupt context.
1265 * Also, drivers must not change altsettings while urbs are scheduled for
1266 * endpoints in that interface; all such urbs must first be completed
1267 * (perhaps forced by unlinking).
1268 *
1269 * Returns zero on success, or else the status code returned by the
1270 * underlying usb_control_msg() call.
1271 */
1272 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1273 {
1274 struct usb_interface *iface;
1275 struct usb_host_interface *alt;
1276 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1277 int ret;
1278 int manual = 0;
1279 unsigned int epaddr;
1280 unsigned int pipe;
1281
1282 if (dev->state == USB_STATE_SUSPENDED)
1283 return -EHOSTUNREACH;
1284
1285 iface = usb_ifnum_to_if(dev, interface);
1286 if (!iface) {
1287 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1288 interface);
1289 return -EINVAL;
1290 }
1291
1292 alt = usb_altnum_to_altsetting(iface, alternate);
1293 if (!alt) {
1294 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1295 alternate);
1296 return -EINVAL;
1297 }
1298
1299 /* Make sure we have enough bandwidth for this alternate interface.
1300 * Remove the current alt setting and add the new alt setting.
1301 */
1302 mutex_lock(&hcd->bandwidth_mutex);
1303 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1304 if (ret < 0) {
1305 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1306 alternate);
1307 mutex_unlock(&hcd->bandwidth_mutex);
1308 return ret;
1309 }
1310
1311 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1312 ret = -EPIPE;
1313 else
1314 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1315 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1316 alternate, interface, NULL, 0, 5000);
1317
1318 /* 9.4.10 says devices don't need this and are free to STALL the
1319 * request if the interface only has one alternate setting.
1320 */
1321 if (ret == -EPIPE && iface->num_altsetting == 1) {
1322 dev_dbg(&dev->dev,
1323 "manual set_interface for iface %d, alt %d\n",
1324 interface, alternate);
1325 manual = 1;
1326 } else if (ret < 0) {
1327 /* Re-instate the old alt setting */
1328 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1329 mutex_unlock(&hcd->bandwidth_mutex);
1330 return ret;
1331 }
1332 mutex_unlock(&hcd->bandwidth_mutex);
1333
1334 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1335 * when they implement async or easily-killable versions of this or
1336 * other "should-be-internal" functions (like clear_halt).
1337 * should hcd+usbcore postprocess control requests?
1338 */
1339
1340 /* prevent submissions using previous endpoint settings */
1341 if (iface->cur_altsetting != alt) {
1342 remove_intf_ep_devs(iface);
1343 usb_remove_sysfs_intf_files(iface);
1344 }
1345 usb_disable_interface(dev, iface, true);
1346
1347 iface->cur_altsetting = alt;
1348
1349 /* If the interface only has one altsetting and the device didn't
1350 * accept the request, we attempt to carry out the equivalent action
1351 * by manually clearing the HALT feature for each endpoint in the
1352 * new altsetting.
1353 */
1354 if (manual) {
1355 int i;
1356
1357 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1358 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1359 pipe = __create_pipe(dev,
1360 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1361 (usb_endpoint_out(epaddr) ?
1362 USB_DIR_OUT : USB_DIR_IN);
1363
1364 usb_clear_halt(dev, pipe);
1365 }
1366 }
1367
1368 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1369 *
1370 * Note:
1371 * Despite EP0 is always present in all interfaces/AS, the list of
1372 * endpoints from the descriptor does not contain EP0. Due to its
1373 * omnipresence one might expect EP0 being considered "affected" by
1374 * any SetInterface request and hence assume toggles need to be reset.
1375 * However, EP0 toggles are re-synced for every individual transfer
1376 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1377 * (Likewise, EP0 never "halts" on well designed devices.)
1378 */
1379 usb_enable_interface(dev, iface, true);
1380 if (device_is_registered(&iface->dev)) {
1381 usb_create_sysfs_intf_files(iface);
1382 create_intf_ep_devs(iface);
1383 }
1384 return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(usb_set_interface);
1387
1388 /**
1389 * usb_reset_configuration - lightweight device reset
1390 * @dev: the device whose configuration is being reset
1391 *
1392 * This issues a standard SET_CONFIGURATION request to the device using
1393 * the current configuration. The effect is to reset most USB-related
1394 * state in the device, including interface altsettings (reset to zero),
1395 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1396 * endpoints). Other usbcore state is unchanged, including bindings of
1397 * usb device drivers to interfaces.
1398 *
1399 * Because this affects multiple interfaces, avoid using this with composite
1400 * (multi-interface) devices. Instead, the driver for each interface may
1401 * use usb_set_interface() on the interfaces it claims. Be careful though;
1402 * some devices don't support the SET_INTERFACE request, and others won't
1403 * reset all the interface state (notably endpoint state). Resetting the whole
1404 * configuration would affect other drivers' interfaces.
1405 *
1406 * The caller must own the device lock.
1407 *
1408 * Returns zero on success, else a negative error code.
1409 */
1410 int usb_reset_configuration(struct usb_device *dev)
1411 {
1412 int i, retval;
1413 struct usb_host_config *config;
1414 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1415
1416 if (dev->state == USB_STATE_SUSPENDED)
1417 return -EHOSTUNREACH;
1418
1419 /* caller must have locked the device and must own
1420 * the usb bus readlock (so driver bindings are stable);
1421 * calls during probe() are fine
1422 */
1423
1424 for (i = 1; i < 16; ++i) {
1425 usb_disable_endpoint(dev, i, true);
1426 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1427 }
1428
1429 config = dev->actconfig;
1430 retval = 0;
1431 mutex_lock(&hcd->bandwidth_mutex);
1432 /* Make sure we have enough bandwidth for each alternate setting 0 */
1433 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1434 struct usb_interface *intf = config->interface[i];
1435 struct usb_host_interface *alt;
1436
1437 alt = usb_altnum_to_altsetting(intf, 0);
1438 if (!alt)
1439 alt = &intf->altsetting[0];
1440 if (alt != intf->cur_altsetting)
1441 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1442 intf->cur_altsetting, alt);
1443 if (retval < 0)
1444 break;
1445 }
1446 /* If not, reinstate the old alternate settings */
1447 if (retval < 0) {
1448 reset_old_alts:
1449 for (i--; i >= 0; i--) {
1450 struct usb_interface *intf = config->interface[i];
1451 struct usb_host_interface *alt;
1452
1453 alt = usb_altnum_to_altsetting(intf, 0);
1454 if (!alt)
1455 alt = &intf->altsetting[0];
1456 if (alt != intf->cur_altsetting)
1457 usb_hcd_alloc_bandwidth(dev, NULL,
1458 alt, intf->cur_altsetting);
1459 }
1460 mutex_unlock(&hcd->bandwidth_mutex);
1461 return retval;
1462 }
1463 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1464 USB_REQ_SET_CONFIGURATION, 0,
1465 config->desc.bConfigurationValue, 0,
1466 NULL, 0, USB_CTRL_SET_TIMEOUT);
1467 if (retval < 0)
1468 goto reset_old_alts;
1469 mutex_unlock(&hcd->bandwidth_mutex);
1470
1471 /* re-init hc/hcd interface/endpoint state */
1472 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1473 struct usb_interface *intf = config->interface[i];
1474 struct usb_host_interface *alt;
1475
1476 alt = usb_altnum_to_altsetting(intf, 0);
1477
1478 /* No altsetting 0? We'll assume the first altsetting.
1479 * We could use a GetInterface call, but if a device is
1480 * so non-compliant that it doesn't have altsetting 0
1481 * then I wouldn't trust its reply anyway.
1482 */
1483 if (!alt)
1484 alt = &intf->altsetting[0];
1485
1486 if (alt != intf->cur_altsetting) {
1487 remove_intf_ep_devs(intf);
1488 usb_remove_sysfs_intf_files(intf);
1489 }
1490 intf->cur_altsetting = alt;
1491 usb_enable_interface(dev, intf, true);
1492 if (device_is_registered(&intf->dev)) {
1493 usb_create_sysfs_intf_files(intf);
1494 create_intf_ep_devs(intf);
1495 }
1496 }
1497 return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1500
1501 static void usb_release_interface(struct device *dev)
1502 {
1503 struct usb_interface *intf = to_usb_interface(dev);
1504 struct usb_interface_cache *intfc =
1505 altsetting_to_usb_interface_cache(intf->altsetting);
1506
1507 kref_put(&intfc->ref, usb_release_interface_cache);
1508 kfree(intf);
1509 }
1510
1511 #ifdef CONFIG_HOTPLUG
1512 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1513 {
1514 struct usb_device *usb_dev;
1515 struct usb_interface *intf;
1516 struct usb_host_interface *alt;
1517
1518 intf = to_usb_interface(dev);
1519 usb_dev = interface_to_usbdev(intf);
1520 alt = intf->cur_altsetting;
1521
1522 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1523 alt->desc.bInterfaceClass,
1524 alt->desc.bInterfaceSubClass,
1525 alt->desc.bInterfaceProtocol))
1526 return -ENOMEM;
1527
1528 if (add_uevent_var(env,
1529 "MODALIAS=usb:"
1530 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1531 le16_to_cpu(usb_dev->descriptor.idVendor),
1532 le16_to_cpu(usb_dev->descriptor.idProduct),
1533 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1534 usb_dev->descriptor.bDeviceClass,
1535 usb_dev->descriptor.bDeviceSubClass,
1536 usb_dev->descriptor.bDeviceProtocol,
1537 alt->desc.bInterfaceClass,
1538 alt->desc.bInterfaceSubClass,
1539 alt->desc.bInterfaceProtocol))
1540 return -ENOMEM;
1541
1542 return 0;
1543 }
1544
1545 #else
1546
1547 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1548 {
1549 return -ENODEV;
1550 }
1551 #endif /* CONFIG_HOTPLUG */
1552
1553 struct device_type usb_if_device_type = {
1554 .name = "usb_interface",
1555 .release = usb_release_interface,
1556 .uevent = usb_if_uevent,
1557 };
1558
1559 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1560 struct usb_host_config *config,
1561 u8 inum)
1562 {
1563 struct usb_interface_assoc_descriptor *retval = NULL;
1564 struct usb_interface_assoc_descriptor *intf_assoc;
1565 int first_intf;
1566 int last_intf;
1567 int i;
1568
1569 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1570 intf_assoc = config->intf_assoc[i];
1571 if (intf_assoc->bInterfaceCount == 0)
1572 continue;
1573
1574 first_intf = intf_assoc->bFirstInterface;
1575 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1576 if (inum >= first_intf && inum <= last_intf) {
1577 if (!retval)
1578 retval = intf_assoc;
1579 else
1580 dev_err(&dev->dev, "Interface #%d referenced"
1581 " by multiple IADs\n", inum);
1582 }
1583 }
1584
1585 return retval;
1586 }
1587
1588
1589 /*
1590 * Internal function to queue a device reset
1591 *
1592 * This is initialized into the workstruct in 'struct
1593 * usb_device->reset_ws' that is launched by
1594 * message.c:usb_set_configuration() when initializing each 'struct
1595 * usb_interface'.
1596 *
1597 * It is safe to get the USB device without reference counts because
1598 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1599 * this function will be ran only if @iface is alive (and before
1600 * freeing it any scheduled instances of it will have been cancelled).
1601 *
1602 * We need to set a flag (usb_dev->reset_running) because when we call
1603 * the reset, the interfaces might be unbound. The current interface
1604 * cannot try to remove the queued work as it would cause a deadlock
1605 * (you cannot remove your work from within your executing
1606 * workqueue). This flag lets it know, so that
1607 * usb_cancel_queued_reset() doesn't try to do it.
1608 *
1609 * See usb_queue_reset_device() for more details
1610 */
1611 static void __usb_queue_reset_device(struct work_struct *ws)
1612 {
1613 int rc;
1614 struct usb_interface *iface =
1615 container_of(ws, struct usb_interface, reset_ws);
1616 struct usb_device *udev = interface_to_usbdev(iface);
1617
1618 rc = usb_lock_device_for_reset(udev, iface);
1619 if (rc >= 0) {
1620 iface->reset_running = 1;
1621 usb_reset_device(udev);
1622 iface->reset_running = 0;
1623 usb_unlock_device(udev);
1624 }
1625 }
1626
1627
1628 /*
1629 * usb_set_configuration - Makes a particular device setting be current
1630 * @dev: the device whose configuration is being updated
1631 * @configuration: the configuration being chosen.
1632 * Context: !in_interrupt(), caller owns the device lock
1633 *
1634 * This is used to enable non-default device modes. Not all devices
1635 * use this kind of configurability; many devices only have one
1636 * configuration.
1637 *
1638 * @configuration is the value of the configuration to be installed.
1639 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1640 * must be non-zero; a value of zero indicates that the device in
1641 * unconfigured. However some devices erroneously use 0 as one of their
1642 * configuration values. To help manage such devices, this routine will
1643 * accept @configuration = -1 as indicating the device should be put in
1644 * an unconfigured state.
1645 *
1646 * USB device configurations may affect Linux interoperability,
1647 * power consumption and the functionality available. For example,
1648 * the default configuration is limited to using 100mA of bus power,
1649 * so that when certain device functionality requires more power,
1650 * and the device is bus powered, that functionality should be in some
1651 * non-default device configuration. Other device modes may also be
1652 * reflected as configuration options, such as whether two ISDN
1653 * channels are available independently; and choosing between open
1654 * standard device protocols (like CDC) or proprietary ones.
1655 *
1656 * Note that a non-authorized device (dev->authorized == 0) will only
1657 * be put in unconfigured mode.
1658 *
1659 * Note that USB has an additional level of device configurability,
1660 * associated with interfaces. That configurability is accessed using
1661 * usb_set_interface().
1662 *
1663 * This call is synchronous. The calling context must be able to sleep,
1664 * must own the device lock, and must not hold the driver model's USB
1665 * bus mutex; usb interface driver probe() methods cannot use this routine.
1666 *
1667 * Returns zero on success, or else the status code returned by the
1668 * underlying call that failed. On successful completion, each interface
1669 * in the original device configuration has been destroyed, and each one
1670 * in the new configuration has been probed by all relevant usb device
1671 * drivers currently known to the kernel.
1672 */
1673 int usb_set_configuration(struct usb_device *dev, int configuration)
1674 {
1675 int i, ret;
1676 struct usb_host_config *cp = NULL;
1677 struct usb_interface **new_interfaces = NULL;
1678 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1679 int n, nintf;
1680
1681 if (dev->authorized == 0 || configuration == -1)
1682 configuration = 0;
1683 else {
1684 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1685 if (dev->config[i].desc.bConfigurationValue ==
1686 configuration) {
1687 cp = &dev->config[i];
1688 break;
1689 }
1690 }
1691 }
1692 if ((!cp && configuration != 0))
1693 return -EINVAL;
1694
1695 /* The USB spec says configuration 0 means unconfigured.
1696 * But if a device includes a configuration numbered 0,
1697 * we will accept it as a correctly configured state.
1698 * Use -1 if you really want to unconfigure the device.
1699 */
1700 if (cp && configuration == 0)
1701 dev_warn(&dev->dev, "config 0 descriptor??\n");
1702
1703 /* Allocate memory for new interfaces before doing anything else,
1704 * so that if we run out then nothing will have changed. */
1705 n = nintf = 0;
1706 if (cp) {
1707 nintf = cp->desc.bNumInterfaces;
1708 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1709 GFP_NOIO);
1710 if (!new_interfaces) {
1711 dev_err(&dev->dev, "Out of memory\n");
1712 return -ENOMEM;
1713 }
1714
1715 for (; n < nintf; ++n) {
1716 new_interfaces[n] = kzalloc(
1717 sizeof(struct usb_interface),
1718 GFP_NOIO);
1719 if (!new_interfaces[n]) {
1720 dev_err(&dev->dev, "Out of memory\n");
1721 ret = -ENOMEM;
1722 free_interfaces:
1723 while (--n >= 0)
1724 kfree(new_interfaces[n]);
1725 kfree(new_interfaces);
1726 return ret;
1727 }
1728 }
1729
1730 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1731 if (i < 0)
1732 dev_warn(&dev->dev, "new config #%d exceeds power "
1733 "limit by %dmA\n",
1734 configuration, -i);
1735 }
1736
1737 /* Wake up the device so we can send it the Set-Config request */
1738 ret = usb_autoresume_device(dev);
1739 if (ret)
1740 goto free_interfaces;
1741
1742 /* Make sure we have bandwidth (and available HCD resources) for this
1743 * configuration. Remove endpoints from the schedule if we're dropping
1744 * this configuration to set configuration 0. After this point, the
1745 * host controller will not allow submissions to dropped endpoints. If
1746 * this call fails, the device state is unchanged.
1747 */
1748 mutex_lock(&hcd->bandwidth_mutex);
1749 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1750 if (ret < 0) {
1751 usb_autosuspend_device(dev);
1752 mutex_unlock(&hcd->bandwidth_mutex);
1753 goto free_interfaces;
1754 }
1755
1756 /* if it's already configured, clear out old state first.
1757 * getting rid of old interfaces means unbinding their drivers.
1758 */
1759 if (dev->state != USB_STATE_ADDRESS)
1760 usb_disable_device(dev, 1); /* Skip ep0 */
1761
1762 /* Get rid of pending async Set-Config requests for this device */
1763 cancel_async_set_config(dev);
1764
1765 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1766 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1767 NULL, 0, USB_CTRL_SET_TIMEOUT);
1768 if (ret < 0) {
1769 /* All the old state is gone, so what else can we do?
1770 * The device is probably useless now anyway.
1771 */
1772 cp = NULL;
1773 }
1774
1775 dev->actconfig = cp;
1776 if (!cp) {
1777 usb_set_device_state(dev, USB_STATE_ADDRESS);
1778 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1779 usb_autosuspend_device(dev);
1780 mutex_unlock(&hcd->bandwidth_mutex);
1781 goto free_interfaces;
1782 }
1783 mutex_unlock(&hcd->bandwidth_mutex);
1784 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1785
1786 /* Initialize the new interface structures and the
1787 * hc/hcd/usbcore interface/endpoint state.
1788 */
1789 for (i = 0; i < nintf; ++i) {
1790 struct usb_interface_cache *intfc;
1791 struct usb_interface *intf;
1792 struct usb_host_interface *alt;
1793
1794 cp->interface[i] = intf = new_interfaces[i];
1795 intfc = cp->intf_cache[i];
1796 intf->altsetting = intfc->altsetting;
1797 intf->num_altsetting = intfc->num_altsetting;
1798 intf->intf_assoc = find_iad(dev, cp, i);
1799 kref_get(&intfc->ref);
1800
1801 alt = usb_altnum_to_altsetting(intf, 0);
1802
1803 /* No altsetting 0? We'll assume the first altsetting.
1804 * We could use a GetInterface call, but if a device is
1805 * so non-compliant that it doesn't have altsetting 0
1806 * then I wouldn't trust its reply anyway.
1807 */
1808 if (!alt)
1809 alt = &intf->altsetting[0];
1810
1811 intf->cur_altsetting = alt;
1812 usb_enable_interface(dev, intf, true);
1813 intf->dev.parent = &dev->dev;
1814 intf->dev.driver = NULL;
1815 intf->dev.bus = &usb_bus_type;
1816 intf->dev.type = &usb_if_device_type;
1817 intf->dev.groups = usb_interface_groups;
1818 intf->dev.dma_mask = dev->dev.dma_mask;
1819 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1820 device_initialize(&intf->dev);
1821 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1822 dev->bus->busnum, dev->devpath,
1823 configuration, alt->desc.bInterfaceNumber);
1824 }
1825 kfree(new_interfaces);
1826
1827 if (cp->string == NULL &&
1828 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1829 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1830
1831 /* Now that all the interfaces are set up, register them
1832 * to trigger binding of drivers to interfaces. probe()
1833 * routines may install different altsettings and may
1834 * claim() any interfaces not yet bound. Many class drivers
1835 * need that: CDC, audio, video, etc.
1836 */
1837 for (i = 0; i < nintf; ++i) {
1838 struct usb_interface *intf = cp->interface[i];
1839
1840 dev_dbg(&dev->dev,
1841 "adding %s (config #%d, interface %d)\n",
1842 dev_name(&intf->dev), configuration,
1843 intf->cur_altsetting->desc.bInterfaceNumber);
1844 device_enable_async_suspend(&intf->dev);
1845 ret = device_add(&intf->dev);
1846 if (ret != 0) {
1847 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1848 dev_name(&intf->dev), ret);
1849 continue;
1850 }
1851 create_intf_ep_devs(intf);
1852 }
1853
1854 usb_autosuspend_device(dev);
1855 return 0;
1856 }
1857
1858 static LIST_HEAD(set_config_list);
1859 static DEFINE_SPINLOCK(set_config_lock);
1860
1861 struct set_config_request {
1862 struct usb_device *udev;
1863 int config;
1864 struct work_struct work;
1865 struct list_head node;
1866 };
1867
1868 /* Worker routine for usb_driver_set_configuration() */
1869 static void driver_set_config_work(struct work_struct *work)
1870 {
1871 struct set_config_request *req =
1872 container_of(work, struct set_config_request, work);
1873 struct usb_device *udev = req->udev;
1874
1875 usb_lock_device(udev);
1876 spin_lock(&set_config_lock);
1877 list_del(&req->node);
1878 spin_unlock(&set_config_lock);
1879
1880 if (req->config >= -1) /* Is req still valid? */
1881 usb_set_configuration(udev, req->config);
1882 usb_unlock_device(udev);
1883 usb_put_dev(udev);
1884 kfree(req);
1885 }
1886
1887 /* Cancel pending Set-Config requests for a device whose configuration
1888 * was just changed
1889 */
1890 static void cancel_async_set_config(struct usb_device *udev)
1891 {
1892 struct set_config_request *req;
1893
1894 spin_lock(&set_config_lock);
1895 list_for_each_entry(req, &set_config_list, node) {
1896 if (req->udev == udev)
1897 req->config = -999; /* Mark as cancelled */
1898 }
1899 spin_unlock(&set_config_lock);
1900 }
1901
1902 /**
1903 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1904 * @udev: the device whose configuration is being updated
1905 * @config: the configuration being chosen.
1906 * Context: In process context, must be able to sleep
1907 *
1908 * Device interface drivers are not allowed to change device configurations.
1909 * This is because changing configurations will destroy the interface the
1910 * driver is bound to and create new ones; it would be like a floppy-disk
1911 * driver telling the computer to replace the floppy-disk drive with a
1912 * tape drive!
1913 *
1914 * Still, in certain specialized circumstances the need may arise. This
1915 * routine gets around the normal restrictions by using a work thread to
1916 * submit the change-config request.
1917 *
1918 * Returns 0 if the request was successfully queued, error code otherwise.
1919 * The caller has no way to know whether the queued request will eventually
1920 * succeed.
1921 */
1922 int usb_driver_set_configuration(struct usb_device *udev, int config)
1923 {
1924 struct set_config_request *req;
1925
1926 req = kmalloc(sizeof(*req), GFP_KERNEL);
1927 if (!req)
1928 return -ENOMEM;
1929 req->udev = udev;
1930 req->config = config;
1931 INIT_WORK(&req->work, driver_set_config_work);
1932
1933 spin_lock(&set_config_lock);
1934 list_add(&req->node, &set_config_list);
1935 spin_unlock(&set_config_lock);
1936
1937 usb_get_dev(udev);
1938 schedule_work(&req->work);
1939 return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);